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DISTRIBUTION OF EIGENVALUES OF WEIGHTED, STRUCTURED MATRI X
ENSEMBLES

OLIVIA BECKWITH, STEVEN J. MILLER, AND KAREN SHEN

ABSTRACT. The study of the limiting distribution of eigenvalues ofN × N random matrices as
N → ∞ has many applications, including nuclear physics, number theory and network theory. One
of the most studied ensembles is that of real symmetric matrices, where the limiting spectral mea-
sure converges to the semi-circle. Studies have also determined the limiting spectral measures for
many structured ensembles, such as Toeplitz and circulant matrices. These systems have very dif-
ferent behavior; the limiting spectral measures for both have unbounded support. Given a structured
ensemble, we introduce a parameter to continuously interpolate between these two behaviors. We
fix a p ∈ [1/2, 1] and study the ensemble of signed structured matrices by multiplying the (i, j)th

and(j, i)th entries of a matrix by a randomly chosenǫij ∈ {1,−1}, with Prob(ǫij = 1) = p. For
p = 1/2, we prove that the limiting spectral measure is the semi-circle. For all otherp, for many
structured ensembles (including the Toeplitz and circulant) we prove the measure has unbounded
support, and converges to the original ensemble asp → 1.

The proofs are by Markov’s Method of Moments. The analysis ofthe 2kth moment for such
distributions involves the pairings of2k vertices on a circle. The contribution of each pairing in the
signed case is weighted by a factor depending onp and the number of vertices involved in at least one
crossing. These numbers are of interest in their own right, appearing in problems in combinatorics
and knot theory. The number of configurations with no vertices involved in a crossing is well-studied,
and are the Catalan numbers. We discover and prove similar formulas for configurations with4, 6, 8
and10 vertices in at least one crossing. For higher-order moments, we prove closed-form expressions
for the expected value and variance for the number of vertices in at least one crossing. As the variance
converges to 4, these results allow us to deduce properties of the limiting measure.
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1. INTRODUCTION

1.1. Background. Though Random Matrix Theory began with statistics investigations by Wishart
[Wis], it was through the work of Wigner [Wig1, Wig2, Wig3, Wig4, Wig5], Dyson [Dy1, Dy2]
and others that its true power and universality became apparent. Wigner’s great insight was that
ensembles of matrices with randomly chosen entries model well many nuclear phenomena. For
example, in quantum mechanics the fundamental equation isHΨn = EnΨn (H is the Hamilton-
ian,Ψn the energy eigenstate with eigenvalueEn). ThoughH is too complicated to diagonalize, a
typicalH behaves similarly to the average behavior of the ensemble ofmatrices where each inde-
pendent entry is chosen independently from some fixed probability distribution. Depending on the
physical system, the matrixH is constrained. The most common areH is real-symmetric (where
the limiting spectral measure is the semi-circle) or Hermitian. In addition to physics, these matrix
ensembles successfully model diverse fields from number theory [ILS, KS1, KS2, KeSn, Mon, RS]
to random graphs [JMRR, MNS] to bus routes in Mexico [BBDS, KrSe].

The original ensembles studied had independent entries chosen from a fixed probability distribu-
tion with mean 0, variance 1 and finite higher moments. For such ensembles, the limiting spectral
measure could often be computed, though only recently [ERSY, ESY, TV1, TV2] could the limiting
spacings between normalized eigenvalues be determined forgeneral distributions. See [Fo, Meh]
for a general introduction to Random Matrix Theory, and [Dy3, FM, Hay] for a partial history.

Recently there has been much interest in studying highly structured sub-ensembles of the family
of real symmetric matrices, where new limiting behavior emerges. Examples include band matrices,
circulant matrices, random abelianG-circulant matrices, adjacency matrices associated tod-regular
graphs, and Hankel and Toeplitz matrices, among others [BasBo1, BasBo2, BanBo, BCG, BH, BM,
BDJ, GKM, HM, JMP, Kar, KKMSX, LW, MMS, McK, Me, Sch]. Two particularly interesting
cases are the Toeplitz [BDJ, HM] and palindromic Toeplitz ensemble [MMS], which we now gen-
eralize (though our arguments would follow through with only minor changes for other structured
ensembles). Recall a real symmetric Toeplitz matrix is constant along its diagonals, while its palin-
dromic variant has the additional property that its first rowis a palindrome. The limiting spectral
measures of these ensembles have been proven to exist; it is the Gaussian in the palindromic case,
and almost a Gaussian in the Toeplitz case (the limiting spectral measure has unbounded support,
though the moments grow significantly slower than the Gaussian’s).

As these matrices are small sub-families of the family of allreal symmetric matrices, it is not
surprising that new behavior is seen. A natural question to ask is whether or not there is a way
to ‘fatten’ these ensembles and regain the behavior of the full ensemble. This is similar to what
happens for the adjacency matrices ofd-regular graphs. For fixedd the limiting spectral measure
is Kesten’s measure [McK], which converges asd → ∞ to the semi-circle. We can ask similar
questions about band matrices, and again see a transition inbehavior as a parameter grows [Sch].

Before stating our results, we first quickly review some standard notation (see for example [HM,
JMP, KKMSX, MMS]). Given anN ×N matrixA, its associated eigenvalue measure is

µA(x) =
1

N

N
∑

k=1

δ

(

x− λk(A)

c
√
N

)

, (1.1)
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where theλk(A)’s are the eigenvalues ofA, andc
√
N is a normalization constant (withc a function

of the structured ensemble). Using the Eigenvalue Trace Lemma, we find that thekth moment of
µA is

Mk;N(A) =

∫ ∞

−∞

xkµA(x)dx =
Trace(Ak)

ckNk/2+1
. (1.2)

The advantage of this formulation is that we convert what we want to study (the eigenvalues) to
something we understand (the matrix entries, which are randomly chosen). We now integrate the
above over the family, reducing the computation to averaging polynomials of the matrix elements
over the family. Determining the answer frequently involves solving difficult combinatorial prob-
lems to count the number of configurations with a given contribution.

Many proofs of the limiting behavior (averaged over the ensemble) proceed via Markov’s Method
of Moments (see for example [Ta]), where one shows the average moments over the ensemble con-
verge to the moments of a nice distribution. This, plus some control over the variance / rate of
convergence (usually done through counting arguments and then appeals to Chebyshev’s inequality
and the Borel-Cantelli lemma), suffice to prove various types of convergence of the limiting spec-
tral measure to a fixed distribution. See the above references for exact statements on the needed
assumptions for the various types of convergence.

1.2. Results. We fix a p ∈ [1/2, 1] and study the ensemble of signed structured matrices by
multiplying the(i, j)th and(j, i)th entries of a matrix by a randomly chosenǫij ∈ {1,−1}, with
Prob(ǫij = 1) = p. As we varyp, we continuously interpolate between highly structured (when
p = 1) and less structured (whenp = 1/2) ensembles.

