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Gejza Jenča1, Peter Sarkoci

Department of Mathematics and Descriptive Geometry

Faculty of Civil Engineering

Slovak Technical University

Radlinského 11
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Abstract

We examine the lattice of all order congruences of a finite poset from the view-
point of combinatorial algebraic topology. We will prove that the order complex
of the lattice of all nontrivial order congruences (or order-preserving partitions)
of a finite n-element poset P with n ≥ 3 is homotopy equivalent to a wedge of
spheres of dimension n − 3. If P is connected, then the number of spheres is
equal to the number of linear extensions of P . In general, the number of spheres
is equal to the number of cyclic extensions of P .
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1. Introduction

An order congruence of a poset P can be defined as a kernel of an order-
preserving map with domain P . Even if this notion is simple and natural, the
amount of papers dealing with it appears to be relatively small. The notion
appears in the seventies in a series of papers by T. Sturm [8, 9, 10], the same
notion with a different formulation appears in the W.T. Trotter’s book [11]. A
related notion in the area of ordered algebras appeared in two papers by G.
Czédli a A. Lenkehegyi [2, 1]. In our approach, we will follow a recent paper by
P. Körtesi, S. Radeleczki and S. Szilágyi [7].

In the present paper we will examine the lattice of all order congruences of
a finite poset from the viewpoint of combinatorial algebraic topology. We will
prove that the order complex of the lattice of all nontrivial order congruences (or
order-preserving partitions) of a finite n-element poset P with n ≥ 3 is homotopy
equivalent to a wedge of spheres of dimension n− 3. If P is connected, then the
number of spheres is equal to the number of linear extensions of P . In general,
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the number of spheres is equal to the number of cyclic extensions (Definition 3)
of P .

2. Preliminaries

2.1. Simplicial complexes, homotopy

An n-dimensional simplex (n ≥ −1) is a convex closure of n + 1 affinely
independent points (called vertices) in a finite dimensional real space.

A simplicial complex is a finite set K of simplices such that

• any face of a simplex belonging to K belongs to K,

• the intersection of any two simplices belonging to K is again a simplex
belonging to K.

An abstract simplicial complex is a finite setA together with a finite collection
∆ of subsets of A such that if X ∈ ∆ and Y ⊆ X , then Y ∈ ∆. The elements
of ∆ are called (abstract) simplices. The union of all simplices belonging to ∆
is called the vertex set of ∆, denoted by V (∆).

Let K be a simplicial complex. Let ∆ be the system of all vertex sets of all
simplices that belong to K. Then ∆ is an abstract simplicial complex, called
the vertex skeleton of K. Symmetrically, we call K the geometric realization of
∆. Any abstract simplicial complex has a geometric realization.

Let X,Y be topological spaces. We say that two continuous maps f, g : X →
Y are homotopic if there exists a continuous map F : X × [0, 1] → Y such that
F (−, 0) = f and F (−, 1) = g. In that case, we write f ≃ g. We say that
two topological spaces X and Y have the same homotopy type (or that they are
homotopy equivalent) if there exist continuous maps φ : X → Y and ψ : Y → X
such that φ ◦ ψ ≃ idX and ψ ◦ φ ≃ idY .

Since any two geometric realizations of an abstract simplicial complex are
homotopy equivalent, we may (and we will) extend the notion of homotopy
equivalence to abstract simplicial complexes.

A wedge of k spheres of dimension d is a topological space constructed in
the following way.

• Take k copies of d-dimensional spheres Sd.

• On each of the spheres pick a point.

• Identify the points.

As remarked by Forman [4], wedges of spheres arise frequently in combina-
torial applications of algebraic topology.
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2.2. Poset terminology

A binary relation ρ on a set P is a quasiorder if ρ is reflexive and transitive.
A transitive quasiorder is a partial order. A pair (P,≤), where ≤ is a partial
order on a set P is called a poset.

Let P,Q be posets. A mapping f : P → Q is order-preserving if, for all
x, y ∈ P , x ≤ y implies f(x) ≤ f(y). A mapping f : P → Q is order-inverting
if, for all x, y ∈ P , x ≤ y implies f(x) ≥ f(y).

If P,Q are posets and f : P → Q is an order-preserving map, then the kernel
of f is the equivalence relation ∼f on P given by

x ∼f y :⇔ f(x) = f(y).

