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Abstract

We consider the transform from sequences to triangular arrays defined in terms

of generating functions by f(x) → 1−x
1−xy

f
(x(1−x)

1−xy

)
. We establish a criterion for

the transform of a nonnegative sequence to be nonnegative, and we show that the

transform counts certain classes of lattice paths by number of “pyramid ascents”,

as well as certain classes of ordered partitions by number of blocks that consist of

increasing consecutive integers.

1 Introduction

We investigate the transform Φ defined on formal power series f(x) by

Φ
(
f(x)

)
:=

1− x

1− xy
f

(
x (1− x)

1− xy

)

.

Following Herbert Wilf’s dictum, “A generating function is a clothesline on which we

hang up a sequence of numbers for display” [9, Chapter 1], we will use sequences/arrays

and their generating functions interchangeably. Thus the transform Φ is also defined

for sequences (an)n≥0. It turns out that the transform is closely related to the Catalan

numbers and there is a nice combinatorial interpretation for the transform of the size-

counting sequence for various classes of partitions into sets of lists (blocks) and various

classes of lattice paths of upsteps U , flatsteps F , and downsteps D. In the former case, the

transform counts partitions by number of runs, where a run, also known as an adjacent

block [1], is a block that consists of increasing consecutive integers. In the latter case it

counts lattice paths by number of pyramid ascents, where an ascent is a maximal subpath

of the form Uk, k ≥ 1, a pyramid is a maximal subpath of the form UkDk, k ≥ 1, and

a pyramid ascent is an ascent that is the first half of a pyramid. For example, among

the four ascents of UUDUUDUUDDDUDD, only the last two (UU and U) are pyramid

ascents.
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Because of the interpretation in terms of runs, and for brevity, we will designate Φ the

run transform.

In Section 2 we review the Catalan numbers and two of their interpretations, and in

Section 3 we establish basic properties of the run transform. Section 4 gives a criterion

for the run transform of a nonnegative sequence to also be nonnegative. Section 5 gives

interpretations of the run transform of the Catalan numbers in terms of both Dyck paths

and noncrossing partitions, the basis for subsequent generalizations. Section 6 generalizes

to paths of j-upsteps (j, j) and downsteps (1,−1). Section 7 recalls the notion of a set-

of-lists partition, s-partition for short, and introduces the notion of a run-closed family

of s-partitions and states the result that if f(x) is the generating function by size of a

run-closed family F of s-partitions, then the run transform of f(x) counts F by size and

number of runs. This result is proved in Sections 8 and 9, and generalized in Section

10. Section 11 considers the transform for paths of upsteps, flatsteps, and downsteps and

Section 12 presents a conjecture.

Sequences in The On-Line Encyclopedia of Integer Sequences (OEIS) [5], are referred

to by their six-digit A-numbers.

2 Review of the Catalan numbers, Dyck paths, and

noncrossing partitions

The Catalan numbers (sequence A000108 in OEIS) are intimately related to the run

transform Φ; so let us recall some facts and fix some notation for them and for two of

their interpretations. The generating function for the Catalan numbers Cn = 1
n+1

(
2n
n

)
=

(
2n
n

)
−
(

2n
n−1

)
is C(x) = (1 −

√
1− 4x)/(2x). The Catalan convolution matrix is defined

by C =
((

2j−i

j−i

)
−
(

2j−i

j−i−1

))

i,j≥0
and its inverse is given by C−1 =

(

(−1)j−i
(
i+1
j−i

))

i,j≥0
The

first few rows and columns are shown.

C =



















1 1 2 5 14 42 132 . . .

1 2 5 14 42 132 . . .

1 3 9 28 90 . . .

1 4 14 48 . . .

1 5 20 . . .

1 6 . . .

1 . . .
. . .



















, C−1 =



















1 −1 0 0 0 0 0 . . .

1 −2 1 0 0 0 . . .

1 −3 3 −1 0 . . .

1 −4 6 −4 . . .

1 −5 10 . . .

1 −6 . . .