Unfortunately, in general it is very hard to obtain closed-form expressions for the limiting spec-
tral measures (exceptions are the Gaussian behavior in palindromic Toeplitz [MMS], circulant en-
sembles [KKMSX] andd-regular graphs [McK]); however, we are still able to prove many results
about the moments of our weighted, structured ensembles. Using the expansion from the Eigen-
value Trace Lemma, a degree of freedom argument shows that the elements in the trace expansions
must be matched in pairs; the difficulty is figuring out the contribution of each. The odd moments
trivially vanish, and for even moments, the only contribution in the limit comes from when the
indices are matched in pairs with opposite orientation. We show that we may view these terms as
pairings of2k vertices,(i1, i2) , (i2, i3) , . . . , (i2k, i1), on a circle. Our main result is to show that
the contribution of each pairingc in the unsigned case is weighted by(2p− 1)e(c) in the signed
case, wheree (c) is the number of vertices in crossing pairs in the pairing. This extends previous
results. Whenp = 1/2, we are reduced almost completely to the real symmetric case, and our result
implies that all crossing configurations contribute0, and all non-crossing configurations contribute
1. This gives us a2kth moment equal to thekth Catalan number, which is both the number of non-
crossing pairings of2k objects and the2kth moment of the semicircle density.1 By contrast, when
p = 1 we are reduced to the unsigned case, and indeed our theorem implies that each configuration
contributes what it did in the unsigned case.

Our first result is the following (though identical arguments would work for similar distributions).

Theorem 1.1.Consider the ensemble of real-symmetric Toeplitz or palindromic Toeplitz matrices,
where the independent entries are drawn from a distributionp with mean 0, variance 1 and finite

1The normalized semi-circular density isfsc(x) = 1

π

√

1−
(

x
2

)2

if |x| ≤ 2 and 0 otherwise, and the even moments

are the Catalan numbers.
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higher moments. Consider the weighted ensemble where the(i, j)th and (j, i)th entries of these
matrices are multiplied by a randomly chosenǫij ∈ {1,−1}, withProb(ǫij = 1) = p.

For p = 1/2, the limiting spectral measure for the signed, structured ensemble of real-symmetric
Toeplitz or palindromic Toeplitz matrices is the semi-circle. For all otherp, the limiting measure
has unbounded support, and converges to the original ensemble’s limiting measure asp → 1. The
convergence is weakly and in probability to their corresponding limiting spectral measures, and
almost surely if additionally the densityp is even.

We find that the controlling factor is how many vertices are involved in a crossing (we make this
precise in §3). This reduces our problem to one in combinatorics (and, in fact, our problem turns
out to be related to issues in knot theory as well; see for example [KT, Kont, FN, Rio, Sto]). In the
course of our investigations, we prove several interestingcombinatorial results, which we isolate
below.

Theorem 1.2. Consider all(2k − 1)!! pairings of2k vertices on a circle. LetCr2k,2m denote the
number of these pairings where exactly2m vertices are involved in a crossing and letCk denote
thekth Catalan number, 1

k+1

(

2k
k

)

. For small values ofm, we obtain the exact formulas forCr2k,2m
listed below; for largek (and thus a large range of possiblem) we prove the limiting behavior of
the expected value and variance of the number of vertices involved in at least one crossing.

• For m ≤ 10 we have

Cr2k,0 = Ck

Cr2k,2 = 0

Cr2k,4 =

(

2k

k − 2

)

Cr2k,6 = 4

(

2k

k − 3

)

Cr2k,8 = 31

(

2k

k − 4

)

+

k−4
∑

d=1

(

2k

k − 4− d

)

(4 + d)

Cr2k,10 = 288

(

2k

k − 5

)

+ 8

k−5
∑

d=1

(

2k

k − 5− d

)

(5 + d) . (1.3)

• Ask → ∞, the expected number of vertices involved in a crossing converges to2k − 2 (see
Theorem 4.1 for the exact value in terms of hypergeometric functions), and the variance of
the number of vertices involved in a crossing converges to4.

We review the basic framework and definitions used in studying the moments in §2. In §3 we
determine formulas for the moments, and prove the first part of Theorem 1.2, completing the proof
by determining the limiting behavior in §4. All that remainsto prove Theorem 1.1 is to handle the
convergence issues; this analysis is standard, and is quickly reviewed in §5.

2. MOMENT PRELIMINARIES

We briefly summarize the needed expansions from previous work (see [HM, JMP, KKMSX,
MMS] for complete details). We use a standard method to compute the moments. For a fixed
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N ×N matrixA, its kth moment is

Mk,N (A) =
1

N
k
2
+1

∑

1≤i1,...,ik≤N

ai1i2ai2i3 · · · aiki1, (2.1)

which when applied to our signed Toeplitz and palindromic Toeplitz matrices (where the entries of
the unsigned ensemble are constant along diagonals) gives that

Mk,N (A) =
1

N
k
2
+1

∑

1≤i1,...,ik≤N

ǫi1i2b|i1−i2|ǫi2i3b|i2−i3| · · · ǫiki1b|ik−i1|. (2.2)

By linearity of expectation,

E (Mk,N (A)) =
1

N
k
2
+1

∑

1≤i1,...,ik≤N

E
(

ǫi1i2b|i1−i2|ǫi2i3b|i2−i3| · · · ǫiki1b|ik−i1|

)

. (2.3)

Of theNk terms in the above sum corresponding to theNk choices of(i1, . . . , ik) in the above sum,
we can immediately see that some contribute zero in the limitasN → ∞ by using the following
lemmas.

Lemma 2.1. Any term that contributes in the limit must have eachbα in the product appearing
exactly twice, and all such terms have a finite contribution.

Proof. We first prove that any term that doesn’t have everybα appearing at least twice does not con-
tribute. As the expected value of a product of independent variables is the product of the expected
values, since eachbα is drawn from a distribution with mean zero, there is no contribution in this
case. Thus eachbα occurs at least twice if the term is to contribute.

We now show that any term that has somebα appearing more than twice cannot contribute in the
limit. If eachbα appears exactly twice, then there arek/2 values ofbα to choose. Recall thatb|ij ij+1|

is paired withb|ik−ik+1| if and only if

ij − ij+1 = ±(ik − ik+1). (2.4)

Once we have specified theb’s and one indexil, there are at most two values for each remaining

index. Thus there areO
(

N
k
2
+1
)

terms where thebα’s are matched in exactly pairs. By contrast,

any term that has somebα appearing more than twice has fewer thank
2
+1 degrees of freedom, and

thus does not contribute in the limit as we divide byNk/2+1.
Finally, we show that the sum of the contributions from all terms arising from matching in pairs

is Ok (1). Suppose there arer ≤ k different ǫγ ’s and s ≤ k different bα’s in the product, say
ǫγ1 , . . . , ǫγr andbα1

, . . . , bαs
, with eachǫγj occurringnj times and eachbαj

occurringmj times.
Such a term contributes

∏r
j=1E

(

ǫ
nj
γj

)
∏s

j=1E
(

b
mj
αj

)

. Since the probability distributions of theǫ’s
andb’s have finite moments, this contribution is thusOk (1), and thus the sum of all such contribu-
tions is finite in the limit. �

Lemma 2.2. The odd moments of the limiting spectral measure vanish.