In a poset, we say that two elements x, y are comparable if and only if x ≤ y
or y ≤ x; otherwise we say they are incomparable. The incomparability relation
is denoted by ‖. An antichain is a poset in which every pair of elements is
incomparable. A chain is a poset in which every pair of elements is comparable.
For a poset P , a chain of P is a subset of P that is a chain when equipped with
the partial order inherited from P .

For elements x, y of a poset, we say that x covers y if x ≥ y, x 6= y and
for every element z such that x ≥ z ≥ y we have either z = x or z = y. The
covering relation is denoted by ≻, ≺ denotes the inverse of ≻.

We say that a subset A of a poset P is lower bounded if there is an element
a ∈ P such that, for all x ∈ A, a ≤ x. The element a is called a lower bound
of A. A lower bound of a A that belongs to A is called the smallest element
of A. It is easy to check that every subset of a poset has at most one smallest
element. A lower bound of P (it is necessarily the smallest element of P ) is
called the bottom element of P and is denoted by 0̂.

The dual notions are upper bounded, the greatest element, and the top element
of P , respectively. The top element of a poset is denoted by 1̂.

An element of a poset P that covers 0̂ is an atom of P .
A subset of a poset that is both upper and lower bounded is called bounded.
We say that a poset L is a lattice if for every set A = {a1, a2} ⊆ L the set

of all upper bounds of A has the smallest element, denoted by a1 ∨ a2,and the
set of all lower bounds of A has the greatest element, denoted by a1 ∧ a2. Note
that a finite lattice is always bounded.

A chain of a poset P is maximal if it cannot be extended to a bigger chain.
A finite bounded poset P is ranked if and only if any two maximal chains of P
have the same number of elements; this number minus one is then called the
height of P . It is easy to check that a finite poset P is ranked if and only if it
there is a (necessarily unique) order-preserving mapping r : P → N such that
r(0̂) = 0 and x ≻ y implies r(x) = r(y) + 1. The mapping r is then called the
rank function of P .

A finite lattice L is semimodular if L is ranked and its rank function r satisfies

r(x) + r(y) ≥ r(x ∧ y) + r(x ∨ y).
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Let P be a finite poset. The graph with the vertex set P and the edge set
given by the comparability relation is called comparability graph of P . The con-
nected components of the comparability graph are called connected components
of P . A poset with a single connected component is called connected.

Let P be a finite poset with n elements. A linear extension of P is an order-
preserving bijection f : P → {0, . . . , n − 1}, where the codomain is ordered in
the usual way. For our purposes, this definition is more appropriate than the
standard one. The set of all linear extensions is denoted by ℓ(P ). The number
of linear extensions of P is denoted by e(P ).

For a finite poset (P,≤), we write ∆(P ) for the abstract simplicial complex
consisting of all chains of P , including the empty set. If a finite poset P has
an upper or lower bound, then ∆(P ) is topologically trivial, that means, it is
homotopy equivalent to a point. Thus, when dealing with posets from the point
of view of algebraic topology, it is usual (and useful) to remove bounds from a
poset before applying ∆. If P is a poset, then P̂ denotes the same poset minus
upper or lower bounds, if it has any.

The face poset of a finite abstract simplicial complex ∆ is the poset of all
faces of ∆, ordered by inclusion. It is denoted by F(∆).

2.3. Acyclic matchings
Definition 1. Let P be a finite poset. An acyclic matching on P is a set
M ⊆ P × P such that the following conditions are satisfied.

1. For all (a, b) ∈M , a ≻ b.
2. Each a ∈ P occurs in at most one element in M ; if (a, b) ∈ M we write
a = u(b) and b = d(a).

3. There does not exist a cycle

b1 ≻ d(b1) ≺ b2 ≻ d(b2) ≺ · · · ≺ bn ≻ d(bn) ≺ b1.

When constructing acyclic matchings for posets, the following theorem is
sometimes used to make the induction step.

Theorem 1. ([5], Theorem 11.10) Let P be a finite poset. Let ϕ : P → Q be
an order-preserving or an order-inverting mapping and assume that we have
acyclic matchings on subposets ϕ−1(q), for all q ∈ Q. Then the union of these
acyclic matchings is itself an acyclic matching on P .