1 . . .
. . .
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Thus the top row (row 0) of C, the Catalan numbers, has generating function C(x). It is

well known that the entries of C count nonnegative lattice paths. Specifically, define a U -D

path to be a lattice path of upsteps U = (1, 1) and downsteps D = (1,−1) (not necessarily

starting at the origin). Let Nmn (= Nm,n) denote the set of U -D paths consisting of n

upsteps and m + n downsteps that never dip below ground level, the horizontal line

through the terminal vertex. The size of a U -D path is its number of downsteps. Then

| Nmn | = Cmn. Set Nm :=
⋃

n≥0Nmn. A Dyck path is a member of N0. It is also well

known (see, e.g., [10, Remark 5] or [8]) that row m of C, starting at the diagonal entry,

is the (m+ 1)-fold convolution of the top row. Hence, the generating function for Nm by

size is xmC(x)m+1, and, with x defined to be the column vector (1, x, x2, . . .) t, we have

the matrix-vector product

C x = (C(x), xC(x)2, x2C(x)3, . . .) t. (1)

We define C(x, y) to be Φ
(
C(x)

)
. Thus

C(x, y) =
1−

√

1− 4
x (1 − x)
1− xy

2x
. (2)

The matching step of a given step in a Dyck path is the other end-step of the shortest

Dyck subpath containing the given step as an end-step. Ascents (and pyramid ascents)

were defined in the Introduction and, analogously, a descent is a maximal subpath of the

form Dk, k ≥ 1.

A nonempty Dyck path decomposes (at its returns to ground level) into components,

each of which is a primitive Dyck path—a nonempty Dyck path whose only return to

ground level is at the end.

There is a well known bijection from Dyck paths to noncrossing partitions, due to

Simion [6]. Traverse the Dyck path from left to right and number the down steps from 1

to n. Give the same labels to the matching up steps. The numbers on the ascents form

the blocks of the partition. Under this bijection, pyramid ascents become runs in the

partition.

3 Basic properties of the run transform

We will use F (x, y) for Φ
(
f(x)

)
to show the dependency on both variables. Clearly,

F (x, 1) = f(x) and so the row sums of the run transform give the original sequence. The

run transform Φ is linear,

Φ
(
αf(x) + βg(x)

)
= αΦ

(
f(x)

)
+ βΦ

(
g(x)

)
,
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and has a multiplicativity property,

Φ
(
xf(x)g(x)

)
= xΦ

(
f(x)

)
Φ
(
g(x)

)
.

More generally,

Φ
(
xi−1f1(x)f2(x)...fi(x)

)
= xi−1Φ

(
f1(x)

)
Φ
(
f2(x)

)
...Φ
(
fi(x)

)
.

In particular, for i = k + 1 and f = f1 = f2 = ...,

Φ
(
xkf(x)k+1

)
= xkΦ

(
f(x)

)k+1
.

From this fact, together with linearity, we obtain

Lemma 1. For an arbitrary sequence (ak)k≥0,

Φ

(
∑

k≥0

akx
kf(x)k+1

)

=
∑

k≥0

akx
kΦ
(
f(x)

)k+1
.

Proposition 2. Let b = (bk)k≥0 be an arbitrary sequence. Then its run transform is

∑

k≥0

akx
kC(x, y)k+1,

where a = (ak)k≥0 is defined by a = bC−1.

Proof. The defining relation a = bC−1 yields b = aC and, multiplying by the column

vector x,

bx = aC x

which, making use of (1), translates into

f(x) =
∑

k≥0

akx
kC(x)k+1.

Now apply Lemma 1 with f(x) = C(x).

4 A criterion for nonnegativity

Proposition 3. For a nonnegative sequence a = (ak)k≥0, its run transform is nonnegative

if and only if the sequence x := aC−1 is nonnegative.
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Proof. We have C(x, 0) = (1−x)C
(
x(1−x)

)
= 1 and it follows from Proposition 2 that

column 0 of the run transform, given by F (x, 0), is (the transpose of) x. So the condition

is certainly necessary. Sufficiency will follow if we know that each power of C(x, y) is

the generating function of a nonnegative array. For C(x, y) itself, nonnegativity follows

from a combinatorial interpretation in terms of decorated forests [2, Section 9] or from

Proposition 4 below, but we can also give an analytic proof as follows. Say (ui,j)i≥0, 0≤j≤i

is the array of coefficients for C(x, y). We have the identity (2xC(x, y)−1)2 = 1−4x(1−
x)/(1− xy), leading to

xC(x, y)2 = C(x, y)− 1− x

1− xy
.

Picking out coefficients leads to a recurrence for ui,j : u0,0 = 1, and

un,k =







∑n−1
i=0

∑n

j=0 ui,jun−1−i,n−j + 1, if 1 ≤ k ≤ n;
∑n−1

i=0

∑n−1
j=0 ui,jun−1−i,n−1−j − 1 if 0 ≤ k = n− 1;

∑n−1
i=0

∑k

j=0 ui,jun−1−i,k−j if 0 ≤ k ≤ n− 2,

from which it is easy to see that ui,j is nonnegative, the −1 in the middle equality notwith-

standing. Finally, it is easy to check that nonnegativity of C(x, y) implies nonnegativity

of all its powers.

