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A new approach to cross-bifix-free sets

S. Bilotta∗ E. Pergola∗ R. Pinzani∗

Abstract

Cross-bifix-free sets are sets of words such that no prefix of any word is a suffix of any
other word. In this paper, we introduce a general constructive method for the sets of cross-
bifix-free binary words of fixed length. It enables us to determine a cross-bifix-free words
subset which has the property to be non-expandable.

1 Introduction

In digital communication systems, synchronization is an essential requirement to establish
and maintain a connection between a transmitter and a receiver.

Analytical approaches to the synchronization acquisition process and methods for the con-
struction of sequences with the best aperiodic autocorrelation properties have been the subject
of numerous analyses in the digital transmission.

The historical engineering approach started with the introduction of bifix. It denotes a
subsequence that is both a prefix and suffix of a longer observed sequence. Rather than to the
bifix, much attention has been devoted to a bifix-indicator, an indicator function implying the
existence of the bifix [10]. Such indicators were shown to be without equal in performing various
statistical analysis, mainly concerning the search process [3, 10]

However, an analytical study of simultaneous search for a set of sequences urged the inven-
tion of cross-bifix indicators [1, 2] and, accordingly, turned attention to the sets of sequences
which avoid cross-bifixes, called cross-bifix-free sets.

In [1], the author analyzes some properties of binary words that form a cross-bifix-free
set, in particular, a general constructing method called the kernel method is presented. This
approach leads to sets S(n) of cross-bifix-free binary words, of fixed length n, having cardinality
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 for n = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 respectively.

This sequence forms a Fibonacci progression and satisfies the recurrence relation |S(n)| =
|S(n− 1)| + |S(n − 2)| with |S(3)| = 1 and |S(4)| = 1.

The problem of determining cross-bifix-free sets is also related to several other scientific
applications, for instance in multiaccess systems, pattern matching and automata theory.

The aim of this paper is to introduce a method for the generation of sets of cross-bifix-
free binary words of fixed length based upon the study of lattice paths on the Cartesian plane.
This approach enables us to obtain cross-bifix-free sets having greater cardinality than the ones
presented in [1].

The paper is organized as follows. In Section 2 we give some basic definitions and notation
related to the notions of bifix-free word and cross-bifix-free set. In Section 3 we propose a
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method to construct particular sets of cross-bifix-free binary words of fixed length n related to
the parity of n. We are not able to say if such cross-bifix-free sets have maximal cardinality on
the set of bifix-free binary words of fixed length n or not.

2 Basic definitions and notations

Let A be a finite, non-empty set called alphabet. The elements of A are called letters. A
(finite) sequence of letters in A is called (finite) word. Let A∗ denote the monoid of all finite
words over A where ε denotes the empty word and A+ = A∗\ε. Let ω be a word in A∗, then
|ω| indicates the length of ω and |ω|a denotes the number of occurrences of a in ω, being a ∈ A.
Let ω = uv then u is called prefix of ω and v is called suffix of ω. A bifix of ω is a subsequence
of ω that is both its prefix and suffix.

A word ω of A+ is said to be bifix-free or unbordered [7, 11] if and only if no strict prefix of
ω is also a suffix of ω. Therefore, ω is bifix-free if and only if ω 6= uwu, being u any necessarily
non-empty word and w any word. Obviously, a necessary condition for ω to be bifix-free is that
the first and the last letters of ω must be different.

Example 2.1 In the monoid {0, 1}∗, the word 111010100 of length n = 9 is bifix-free, while the

word 101001010 contains two bifixes, 10 and 1010.

Let BFq(n) denote the set of all bifix-free words of length n over an alphabet of fixed size
q. The following formula for the cardinality of BFq(n), denoted by |BFq(n)|, is well-known [11].























|BFq(1)| = q

|BFq(2n+ 1)| = q|BFq(2n)|

|BFq(2n)| = q|BFq(2n− 1)| − |BFq(n)|

(2.1)

The number sequences related to this recurrence can be found in Sloane’s database of integer
sequences [12]: sequences A003000 (q = 2), A019308 (q = 3) and A019309 (q = 4).

