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DISTRIBUTION OF EIGENVALUES OF WEIGHTED, STRUCTURED MATRI X
ENSEMBLES

OLIVIA BECKWITH, STEVEN J. MILLER, AND KAREN SHEN

ABSTRACT. The study of the limiting distribution of eigenvalues &f x N random matrices as
N — oo has many applications, including nuclear physics, nuntiesry and network theory. One
of the most studied ensembles is that of real symmetric oestriwhere the limiting spectral mea-
sure converges to the semi-circle. Studies have also dietednthe limiting spectral measures for
many structured ensembles, such as Toeplitz and circulatriaes. These systems have very dif-
ferent behavior; the limiting spectral measures for botrehanbounded support. Given a structured
ensemble, we introduce a parameter to continuously inkaigbetween these two behaviors. We
fix ap € [1/2,1] and study the ensemble of signed structured matrices byiplyurig the (i, 7)1
and(j, i)™ entries of a matrix by a randomly chosen € {1, —1}, with Prob(e;; = 1) = p. For

p = 1/2, we prove that the limiting spectral measure is the sendieirFor all otherp, for many
structured ensembles (including the Toeplitz and cirdilave prove the measure has unbounded
support, and converges to the original ensemble-as1.

The proofs are by Markov’s Method of Moments. The analysishef2k™ moment for such
distributions involves the pairings @k vertices on a circle. The contribution of each pairing in the
signed case is weighted by a factor depending and the number of vertices involved in at least one
crossing. These numbers are of interest in their own rigigearing in problems in combinatorics
and knot theory. The number of configurations with no vestiogolved in a crossing is well-studied,
and are the Catalan numbers. We discover and prove simitaiufas for configurations with, 6, 8
and10 vertices in at least one crossing. For higher-order momesmtprove closed-form expressions
for the expected value and variance for the number of verticat least one crossing. As the variance
converges to 4, these results allow us to deduce propeftire bmiting measure.
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1. INTRODUCTION

1.1. Background. Though Random Matrix Theory began with statistics invegtans by Wishart
[Wis], it was through the work of Wigne[ [Wig1, Wig2, WigB, \6A, ' Wig5], Dyson |[Dyl| Dy2]
and others that its true power and universality became appalWigner’s great insight was that
ensembles of matrices with randomly chosen entries modilmany nuclear phenomena. For
example, in quantum mechanics the fundamental equatiéhlis = E,V¥,, (H is the Hamilton-
ian, ¥,, the energy eigenstate with eigenvalkig). ThoughH is too complicated to diagonalize, a
typical H behaves similarly to the average behavior of the ensembigatiices where each inde-
pendent entry is chosen independently from some fixed piiitlyatistribution. Depending on the
physical system, the matri¥ is constrained. The most common dfeis real-symmetric (where
the limiting spectral measure is the semi-circle) or Heiamit In addition to physics, these matrix
ensembles successfully model diverse fields from numberyHELS| [KS1,[KS2[ KeSH, Mar, RS]
to random graph$ [JMRR, MNS] to bus routes in Mexico [BBDSSH].

The original ensembles studied had independent entrieseafoom a fixed probability distribu-
tion with mean 0, variance 1 and finite higher moments. Foh &nsembles, the limiting spectral
measure could often be computed, though only recently [ERESY [TV1,/TV2] could the limiting
spacings between normalized eigenvalues be determinegbfamral distributions. Seg [Fo, Meh]
for a general introduction to Random Matrix Theory, and [PlyBl,[Hay] for a partial history.

Recently there has been much interest in studying highlggired sub-ensembles of the family
of real symmetric matrices, where new limiting behavior eges. Examples include band matrices,
circulant matrices, random abeliéhcirculant matrices, adjacency matrices associateeregular
graphs, and Hankel and Toeplitz matrices, among other&8&# 0, BCG, EBH, BM,
BDJ,[GKM, [HM, [JMP [Kar] KKMSX,[LW,[MMS [McK,[Mé/ Sch]. Two padularly interesting
cases are the Toeplitz [BOJ, HM] and palindromic Toeplitzanble [MM$], which we now gen-
eralize (though our arguments would follow through withyomiinor changes for other structured
ensembles). Recall a real symmetric Toeplitz matrix is taomsalong its diagonals, while its palin-
dromic variant has the additional property that its first ieva palindrome. The limiting spectral
measures of these ensembles have been proven to exishet@Gassian in the palindromic case,
and almost a Gaussian in the Toeplitz case (the limitingtsplemeasure has unbounded support,
though the moments grow significantly slower than the Ganssi.

As these matrices are small sub-families of the family ofr@#ll symmetric matrices, it is not
surprising that new behavior is seen. A natural questiorskoig whether or not there is a way
to ‘fatten’ these ensembles and regain the behavior of thefsemble. This is similar to what
happens for the adjacency matricesiaegular graphs. For fixed the limiting spectral measure
is Kesten’s measuré [McK], which convergesdas— oo to the semi-circle. We can ask similar
guestions about band matrices, and again see a transitb@mhavior as a parameter grows [Sch].

Before stating our results, we first quickly review some dtad notation (see for example [HM,
JMP,[KKMSX,IMMS]). Given anN x N matrix A, its associated eigenvalue measure is

pa(z) = %;6@— i’j%)) (1.1)
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where the\,(A)’s are the eigenvalues of, andcy/N is a normalization constant (witha function
of the structured ensemble). Using the Eigenvalue Tracen@mve find that thé&™ moment of
pais
> Trace(A¥)
Myn(A) = / e pa(z)de = R (1.2)

The advantage of this formulation is that we convert what va@two study (the eigenvalues) to
something we understand (the matrix entries, which areamhgdchosen). We now integrate the
above over the family, reducing the computation to ave@g@iolynomials of the matrix elements
over the family. Determining the answer frequently invalg®lving difficult combinatorial prob-
lems to count the number of configurations with a given cbaotion.

Many proofs of the limiting behavior (averaged over the emsle) proceed via Markov’s Method
of Moments (see for example [Ta]), where one shows the aearagnents over the ensemble con-
verge to the moments of a nice distribution. This, plus soomrol over the variance / rate of
convergence (usually done through counting argumentshremappeals to Chebyshev’s inequality
and the Borel-Cantelli lemma), suffice to prove various sypeconvergence of the limiting spec-
tral measure to a fixed distribution. See the above refesefareexact statements on the needed
assumptions for the various types of convergence.