Proof. This follows directly from Lemma 2.1 (since the odd moments have an odd number ofb’s,
they cannot be matched exactly in pairs). �

Since the odd moments vanish, we concern ourselves in the rest of the paper with the limiting
behavior of the even moments,M2k. Further, in the moment expansion for the even moments, we
only have to consider terms in which thebα’s are matched in exactly pairs. With the next lemma,
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we further reduce the number of terms we must consider by showing that only those terms where
every pairing between theb’s is with a minus sign in (2.4) contribute in the limit. The following
proof is adapted from [HM].

Lemma 2.3. The only terms that contribute to the2kth moment of the limiting spectral measure are
terms where theb’s are matched in exactly pairs with a minus sign in(2.4).

Proof. For each term, there arek corresponding equations of the form (2.4). We letx1, . . . , xk be
the values of the|ij − ij+1| in these equations, and letδ1, . . . , δk be the choices of sign in these
equations. We further let̃x1 = i1 − i2, x̃2 = i2 − i3, . . . , x̃2k = i2k − i1. Then each of the previous
k equations can be written as

x̃m = δj x̃n. (2.5)
By definition, there is someηj = ±1 such that̃xm = ηjxj. Thenx̃n = δjηjxj , so

x̃1 + x̃2 + · · ·+ x̃2k =

k
∑

j=1

ηj (1 + δj)xj . (2.6)

Finally, notice that

x̃1 + x̃2 + · · ·+ x̃2k = i1 − i2 + i2 − i3 + · · ·+ i2k − i1 = 0. (2.7)

Thus
k
∑

j=1

ηj (1 + δj)xj = 0. (2.8)

If any δj = 1, then (2.8) gives us a linear dependence between thexj . Recall from the proof of
Lemma 2.1 that we require allxj to be independently chosen for a pairing to contribute; otherwise,
there are fewer thank + 1 degrees of freedom. Thus, the only terms that contribute have each
δj = −1. �

The above results motivate the following definition.

Definition 2.4 (Pairing). A pairing is a matching of the verticesi1, i2, . . . , i2k such that the vertices
are matched exactly in pairs, and with a negative sign in(2.4). There are(2k − 1)!! pairings of the
2k vertices. As argued above in the proof of Lemma 2.1, these pairings correspond toO

(

Nk+1
)

terms in the sum in(2.3) for the2kth moment.

As suggested above, we find that a good way to investigate the contribution of each potentially
contributing term, i.e., each choice or tuple of(i1, . . . , i2k), is to associate each term with a pairing
of 2k vertices on a circle, where the vertices are|i1 − i2| , |i2 − i3| , . . . , |i2k − i1|. Because what
matters are not the values of the|ij − ij+1|’s, but rather the pattern of how they are matched, any
terms associated with the same pairing of the2k vertices will have the same contribution. Thus,
pairings that are the same up to a rotation of the vertices contribute the same since it is not the values
of ij that matters but rather the distance between each vertex andits matching and the indices of the
other pairs. Therefore, to further simplify the moment analysis, we make the following definition.

Definition 2.5 (Configuration). Two pairings
{

(ia1 , ia2) , (ia3 , ia4) , . . . ,
(

ia2k−1
, ia2k

)}

and
{

(ib1 , ib2) , (ib3 , ib4) , . . . ,
(

ib2k−1
, ib2k

)}

are said to be in the same configuration if they are equiva-
lent up to a relabeling by rotating the vertices; i.e., thereis some constantl such thatbj = aj + l
mod 2k.
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FIGURE 1. The five distinct configurations for the 6th moment where vertices are
matched exactly in pairs. The multiplicity under rotation of the five patterns are 2, 3,
6, 3 and 1 (for example, rotating the first pattern twice returns it to its initial configu-
ration, while the third requires six rotations). The nomenclature is from [KKMSX],
and not that relevant to our purposes here.

FIGURE 2. A pairing of10 vertices with8 crossing vertices (in two symmetric sets
of 4 vertices), and2 dividing vertices (connected by a main diagonal).

For example, we list the five distinct configurations needed for the sixth moment in Figure 1. The
problem of determining the moments is thus reduced to determining for each configuration both
the contribution of a pairing belonging to that configuration to the sum in (2.3) and the number of
pairings belonging to that configuration.

3. DETERMINING THE MOMENTS

By Lemma 2.1, for the rest of the paper we assume the vertices are matched in exactly pairs. We
distinguish between three types of vertices in these pairings.

Definition 3.1. We say that a pair(ia, ib), a < b, is in acrossing if there exists a pair(ix, iy) such
thata < x < b and eithery < a or y > b. A pair (ia, ib) is non-crossing if for every pair(ix, iy),
a < x < y if and only ifa < y < b.

Pictorially, a pair is crossing if the line connecting its two vertices crosses another line connecting
two other vertices. In Figure 1, the first two configurations have no crossing vertices, the third has
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four, while all vertices are crossing for the fourth and fifth. Note the number of crossing vertices is
always even and never two.

Definition 3.2. We say that a non-crossing pair(ia, ib) is dividing if there exist at least one crossing
pair (ix, iy), (iw, iz) such thata < x, y, w, z < b and at least one crossing pair(ip, iq), (ir, is) such
that each indexj ∈ {p, q, r, s} satisfies eitherj < a or j > b.

Pictorially, a pair is dividing if it “divides” the circle into two regions of pairs (no pair can cross a
dividing edge since it must be non-crossing), where each region contains at least one crossing pair.
From the definition, we see that at least10 vertices are needed for a “dividing” pair to exist. See
Figure 2 for an illustration.

All other pairs will be callednon-crossing non-dividingpairs. Note that all pairings belonging
to a given configuration have the same number of crossing pairs and the same number of dividing
pairs.

We show in this section that the contribution of each pairingin the unsigned case is weighted by a
factor depending on the number of crossing pairs in that pairing. We then prove some combinatorial
formulas that allow us to obtain closed form expressions forthe number of pairings withm vertices
crossing for smallk. As the combinatorics becomes prohibitively difficult for largek, we determine
the limiting behavior in §4.

3.1. Weighted Contributions. The following theorem is central to our determination of themo-
ments. It reduces the calculations to two parts. First, we need to know the contribution of a pairing
in the non-weighted case (equivalently, whenp = 1). While this is known precisely for the palin-
dromic Toeplitz case, where each pairing contributes 1, in the Toeplitz case we only have upper
and lower bounds on the contribution of all pairing. Second,we need to determine the number of
vertices involved in crossing pairs, which we do in part in §3.2.