Table 2.1 lists the set BF2(n), 2 ≤ n ≤ 6, the last row reports the cardinality of each set.

n=2 n=3 n=4 n=5 n=6

10 01 100 001 1000 0001 10000 00001 100000 000001
110 011 1100 0011 10100 00101 101000 000101

1110 0111 11000 00011 101100 001101
11100 00111 110000 000011
11010 01011 110100 001011
11110 01111 111000 000111

111100 001111
110010 010011
111010 010111
111110 011111

2 4 6 12 20

Table 2.1: The set BF2(n), 2 ≤ n ≤ 6
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Let q > 1 and n > 1 be fixed. Two distinct words ω, ω′ ∈ BFq(n) are said to be cross-bifix-

free if and only if no strict prefix of ω is also a suffix of ω′ and vice-versa.

Example 2.2 The binary words 111010100 and 110101010 in BF2(9) are cross-bifix-free, while

the binary words 111001100 and 110011010 in BF2(9) have the cross-bifix 1100.

A subset of BFq(n) is said to be cross-bifix-free set if and only if for each ω, ω′, with ω 6= ω′,
in this set, ω and ω′ are cross-bifix-free. This set is said to be non-expandable on BFq(n) if and
only if the set obtained by adding any other word is not a cross-bifix-free set. A non-expandable
cross-bifix-free set on BFq(n) having maximal cardinality is called maximal cross-bifix-free set

on BFq(n).
Each word ω ∈ BF2(n) can be naturally represented as a lattice path on the Cartesian

plane, by associating a rise step, defined by (1, 1) and denoted by x, to each 1’s in BF2(n), and
a fall step, defined by (1,−1) and denoted by x, to each 0’s in BF2(n), running from (0, 0) to
(n, h), −n < h < n.

From now on, we will refer interchangeably to words or their graphical representations on
the Cartesian plane, that is paths.

The definition of bifix-free and cross-bifix-free can be easily extended to paths. Figure 2.1
shows the two paths corresponding to the cross-bifix-free words of Example 2.2.

1 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0

Figure 2.1: Two paths in BF2(9) which are cross-bifix-free

A lattice path on the Cartesian plane using the steps (1, 1) and (1,−1) and running from
(0, 0) to (2m, 0), with m ≥ 0, is said to be Grand-Dyck or Binomial path (see [5] for further
details). A Dyck path is a sequence of rise step and fall steps running from (0, 0) to (2m, 0) and
remaining weakly above the x-axis (see Figure 2.2). The number of 2m-length Dyck paths is
the mth Catalan number Cm = 1/(m+ 1)

(2m
m

)

, see [13] for further details.

m=3

m=1

m=2

Figure 2.2: The 2m-length Dyck paths, 1 ≤ m ≤ 3

In this paper, we are interested in investigating a possible non-expandable cross-bifix-free
set, that is the set CBFS2(n) of cross-bifix-free words of fixed length n > 1 on the monoid
{0, 1}∗. In order to do so, we focus on the set B̂F 2(n) of bifix-free binary words of fixed length n
having 1 as the first letter and 0 as last letter or equivalently the set of bifix-free lattice paths on
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the Cartesian plane using the steps (1, 1) and (1,−1), running from (0, 0) to (n, h), −n < h < n,
beginning with a rise step and ending with a fall step. Of course B̌F 2(n) = BF2(n)\B̂F 2(n) is
obtained by switching rise and fall steps.

Let B̂F
h
2(n) denote the set of the paths in B̂F 2(n) having h as the ordinate of their endpoint,

−n < h < n.

3 On the non-expandability of CBFS2(n)

In order to prove that CBFS2(n) is a non-expandable cross-bifix-free set on BF2(n) we
have to distinguish the following two cases depending on the parity of n.