In the context of Theorem 1, the sets ϕ−1(q) are called the fibers of ϕ.
In general, we cannot infer the homotopy type of a simplicial complex from

the existence of an acyclic matching on the face poset of a simplicial complex.
However, if the simplicial complex has a homotopy type of a wedge of spheres
of constant dimension, we can use the following theorem.

Theorem 2. ([4], Theorem 6.3) Let ∆ be a finite simplicial complex. Let M be
an acyclic matching of the face poset of ∆ such that all faces of ∆ are matched
by M except for n unmatched faces of dimension d. Then ∆ has the homotopy
type of the wedge of n spheres of dimension d.

We remark that our wording of Theorem 2 is slightly different than the
original one, since we allow the empty face of ∆ to be matched.
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Figure 1: π3 is order-preserving, π1, π2 are not.

3. Order-preserving partitions

Definition 2. [7] Let (P,≤) be a poset and let ρ ⊆ P 2 be an equivalence
relation on it.

(i) A sequence x0, . . . , xn ∈ P is called a ρ-sequence if for each i ∈ {1, . . . , n}
either (xi−1, xi) ∈ ρ or xi−1 < xi holds. If in addition x0 = xn, then
x0, . . . , xn is called a ρ-circle

(ii) ρ is called an order-congruence of (P,≤) if for every ρ-circle x0, . . . , xn ∈ P ,
ρ[x0] = · · · = ρ[xn] is satisfied.

(iii) A partition π is called an order-preserving partition of (P,≤) if π = (P/ρ)
for some order congruence ρ of (P,≤). We write π = πρ or ρ = ρπ.

(iv) If π is an order-preserving partition we say that a sequence x0, . . . , xn
is a π-sequence or a π-cycle if x0, . . . , xn is a ρπ-sequence or a ρπ-cycle,
respectively.

Lemma 1. [7] If ρ is an order-congruence of the a poset (P,≤), then it induces
a partial order ≤ρ defined on the set P/ρ as follows:

ρ[x] ≤ρ ρ[y] if there exists a ρ-sequence x0, . . . , xn ∈ P , with x0 = x and
xn = y.

In view of the previous lemma, we can consider πρ as a poset with the partial
order ≤ρ determined by ≤. In what follows, we write simply ≤ instead of ≤ρ,
if there is no danger of confusion.

Theorem 3. [2] Let (P,≤) be a poset and let ρ be an equivalence on P . Then
the following are equivalent.

(i) ρ is an order-congruence of (P,≤).

(ii) There exists a poset (Q,≤) an an order-preserving map f : P → Q such
that ρ = Ker f .

(iii) ≤ can be extended to a quasiorder θ such that ρ = θ ∩ θ−1.

Example 1. Consider a 6-element poset P and its three partitions π1, π2, π3
as shown in Figure 1.
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The partition π1 is not order-preserving, since a, c, e, a a π1-cycle with [a]π1
6=

[c]π1
. In fact, it is easy to see that every block of an order-preserving partition

must be order-convex.
Although π2 has only order-convex blocks, yet it fails to be order-preserving.

Indeed a, f, b, e, a is a π2-cycle with [a]π2
6= [f ]π2

.
Finally, π3 is an order-preserving partition, the diagram of the quotient poset

P/π3 is shown in the picture.

Let us consider the set O(P ) of all order-preserving partitions of P equipped
with a partial order ≤ defined as the usual refinement order of partitions: π1 ≤
π2 iff every block of π1 is a subset of a block of π2.

The bottom element of O(P ) is the partition consisting of singletons, the
top element is the partition with a single block.

The posetO(P ) is an algebraic lattice [10, Theorem 30]. For order-preserving
partitions π1, π2

π1 ∧ π2 = {B1 ∩B2 : B1 ∈ π1, B2 ∈ π2 and B1 ∩B2 6= ∅}.

To define joins, we may proceed as follows. Let π1, π2 ∈ O(P ) and . be the
transitive closure of the union of .π1

and .π2
. Clearly, . is a quasiorder on P .

For x, y ∈ P , write x ∼ y iff x . y and y . x. Then P/ ∼ is an order-preserving
partition of P and π1 ∨ π2 = (P/ ∼)

The covering relation in the lattice of order-preserving partitions of a finite
poset is easy to describe: for a pair π1, π2 of order-preserving partitions of a
finite poset P we have π1 ≺ π2 iff π2 arises from π1 by merging of two blocks
B1, B2 of π1 such that

• either B1 ≺ B2 in the poset (π1,≤), or

• B1 ‖ B2 in the poset (π1,≤).