Theorem 3.3.For each choice of a pairingc of (i1, . . . , i2k), letx(c) denote the contribution of this
tuple in the unsigned case. Then the contribution in the signed case isx(c)(2p− 1)e(c), wheree(c)
represents the number of vertices in crossing pairs in the configuration corresponding toc.

Proof. Recall that the contribution from any choice of(i1, . . . , i2k) is

E(ǫi1i2b|i1−i2|ǫi2i3b|i2−i3| · · · ǫi2ki1b|i2k−i1|) = E(ǫi1i2ǫi2i3 · · · ǫi2ki1)E(b|i1−i2| · · · b|ik−i1|)

= E(ǫi1i2ǫi2i3 · · · ǫi2ki1)x(c). (3.1)

Thus, we want to show thatE(ǫi1i2ǫi2i3 · · · ǫi2ki1) = (2p− 1)e(c). We do this by showing that for
each pair(ij , ij+1) , (ik, ik+1) whereb|ij−ij+1| = b|ik−ik+1|,

E
(

ǫij ij+1
ǫikik+1

)

=

{

(2p− 1)2 if (ij, ij+1) , (ik, ik+1) are a crossing pair

1 otherwise.
(3.2)

Notice that
E (ǫα) = 1 · p+ (−1) · (1− p) = 2p− 1, E

(

ǫ2α
)

= 1. (3.3)
Therefore, ifm epsilons are chosen independently, the expected value of their product is(2p−1)m.

Our first step is provingE(ǫi1i2ǫi2i3 · · · ǫi2ki1) ≥ (2p − 1)e(c) by showing that pairs not in a
crossing contribute1. Consider a non-crossing pair(ir, ir+1) , (ip, ip+1), with r < p. For each
(iq, iq+1) paired with(iq′, iq′+1), we haver < q < p if and only if r < q′ < p. Recall from (2.4)
and Lemma 2.3 that

iq − iq+1 = −(iq′ − iq′+1). (3.4)
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Thus
p
∑

k=r

(ik − ik+1) = 0 (3.5)

because each difference in the sum is paired with its additive inverse, which is also in the sum. As
p
∑

k=r

(ik − ik+1) = (ir − ir+1) + (ir+1 − ir+1) + · · ·+ (ip − ip+1) = ir − ip+1, (3.6)

we must haveir = ip+1, and for the differences to be equal,ir+1 = ip. Thereforeǫirir+1
= ǫipip+1

,
and henceE(ǫirir+1

ǫipip+1
) = 1.

Now we showE(ǫi1i2ǫi2i3 · · · ǫi2ki1) ≤ (2p − 1)e(c) by showing that ifǫiaia+1
= ǫibib+1

, a < b,
then(ia, ia+1) , (ib, ib+1) are non-crossing. This suffices to prove the result since we know that the
only dependency between theǫ’s arises from the requirement that the matrix is real symmetric, and
thus we have a dependency betweenǫisis+1

andǫipip+1
if and only if we know they are equal. In

showing that a dependency betweenǫ’s implies the corresponding vertex pair must be non-crossing,
we show that crossing pairs imply independentǫ’s and thus contribute(2p− 1)2.

If ǫiaia+1
= ǫibib+1

then it must be true that the unordered sets{ia, ia+1} and{ib, ib+1} are equal.
Notice that this then implies that|ia − ia+1| = |ib − ib+1|, so(ia, ia+1) , (ib, ib+1) must be paired on
the circle. Since the only contributing terms are when they are paired in opposite orientation, we
then know thatia = ib+1, so

b
∑

k=a

(ik − ik+1) = ia − ib+1 = 0. (3.7)

We can rewrite this sum as
d
∑

k=b

δk|ik − ik+1| = 0, (3.8)

whereδk is ±1 if the vertexk is paired with is less thana or greater thanb, and0 if and only if the
vertexk is paired with is betweena andb. However, a linear dependence among the differences is
impossible, as we need to haveNk+1 degrees of freedom for each configuration (see the proof of
Lemma 2.1). So eachδk = 0, and each vertex between verticesa andb is paired with something
else betweena andb. Thus, no edges cross the edge between verticesa andb.

We have shown that an epsilon is unmatched if and only if its edge is in a crossing. Thus,
an epsilon is not paired if and only if its edge is not in a crossing. Therefore the contribution is
weighted byE(ǫi1i2ǫi2i3 · · · ǫi2ki1) = (2p− 1)e(c), completing the proof. �

3.2. Counting Crossing Configurations. Theorem 3.3 reduced the determination of the moments
to counting the number of pairings with a given contributionx(c), and then weighting those by
(2p − 1)e(c), wheree(c) is the number of vertices involved in crossings in the configuration. As
remarked above, in the palindromic Toeplitz case eachx(c) = 1, while in the general Toeplitz
case we only have bounds on thex(c)’s, and thus must leave these as parameters in the final answer
(though any specificx(c) may be computed by brute force, we do not have a closed form expression
in general).

In this section we turn to computing thee(c)’s for various configurations. As previously men-
tioned, these and similar numbers have also been studied in knot theory where these chord diagrams
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are used in the study of Vassiliev invariants (see [KT, Kont,FN, Rio, Sto]). While we cannot deter-
mine exact formulas in general, we are able to solve many special cases, which we now describe.

Definition 3.4 (Cr2k,2m). Let Cr2k,2m denote the number of pairings involving2k vertices where
exactly2m vertices are involved in a crossing.

Let Ck = 1
k+1

(

2k
k

)

denote thekth Catalan number (see [AGZ] for statements and proofs of their
needed properties). One of its many definitions is as the number of ways to match2k objects on
a circle in pairs without any crossings; this interpretation is the reason why Wigner’s Semi-Circle
Law holds. Thus, we immediately deduce the following.

Lemma 3.5. We haveCr2k,0 = Ck.

We use this result to prove the following theorem, which is instrumental in the counting we need
to do.

Theorem 3.6.Consider2k vertices on the circle, with a partial pairing on a subset of2v vertices.
The number of ways to place the remaining2k − 2v vertices in non-crossing, non-dividing pairs is
(

2k
k−v

)

.

Proof. LetW denote the desired quantity. Notice that each of the remaining2k − 2v vertices must
be placed between two of the2v already paired vertices on the circle. These2v vertices have created
2v regions. A necessary and sufficient condition for these2k − 2v vertices to be in non-crossing,
non-dividing pairs is that the vertices in each of these2v regions pair only with other vertices in
that region in a non-crossing configuration.

Thus, if there are2s vertices in one of these regions, by Lemma 3.5 the number of valid ways
they can pair isC2s. As the number of valid matchings in each region depends onlyon the number
of vertices in that region and not on the matchings in the other regions, we obtain a factor of
C2s1C2s2 · · ·C2s2v , where2s1 + 2s2 + · · ·+ 2s2v = 2k − 2v.