3.1 Non-expandable CBFS2(2m+ 1)

Let CBFS2(2m + 1) = {xα : α ∈ D2m} that is the set of paths beginning with a rise step
linked to a 2m-length Dyck path (see Figure 3.3). Note that CBFS2(2m + 1) is a subset of

B̂F
1
2(2m+ 1), m ≥ 1.

2m2
CBFS  (2m+1) =  α

,  α D

Figure 3.3: A graphical representation of CBFS2(2m+ 1), with m ≥ 1

Of course |CBFS2(2m+ 1)| = Cm, being Cm the mth Catalan number, m ≥ 1.
Figure 3.4 shows the set CBFS2(7), with |CBFS2(7)| = C3 = 5.

CBFS  (7) ,,,,

1 1 0 1 0 1 01 1 0 1 1 0 01 1 1 0 0 1 01 1 1 0 1 0 01 1 1 1 0 0 0

=
2

Figure 3.4: A graphical representation of CBFS2(7)

Proposition 3.1 The set CBFS2(2m+ 1) is a cross-bifix-free set on BF2(2m+ 1), m ≥ 1.

Proof. The proof consists of two distinguished steps. The first one proves that each ω ∈
CBFS2(2m+1) is bifix-free and the second one proves that CBFS2(2m+1) is a cross-bifix-free
set. Each ω ∈ CBFS2(2m+1) can be written as ω = vwu, being v, u any necessarily non-empty
word while w can also be an empty word. For each prefix v of ω we have |v|1 > |v|0 and for each
suffix u of ω we have |u|1 ≤ |u|0. Therefore v 6= u, ∀v, u ∈ ω so ω is bifix-free.

The proof that, for each ω, ω′ ∈ CBFS2(2m+ 1) then ω and ω′ are cross-bifix-free, follows
the logical steps described above. �

Proposition 3.2 The set CBFS2(2m+1) is a non-expandable cross-bifix-free set on BF2(2m+
1), m ≥ 1.
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Proof. It is sufficient to prove that the set CBFS2(2m+1) is a non-expandable cross-bifix-free
set on B̂F 2(2m + 1), as each ω ∈ CBFS2(2m + 1) and ϕ ∈ B̌F 2(2m + 1) match on the last
letter of ω and the first one of ϕ at least.

Let m ≥ 1 be fixed, we can prove that CBFS2(2m+1) is a non-expandable cross-bifix-free

set on B̂F
h
2(2m+ 1) by distinguishing h > 0 from h < 0.

• h > 0 : a path γ in B̂F
h
2(2m + 1)\CBFS2(2m + 1) can be written as γ = φxα1xα2x . . . xαr (see

Figure 3.5, where n = 2m + 1), being φ a Grand-Dyck path beginning with a rise step,
x a rise step, αl Dyck paths, 1 ≤ l ≤ r − 1, and αr a necessarily non-empty Dyck path.
Therefore, we can find paths in CBFS2(2m + 1) having a prefix which matches with a
suffix of γ. It is sufficient to consider the path ω = xαrαs, being αs a Dyck path of
appropriate length.

φ r

2
1

α

αα

Figure 3.5: A graphical representation of a path γ in B̂F
h

2
(n), h > 0

• h < 0 : a path γ in B̂F
h
2(2m+1) can be written as γ = αrxαr−1x . . . xα1xφ (see Figure 3.6, where

n = 2m + 1), being αr a necessarily non-empty Dyck path, x a fall step, αl Dyck paths,
1 ≤ l ≤ r− 1, and φ a Grand-Dyck path. Therefore, we can find paths in CBFS2(2m+1)
having a suffix which matches with a prefix of γ. It is sufficient to consider the path
ω = xαsαr, being αs a Dyck path of appropriate length.