1.2. Results. We fix ap € [1/2,1] and study the ensemble of signed structured matrices by
multiplying the (i, j)™ and (j,4)" entries of a matrix by a randomly chosen € {1, —1}, with
Prob(e;; = 1) = p. As we varyp, we continuously interpolate between highly structuretié

p = 1) and less structured (when= 1/2) ensembles.

Unfortunately, in general it is very hard to obtain closedai expressions for the limiting spec-
tral measures (exceptions are the Gaussian behavior imdpaithic Toeplitz[[MM$S], circulant en-
sembles[[KKMSX] andi-regular graphs [McK]); however, we are still able to provany results
about the moments of our weighted, structured ensembleisigtlse expansion from the Eigen-
value Trace Lemma, a degree of freedom argument shows thataiments in the trace expansions
must be matched in pairs; the difficulty is figuring out the teimution of each. The odd moments
trivially vanish, and for even moments, the only contribuatin the limit comes from when the
indices are matched in pairs with opposite orientation. Wensthat we may view these terms as
pairings of2k vertices, (i1, i2) , (i2,43) , . . ., (i2x, 71), ON a circle. Our main result is to show that
the contribution of each pairingin the unsigned case is weighted Bp — 1)8(0) in the signed
case, where (c) is the number of vertices in crossing pairs in the pairingisBxtends previous
results. Whem = 1/2, we are reduced almost completely to the real symmetric easkour result
implies that all crossing configurations contribOteand all non-crossing configurations contribute
1. This gives us k™ moment equal to the™ Catalan number, which is both the number of non-
crossing pairings ok objects and thek™™ moment of the semicircle densﬂ)By contrast, when
p = 1 we are reduced to the unsigned case, and indeed our theog@iasitinat each configuration
contributes what it did in the unsigned case.

Ouir first result is the following (though identical argumewould work for similar distributions).

Theorem 1.1. Consider the ensemble of real-symmetric Toeplitz or padimic Toeplitz matrices,
where the independent entries are drawn from a distribupiavith mean 0, variance 1 and finite

The normalized semi-circular density fig.(z) = Ly1— (%)2 if || < 2 and 0 otherwise, and the even moments
are the Catalan numbers.
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higher moments. Consider the weighted ensemble wherg,the" and (j,4)" entries of these
matrices are multiplied by a randomly chosgne {1, —1}, with Prob(e;; = 1) = p.

For p = 1/2, the limiting spectral measure for the signed, structunesieanble of real-symmetric
Toeplitz or palindromic Toeplitz matrices is the semidarcFor all otherp, the limiting measure
has unbounded support, and converges to the original engéimiting measure ap — 1. The
convergence is weakly and in probability to their corresgiogy limiting spectral measures, and
almost surely if additionally the densipyis even.

We find that the controlling factor is how many vertices amlned in a crossing (we make this
precise in BB). This reduces our problem to one in combiredand, in fact, our problem turns
out to be related to issues in knot theory as well; see for @}@iKT, [Kont,[FN,[Rio/Stb]). In the
course of our investigations, we prove several interestorgbinatorial results, which we isolate
below.

Theorem 1.2. Consider all(2k — 1)!! pairings of2k vertices on a circle. LeCry 2, denote the
number of these pairings where exacly. vertices are involved in a crossing and €t denote
the k™" Catalan number 2 (%"). For small values ofn, we obtain the exact formulas f@lrs; ,,
listed below; for largek (and thus a large range of possibte) we prove the limiting behavior of
the expected value and variance of the number of verticedvied in at least one crossing.

e For m < 10 we have
Crzk,o = Oy
Crope = 0

2k
Cropa = (k; B 2)
2k
Crgkﬁ = 4(]{7 _ 3)

2% \ =~/ 2k
Cr%g = 31<k—4)+z(k’—4—d)(4+d)

2% — [ 2k
Crorgo = 288(k_5) +821(k_5_d) (5+d). (1.3)

e Ask — oo, the expected number of vertices involved in a crossingerges t2k — 2 (see
Theoreni 411 for the exact value in terms of hypergeometnictions), and the variance of
the number of vertices involved in a crossing converges to

We review the basic framework and definitions used in stugiytie moments in[82. In(83 we
determine formulas for the moments, and prove the first garheoreni 1.2, completing the proof
by determining the limiting behavior i B4. All that remaitisprove Theoreri 111 is to handle the
convergence issues; this analysis is standard, and islguakewed in &b.

2. MOMENT PRELIMINARIES

We briefly summarize the needed expansions from previouk Y{ga&e [HM,[ JMP| KKMSX,
MMS] for complete details). We use a standard method to cdéenthe moments. For a fixed
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N x N matrix A4, its k™ moment is

1
Mkz,N (A) = Z Ao Aigiz =+ Aiyig (2-1)

k
5+1
N2t TN

which when applied to our signed Toeplitz and palindromiefldz matrices (where the entries of
the unsigned ensemble are constant along diagonals) piaes t

1
My N (4) = Z €i1i2b\i1—z‘2\Gigigb\i2—z‘3\ o 'Eikilb\ik—i1\~ (2.2)

k
41
Nz2T0 TN

By linearity of expectation,

1
E (Mk,N (A)) = Z E (Eilizb|i1—i2|€i2i3b\i2—i3| T €y b|ik—i1|) . (23)

k
k1
Nz 1<i1,. i <N

Of the N* terms in the above sum corresponding toAffechoices of(i1, . . ., i;,) in the above sum,
we can immediately see that some contribute zero in the &8s — oo by using the following
lemmas.

Lemma 2.1. Any term that contributes in the limit must have eaghn the product appearing
exactly twice, and all such terms have a finite contribution.

Proof. We first prove that any term that doesn’t have evgrgppearing at least twice does not con-
tribute. As the expected value of a product of independemdbies is the product of the expected
values, since eadh, is drawn from a distribution with mean zero, there is no dbation in this
case. Thus eadh, occurs at least twice if the term is to contribute.