5 The run transform of the Catalan numbers

Lemma 4. The run transform C(x, y) of the Catalan number generating function C(x)

counts Dyck paths by size and number of pyramid ascents, equivalently, noncrossing par-

titions by size and number of runs.

Proof. Let F (x, y) denote the generating function for Dyck paths by size and number

of pyramid ascents. A Dyck path P is either empty or has the decomposition P =

U rDP1DP2D...DPr for some r ≥ 1, where the Pi are Dyck paths. Each pyramid ascent

in P1, ..., Pr is a pyramid ascent in P and, if P1, ..., Pr−1 are all empty paths, then the first

ascent of P is also a pyramid ascent, contributing a y factor. We thus obtain

F = 1 +
∑

r≥1

xr
(
y + F r−1 − 1

)
F

which leads at once to

xF 2 − F +
1− x

1− xy
= 0,

an equation whose solution is F (x, y) = C(x, y).
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Recall that Nk is the set of nonnegative U -D paths with k more downsteps than

upsteps.

Theorem 5. The run transform of the generating function for Nk by size counts Nk by

size and number of pyramid ascents.

Proof. A path in Nk decomposes as P1DP2D . . . PkDPk+1 with each Pi a Dyck path.

The statistics size and number of pyramid ascents are additive over this decomposition.

So one multiplies the generating functions given by Proposition 4, and the generating

function for Nk by size and number of pyramid ascents is xkC(x, y)k+1. By Lemma 1, the

run transform of xkC(x)k+1 is xkC(x, y)k+1.

In subsequent sections we generalize this result in 3 ways: (i) from Dyck paths to U -D

paths in which each ascent has length divisible by j, (ii) from Dyck paths to U − F −D

paths, where flatsteps F = (1, 0) are allowed, (iii) from noncrossing partitions to run-

closed families of s-partitions, defined in Section 7 below.

6 U j-D paths

Fix a positive integer j. A j-Dyck path is a Dyck path in which each ascent has length

divisible by j. Equivalently, it can be viewed as a nonnegative lattice path of so-called

j-upsteps (j, j) and (ordinary) downsteps (1,−1). Its size is the number of j-upsteps,

equivalently, (number of downsteps)/j. A j-nice pyramid ascent is one that ends at

height ≡ 0 (mod j).

Lemma 6. The run transform of the generating function for j-Dyck paths by size is the

generating function for j-Dyck paths by size and number of pyramid ascents.

Proof. Let F0(x, y) denote the generating function for j-Dyck paths with x marking

size and y marking the number of j-nice pyramid ascents. To find an equation for F0(x, y),

it is convenient to introduce the generating function Fi(x, y), i an integer, for the number

of pyramid ascents that end at height ≡ i (mod j). Set F = F0F1...Fj−1.

A nonempty j-Dyck path P has a decomposition as illustrated for j = 3 and r = 2

where r is the number of initial j-upsteps, and the Pi’s are all j-Dyck paths (possibly
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empty).
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❅❅
❅❅

❅❅
❅❅
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P1

P2

P3

P4

P5

P6

•

•

•

•

•

•

•
• •

• •
• •

• •
• •

• •
A j-Dyck path with j = 3

In general, the decomposition is

U jrDP1DP2...DPjr,

for some r ≥ 1. To obtain an expression for F0 from this decomposition, P1 contributes

F1 because it starts at height ≡ −1 mod j, P2 contributes F2, ..., Pj contributes F0, Pj+1

contributes F1, and so on, cyclically. And if P1, P2, ...Pjr−1 are all empty, the first ascent

of P is a pyramid ascent. Splitting into the two cases where P1, P2, ..., Pjr−1 are all empty

or not, we thus obtain

F0 = 1 +
∑

r≥1

xr
(
y + F1F2...Fj−1F

r−1 − 1
)
F0

which simplifies to

F0 = 1 + (y − 1)F0
x

1− x
+

xF

1− xF
. (3)

For i 6≡ 0 (mod j), there is no need to split into cases. We find Fi = 1+ xF + x2F 2 + ...,

leading to

Fi =
1

1− xF
for i 6≡ 0 (mod j). (4)