We need only determine how many pairings this factor corresponds to. First we notice that by
specifying one index and(s1, s2, . . . , s2v), we have completely specified a pairing of the2k vertices.
However, as we are pairing on a circle, this specification does not uniquely determine a pairing since
the labelling of(s1, s2, . . . , s2v) is arbitrary. Each pairing can in fact be written as any of the2v
circular permutations of some choice of(s1, s2, . . . , s2v) and one index. Thus the quantity we are
interested in is

W =
2k

2v

∑

2s1+2s2+···+2s2v=2k−2v

Cs1Cs2 · · ·Cs2v (3.9)

To evaluate this expression, we use thek-fold self-convolution identity of Catalan numbers [Reg],
which states

∑

i1+···+ir=n

Cir−1 · · ·Cir−1 =
r

2n− r

(

2n− r

n

)

. (3.10)

Settingij = sj + 1, r = 2v andn = k + v, we obtain
∑

s1+s2+···+s2v+2v=k+v

Cs1Cs2 · · ·Cs2v =
2v

2k

(

2k

k + v

)

. (3.11)

We may rewrite this as

2k

2v

∑

2s1+2s2+···+2s2v=2k−2v

Cs1Cs2 · · ·Cs2v =

(

2k

k − v

)

, (3.12)
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which completes the proof as the left hand side is just (3.9). �

Given Theorem 3.6, our ability to find formulas forCr2k,2m rests on our ability to find the number
of ways to pair2v vertices where2m vertices are crossing and2v − 2m vertices are dividing. We
are able to do this for small values ofm, but for largem, the combinatorics becomes very involved.

Definition 3.7 (P2k,2m,i, partitions). Let P2k,2m,i represent the number of pairings of2k vertices
with 2m crossing vertices ini partitions. We define a partition to be a set of crossing vertices
separated from all other sets of crossing vertices by at least one dividing edge.

It takes a minimum of4 vertices to form a partition, so the maximum number of partitions
possible is⌊2m/4⌋. Our method of counting involves writing

Cr2k,2m =

⌊2m/4⌋
∑

i=1

P2k,2m,i. (3.13)

Our first combinatorial result is the following.

Lemma 3.8. We have

P2k,2m,1 = Cr2m,2m

(

2k

k −m

)

. (3.14)

Proof. The proof follows immediately from Theorem 3.6. If there is only one partition, then there
can be no dividing edges. Therefore, we simply multiply the number of ways we can choose2k−2m
non-crossing non-dividing pairs by the number of ways to then choose how the2m crossing vertices
are paired. �

Our next result is

Lemma 3.9. We have

P2k,2m,2 =
k−m
∑

d=1

(

2k

k −m− d

)

(m+ d)

(

∑

0<a<m

Cr2a,2aCr2m−2a,2m−2a

)

. (3.15)

Proof. We letd be the number of dividing edges. In order to have two partitions, at least one of the
k −m non-crossing edges must be a dividing edge. We thus sum overd from 1 to k −m. Given
d, we know that we can pair and place the non-crossing non-dividing edges in

(

2k
k−m−d

)

ways from
Theorem 3.6. We then choose a way to pair the2m crossing vertices into2 partitions, one with2a
vertices, the other with2b vertices. Ifa = b, there arem+ d distinct spots where we may place the
dividing edge. Ifa 6= b, there are2m + 2d spots. Since each choice ofa 6= b appears twice in the
above sum, the result follows. �

DeterminingP2k,2m,3 requires the analysis of several more cases, and we were unable to find a
nice way to generalize the results of Lemmas 3.8 and 3.9. However, these two results do allow us
to write down the following formulas.
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Lemma 3.10.We have

Cr2k,4 =

(

2k

k − 2

)

Cr2k,6 = 4

(

2k

k − 3

)

Cr2k,8 = 31

(

2k

k − 4

)

+

k−4
∑

d=1

(

2k

k − 4− d

)

(4 + d)

Cr2k,10 = 288

(

2k

k − 5

)

+ 8
k−5
∑

d=1

(

2k

k − 5− d

)

(5 + d) . (3.16)

Proof. We recall that

Cr2k,0 = Ck

Cr2k,2 = 0, (3.17)

where the second equation follows from the fact that at least4 vertices are needed for a crossing.
From (3.13) and (3.8) we find

Cr2k,4 = P2k,4,1 = Cr4,4

(

2k

k − 2

)

. (3.18)

We can calculateCr4,4 by using (3.17) and the fact that

k
∑

m=0

Cr2k,2m = (2k − 1)!!. (3.19)

This follows because the number of ways to match2k objects in pairs of 2 with order not mattering
is (2k − 1)!!, and thus the sum of all our matchings in pairs must equal this. Note that this number
is also the2kth moment of the standard normal; this is the reason the palindromic Toeplitz have a
limiting spectral measure that is normal, as each contribution contributes fully. We thus find

Cr4,4 = (2k − 1)!!− Cr4,2 − Cr4,0 = 3− 2 = 1. (3.20)

This completes the proof of the first formula:Cr2k,4 =
(

2k
k−2

)

.
The other coefficients are calculated in a similar recursivefashion – essentially, once we have

values forCr2k,2l for l = 0, 1, 2, . . . , m− 1, we can findCr2m,2m by using (3.19), which allows us
to write the general formulas above forCr2k,2m. We show the calculations below. We have

Cr6,6 = (6− 1)!!− Cr6,4 − Cr6,2 − Cr6,0

= 5!!−
(

6

1

)

− 0− C3 = 15− 6− 0− 5 = 4 (3.21)

soCr2k,6 = 4
(

2k
k−3

)

, and thus

Cr8,8 = (8− 1)!!− Cr8,6 − Cr8,4 − Cr8,2 − Cr8,0

= 7!!− 4

(

8

1

)

−
(

8

2

)

− 0− C4 = 105− 32− 28− 14 = 31. (3.22)
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To finish the calculation forCr2k,8 we need to compute:
∑

0<a<4

Cr2a,2aCr8−2a,8−2a = Cr2,2Cr6,6 + Cr4,4Cr4,4 + Cr6,6Cr = 0 + 1 + 0 = 1. (3.23)

so that we getCr2k,8 = 31
(

2k
k−4

)

+
∑k−4

d=1

(

2k
k−4−d

)

(4 + d).
For the formula forCr2k,10,

Cr10,10 = (10− 1)!!− Cr10,8 − Cr10,6 − Cr10,4 − Cr10,2 − Cr10,0

= 9!!−
(

31

(

10

1

)

+

1
∑

d=1

(

10

1− d

)

(4 + d)

)

− 4

(

10

2

)

−
(

10

3

)

− 0− C5

= 945− (310 + 5)− 4 (45)− 120− 0− 42 = 288 (3.24)

and finally
∑

0<a<5

Cr2a,2aCr10−2a,10−2a = Cr2,2Cr8,8 + Cr4,4Cr6,6 + Cr6,6Cr4,4 + Cr8,8Cr2,2

= 0 + 4 + 4 + 0 = 8. (3.25)

soCr2k,10 = 288
(

2k
k−5

)

+ 8
∑k−5

d=1

(

2k
k−5−d

)

(5 + d).
�

Notice that by using the formulas in Lemma 3.10 to calculate the number of terms with each of
the possible contributions given in Theorem 3.3, we are ableto calculate up to the12th moment
exactly (where for the12th moment we use the same recursive procedure as in the proof of Lemma
3.10 to calculateCr12,12).