We now show that any term that has sobp@ppearing more than twice cannot contribute in the
limit. If eachb, appears exactly twice, then there &ye values ofb,, to choose. Recall that; ;. . |
is paired withb;, _;, | if and only if

iy — i1 = E£(ip — ige). (2.4)
Once we have specified th&s and one indeX;, there are at most two values for each remaining
index. Thus there ar® <N§+1> terms where thé,’s are matched in exactly pairs. By contrast,

any term that has sonte appearing more than twice has fewer tlialﬂ 1 degrees of freedom, and
thus does not contribute in the limit as we divide §§/>*!.

Finally, we show that the sum of the contributions from alivie arising from matching in pairs
is Oy (1). Suppose there are < k differente,’s ands < k differentb,’s in the product, say
€y1y -5 €y, @ANAby,, ..., ba,, With eache,, occurringn; times and each,, occurringm; times.
Such a term contributelf];_, E (¢}/) [];_, E (ba;). Since the probability distributions of thés
andb’s have finite moments, this contribution is thiig (1), and thus the sum of all such contribu-
tions is finite in the limit. O

Lemma 2.2. The odd moments of the limiting spectral measure vanish.

Proof. This follows directly from Lemma_2]1 (since the odd momeraséhan odd number aéfs,
they cannot be matched exactly in pairs). O

Since the odd moments vanish, we concern ourselves in thefrdse paper with the limiting
behavior of the even moment&l,,. Further, in the moment expansion for the even moments, we
only have to consider terms in which thg's are matched in exactly pairs. With the next lemma,



6 OLIVIA BECKWITH, STEVEN J. MILLER, AND KAREN SHEN

we further reduce the number of terms we must consider by isigotivat only those terms where
every pairing between thigs is with a minus sign in[{2]4) contribute in the limit. Thelawing

proof is adapted from [HM].

Lemma 2.3. The only terms that contribute to tB&¢" moment of the limiting spectral measure are
terms where thé's are matched in exactly pairs with a minus sigr(@4).

Proof. For each term, there akecorresponding equations of the forin (2.4). Wedet. . ., z;, be
the values of thei; —i; 4| in these equations, and I&t, . .., d, be the choices of sign in these
equations. We further let; = i; — iy, 9 = iy —i3,...,T9, = iox — 1. Then each of the previous
k equations can be written as

By definition, there is somg; = +1 such thatr,, = n;x;. Thenz,, = d,n;z;, SO
k
Bibdp o+ ay = Y 0 (1+0)) ;. (2.6)
j=1
Finally, notice that
Bi T+t By = i1 —dp iy — izt +ig —iy = 0. (2.7)
Thus
k
j=1

If any §; = 1, then [2.8) gives us a linear dependence between thRecall from the proof of
LemmdZ.1 that we require at}; to be independently chosen for a pairing to contribute; rotfse,
there are fewer thah + 1 degrees of freedom. Thus, the only terms that contribute leach
(Sj - —1 |:|

The above results motivate the following definition.

Definition 2.4 (Pairing) A pairing is a matching of the verticés, i,, . . ., iz, such that the vertices
are matched exactly in pairs, and with a negative sigfPid). There are(2k — 1)!! pairings of the
2k vertices. As argued above in the proof of Lenima 2.1, thesénpaicorrespond ta@) (N**1)
terms in the sum i@2.3) for the 2k moment.

As suggested above, we find that a good way to investigateothieiloution of each potentially
contributing term, i.e., each choice or tuple(af, . . ., is;), is to associate each term with a pairing
of 2k vertices on a circle, where the vertices @fe— is|, |ia — i3], ..., |iox — i1|. Because what
matters are not the values of the — i;,|’s, but rather the pattern of how they are matched, any
terms associated with the same pairing of 2tkevertices will have the same contribution. Thus,
pairings that are the same up to a rotation of the verticesibote the same since it is not the values
of i; that matters but rather the distance between each vertaksandtching and the indices of the
other pairs. Therefore, to further simplify the moment gisil, we make the following definition.

Definition 2.5 (Configuration) Two pairings{ (ia,, ia; ) , (fas, @as) + - - - » (fage_1» taz, ) } @Nd

{(iby by (b i6y) - - - (Gbae_1» i1y, ) } @re said to be in the same configuration if they are equiva-
lent up to a relabeling by rotating the vertices; i.e., th&sesome constaritsuch thath, = a; + {
mod 2k.
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FIGURE 1. The five distinct configurations for thé'Bnoment where vertices are
matched exactly in pairs. The multiplicity under rotatidrtee five patterns are 2, 3,
6, 3 and 1 (for example, rotating the first pattern twice mesut to its initial configu-
ration, while the third requires six rotations). The nomanae is from [KKMSX],
and not that relevant to our purposes here.

FIGURE 2. A pairing of10 vertices with8 crossing vertices (in two symmetric sets
of 4 vertices), an@ dividing vertices (connected by a main diagonal).

For example, we list the five distinct configurations neededtfe sixth momentin Figufeé 1. The
problem of determining the moments is thus reduced to dét@mgnfor each configuration both
the contribution of a pairing belonging to that configuratto the sum in[(2]3) and the number of
pairings belonging to that configuration.

3. DETERMINING THE MOMENTS

By Lemmd2.1, for the rest of the paper we assume the vertieeamatched in exactly pairs. We
distinguish between three types of vertices in these ggrin

Definition 3.1. We say that a pai(i,, 7,), a < b, is in acrossing if there exists a paifi,, i,) such
thate < x < band eithery < a ory > b. A pair (i,, i) is non-crossing if for every pair (i, i),
a <z <yifandonlyifa <y <b.

Pictorially, a pair is crossing if the line connecting itotwertices crosses another line connecting
two other vertices. In Figuild 1, the first two configuratioasdnno crossing vertices, the third has
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four, while all vertices are crossing for the fourth and fiftbote the number of crossing vertices is
always even and never two.

Definition 3.2. We say that a non-crossing pdit,, i) is dividing if there exist at least one crossing
pair (i, iy), (i, i.) such thats < z,y,w, z < b and at least one crossing pal,,, i,), (i,, is) such
that each indey € {p, ¢, r, s} satisfies eithej < a or j > b.

Pictorially, a pair is dividing if it “divides” the circle ito two regions of pairs (no pair can cross a
dividing edge since it must be non-crossing), where eadlemegpntains at least one crossing pair.
From the definition, we see that at ledstvertices are needed for a “dividing” pair to exist. See
Figurel2 for an illustration.