Eliminating f from (3) and (4), we obtain

Fi(x, y) =
1− xy

1− x
F0(x, y) for i 6≡ 0 (mod j). (5)

Hence,

F =

(
1− xy

1− x

)j−1

F j
0

and (3) becomes, after further simplification

(1− x)j − (1− x)j−1(1− xy)F0 + x(1 − xy)jF j+1
0 = 0. (6)

From (6), f(x) := F0(x, 1) has defining equation 1−f+xf j+1 = 0, and the run transform

of f(x) satisfies (6). Hence the run transform of f(x) is F0(x, y).
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Now fix nonnegative integers m and d. A (j,m, d)-U -D path is a path of j-upsteps

and downsteps that starts (for convenience) at (0, m), has lowest point at level −d, and

ends on the x-axis. A (j, 0, 0)-U -D path is just a j-Dyck path. The size of a (j,m, d)-U -D

path is ⌊(number of downsteps)/j⌋, and so it is convenient to express m as jk + ℓ with

0 ≤ ℓ ≤ j − 1.

Theorem 7. The run transform of the generating function for (j,m, d)-U-D paths by size

is the generating function for (j,m, d)-U-D paths by size and number of pyramid ascents.

Proof. Let G(x, y) denote the generating function for (j,m, d)-U -D paths with x

marking size and y marking the number of j-nice pyramid ascents. A (j,m, d)-U -D path

has the decomposition:

P0DP1DP2 . . . D Pm+d U
j P ′

m+d−1 U
j P ′

m+d−2 . . . U j P ′
m. (7)

where the Pi and the P ′
i are all j-Dyck paths.

If a P ′
i begins with a pyramid, the pyramid is killed by the immediately preceding U j .

This necessitates introducing the generating function H(x, y) for j-Dyck paths that begin

with a pyramid:

H(x, y) =
∑

i≥1

xiyF0 =
xy

1− x
F0.

The decomposition (7) together with (5) yields

G(x, y) = xk+dF−m . . . F−1 F0 F1 F2 . . . Fjd

(
H

y
+ F0 −H

)

(8)

= xk+dF k+d+1
0 F

m−k+(j−1)d
1

(
1− xy

1− x
F0

)d

(9)

= xk+d

(
1− xy

1− x

)m−k+jd

F
m+1+(j+1)d
0 . (10)

Hence g(x) := G(x, 1) = xk+dF0(x, 1)
m+1+(j+1)d is the generating function for (j,m, d)-

U -D paths by size. The run transform of g(x) is

1− x

1− xy
g

(
x(1− x)

1− xy

)

=
1− x

1− xy

(
x(1 − x)

1− xy

)k+d

F0

(x(1− x)

1− xy
, 1
)m+1+(j+1)d

= xk+d

(
1− xy

1− x

)m+jd−k (
1− x

1− xy
F0

(x(1 − x)

1− xy
, 1
))m+1+(j+1)d

= xk+d

(
1− xy

1− x

)m+jd−k

F0(x, y)
m+1+(j+1)d

= G(x, y),
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the next to last equality using the fact that the run transform of F0(x, 1) is F0(x, y)

(Lemma 6).

7 Run-closed families of s-partitions

A set-of-lists partition, or s-partition for short, also known as a fragmented permutation

[4, p. 125], is a partition π of a set S into a set of lists. The size of π, denoted | π |, is |S |.
An s-partition is standard if its support set is an initial segment of the positive integers.

We use the familiar term blocks for the lists in an s-partition, and we always arrange the

blocks in increasing order of their first entry. Recall that a run is a block that consists of

consecutive integers in increasing order. Thus the s-partition 3 8 1 / 4 5 6 / 7 2 / 9 has size

9 and four blocks, two of which are runs, 4 5 6 and 9. A permutation can be viewed as an

s-partition via its disjoint cycle decomposition; for definiteness, we define a cycle to be a

list whose smallest entry occurs first.

To delete a run from a standard s-partition means to remove it and standardize what’s

left (replace smallest entry by 1, second smallest by 2, and so on). Thus deleting the run

23 from 178/23/465/9 yields 156/243/7. To insert a run i+1, . . . , i+ j into a standard s-

partition π means to increment by j all elements of π that exceed i and adjoin i, i+1, . . . , j

as a new block. The result will be a standard s-partition provided 0 ≤ i ≤ | π |. For

example, inserting the run 456 into 15/342 yields 18/372/456. When runs are successively

deleted from an s-partition, the order of deletion is immaterial and the result is always

the same run-free s-partition. For 178/23/465/9, the result is 156/243.