In particular, this implies that the atoms of the lattice of order-preserving
partitions of a finite poset P is the set of all partitions of P that are of the form

πa,b := {{a, b}} ∪ {{x} : x ∈ P − {a, b}},

where a, b ∈ P is such that either a ≺ b or a ‖ b. Moreover, the lattice O(P ) is
ranked. The ranking function is given by |P | − |π|.

Example 2. If An is an n-element antichain, then every partition of An is
order-preserving. The lattice of order-preserving partitions is then the partition
lattice of the set An, usually denoted by Πn. It is well known [3, 5], that for all
n ≥ 3 the order complex of Π̂n is homotopic to the wedge of (n− 1)! spheres of
dimension n− 3.

Example 3. If Cn is an n-element chain, n ≥ 3, then a partition π of Cn is
order-preserving if and only if all blocks of π are convex subsets of Cn. It is easy
to see that O(Cn) is a Boolean algebra Bn−1 with n−1 atoms. It is well known
that the order complex of B̂n−1 is homotopic to a single sphere of dimension
n− 3.
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Figure 2: Order-preserving partitions of a Boolean algebra with two atoms

Example 4. To give a slightly more complicated example, let B2 be a Boolean
algebra with two atoms. The lattice of order-preserving partitions of B2 has 11
elements; its Hasse diagram is Figure 2. Note that ∆(Ô(B2)) is not semimod-
ular.

It is easy to see that ∆(Ô(B2)) has the homotopy type of two spheres of
dimension one.

The proof of the following Theorem is inspired by the proof of Theorem
11.18 in [5], where the homotopy type of ∆(Π̂n) is determined.

Theorem 4. Let P be a finite poset with n elements. Then ∆(Ô(P )) is homo-
topy equivalent to a wedge of spheres of dimension n − 3. Let a be a minimal
element of P . Write sO(P ) for the number of spheres in ∆(Ô(P )). For n > 3,
sO(P ) satisfies the recurrence

sO(P ) =
∑

πa,b order-preserving

sO(πa,b).

Proof. There are, up to isomorphism, five posets with three elements. For each
of them, the lattice O(P ) is ranked of height two. Thus, Ô(P ) is an antichain
and ∆(Ô(P )) is a wedge of spheres of dimension 0. If P is a 3-element chain,
then sO(P ) = 1, for the remaining four types of P we have sO(P ) = 2; see Table
1.

Let us assume that n > 3. Fix a minimal element a of P . Let Pa be a poset
of all order-preserving partitions containing {a} as a singleton class, ordered by

7



2 2 2 2 1

Table 1: sO(P ) for 3-element posets

refinement. Let πa = {{a}, P \ {a}}; it is clear that πa is an order-preserving
partition of P and that it is the top element of Pa. Let φ : F(∆(Ô(P ))) → Pa

be given by the following rules:

• if c is a chain consisting solely of elements of Pa, then φ(c) = πa,

• otherwise let πmin be the smallest element of c such that πmin /∈ Pa; put
φ(c) = πmin ∧ πa.

It is obvious that φ is an order-inverting mapping. We shall construct acyclic
matchings on the fibers of φ. By Theorem 1, the union of these matchings is an
acyclic matching on F(∆(Ô(P ))).

Let S = φ−1(π) where π is not the bottom element of Pa. Then we can
construct the matching on S by either removing or adding π from each chain,
depending on whether it does or does not contain π. The only unmatched chain
occurs only if π = πa and the unmatched chain is {πa}.

Let S = φ−1(0̂), where 0̂ is the partition of P into singletons. This means,
that for every chain c ∈ S the top element πmin of c not belonging to Pa must be
such that πmin∧πa = 0̂. This implies that πmin has a single non-singleton class,
in other words, πmin = πa,b for some b. Moreover, whenever c ∈ F(∆(Ô(P ))) is

such that πa,b ∈ c, then c ∈ S. Thus S is the set of all c ∈ ∆(Ô(P )) such that
πa,b ∈ c. Let us write

Sa,b = {c ∈ F(∆(Ô(P ))) : πa,b ∈ c}.