All other pairs will be callechon-crossing non-dividingpairs. Note that all pairings belonging
to a given configuration have the same number of crossing painl the same number of dividing
pairs.

We show in this section that the contribution of each painmifpe unsigned case is weighted by a
factor depending on the number of crossing pairs in thairgpikVe then prove some combinatorial
formulas that allow us to obtain closed form expressiongfemumber of pairings with: vertices
crossing for smalk. As the combinatorics becomes prohibitively difficult fargek, we determine
the limiting behavior in B4.

3.1. Weighted Contributions. The following theorem is central to our determination of the-
ments. It reduces the calculations to two parts. First, veglne know the contribution of a pairing
in the non-weighted case (equivalently, whes- 1). While this is known precisely for the palin-
dromic Toeplitz case, where each pairing contributes 1hénToeplitz case we only have upper
and lower bounds on the contribution of all pairing. Secomé ,need to determine the number of
vertices involved in crossing pairs, which we do in partinZ3

Theorem 3.3. For each choice of a pairing of (i1, . . ., is;), letz(c) denote the contribution of this
tuple in the unsigned case. Then the contribution in theesigrase is:(c)(2p — 1)°(¢), wheree(c)
represents the number of vertices in crossing pairs in thrgigaration corresponding te.

Proof. Recall that the contribution from any choice(@f, . . . , is;) is
E(€i1izb\i1—i2\€i2i3b\i2—i3\ e €i2ki1b|i2k—i1 |) = E(Ei1i2€i2i3 e eizki1)E(b\i1—i2\ T b\ik—il\)
= E(Ei1i2€i2i3 T Eizkh)x(c)' (31)
Thus, we want to show th@(e; ;, €, - - - €1,,4,) = (2p — 1)¢°). We do this by showing that for
each pair(i;, ij 1), (ix, ix1) Whereby;,

| = Dlig—iia]s

(2p —1)* i (i5,4,41) , (i, ix41) @re a crossing pair
E (€56, €ipi = . 3.2
(€112 {1 otherwise. (3.2)
Notice that
E(ea) = 1-p+(-1)-(1-p) = 2p—1, E(e) = 1. (3.3)

Therefore, ifm epsilons are chosen independently, the expected valueiofttoduct is(2p — 1)™.
Our first step is provinge(e;, i, €iyis - - - i) > (20 — 1)¢© by showing that pairs not in a
crossing contributé. Consider a non-crossing pdit,, i,+1) , (i, i,+1), With » < p. For each
(ig,7q4+1) paired with(i,, i,41), we haver < ¢ < pifand only ifr < ¢ < p. Recall from [2.4)
and Lemm& 2]3 that
bg — g1 = —(ig —igs1)- (3.4)
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Thus

p
> ik —iksr) = 0 (3.5)
k=r
because each difference in the sum is paired with its agéditiverse, which is also in the sum. As

p
Z('Lk - ikz-i—l) = ('Lr - ir-l—l) + (ir+1 - 'L.r-i-l) +-t ('LP - ip-l—l) = i — ip-i—la (36)
k=r
we must have, = i,,,, and for the differences to be equal,; = i,. Thereforee
and hencé(e; ;, ., €i,i,,,) = 1.

Now we ShOWE(€i1i2€i2i3 s Eigk’il) S (2p - 1)8(6) by ShOW|ng that ifeiaia+1 = Eibib+1’ a < b,
then (i, i.11) , (i, ip41) @re non-crossing. This suffices to prove the result sincemvesvkthat the
only dependency between ths arises from the requirement that the matrix is real symigyetnd
thus we have a dependency betwegp,, ande; ; ., if and only if we know they are equal. In
showing that a dependency betwe&implies the corresponding vertex pair must be non-crassi
we show that crossing pairs imply independésiand thus contribut&p — 1)2.

If €,i,1 = €i,i,,, then it must be true that the unordered g€tsi,. } and{i, .11} are equal.
Notice that this then implies that, — i, 1| = |iy — ip1+1], SO(ia, tar1) , (ip, ip+1) Must be paired on
the circle. Since the only contributing terms are when theypaired in opposite orientation, we
then know that, = i;,1, SO

iripr1 — Cipipyrs

b
> ik = in1) = iq —ips1 = 0. (3.7)

k=a
We can rewrite this sum as

d
ZM% —idpa| = 0, (3.8)
pr

whered,, is 1 if the vertexk is paired with is less tham or greater tham, and0 if and only if the
vertexk is paired with is between andb. However, a linear dependence among the differences is
impossible, as we need to hax&*! degrees of freedom for each configuration (see the proof of
Lemma2.1). So each, = 0, and each vertex between verticeandb is paired with something
else between andb. Thus, no edges cross the edge between verdiceslb.

We have shown that an epsilon is unmatched if and only if itgeeid in a crossing. Thus,
an epsilon is not paired if and only if its edge is not in a ciugs Therefore the contribution is
weighted bYE(€; s, €15 - - - €04, ) = (2p — 1)¢(¢), completing the proof. O

3.2. Counting Crossing Configurations. Theoreni:3.B reduced the determination of the moments
to counting the number of pairings with a given contributicia), and then weighting those by
(2p — 1)°9), wheree(c) is the number of vertices involved in crossings in the comfiian. As
remarked above, in the palindromic Toeplitz case eagh = 1, while in the general Toeplitz
case we only have bounds on the)’s, and thus must leave these as parameters in the final answer
(though any specifie(c) may be computed by brute force, we do not have a closed fornessijon
in general).

In this section we turn to computing tléc)’s for various configurations. As previously men-
tioned, these and similar numbers have also been studiewiritkeory where these chord diagrams
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are used in the study of Vassiliev invariants (seel[KT, K&, [Rid, Sto]). While we cannot deter-
mine exact formulas in general, we are able to solve manyapses, which we now describe.

Definition 3.4 (Craj 2). Let Cryy 0., denote the number of pairings involvig vertices where
exactly2m vertices are involved in a crossing.