Remark 3.11. The coefficients in front of the binomial coefficient of the leading term ofCr2k,2m is
sequence A081054 from the OEIS[Kl] .

4. LIMITING BEHAVIOR OF THE MOMENTS

As we are unable to find exact expressions for the number of pairings with exactly2m crossing
vertices for allm, we determine the expected value and variance of the number of vertices in a
crossing. Such expressions, and the limiting behavior of these expressions, are useful for obtaining
bounds for the moments. To find these, we make frequent use of arguments about the probabilities
of certain pairings, recognizing that since all configurations are equally likely, the probability that
a vertexi pairs with a vertexj is just 1

2k−1
.

Theorem 4.1.The expected number of vertices involved in a crossing is

2k

2k − 1

(

2k − 2− 2F1(1, 3/2, 5/2− k;−1)

2k − 3
− (2k − 1) 2F1(1, 1/2 + k, 3/2;−1)

)

, (4.1)

which is

2k − 2− 2

k
+O

(

1

k2

)

(4.2)

ask → ∞.
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Proof. In our main applications (such as computing the asymptotic behavior of the mean and the
variance), we only need the asymptotic expression (4.2), which we prove elementarily below. We
give the proof of (4.1) in Appendix 4.1, which involves converting the expansions below to differ-
ences of hypergeometric series.

For a given pairing of2k vertices, letXi = 1 if vertex i is involved in a crossing and0 otherwise.
ThenY2k =

∑2k
i=1Xi is the number of vertices involved in a crossing in this pairing. By linearity

of expectation,

E (Y2k) = E

(

2k
∑

i=1

Xi

)

= 2kE (Xi) = 2kpcross, (4.3)

wherepcross is the probability that a given vertex is in a crossing as, by symmetry, this is the same
for all vertices. Thus, without loss of generality, we may think of pcross as the probability that vertex
1 is in a crossing. We notice that

(1) If vertex 1 is matched with another odd indexed vertex, which happens with probability
k−1
2k−1

, then it must be involved in a crossing, since there are an oddnumber of vertices
in the two regions created by the matching, meaning that the regions cannot only pair by
themselves.

(2) If vertex 1 is matched with an even indexed vertex, then itis involved in a crossing if and
only if it does not partition the remaining vertices into twoparts that pair exclusively with
themselves. Suppose it is matched with vertex2m (which happens with probability 1

2k−1
).

Then its edge divides the vertices into a region of2m− 2 and a region of2k− 2m vertices.
As the number of ways to match2ℓ objects in pairs with order immaterial is(2ℓ − 1)!! =
(2ℓ− 1) (2ℓ− 3) · · · 3 · 1, the probability that each region pairs only with itself is

(2m− 3)!! (2k − 2m− 1)!!

(2k − 3)!!
. (4.4)

Thus, the probability that vertex 1 is involved in a crossingis

pcross =
k − 1

2k − 1
+

k−1
∑

m=2

1

2k − 1

(

1− (2m− 3)!! (2k − 2m− 1)!!

(2k − 3)!!

)

=
2k − 3

2k − 1
− 1

2k − 1

k−1
∑

m=2

(2m− 3)!! (2k − 2m− 1)!!

(2k − 3)!!

=
2k − 3

2k − 1
− 1

2k − 1

k−1
∑

m=2

(2m− 3)! (2k − 2m)! (2k − 4)!!

(2m− 4)!! (2k − 2m)!! (2k − 3)!

=
2k − 3

2k − 1
− 1

2k − 1

k−1
∑

m=2

(2m− 3)! (2k − 2m)!2k−2 (k − 2)!

2m−2 (m− 2)!2k−m (k −m)! (2k − 3)!

=
2k − 3

2k − 1
− 1

2k − 1

k−1
∑

m=2

(

k−2
m−2

)

(

2k−3
2m−3

) . (4.5)

Therefore

E (Y2k) = 2kpcross = (2k)
2k − 3

2k − 1
− (2k)

1

2k − 1

k−1
∑

m=2

(

k−2
m−2

)

(

2k−3
2m−3

) . (4.6)
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In the above sum, the first and last terms are both1
2k−3

, as form = 2 we have
(

k−2
0

)

(

2k−3
1

) =
1

2k − 3
, (4.7)

and form = k − 1 we have
(

k−2
k−3

)

(

2k−3
2k−5

) =

(

k−2
1

)

(

2k−3
2

) =
2 (k − 2)

(2k − 3) (2k − 4)
=

1

2k − 3
. (4.8)

Looking at the ratio of subsequent terms, straightforward algebra shows
(

k−2
m−1

)

/
(

2k−3
2m−1

)

(

k−2
m−2

)

/
(

2k−3
2m−3

) =
2m− 1

2k − 2m− 1
. (4.9)

Thus form up to the halfway point, each term in the sum is less than the previous. In particular,
them = 3 term is5/(2k − 7) times them = 2 term, and hence all of these terms areO(1/k2).
Similarly, working fromm = k − 2 to the middle we find all of these terms are alsoO(1/k2), and
thus the sum in (4.6) can be rewritten, giving

E (Y2k) = (2k)
2k − 3

2k − 1
− (2k)

1

2k − 1

(

2

2k − 3
+O

(

1

k2

))

= 2k − 2− 2

k
+O

(

1

k2

)

. (4.10)

�

Theorem 4.2. The variance of the number of vertices involved in a crossingapproaches4 ask →
∞.

Proof. We need to calculateVar (Y2k) = E (Y 2
2k) − E (Y2k)

2. As we know the second term by
Theorem 4.1, we concentrate on the first term:

E
(

Y 2
2k

)

=
∑

i,j∈{1,...,2k}

E (XiXj) . (4.11)

The above sum has4k2 terms.
For 2k of those terms,i = j soE (XiXj) = E (X2

i ) = E (Xi) = pcross as theXℓ’s are binary
indicator variables with probability of successpcross. For another2k terms, we havei andj are
paired on the same edge, soE (XiXj) = E (Xi) = pcross as before.