Let P denote the set of all standard s-partitions, including the empty one ǫ. A run-

closed family F of s-partitions is a subset of P that is closed under insertion and deletion

of runs.

Some examples of run-closed families and, where available, their counting sequences

are

• the family P itself [3] A000262

• set partitions, A000110

• noncrossing s-partitions A088368

• nonoverlapping s-partitions

• permutations, via the disjoint cycle decomposition A000142

• the intersection of any collection of run-closed families.

9
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An ordinary set partition is an s-partition in which each block is an increasing list,

and it can be represented graphically as the numbers 1, 2, . . . , n arranged around a circle

with a line joining each pair of entries that are in the same block. It is noncrossing if

no two lines cross. The run-closed property of noncrossing partitions is evident from

this representation. Similarly, a set partition is nonoverlapping if the lines joining the

smallest and largest entry of each block are noncrossing, a property that is also preserved

under insertion/deletion of runs. An s-partition is noncrossing if its underlying partition

is noncrossing. We will have more to say about the last example in Section 9.

On the other hand, the family of nonnesting partitions is not run-closed. A partition

is nonnesting if there is no quadruple a < b < c < d with a, d both in one block and b, c

both in another. Inserting the run 23 into the one-block nonnesting partition 12 produces

the nesting partition 14/23.

Now we can state our result for s-partitions, proved in the next two sections.

Theorem 8. Let F be a run-closed family of s-partitions with size generating function

f(x). Then the run transform F (x, y) of f(x) counts F by size and number of runs.

8 Run-closed families with a singleton basis

A run-closed family F of s-partitions is determined by its run-free members. This is

because all members of F can be obtained by successively inserting runs into its run-free

members. We call the set of run-free s-partitions in a run-closed family F the basis of F .

Every set of run-free s-partitions in P serves as a basis for a run-closed family of

s-partitions. We have the following two easily proved results for ordinary partitions.

Lemma 9. A standard noncrossing partition is either empty or contains a run.

Corollary 10. The singleton set consisting of the empty partition is the basis for the

family of noncrossing partitions.

Every s-partition can be successively pruned of runs from right to left, leaving a run-

free s-partition (possibly empty) and a sequence of runs, its run-deletion sequence, from

10



which the original s-partition can be recovered, as illustrated.

current s-partition deleted run

1 12 10 / 2 6 8 / 3 / 4 5 / 7 / 9 11 7

1 11 9 / 2 6 7 / 3 / 4 5 / 8 10 4 5

1 9 7 / 2 4 5 / 3 / 6 8 3

1 8 6 / 2 3 4 / 5 7 2 3 4

1 5 3 / 2 4

run-free s-partition = 1 5 3 / 2 4, run-deletion sequence = ( 2 3 4, 3, 4 5, 7)

Furthermore, the number of runs in the original s-partition is captured in the run-

deletion sequence as the number of runs that are disjoint from their immediate predeces-

sor. (The first run vacuously meets this condition.) This is because, in reconstructing

the s-partition, when a new run is inserted, the only existing run that it can destroy

is its predecessor run (if present) and it will do so precisely when it overlaps its prede-

cessor. A run-deletion sequence is of course specified by the first entries and lengths

of its members, say (ai)
r
i=1 and (ℓi)

r
i=1 in reverse order of deletion. In the example

(ai)
4
i=1 = (2, 3, 4, 7); (ℓi)

4
i=1 = (3, 1, 2, 1).

For a run-closed family F of s-partitions, let F(n) = {ρ ∈ F : | ρ | = n}, the members

of F of size n.

Proposition 11. Fix a run-free s-partition π of size k. Let F denote the set of s-partitions

that prune to π, and suppose n > k. Then the run-deletion sequences of s-partitions in

F(n), as specified by (ai)
r
i=1 and (ℓi)

r
i=1, are characterized by the following conditions:

r ≥ 1 and all a’s and ℓ’s are positive integers,

k + ℓ1 + ℓ2 + . . .+ ℓr = n,

a1 < a2 < . . . < ar,

a1 ≤ k + 1,

a2 ≤ k + ℓ1 + 1,

a3 ≤ k + ℓ1 + ℓ2 + 1,
...

ar ≤ k + ℓ1 + ℓ2 + . . .+ ℓr−1 + 1.