Let C), = 1 (%) denote the:™ Catalan number (seg [AGZ] for statements and proofs of their
needed properties). One of its many definitions is as the eumibways to matcl2k objects on
a circle in pairs without any crossings; this interpretati® the reason why Wigner’'s Semi-Circle

Law holds. Thus, we immediately deduce the following.
Lemma 3.5. We haveCry;, o = C.

We use this result to prove the following theorem, which &rnmental in the counting we need
to do.

Theorem 3.6. Consider2k vertices on the circle, with a partial pairing on a subsetofvertices.
The number of ways to place the remainitig— 2v vertices in non-crossing, non-dividing pairs is
(k2—kv) '

Proof. Let VW denote the desired quantity. Notice that each of the remgiti — 2v vertices must
be placed between two of tRe already paired vertices on the circle. Th@seertices have created
2v regions. A necessary and sufficient condition for thi¥se- 2v vertices to be in non-crossing,
non-dividing pairs is that the vertices in each of thesaegions pair only with other vertices in
that region in a non-crossing configuration.

Thus, if there ar@s vertices in one of these regions, by Lemma 3.5 the numberlaf ways
they can pair is”5,. As the number of valid matchings in each region dependsamiyne number
of vertices in that region and not on the matchings in the rotegions, we obtain a factor of
02310232 s CQS%, Where281 + 259 + - - - + 289, = 2k — 2w.

We need only determine how many pairings this factor cooedp to. First we notice that by
specifying one index ang, so, . . ., s2, ), We have completely specified a pairing of fievertices.
However, as we are pairing on a circle, this specificatiorsehat uniquely determine a pairing since
the labelling of(sq, s, ..., s9,) is arbitrary. Each pairing can in fact be written as any of2he
circular permutations of some choice @Bf, s», . . ., s2,) @nd one index. Thus the quantity we are
interested in is

2k
W= > Cy,Cy, - Cy, (3.9)
251+280+++289,=2k—2v
To evaluate this expression, we usetr®ld self-convolution identity of Catalan numbers [Req],
which states

on —
Y GGy = ( " 7’). (3.10)

. 4 2n—r n

1 ++ir=n
Settingi; = s; + 1,7 = 2v andn = k + v, we obtain
2v ( 2k

e = ) A1
Z 051052 0521) 2k (l’f + U) (3 )

s1+82+++s2y+2v=k+v
We may rewrite this as

2k 2k
e = A2
5 E Cs,Cs, -+ Cs,, (k; ) , (3.12)

v — U
251+280++-+282,=2k—2v
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which completes the proof as the left hand side is Just (3.9). O

Given Theoreri 316, our ability to find formulas fOrs, »,,, rests on our ability to find the number
of ways to pairv vertices wher@&m vertices are crossing arx — 2m vertices are dividing. We
are able to do this for small valueswaf, but for largem, the combinatorics becomes very involved.

Definition 3.7 (P 2., partitions) Let Py »,,; represent the number of pairings f vertices
with 2m crossing vertices in partitions. We define a partition to be a set of crossing cedi
separated from all other sets of crossing vertices by attleas dividing edge.

It takes a minimum of4 vertices to form a partition, so the maximum number of parig
possible is 2m/4|. Our method of counting involves writing

[2m/4]
Crzk,zm = Z P2k,2m,i- (3-13)
i=1

Our first combinatorial result is the following.

Lemma 3.8. We have

P2k,2m,1 = Cl"2m,2m (k: 2k ) . (3-14)
—m

Proof. The proof follows immediately from Theorem B.6. If there idyone partition, then there

can be no dividing edges. Therefore, we simply multiply thmber of ways we can choogg—2m

non-crossing non-dividing pairs by the number of ways totti@oose how them crossing vertices

are paired. O

Our next result is

Lemma 3.9. We have

k—m
2k
Pokoma2 = Z (k: o d) (m+d) ( Z Cl"za,zaCl"Qm—Qa,Qm—2a> . (3.15)

d=1 0<a<m

Proof. We letd be the number of dividing edges. In order to have two pan#j@t least one of the
k — m non-crossing edges must be a dividing edge. We thus sumddvem 1 to £ — m. Given

d, we know that we can pair and place the non-crossing nowhdiyiedges ir(k_i’j_ d) ways from
Theoreni 3.6. We then choose a way to pairthecrossing vertices intd partitions, one witt2a
vertices, the other withb vertices. Ifa = b, there aren + d distinct spots where we may place the
dividing edge. Ifa # b, there ar&m + 2d spots. Since each choice @t~ b appears twice in the
above sum, the result follows. O

DeterminingPy; 2., 3 requires the analysis of several more cases, and we weréeuodind a
nice way to generalize the results of Lemrhas 3.8[and 3.9. Menvthese two results do allow us
to write down the following formulas.
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Lemma 3.10. We have

2k
Cropa = <k:—2)

2k
= 4
Crake (k B 3)
2%k 1 2%k

Crops = 31<k—4) +; (k—4—d) (4+d)

2% 2 2%
Cropi0 = 288(]{:—5) —I-Sdz:; (k‘—5—d) (5+4d). (3.16)

Proof. We recall that
szk,o = Oy
Crye = 0, (3.17)

where the second equation follows from the fact that at l¢éastrtices are needed for a crossing.

From [3.18) and (318) we find

2k
Cropa = Pogan = Cryy (l{:—Q)' (3.18)

We can calculat€’r, 4 by using [3.1IF) and the fact that

k
> Cropom = (2k— 1. (3.19)
m=0

This follows because the number of ways to matktobjects in pairs of 2 with order not mattering
is (2k — 1)!!, and thus the sum of all our matchings in pairs must equal Mige that this number
is also the2k™™ moment of the standard normal; this is the reason the palinidr Toeplitz have a
limiting spectral measure that is normal, as each contohuwdontributes fully. We thus find

Cryq = 2k =11 —Cryp—Cryp = 3-2 = 1. (3.20)

This completes the proof of the first formul@ty, » = (%)

The other coefficients are calculated in a similar recurtaghion — essentially, once we have
values forCryy o, for i = 0,1,2,...,m — 1, we can findCry,, »,, by using [3.1B), which allows us
to write the general formulas above f0r,; »,,. We show the calculations below. We have