For the remaining4k2−4k terms,i andj are on different edges, and we must find the probability
that both those edges are in crossings. We separate this probability into two disjoint probabilities,
the probabilitypa that they cross each other, and the probability that they don’t cross each other but
are each crossed by at least one other pairing. We denote thissecond probability by(1− pa) pb,
wherepb is the conditional probability they are each crossing giventhat they don’t cross each
other. We will find these probabilities by taking sums over the placements ofk,m, p, q above as
appropriate and calculating for each the probability of observing one of our desired configurations.
We have shown

E
(

Y 2
2k

)

= 4kpcross +
(

4k2 − 4k
)

(pa + (1− pa) pb) , (4.12)

thus reducing the problem to the determination ofpa andpb.
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Without loss of generality, we label our edges as{1, m} and{p, q}. They cross each other if
and only if one of{p, q} is one of them − 2 vertices between1 andm, and the other is one of the
2k −m vertices betweenm and2k. Thus

pa =

2k
∑

m=2

1

2k − 1
· 2 · m− 2

2k − 2
· 2k −m

2k − 3

=
2

(2k − 1) (2k − 2) (2k − 3)

[

2k
∑

m=2

−4k −
2k
∑

m=2

m2 + (2k + 2)
2k
∑

m=2

m

]

. (4.13)

By using the formulas for the sum of the firstn integers and the firstn squares, we simplify the
second factor to

(2k − 1) (−4k)−
(

2k (2k + 1) (4k + 1)

6
− 1

)

+ (2k + 2)

(

2k (2k + 1)

2
− 1

)

, (4.14)

which gives

pa =
2

(2k − 1) (2k − 2) (2k − 3)

(2k − 1) (2k − 2) (2k − 3)

6
=

1

3
. (4.15)

We now calculatepb, the probability that{1, m} and{p, q} are both involved in crossings given
they don’t cross each other. We must place{1, m} , {p, q}. Relabeling if necessary, we may assume
1 < m < p < q (Note that such a labelling is possible if and only if{1, m} and{p, q} do not
cross each other. We compute the complement of our desired probability by finding the number of
configurations where one or less of{1, m} and{p, q} is in a crossing. We denote the number of
such configurations byNk,m,p,q and can thus write

pb = 1−
2k−2
∑

m=2

2k−1
∑

p=m+1

2k
∑

q=p+1

Nk,m,p,q

(2k − 5)!!
. (4.16)

Since there are
(

2k−1
3

)

terms in the above sum (corresponding to the
(

2k−1
3

)

possible choices of
m, p, q since we have specified the location of vertex1 and the order ofm, p, q), we can rewrite
(4.16) as

pb = 1−
∑2k−2

m=2

∑2k−1
p=m+1

∑2k
q=p+1Nk,m,p,q

(

2k−1
3

)

(2k − 5)!!
. (4.17)

All that remains to be done is to evaluate the sum in the above expression. To do so, we first
define the following functionP (k), which counts the number of waysk vertices can be paired with
each other:

P (x) =











0 if k is odd

1 if k = 0

(k − 1)!! otherwise.

(4.18)

Next we think of these two edges as dividing the remaining vertices into three regions: those
between{1, m} and {p, q}, of which there areM = p − m − 1 + 2k − q, those on the side
of {1, m}, of which there areL = m − 2, and those on the side of{p, q}, of which there are
R = q − p − 1. We know that{1, m} will not be crossed if theL vertices between1 andm pair
exclusively with each other. Likewise,{p, q} will not be crossed if the vertices betweenp andq pair
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exclusively with each other. Our desired quantity is thus the union of these two events less their
intersection:

P (L+M)P (R) + P (R +M)P (L)− P (L)P (M)P (R) . (4.19)

Notice that ifL or R is 0, one of{1, m} , {p, q} is an adjacent edge, and so will not be crossing.
Thus

Nk,m,p,q =

{

(2k − 5)!! if L orR is 0

P (L+M)P (R) + P (R +M)P (L)− P (L)P (M)P (R) otherwise.
(4.20)

We now investigate the limiting behavior ofpb (given in (4.16)) by using the cases in (4.20).

• For the first case, we haveL orR is zero, and thusNk,m,p,q = (2k− 5)!!. We are reduced to
counting the number of terms withL or R zero. Note thatL = 0 whenm = 2, andR = 0
whenq = p + 1. Each of these events happens in

(

2k−2
2

)

pairings (we have fixed either
m or q, and the other2 vertices are chosen from the remaining2k − 2 vertices), and their
intersection is

(

2k−3
1

)

(p is the only free index) pairings. In the limit, this case contributes
(

2
(

2k−2
2

)

−
(

2k−3
1

))

(2k − 5)!!
(

2k−1
3

)

(2k − 5)!!
=

3

k
+O

(

1

k3

)

. (4.21)

• For the second case,L andR are non-zero. We first evaluate the contribution of the first
two terms (notice that they will contribute the same in the sum since you can simply relabel
{1, m} and{p, q}) and then the third term, recalling that we only have to look for terms that
are at leastO

(

1
k2

)

since we can see in (4.12) that any other terms will not contribute in the
limit ask → ∞.

– For P (L+M)P (R), the largest terms are from when eitherL + M = 2, or when
R = 2. In these cases,Nk,m,p,q = (2k − 7)!!. If R = 2 thenq = p + 3 andm, p are
free so there are

(

2k−4
2

)

such terms corresponding to the
(

2k−4
2

)

choices ofm andp. If
L + M = 2 andL 6= 0 then there are only two possible terms: eitherL = 1,M =
1, R = 2k − 6 or L = 2,M = 0, R = 2k − 6. Including the symmetric terms for
P (R +M)P (L), these terms thus have a combined contribution of

2
((

2k−4
2

)

+ 2
)

(2k − 7)!!
(

2k−1
3

)

(2k − 5)!!
=

3

2k2
+O

(

1

k3

)

. (4.22)

– For the third term, -P (L)P (M)P (R), the largest contributions will be when two
regions combine for exactly2 vertices which will give a contribution of(2k − 7)!!.
If we disregard the requirement thatL andR are nonzero in order to obtain an upper
bound on the magnitude of this contribution, there are3 possible terms. The next largest
contribution will be when two regions combine for exactly4 vertices which will give
a contribution of(2k − 9)!!. Proceeding with these diagonal terms, we know that the
third term will thus contribute at most in magnitude:

3
(2k − 7)!!

(

2k−1
3

)

(2k − 5)!!
+ 6

(2k − 9)!!
(

2k−1
3

)

(2k − 5)!!
+ 9

(2k − 11)!!
(

2k−1
3

)

(2k − 5)!!
+ · · · = O

(

1

k3

)

,

(4.23)
so they in fact do not contribute in the limit.
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FIGURE 3. Numerical confirmation of formulas for the expected valueand variance
of vertices involved in crossing. The first plot is the expected value for2k vertices
(solid line is theory) versusk, the second plot is a plot of the deviations from theory,
and the third plot is the observed variance; all plots are from 100,000 randomly
chosen matchings of2k vertices in pairs.