Proof. The first two conditions are obvious. Now, when a run is deleted, the result

is still a standard s-partition. Clearly, ar + ℓr ≤ n + 1 and so ar ≤ n − ℓr + 1 =

k + ℓ1 + ℓ2 + . . . + ℓr−1 + 1, and similarly for the other inequalities. Because runs are

deleted right to left, we get a1 < a2 < . . . < ar.

11



Conversely, when runs are inserted successively into the run-free s-partition π to build

up members of F(n), the runs are arbitrary subject only to the conditions that the run

currently being inserted begins at an integer no larger than 1 + the size of the s-partition

it’s being inserted into, for otherwise there would be a gap and the resulting s-partition

would not have an initial segment of the positive integers as support.

Now we can establish

Proposition 12. Fix a run-free standard s-partition π. The number of s-partitions of

given size and run count that prune to π depends only on the size of π, not on its actual

blocks.

Proof. Suppose G1 is a run-closed family all of whose members prune to π1 and G2

is a run-closed family all of whose members prune to π2. Suppose further that π1 and

π2 have the same size k. We wish to show that | G1(n) | = | G2(n) | for all n > k (it’s

obviously true for n = k). Since the characterization of the run-deletion sequences for

G1(n) makes no reference to π1 other than through its size, this equality follows from two

observations:

(i) members of Gi(n) are in 1-to-1 correspondence with their run-deletion sequences,

i = 1, 2.

(ii) the set of run-deletion sequences for G1(n) is identical with that for G2(n): both

sets are characterized by the conditions of Proposition 11.

9 A canonical family with singleton bases

Here we consider a canonical singleton basis of each size k, say the one-block s-partition

k, k− 1, . . . , 2, 1 (the empty s-partition if k = 0), and let Fk denote the run-closed family

generated by it. A technical difficulty arises if k = 1 because the only s-partition of size 1

is the one-block s-partition, (1), which is a run. (A workaround would be to color it red,

maintain the color when runs are inserted—inserting 12 into 1 yields 12/3—and declare

that red entries are not to be considered runs.)

By Corollary 10, F0 is the family of noncrossing ordinary partitions, and Fk can be

characterized for general k: it consists of the noncrossing s-partitions in which (i) all

blocks are increasing except for one block of length k which is decreasing and (ii) this

decreasing block is not covered by entries in another block, in other words, there is no

increasing block containing integers a < b such that all entries of the decreasing block lie

in the interval [a, b].

12



For k ≥ 2, a slight modification of the Simion bijection gives a bijection from nonneg-

ative paths that start at (0, k) to Fk. First, prepend k upsteps to turn the nonnegative

path into a Dyck path.

Apply the Simion map of Section 2, as illustrated on an example with k = 3. The

blocks are in the natural order and each block is decreasing.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
9

5

3

2

1

4

8

7

6

11

10
3

2

1

5

4

6

7

8

9

10

11

b

k
︷ ︸︸ ︷

9 5 3 2 1 4 8 7 6 11 10 →
9 5 3 1 2 4 6 7 8 10 11 →
1 2 4 6 7 8 9 5 3 10 11

The first block will have length ≥ k and will end with 1, and all blocks will be decreasing.

Split the first block after the k-th entry into 2 blocks. Reverse all blocks except the new

first block, and transfer the new first block to the appropriate position so that first entries

are increasing. The resulting s-partition is a member of Fk and the mapping is reversible.

This correspondence preserves size and identifies runs with pyramid ascents. So we

have

Proposition 13. The generating function for Fk by size and number of runs is xkC(x, y)k+1.

The linearity of the run transform, along with Propositions 12 and 13, now yields

Proposition 14. Let F be any run-closed family of s-partitions containing ak (≥ 0) run-

free s-partitions of size k, k ≥ 0. Then F (x, y) :=
∑

k≥0 akx
kC(x, y)k+1 is the generating

function to count F by size and number of runs.

Proof of Theorem 8. In the notation of Proposition 14, the generating function by

size of the run-closed family F is

f(x) = F (x, 1) =
∑

k≥0

akx
kC(x)k+1,

since C(x, 1) = C(x). Lemma 1 then yields that the run transform of f(x) is indeed

F (x, y).

13



Remark. Theorem 8 applied to the case of set partitions implies that the bivariate

generating function for set partitions according to size and number of runs is
∑

n≥0Bnx
n(1−

x)n+1/(1−xy)n+1, where Bn are the Bell numbers. In particular, the generating function

for the number of partitions such that no block is a run is (1−x)
∑

n≥0Bn

(
x(1−x)

)n
[7,

Exercise 111, pp. 137, 192–3].