1

φ

α

αα

1

r r−

Figure 3.6: A graphical representation of a path γ in B̂F
h

2
(n), h < 0

�

3.2 Non-expandable CBFS2(2m+ 2)

In this case we have to distinguish two further subcases depending on the parity of m > 0.

Ifm is an even number then CBFS2(2m+2) = {αxβx : α ∈ D2i , β ∈ D2(m−i) , 0 ≤ i ≤ m
2 },

that is the set of paths consisting of the following consecutive sub-paths: a 2i-length Dyck path,
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a rise step, a 2(m − i)-length Dyck path, a fall step, where 0 ≤ i ≤ m
2 (see Figure 3.7). Note

that CBFS2(2m+ 2) is a subset of B̂F
0
2(2m+ 2), for any even number m > 1.

≤
2
m

i0,  2(m−i)β2iD

β
CBFS  (2m+2)

2
=  α

,  α D ≤

Figure 3.7: A graphical representation of CBFS2(2m+ 2), for any even number m > 1

Of course |CBFS2(2m+2)| =
∑m/2

i=0 CiCm−i, Cm is the mth Catalan Number, for any even
number m > 1. Figure 3.8 shows the set CBFS2(10), with |CBFS2(10)| = C4+C1C3+C2C2 =
23.

,,

,

,

2
=CBFS  (10)

1 1 1 0 0 1 1 0 0 01 1 1 0 0 1 0 1 0 01 1 0 1 1 0 0 1 0 0

1 1 0 1 0 1 1 0 0 01 1 1 0 1 0 0 1 0 01 1 0 1 1 0 1 0 0 01 1 1 1 0 0 0 1 0 01 1 0 1 1 1 0 0 0 0

1 1 1 0 1 0 1 0 0 01 1 1 1 0 0 1 0 0 01 1 1 0 1 1 0 0 0 01 1 1 1 0 1 0 0 0 01 1 1 1 1 0 0 0 0 0 

1 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 0 0

1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 0

1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 0 0 0

, , , , ,

, , , , ,

, , , ,

,

, , ,

Figure 3.8: A graphical representation of CBFS2(10)

Proposition 3.3 The set CBFS2(2m + 2) is a cross-bifix-free set on BF2(2m + 2), for any

even number m > 1.

Proof. The proof consists of two distinguished steps. The first one proves that each ω ∈
CBFS2(2m+2) is bifix-free and the second one proves that CBFS2(2m+2) is a cross-bifix-free
set. Each ω ∈ CBFS2(2m+2) can be written as ω = vwu, being v, u any necessarily non-empty
word while w can also be an empty word. Let m > 1 be fixed, we have to take into consideration
two different cases: in the first one i = 0 and in the second one 0 < i ≤ m

2 .
If i = 0 then ω ∈ {xβx : β ∈ D2m}, and for each prefix v of ω we have |v|1 > |v|0 and for

each suffix u of ω we have |u|1 < |u|0. Therefore v 6= u, ∀v, u ∈ ω and ω is bifix-free.
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Otherwise, ω ∈ {αxβx : α ∈ D2i , β ∈ D2(m−i) , 0 < i ≤ m
2 }, then for each prefix v of ω

we have |v|1 ≥ |v|0 and for each suffix u of ω we have |u|1 ≤ |u|0. If |v|1 > |v|0 then v 6= u,
∀v, u ∈ ω and therefore ω is bifix-free. Let i be fixed, if |v|1 = |v|0 then the path v is a 2k-length
Dyck path, 1 ≤ k ≤ i. In this case, both u = µx, where µ is any suffix of β, and u = µ′xβx,
where µ′ is any suffix of α\v. If u = µx then |u|1 < |u|0, therefore v 6= u, ∀v, u ∈ ω and therefore
ω is bifix-free. If u = µ′xβx then v does not match with xβx, therefore v 6= u, ∀v, u ∈ ω and
therefore ω is bifix-free.