Thus, we have that ask → ∞,

pb = 1− 3

k
− 3

2k2
+O

(

1

k3

)

. (4.24)

Therefore if we substitute forpa andpb in (4.12) we find

E
(

Y 2
2k

)

= 4k − 4 +
(

4k2 − 4k
)

(

1

3
+

2

3

(

1− 3

k
− 3

2k2

))

(4.25)

= 4k2 − 8k +O

(

1

k

)

. (4.26)

Using (4.10), we also have that

E (Y2k)
2 =

(

2k − 2− 2

k
+O

(

1

k2

))2

= 4k2 − 8k − 4 +O

(

1

k

)

. (4.27)

The variance ask → ∞ is thusE (Y 2
2k)− E (Y2k)

2 = (4k2 − 8k)− (4k2 − 8k − 4) = 4. �

Figure 3 provides a numerical verification of the above formulas for the expected values and
variances.

5. LIMITING SPECTRAL MEASURE

We now complete the proof of Theorem 1.1 by showing convergence and determining the sup-
port.

Proof of Theorem 1.1.The proof of the claimed convergence is standard, and follows immediately
from similar arguments in [HM, MMS, JMP, KKMSX]. Those arguments rely only on degree of
freedom counting arguments, and are thus applicable here aswell. We are left with determining the
limiting spectral measures.

• p = 1/2: If p = 1/2, we know from (3.3) that only those configurations with no crossings
contribute. The claim follows directly from recalling thatthe number of non-crossing con-
figurations are simply the Catalan numbers, which are also the moments of the semicircle
distribution.
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• p > 1/2: To show that the limiting spectral measure has unbounded support it suffices to
show that the moments of our distribution grow faster than any exponential bound, i.e., that
for all B there exists somek such thatM2k > B2k. The moments of the unweighted ensem-
ble grow faster than exponentially (see [HM, KKMSX]). We prove that our distribution sim-
ilarly has unbounded support using this fact and by considering the “worst-case” scenario
allowed for under 3.3. Namely, we suppose that each term contributes(2p− 1)2k, which
gives us the smallest moment possible. In this case,M2k is decreased from the unweighted
case by a factor of(2p−1)2k, and thus the growth is still faster than any exponential bound.

�

APPENDIX A. EXACT FORMULA FOR MEAN NUMBER OF CROSSINGS

To prove (4.1), it suffices to simplify the sum in the expansion of pcross in (4.5). We first extend
them sum to includem = k; this adds 1 to the sum which must then be subtracted from the term
outside. For notational convenience, setn = k − 2. We re-index and letm run from0 to n, and are
thus reduced to analyzing

S(n) =
n
∑

m=0

(

n
m

)

(

2n+1
2m+1

) . (A.1)

The following notation and properties are standard (see forexample [GR]). The Pochhammer
symbol(x)m is defined form ≥ 0 by

(x)m =
Γ(x+m)

Γ(x)
= x(x+ 1) · · · (x+m− 1), (A.2)

and the hypergeometric function2F1 by

2F1(a, b, c; z) =

∞
∑

m=0

(a)m(b)m
(c)m

zm

m!
, (A.3)

which converges for all|z| < 1 so long asc is not a negative integer.
For ease of exposition, we work backwards from the answer.2 Using Γ(1 + z) = zΓ(z) and

Γ(1 + ℓ) = ℓ! (for integralℓ), we find

2F1(1, 3/2, 1/2− n,−1) =
∞
∑

m=0

(1)m(3/2)m
(1/2− n)m

(−1)m

m!

=
∞
∑

m=0

Γ(1 +m)

Γ(1)

Γ(3/2 +m)

Γ(3/2)

Γ(1/2− n)

Γ(1/2− n +m)

(−1)m

m!

=: T1(n) + T2(n), (A.4)

whereT1(n) is the sum overm ≤ n andT2(n) is the sum overm > n. From the functional equation
of the Gamma function and usingℓ!! = ℓ(ℓ− 2)(ℓ− 4) · · · down to 2 or 1, we find

Γ(3/2 +m) = 2m(2m+ 1)!!Γ(3/2)

Γ(1/2− n+m) = (−1)m2m(2n− 1)(2n− 3) · · · (2n− 2m+ 1)Γ(1/2− n). (A.5)

2Mathematica is able to evaluate such sums and suggest the correct hypergeometric combinations. One has to be a
little careful, though, as Mathematica incorrectly evaluatedS(n), incorrectly stating that there was zero contribution
if we extend the sum to allm. In other words, it thoughtS(n) = T1(n) = T1(n) + T2(n) in the notation introduced
below.
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Substituting, we find

T1(n) =
n
∑

m=0

(2m+ 1)!!(2n− 2m− 1)!!

(2n− 1)!!

=
n
∑

m=0

(2m+ 1)!(2n− 2m− 1)!

(2n− 1)!2n

2n(2n− 2)!!

(2m)!!
(2n− 2m− 2)!!

=
n
∑

m=0

(2m+ 1)!(2n− 2m)!

(2n+ 1)!
· (2n+ 1) · 2nn!

(2n− 2m)2n−1m!(n−m− 1)!

= (2n+ 1)
n
∑

m=0

(

n
m

)

(

2n+1
2m+1

) ; (A.6)

note this is our desired sum. Thus
n
∑

m=0

(

n
m

)

(

2n+1
2m+1

) =
2F1(1, 3/2, 1/2− n,−1)− T2(n)

2n + 1
, (A.7)

and the proof is completed by analyzingT2(n). To determine this term’s contribution, we re-index.
Writing m = n+ 1 + u, we find

T2(n) =

∞
∑

u=0

Γ(1 + n+ 1 + u)

Γ(1)

Γ(3/2 + n+ 1 + u)

Γ(3/2)

Γ(1/2− n)

Γ(1/2− n+ n+ 1 + u)

(−1)n+1+u

(n+ 1 + u)!

u!

u!

=

∞
∑

u=0

Γ(1 + u)

Γ(1)

Γ(5/2 + n+ u)

Γ(3/2)

Γ(1/2− n)

Γ(3/2 + u)

(−1)n+1(−1)u

u!

=
(−1)n+1Γ(1/2− n)Γ(5/2 + n)

Γ(3/2)2

∞
∑

u=0

Γ(1 + u)

Γ(1)

Γ(5/2 + n+ u)

Γ(5/2 + n)

Γ(3/2)

Γ(3/2 + u)

(−1)u

u!

= −(2n+ 3)(2n+ 1) 2F1(1, 1/2 + k, 3/2,−1), (A.8)

where we usedΓ(1−z)Γ(z) = π/ sin(πz) with z = n+ 1
2

to simplify the Gamma factors depending
only onn. Combining the above proves (4.1).
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