CI‘676 = (6 — ]_)” — CI‘674 - CI‘@,’Q — CI‘670
6
= 5!!—<1>—0—03:15—6—0—5:4 (3.21)

s0Cry 6 = 4(,%,), and thus
Cr8,8 = (8 - 1)” — CI'&G — CI‘874 — CI‘&Q — CI‘&O

7!!—4(?) - (S) —0—Cy = 105—32—-28—14 = 31. (3.22)
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To finish the calculation fo€ry;, s we need to compute:

Z Cr2a72aCrg_2a,g_2a = CI‘272C1"676 + CI‘4,4CI'474 + Cr6,6Cr =04+14+0 = 1. (323)

0<a<4

so that we ge€ro s = 31(2,) + 41 () (4 +a).
For the formula foiCryy, 10,

Cripio = (10 -1 —Crypg — Crips — Criga — Crige — Crigp
1
10 10 10 10
— on— (31 grd)) -4 ) - —0-
= (V)2 () 00 <o) (5) o=
— 045 (3104 5) — 4 (45) — 120 — 0 — 42 — 288 (3.24)
and finally
Z Cr20,24Crip—2q,10-2¢ = Cra9Crgg + Cry4Cres + Crg6Cry 4 + CrggCra
0<a<b
— 0444410 = 8, (3.25)

S0Crap10 = 288(7%) +850 0 (L% ) 5+ a).
0

Notice that by using the formulas in Lemima 3.10 to calculagertumber of terms with each of
the possible contributions given in Theoréml 3.3, we are @iblealculate up to thé2™ moment
exactly (where for the 2™ moment we use the same recursive procedure as in the proehafia
[3.10 to calculaté&ry, ;5).

Remark 3.11. The coefficients in front of the binomial coefficient of ttediag term ofCry, o, IS
sequence A081054 from the OHKS) .

4. LIMITING BEHAVIOR OF THE MOMENTS

As we are unable to find exact expressions for the number ahgaiwith exactly2m crossing
vertices for allm, we determine the expected value and variance of the nunfbaartices in a
crossing. Such expressions, and the limiting behavioregdlexpressions, are useful for obtaining
bounds for the moments. To find these, we make frequent usguingnts about the probabilities
of certain pairings, recognizing that since all configunasi are equally likely, the probability that
a vertex; pairs with a vertey is justwl_l.

Theorem 4.1. The expected number of vertices involved in a crossing is
2k <2k Ly 2F1(1,3/2,5/2 — k; —1)

2k — 1 ok — 3 —(2k—-1) 2F1(1,1/2+k,3/2;—1)) ., (4.1

which is

2 1
2/@—2—%+0<ﬁ) (4.2)

ask — oo.
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Proof. In our main applications (such as computing the asymptaiabior of the mean and the
variance), we only need the asymptotic expresdion (4.2ciwive prove elementarily below. We
give the proof of[(4.11) in Appendix4.1, which involves conigg the expansions below to differ-
ences of hypergeometric series.

For a given pairing o2k vertices, letX; = 1 if vertexi is involved in a crossing aneotherwise.
ThenY;, = ijl X; is the number of vertices involved in a crossing in this pajriBy linearity
of expectation,

Yék = [ <ZX> 2/{ZE X) = Qkpcr0557 (43)

wherep...ss 1S the probability that a given vertex is in a crossing as, yimsetry, this is the same
for all vertices. Thus, without loss of generality, we maynkof p....; as the probability that vertex
1 isin a crossing. We notice that

(1) If vertex 1 is matched with another odd indexed vertexicWhappens with probability
% 1, then it must be involved in a crossing, since there are anmuohdber of vertices
in the two regions created by the matching, meaning thatebg®ns cannot only pair by
themselves.

(2) If vertex 1 is matched with an even indexed vertex, thas imvolved in a crossing if and
only if it does not partition the remaining vertices into twarts that pair exclusively with
themselves. Suppose it is matched with vettex(which happens with probability,jj).
Then its edge divides the vertices into a regio?af— 2 and a region o2k — 2m vertices.
As the number of ways to matct objects in pairs with order immaterial {8¢ — 1)!! =
(2¢—1) (2¢—3)--- 31, the probability that each region pairs only with itself is

(2m — 3 (2k — 2m — 1!

4.4
(2k — 3)!! (4.4)
Thus, the probability that vertex 1 is involved in a crosssg
k—1
k-1 1 (2m — 3! (2k — 2m — 1)!!
cross T 1—
P 2k—1+%2k—1< (2k — 3)1
_ 2k-3 1 Z (2m — 3N (2k — 2m — 1)!!
T 2%k—1 2k-1 (2k — 3)!!
2% -3 1 % (2m — 3)1 (2k — 2m)! (2k — 4)!!
T 2%k—1 2k—1 ¢ (2m — 41 (2k — 2m)!! (2k — 3)!
_2%-3 1 g (2m — 3)! (2k — 2m)12+=2 (k — 2)!
O 2k—1  2k—14=2m=2(m — 2)12k=m (K —m)! (2k — 3)!
k—1 (k-2
2k —3 1
= BT moT (;7;?”)' (4-5)
m=2 (2m—3)
Therefore
k—1 k—2
2k — 3 1 (")
E(Yor) = 2 = (2k 2k mes 4.
( 2k) kpcross ( )2]{7—1 ( )2]{;_17”2:2 (222__;;) ( 6)
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In the above sum, the first and last terms are lggﬂg as form = 2 we have

(o) _ 1 (4.7)

(2"?1—3) 2%k —3’

and form = k — 1 we have

o) _ () _ 206-9 1 (4.8)
G~ %) @ -3k-4 23
Looking at the ratio of subsequent terms, straightforwégdlara shows
k—2 2k—3
) ol 9
(ms)/ (o s) 2k —2m—1

Thus form up to the halfway point, each term in the sum is less than teeigus. In particular,
them = 3 term is5/(2k — 7) times them = 2 term, and hence all of these terms arel /k?).
Similarly, working fromm = k — 2 to the middle we find all of these terms are ai3@l /%), and
thus the sum in(4]16) can be rewritten, giving

B(Ya) = (21{:)3::?_(%)2/’{;1—1<2k2—3+0<%>)
2 1
- 2k—2—E+O<ﬁ). (4.10)

O

Theorem 4.2. The variance of the number of vertices involved in a crosapgoachest ask —
Q0.