The proof that, for each ω, ω′ ∈ CBFS2(2m+ 2) then ω and ω′ are cross-bifix-free, follows
the logical steps described above. �

Proposition 3.4 The set CBFS2(2m+2) is a non-expandable cross-bifix-free set on BF2(2m+
2), for any even number m > 1.

Proof. It is sufficient to prove that the set CBFS2(2m+2) is a non-expandable cross-bifix-free
set on B̂F 2(2m + 2), as each ω ∈ CBFS2(2m + 2) and ϕ ∈ B̌F 2(2m + 2) match on the last
letter of ω and the first one of ϕ at least.

Let m > 1 be fixed, we have to take into consideration three different cases: in the first

one we prove that CBFS2(2m + 2) is a non-expandable cross-bifix-free set on B̂F
h
2(2m + 2),

h > 0, in the second one we prove that CBFS2(2m+2) is a non-expandable cross-bifix-free set

on B̂F
h
2(2m+2), h < 0, and in the last one we prove that CBFS2(2m+2) is a non-expandable

cross-bifix-free set on B̂F
0
2(2m+ 2).

• h > 0 : a path γ in B̂F
h
2(2m+ 2) can be written as γ = φxα1xα2x . . . xαr (see Figure 3.5, where

n = 2m+2), being φ a Grand-Dyck path beginning with a rise step, x a rise step, αl Dyck
paths, 1 ≤ l ≤ r − 1, and αr a necessarily non-empty Dyck path. Therefore, we can find
paths in CBFS2(2m+ 2) having a prefix which matches with a suffix of γ. It is sufficient
to consider the path ω = xαrαsx, being αs a Dyck path of appropriate length.

• h < 0 : a path γ in B̂F
h
2(2m+2) can be written as γ = αrxαr−1x . . . xα1xφ (see Figure 3.6, where

n = 2m + 2), being αr a necessarily non-empty Dyck path, x a fall step, αl Dyck paths,
1 ≤ l ≤ r− 1, and φ a Grand-Dyck path. Therefore, we can find paths in CBFS2(2m+2)
having a suffix which matches with a prefix of γ. It is sufficient to consider the path
ω = xαsαrx, being αs a Dyck path of appropriate length.

• h = 0 : a path γ in B̂F
0
2(2m+2)\CBFS2(2m+2) either never falls below the x-axis or crosses the

x-axis. In the first case, it can be written as γ = α1xβ1x, where α1 is a necessarily non-
empty 2k-length Dyck path and β1 is a 2(m− k)-length Dyck path, with m

2 +1 ≤ k ≤ m,
see Figure 3.9 a). Therefore, we can find paths in CBFS2(2m+ 2) having a prefix which
matches with a suffix of γ. It is sufficient to consider the path ω = xβ1xxβx, since
xβ1x ∈ D2i being i = m− k + 1.

If a path γ in B̂F
0
2(2m + 2)\CBFS2(2m + 2) crosses the x-axis then it can be written

as γ = α1φ where α1 is a necessarily non-empty 2k-length Dyck path, 1 ≤ k ≤ m, and
φ is a necessarily non-empty Grand-Dyck beginning with a fall step, see Figure 3.9 b).
Therefore, we can find paths in CBFS2(2m + 2) having a suffix which matches with a
prefix of γ. It is sufficient to consider the path ω = xαsα1x, being αs a Dyck path of
appropriate length.
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 α

b)a)

1
1

1

φ

 αβ

Figure 3.9: The two possible configurations for a path γ in B̂F
0

2
(2m+2)\CBFS2(2m+2), for any even

number m > 1

�

If m is an odd number then CBFS2(2m + 2) = {αxβx : α ∈ D2i , β ∈ D2(m−i) , 0 ≤ i ≤
m+1
2 }\{xα′xxβ′x : α′, β′ ∈ Dm−1}, that is the set of paths consisting of the following consecutive

sub-paths: a 2i-length Dyck path, a rise step, a 2(m − i)-length Dych path, a fall step, where
0 ≤ i ≤ m+1

2 , and excluding those consisting of the following consecutive sub-paths: a rise step,
a (m − 1)-length Dyck path, a fall step followed by a rise step, a (m − 1)-length Dyck path, a
fall step (see Figure 3.10). In other words, the paths which result from the concatenation of two
elevated Dyck paths of the same length must be excluded.