10 Generalization of Theorem 8

Fix a positive integer j. A j-compatible s-partition is one in which each block has length

divisible by j. Define its size to be n/j where n is the cardinality of its support set. A

j-compatible run (j-run for short) is one whose length and last entry are both divisible by

j. A j-run-closed family of j-compatible s-partitions is one that is closed under insertion

and deletion of j-runs.

Theorem 15. Let F be a j-run-closed family of j-compatible s-partitions with size gener-

ating function f(x). Then the run transform F (x, y) of f(x) counts F by size and number

of j-runs.

Proof. The “j” analogue of Fk is the family of j-compatible s-partitions with singleton

basis (jk, jk − 1, . . . , 1), which corresponds under Simion’s bijection to the family of

(j, jk, 0)-U -D paths. This bijection preserves size and identifies j-runs with j-nice pyramid

ascents. Apply Theorem 7.

As an example, we have the following result.

Corollary 16. If f(x) denotes the generating function for permutations of [2n] in which

each cycle has even length (A001818) by size n, then the run transform of f counts these

permutations by size and by number of cycles that consist of consecutive integers ending

at an even integer.

11 U -F -D paths

Fix nonnegative integers m and d and consider the class Am,d of lattice paths of upsteps

U = (1, 1), downsteps D = (1,−1), and flatsteps F = (2, 0) that start at (0, m), end on

the x-axis and that reach lowest level −d, with size measured by (number of flatsteps) +

(number of downsteps). Thus A0,0 is the class of Schröder paths with the usual measure

of size. The definition of pyramid ascent carries over to Am,d.

14
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Lemma 17. Let F (x, y, z0, z1, z2, ...) denote the generating function for Schröder paths

with x marking size, y marking number of pyramid ascents, and zi marking number of flat-

steps at level i, i ≥ 0. Thus f(x, z’s):= F (x, 1, z’s) is the generating function disregarding

pyramid ascents. Then the run transform of f is F .

Proof. Set Fj = F (x, y, zj, zj+1, zj+2, ...). Thus F0 = F . A Schröder path is either

empty or, by considering the first non-upstep, begins with one of the prefixes F, UD,

U rD (r ≥ 2), U rF (r ≥ 1). Thus a nonempty Schröder path has precisely one of the

following forms, illustrated for r = 3, where the Si (i ≥ 0) denote arbitrary Schröder

paths.

��❅❅ ��
��

��❅❅
❅❅

❅❅ ��
��

�� ❅❅
❅❅

❅❅S0 S0

S2

S1

S0

S3

S2

S1

S0
• • •

•

• •

•

•

•

• •

• •

• •

•

•

• • •

• •

• •

•

decompositions of nonempty Schröder paths

From this schematic picture, we see that

F0 = 1 + xzF0 + xyF0 +
(∑

r≥2

(Fr−1 . . . F1 − 1)F0 +
∑

r≥2

xryF0

)

+
∑

r≥1

xr+1zrFrFr−1 . . . F0

from which we obtain by routine manipulation

1− xy

1− x
F0 = 1 +

∑

r≥1

xr(1 + zr−1)Fr−1Fr−2 . . . F0 , (11)

a recursion for F = F0 (bear in mind that F1, F2, . . . are merely abbreviations for functions

derived from F ). This recursion has a unique solution for F because it determines the

constant term and then the coefficients of x, x2, . . . in turn.

Set fj(x, zj , zj+1, . . .) = Fj(x, 1, zj, zj+1, . . .). Thus f0 = f. From (11) with y = 1, we

have

f0 = 1 +
∑

r≥1

xr(1 + zr−1)fr−1fr−2 . . . f0. (12)

The run transform of f0(x, z0, z1, . . .) is

H0(x, y, z0, z1, . . .) :=
1− x

1− xy
f0

(
x(1− x)

1− xy
, z0, z1, . . .

)

,

and we define Hj, j ≥ 1 by relabeling z indices just as for Fj . To verify that H0 and F0

15



are equal, replace x by x(1−x)
1−xy

in (12) to obtain

1− xy

1− x

(
1− x

1− xy
f0

(x(1− x)

1− xy
, z0, z1, . . .