Proof. We need to calculat®ar (V) = E(Y2) — E(Ya)?. As we know the second term by
Theoreni4.ll, we concentrate on the first term:

E(Yy) = Y EXX). (4.11)

The above sum has:? terms.

For 2k of those terms; = j SOE (X;X;) = E(X?) = E(X;) = paos @s theX,’s are binary
indicator variables with probability of succegs..s. For anotherk terms, we have and; are
paired on the same edge, BA.X;X;) = E (X;) = peoss @S before.

For the remainingk? — 4k terms,; and; are on different edges, and we must find the probability
that both those edges are in crossings. We separate thiahpligbinto two disjoint probabilities,
the probabilityp, that they cross each other, and the probability that thet doyss each other but
are each crossed by at least one other pairing. We denotsetbisd probability by1 — p,) ps,
where p, is the conditional probability they are each crossing gitteat they don’t cross each
other. We will find these probabilities by taking sums over llacements ok, m, p, ¢ above as
appropriate and calculating for each the probability ofeslasg one of our desired configurations.
We have shown

E (1/22k) = 4kpcross + (4k2 - 4k) (pa + (1 - pa) pb) ) (412)
thus reducing the problem to the determinatioppéndp;.
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Without loss of generality, we label our edges{asm} and {p, ¢q}. They cross each other if
and only if one of{p, ¢} is one of then — 2 vertices betweem andm, and the other is one of the
2k — m vertices betweem and2k. Thus

2k

1 m—2 2k—m
, = 9. :
P ;2k—1 %—2 2k—3

2
- BT D3 [Z — 4k — Zm + (2k 4 2) Zm]. (4.13)

By using the formulas for the sum of the firsintegers and the first squares, we simplify the
second factor to

(2% — 1) (—4k) — (2’“ (2 + ? k1) 1) + (2K +2) (% - 1) 414

which gives

2 (2k—1)(2k—2)(2k—3) 1
Pa = R 12k —2) (2k - 3) 6 G} (4.19)

We now calculate, the probability that 1, m} and{p, ¢} are both involved in crossings given
they don’t cross each other. We must pldtem} , {p, ¢}. Relabeling if necessary, we may assume
1 < m < p < ¢ (Note that such a labelling is possible if and onlyif,m} and{p, ¢} do not
cross each other. We compute the complement of our desiofélpitity by finding the number of
configurations where one or less of, m} and{p, ¢} is in a crossing. We denote the number of
such configurations by ,, , , and can thus write

1 2k—2 2k—1 Nkmpq (4 16)
-2 > Z ST -
m=2 p= m+1q—p+1

Since there ar¢”;") terms in the above sum (corresponding to {ffe') possible choices of

m, p,q Since we have specified the location of verieand the order ofn, p, ¢), we can rewrite

(4.16) as
2k—2 2k—1
E Zp m+1 Lag= p+1Nkmpq
(2k 1) (2]{7 5)
All that remains to be done is to evaluate the sum in the abrgeession. To do so, we first

define the following functior (k), which counts the number of waysrertices can be paired with
each other:

p = 1- (4.17)

0 if k&is odd
P(x) = <1 if k=0 (4.18)
(k—1)I' otherwise.
Next we think of these two edges as dividing the remainingices into three regions: those
between{1, m} and{p, ¢}, of which there are\l = p — m — 1 + 2k — ¢, those on the side
of {1, m}, of which there ared.. = m — 2, and those on the side ¢p, ¢}, of which there are

R = q—p— 1. We know that{1, m} will not be crossed if the. vertices between andm pair
exclusively with each other. Likewisép, ¢} will not be crossed if the vertices betweeandq pair
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exclusively with each other. Our desired quantity is thiesuhion of these two events less their
intersection:

P(L+M)P(R)+P(R+M)P(L)—P(L)P(M)P(R). (4.19)

Notice that if L or R is 0, one of{1,m},{p, ¢} is an adjacent edge, and so will not be crossing.
Thus

N @2k =5 if LorRisO
Bmpd = p(L+ M)YP(R)+P(R+M)P(L)— P(L)P(M)P(R) otherwise.
(4.20)
We now investigate the limiting behavior pf (given in [4.186)) by using the cases [n(4.20).

e For the first case, we haveor R is zero, and thus$Vy, ,,, , , = (2k — 5)!l. We are reduced to
counting the number of terms with or R zero. Note thal, = 0 whenm = 2, andR = 0
wheng = p + 1. Each of these events happens(?@‘z) pairings (we have fixed either
m or ¢, and the othe? vertices are chosen from the remaini2ig— 2 vertices), and their
intersection iiZkl‘g) (p is the only free index) pairings. In the limit, this case g¢inites

(2<2k2—2) _ (2k1—3)) (2k =51 3 L0 ( 1 ) . (4.21)

(1) (2k — 5)!! ok k3

e For the second casé, and R are non-zero. We first evaluate the contribution of the first
two terms (notice that they will contribute the same in thesince you can simply relabel
{1, m} and{p, ¢}) and then the third term, recalling that we only have to lcmktérms that
are at leasO () since we can see ifi{4]12) that any other terms will not couteiin the
limitask — oc.

— For P (L + M) P (R), the largest terms are from when eithler- M = 2, or when
R = 2. In these casesyj ,,, = (2k — 7). If R = 2theng = p+ 3 andm, p are
free so there aré*;*) such terms corresponding to t{&, *) choices ofn andp. If
L+ M = 2andL # 0 then there are only two possible terms: eitlier= 1, M =
I,R=2k—6o0orL =2 M = 0,R = 2k — 6. Including the symmetric terms for
P(R+ M) P (L), these terms thus have a combined contribution of

2(( Y +2) k-7 i+0<1). (4.22)

CEY (k-5 2k k3

— For the third term, P (L) P (M) P (R), the largest contributions will be when two
regions combine for exactly vertices which will give a contribution of2k — 7)!!.
If we disregard the requirement thatand R are nonzero in order to obtain an upper
bound on the magnitude of this contribution, there3gpessible terms. The next largest
contribution will be when two regions combine for exactlyertices which will give
a contribution of(2k — 9)!!. Proceeding with these diagonal terms, we know that the
third term will thus contribute at most in magnitude:

(2k — 7)! (2k — 9)! (2k — 11)! (1
(*1) (2k — 5)! ’ (**1) (2k — 5)! ! CN @k —sn T o (k?») ’

(4.23)

so they in fact do not contribute in the limit.
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~0.015f

40

FIGURE 3. Numerical confirmation of formulas for the expected valod variance

of vertices involved in crossing. The first plot is the exeelctalue for2k vertices
(solid line is theory) versuk, the second plot is a plot of the deviations from theory,
and the third plot is the observed variance; all plots arenf00,000 randomly
chosen matchings @i vertices in pairs.