Note that S is the disjoint union of all these Sa,b. Moreover, there is an easy-to-

see bijection between the elements of Sa,b and the elements of F(∆(Ô(πa,b))).
Indeed, observe that each of the c ∈ Sa,b can be constructed from a simplex

in F(∆(Ô(πa,b))) by adding πa,b. Thus, we may apply induction hypothesis:

the homotopy type of ∆(Ô(πa,b)) is a wedge of sO(πa,b) spheres of dimension

n − 4, so there is an acyclic matching on F(∆(Ô(πa,b))) with sO(πa,b) critical
simplices of dimension n − 4. In an obvious way, we may extend this acyclic
matching to an acyclic matching on Sa,b, leaving sO(πa,b) critical simplices of
dimension n− 3. This proves the recurrence stated in the Theorem.

The recurrence in Theorem 4 allows us to compute the number of spheres
in ∆(Ô(P )) for any relevant finite poset P . For a small poset P , this can
be easily done by hand. Playing with small examples yields a hypothesis that
sO(P ) = e(P ) – the number of spheres is equal to the number of linear extensions

8



1

0

2

1

0

2 1

0

2

Figure 3: Actions of Z3 on a 3-element poset

of P . However, this is clearly not true, because for every n-element antichain
An one has sO(An) = (n − 1)! (Example 2) while e(An) = n!. On the other
hand, it is possible to prove directly that things go well for a connected poset:
whenever P is connected, sO(P ) = e(P ). This will be proved as a corollary of
the main result (Corollary 2).

4. Cyclic extensions

Let P be a finite nonempty poset with n elements. Let f : P → [0, n − 1]N
be a linear extension of P . Consider the natural right action (u, k) 7→ u ⊕ k of
the finite n-element cyclic group (Zn,⊕) on itself. We write ⊕f : P × Zn → P
for the pullback of this action by f . In other words, for all x ∈ P and k ∈ Zn,

x⊕f k = f−1(f(x) ⊕ k).

Analogously, for k ∈ Zn, we write x⊖f k := x⊕f (n− k).
Obviously, the ⊕f action of the element 1 ∈ Zn can be represented by an

oriented cycle digraph. The vertices of the digraph are the elements of P , the
edges are

{(x, x⊕f 1) : x ∈ P} =

{(f−1(0), f−1(1)), . . . , (f−1(n− 2), f−1(n− 1)), (f−1(n− 1), f−1(0))}

We denote this digraph by C(f, P ). As Zn is cyclic, the action of 1, and thus
the digraph, determines the action of Zn on the set P .

Definition 3. Let P be a finite poset, let f, g be linear extensions of P . We say
that f, g are cyclically equivalent, in symbols f ∼ g, if ⊕f = ⊕g. An equivalence
class of ∼ is called a cyclic extension of P . The number of cyclic extensions of
P is denoted by eC(P ).

Example 5. Consider the disjoint sum of a chain of height 1 and a one-element
poset (Figure 3). This poset has 3 linear extensions giving rise to 2 cyclic
extensions.

As we can see from the Example 5, it may well happen that two distinct
linear extensions of a finite poset determine the same action. In this case, the
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∼ relation is nontrivial and the number of cyclic extensions is smaller than
the number of linear extensions, eC(P ) < e(P ). In the remaining part of this
section, we shall prove that this phenomenon occurs if and only if the finite
poset in question is disconnected.

Proposition 1. Let P be an n-element poset. Let f, g be linear extensions of
P . The following are equivalent.

(a) There is k ∈ Zn such that for all x ∈ P , f(x) = g(x)⊕ k.

(b) ⊕f = ⊕g.

Proof. (a) =⇒ (b): We shall apply (a) twice. Let y ∈ P . Put x = y ⊕g 1 in (a)
to obtain

f(y ⊕g 1) = g(y ⊕g 1)⊕ k = g(y)⊕ k ⊕ 1.

Let us use (a) second time, this time with x = y to obtain

g(y)⊕ k ⊕ 1 = f(y)⊕ 1,

so that
f(y ⊕g 1) = f(y)⊕ 1.

It remains to apply f−1 to both sides of the last equality to obtain y⊕g1 = y⊕f1,
which means (b).