In particular, if α′ = β′ then the excluded paths are not bifix-free, otherwise if α′ 6= β′ then
the excluded paths match with the paths {αxβx : α ∈ Dm+1 , β ∈ D2(m−1)} in CBFS2(2m+2).

Note that CBFS2(2m+ 2) is a subset of B̂F
0
2(2m+ 2), for any odd number m ≥ 1.

≤

2
=(2m+2)CBFS

m−1
’’ Dβ,α

,  

,  

’’ β α

m+1
2

i0,  2(m−i)β2iD

β
 α α D ≤

Figure 3.10: A graphical representation of CBFS2(2m+ 2), for any odd number m ≥ 1

Of course |CBFS2(2m+2)| = (
∑

m+1

2

i=0 CiCm−i)− (Cm−1

2

)2, Cm is the mth Catalan Number,

for any odd number m ≥ 1. Figure 3.11 shows the set CBFS2(8), with |CBFS2(8)| = (C3 +
C1C2 + C2C1)− (C1)

2 = 8.

Proposition 3.5 The set CBFS2(2m+2) is a cross-bifix-free set on BF2(2m+2), for any odd

number m ≥ 1.

Proposition 3.6 The set CBFS2(2m+2) is a non-expandable cross-bifix-free set on BF2(2m+
2), for any odd number m ≥ 1.

The proof of Proposition 3.5 follows the logical steps as far Proposition 3.3 and the proof
of Proposition 3.6 follows the logical steps as far Proposition 3.4.
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1 1 1 1 0 0 0 0
2

=CBFS  (8)

,,,

,,,,,

1 1 0 0 1 1 0 0

1 0 1 0 1 1 0 01 1 0 0 1 1 0 01 0 1 1 0 1 0 01 0 1 1 1 0 0 0

1 1 0 1 0 1 0 01 1 1 0 0 1 0 01 1 0 1 1 0 0 01 1 1 0 1 0 0 0

Figure 3.11: A graphical representation of the set CBFS2(8)

Therefore, the presented constructing method gives sets CBFS2(n) of cross-bifix-free bi-
nary words, of fixed length n, having cardinality 1, 1, 2, 3, 5, 8, 14, 23, 42, 72, 132, 227, 429 for
n = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 respectively.

4 Conclusions and further developments

In this paper, we introduce a general constructing method for the sets of cross-bifix-free
binary words of fixed length n based upon the study of lattice paths on the Cartesian plane.
This approach enables us to obtain the cross-bifix-free set CBFS2(n) having greater cardinality
than the ones presented in [1] based upon the kernel method.

Moreover, we prove that CBFS2(n) is a non-expandable cross-bifix-free set on BF2(n), i.e.
CBFS2(n) ∪ γ is not a cross-bifix-free set on BF2(n), for any γ ∈ BF2(n)\CBFS2(n). The
non-expandable property is obviously a necessary condition to obtain a maximal cross-bifix-free
set on BF2(n), anyway we are not able to find and prove a sufficient condition.

Further studies to prove that could investigate both the nontrivial subsets of BF2(n) in
which CBFS2(n) is a maximal cross-bifix-free set, and the study of other non-expandable cross-
bifix-free sets on BF2(n).

Another approach to reach the goal could be to find a different characterization of bifix-free
words which could be obtained through bijective methods between particular bifix-free subsets
and other well-known discrete structures.

Successive studies should take into consideration the general study of cross-bifix-free sets on
BFq(n), where q is grater than 2.
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