))

=

1 +
∑

r≥1

xr(1 + zr−1)
1− x

1− xy
fr−1

(x(1 − x)

1− xy
, z’s

)

. . .
1− x

1− xy
f0

(x(1− x)

1− xy
, z’s

)

or
1− xy

1− x
H0 = 1 +

∑

r≥1

xr(1 + zr−1)Hr−1Hr−2 . . .H0 (13)

Comparing (11) and (13) we see that H0 = F0 because, as noted above, (11) has a unique

solution.

Theorem 18. Let G(x, y, z−d, z−(d−1), ..., z0, z1, z2, ...) denote the generating function for

Am,d with x marking size, y marking number of pyramid ascents, and zi marking number

of flatsteps at level i. Thus g(x, z’s):= G(x, 1, z’s) is the generating function disregarding

pyramid ascents. Then the run transform of g is G.

Proof. A path in Aj,d has the form below, illustrated for d = 2, where Si and S ′
i denote

Schröder paths.

O

•

❅❅
❅❅

❅❅
❅❅

❅❅

��
��

.....

Sj

Sj−1

S0

S−1

S−2

S′

−1

S′

0

•

• •

•

•

• •

• •

• •

• •

•

decomposition of path in Aj,d

Consequently,

G = xjFjFj−1 . . . F0 +
d∑

k=1

xj+kFjFj−1 . . . F0F−1 . . . F−k

k−1∏

i=0

(H−i

y
+ (F−i −H−i)

)

, (14)

where H0(x, y, z0, z1, . . .) is the generating function for nonempty Schröder paths that

start with a pyramid, and H−i (i ≥ 1) is obtained from H0 by relabeling z indices in the

usual way. The introduction of H0 is necessary because if a Schröder path S ′
−i (i ≥ 0)

begins with a pyramid, then the immediately preceding upstep kills the initial pyramid

ascent in S ′
−i. Clearly,

H0(x, y, z0, z1, . . .) =
∑

k≥1

xkyF =
xyF

1− x
. (15)
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Now let g(x, z−d, z−(d−1), . . . , z0, . . .) = G(x, 1, z−d, z−(d−1), . . . , z0, . . .). Thus

g = xjfjfj−1 . . . f0 +

d∑

k=1

xj+kfjfj−1 . . . f0f−1 . . . f−k

k−1∏

i=0

f−i. (16)

From (15), we have
H−i

y
+ (F−i −H−i) =

1− xy

1− x
F−i. (17)

Using (16), the run transform of g is

1− x

1− xy
g
(x(1− x)

1− xy
, z’s

)

=

xj (1− x)j+1

(1− xy)j+1
fj

(x(1− x)

1− xy
, z’s

)

. . . f0

(x(1 − x)

1− xy
, z’s

)

+

d∑

k=1

xj+k (1− x)j+k+1

(1− xy)j+k+1
fj

(x(1− x)

1− xy
, z’s

)

fj−1

(x(1− x)

1− xy
, z’s

)

. . . f0

(x(1 − x)

1− xy
, z’s

)

×

f−1

(x(1 − x)

1− xy
, z’s

)

. . . f−k

(x(1− x)

1− xy
, z’s

) k−1∏

i=0

fi

(x(1− x)

1− xy
, z’s

)

= xjFj . . . F0 +

d∑

k=1

xj+kFjFj−1 . . . F0F−1 . . . F−k

k−1∏

i=0

1− xy

1− x
F−i,

which, in view of (17), is the same expression as in (14). The run transform of g is thus

G.

12 Concluding remark

We believe there is a version of our results that includes both j-upsteps and flatsteps. The

setting is paths of j-upsteps Uj = (j, j), flatsteps F = (2, 0), and downsteps D = (1,−1),

that start at (0, m) and end on the x-axis; j andm nonnegative integers. In this generality,

the size of a path is ⌊(numberofD’s+numberofF ’s)/j⌋ (so it doesn’t matter whether we

consider flatsteps to be of length 1 or 2). Furthermore, the “nice” pyramid ascents to

count are those whose endpoint (a, b) has a divisible by j rather than those b divisible by

j; that is, the abscissa rather than the ordinate of the endpoint is divisible by j. These

conditions are equivalent if j = 1 or if there are no flatsteps and m is divisible by j.

Conjecture 19. Fix nonnegative integers j andm. Let G(x, y, z−d, z−(d−1), ..., z0, z1, z2, ...)

denote the generating function for Uj-F -D paths with x marking size, y marking num-

ber of “nice” pyramid ascents, and zi marking number of flatsteps at level i. Thus

g(x, z’s) := G(x, 1, z’s) is the generating function disregarding pyramid ascents. Then

the run transform of g is G.
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