Thus, we have that ds— oo,

3 3 1
Therefore if we substitute fqr, andp, in (4.12) we find
1 2 3 3
E(YZ) = 4k—4+ (4k% - 4k) (§+§(1_E_@)> (4.25)
1
= 4k*—-8k+ O <E) . (4.26)
Using [4.10), we also have that
) 2 1\’ ) 1

E(Yu) = (2k-2-7+0( = =8k =4+ 0( ). (4.27)
The variance aé — oo is thusE (Y2) — E (Ya,)* = (4k? — 8k) — (4k* — 8k — 4) = 4. O

Figure[3 provides a numerical verification of the above fdamuor the expected values and
variances.

5. LIMITING SPECTRAL MEASURE

We now complete the proof of Theorém11.1 by showing convergemd determining the sup-
port.

Proof of Theorerh I11The proof of the claimed convergence is standard, and feliownediately
from similar arguments i [HM, MMS, JMP, KKMSX]. Those argents rely only on degree of
freedom counting arguments, and are thus applicable havelas/Ne are left with determining the
limiting spectral measures.

e p=1/2:If p =1/2, we know from [[3.B) that only those configurations with nossiags
contribute. The claim follows directly from recalling thile number of non-crossing con-
figurations are simply the Catalan numbers, which are alsartbments of the semicircle
distribution.
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e p > 1/2: To show that the limiting spectral measure has unboundppastit suffices to
show that the moments of our distribution grow faster thanexponential bound, i.e., that
for all B there exists some such that\/,, > B?*. The moments of the unweighted ensem-

ble grow faster than exponentially (see [HM, KKMSX]). We pedhat our distribution sim-
ilarly has unbounded support using this fact and by consigehe “worst-case” scenario

allowed for undef3]3. Namely, we suppose that each ternribates (2p — 1)**, which

gives us the smallest moment possible. In this casg,is decreased from the unweighted

case by a factor af2p — 1)?*, and thus the growth is still faster than any exponentiahiou
O

APPENDIXA. EXACT FORMULA FOR MEAN NUMBER OF CROSSINGS

To prove [4.1), it suffices to simplify the sum in the expansid p...s in (4.3). We first extend
them sum to includen = k; this adds 1 to the sum which must then be subtracted fronethe t
outside. For notational convenience, set k — 2. We re-index and let: run from0 to n, and are
thus reduced to analyzing

m=0 (2m+1)
The following notation and properties are standard (seesfxample [GR]). The Pochhammer
symbol(x),, is defined form > 0 by
~ I(z+m)
G
and the hypergeometric function?; by

=z(x+1)-(x+m-—1), (A.2)

) - (a)m(b>m 2™
2F1<a’7 b7 G Z) = Z Wﬁ?
m=0

which converges for allz| < 1 so long as: is not a negative integer.
For ease of exposition, we work backwards from the anBwésing I'(1 + 2) = 2I'(z) and

['(1+ ¢) = ¢! (for integral?), we find

(A.3)

F1(1,3/2,1/2—n,—1) = Z((?/;(i/s)):(_niv)m

_ i;: L(1+m)rB3/2+m) T{A/2—n) (=1)™
= Q) I'3/2) I'(1/2—-n+4+m) m!
= Ti(n) + Ty(n), (A.4)

whereT(n) is the sum ovem < n and7:(n) is the sum ovem > n. From the functional equation
of the Gamma function and usidy = ¢(¢ — 2)(¢ — 4) - -- down to 2 or 1, we find

T(3/2+m) = 2"(2m+ 1)IT(3/2)
T(1/2—n+m) = (=1)"2"2n—1)2n—3)---(2n—2m + 1)T(1/2—n). (A.5)

2Mathematica is able to evaluate such sums and suggest tteetthypergeometric combinations. One has to be a
little careful, though, as Mathematica incorrectly evédukS(n), incorrectly stating that there was zero contribution
if we extend the sum to ath. In other words, it thought'(n) = T4 (n) = Ti(n) + T>(n) in the notation introduced
below.
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Substituting, we find

o Cm4+ D20 —2m — 1)l
L) = 2 @n — 1)
m=0
n ! _ —_ 1) — 9\
_ Z (2m+1)!(2n —2m — 1)! 2n(2n 2)"(271 —om 2
— (2n —1)12n (2m)!!
= @m+ D20 — 2m)! 2!
B rnZ:O (2n+1)! (2n+1) (2n —2m)2"=tm!(n — m — 1)!
= (@n+1) Z 2(1ﬁ)1 , (A.6)
m=0 (2m+1)
note this is our desired sum. Thus
. (::L) o 2F1(173/271/2_n7_1)_TZ(n) A7
Z (2n+1) _ 2n+1 I ( . )
m=0 \2m+1

and the proof is completed by analyziig(n). To determine this term’s contribution, we re-index.
Writing m = n + 1 + u, we find

T2 (n)

B iF(1+n+1+u)F(3/2+n+l+u) I'(1/2 —n) (=Dl

- & (1) I'(3/2) L(1/2—n+n+1+u)(n+1+u)u

=T+ TGB24n+uw)T(1/2 —n) (—1)"H (=1)"

B ; (1) (3/2)  T(3/2+u) u!

~ (=)"HD(1/2—=n)D(5/2+n) i F(1+u)0(5/2+n+u) T(3/2) (-1)*

B ['(3/2)2 ~ T(1) T(/2+n) TB/2+u) ul

= —(2n+3)2n+1).F(1,1/2+k,3/2,-1), (A.8)

where we usedl(1—2)I'(z) = 7/ sin(rz) with z = n+ 1 to simplify the Gamma factors depending
only onn. Combining the above provds (4.1).

[AGZ]
[BBDS]
[BasBot]
[BasBo2]
[BanBo]
[BCG]

[BH]
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