(b) =⇒ (a): Let us write, for all x ∈ P , s(x) = x ⊕f 1 = x ⊕g 1. We shall
prove that, for all x ∈ P , f(x)⊖ g(x) = f(s(x))⊖ g(s(x)). Clearly, this implies
that f(x)⊖ g(x) is the same for all x ∈ P , that means, (a).

f(s(x))⊖g(s(x)) = f(x⊕f 1)⊖g(x⊕g 1) = (f(x)⊕1)⊖ (g(x)⊕1) = f(x)⊖g(x)

Proposition 2. Let P be a finite n-element poset, let k ∈ Zn. Let g be a linear
extension of P . The following are equivalent.

(a) For every x, y ∈ P such that x ≤ y, g(x) + k ≥ n iff g(y) + k ≥ n.

(b) For every connected component Q of P and for every x, y ∈ Q, g(x)+k ≥ n
iff g(y) + k ≥ n.

(c) f(x) := g(x)⊕ k is a linear extension of P .

Proof.
(a) =⇒ (b): The proof is a trivial induction with respect to the distance of

x and y in the comparability graph of P and is thus omitted.
(b) =⇒ (c): Clearly, f : P → [0, n − 1]N is a bijection. It remains to prove

that f is order-preserving. Let x, y ∈ P , x ≤ y. Since x, y are comparable,
they belong to the same connected component Q of P , hence g(x) + k ≥ n iff
g(y) + k ≥ n. As g is a linear extension of P , g(x) ≤ g(y).

Assume that g(x) + k < n. Then g(y) + k < n and

f(x) = g(x)⊕ k = g(x) + k ≤ g(y) + k = g(y)⊕ k = f(y).

10



Assume that g(x) + k ≥ n. Then g(y) + k ≥ n and Thus,

f(x) = g(x)⊕ k = g(x) + k − n ≤ g(y) + k − n = g(y)⊕ k = f(y).

(c) =⇒ (a): Let x, y ∈ P be such that x ≤ y. As both f and g are linear
extensions, f(x) ≤ f(y) and g(x) ≤ g(y). We prove the implications in (a)
indirectly.

Suppose that g(x)+ k ≥ n and that g(y)+ k < n. Then g(y)+ k < g(x)+ k,
which contradicts g(x) ≥ g(y).

Suppose that g(x) + k < n and that g(y) + k ≥ n. As g(y) + k ≥ n,
f(y) = g(y)⊕ k = g(y) + k − n. As g(x) + k < n, f(x) = g(x) ⊕ k = g(x) + k.
Since f(x) ≤ f(y),

g(x) + k ≤ g(y) + k − n.

This implies that g(x) ≤ g(y)− n < 0, which is a contradiction.

Proposition 3. Let P be a finite poset. The following are equivalent.

(a) P is connected.

(b) For all linear extensions f, g of P , ⊕f = ⊕g implies that f = g.

Proof. (a) =⇒ (b): Let P be connected and let f, g be linear extensions of P
such that ⊕f = ⊕g. By Proposition 1, there is k ∈ Zn such that, for all x ∈ P ,
f(x) = g(x)⊕k. By Proposition 2, this implies that for all x, y ∈ P , g(x)+k ≥ n
iff g(y) + k ≥ n.

Suppose that f 6= g, that means k > 0. Put x = g−1(n− 1) and y = g−1(0).
Then g(x) + k ≥ n and g(y) + k = 0 + k < n. This contradicts Proposition 2
(b), hence k = 0 and f = g.

(b) =⇒ (a): Suppose that P is disconnected. We will construct a pair f, g
of linear extensions such that ⊕f = ⊕g and f 6= g. Let P1, . . . , Pm be the
components of P ordered according to cardinality, so that |P1| ≥ · · · ≥ |Pm|.
Let f be a linear extension of P such that, for i ∈ [1,m]N,

f(Pi) =
[

|P1|+ · · ·+ |Pi−1|, |P1|+ · · ·+ |Pi|
)

N
.

Put k := |Pm| and let g(x) = f(x)⊕ k, in other words,

g(x) =

{

f(x) + k for x ∈ P1 ∪ · · · ∪ Pm−1

f(x) + k − n for x ∈ Pm.

Then g is a linear extension of P and, by Proposition 1, ⊕f = ⊕g.

Corollary 1. A finite poset P is connected if and only if e(P ) = eC(P ).
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5. Combinatorics of e(P ) and eC(P )

In this section, we shall determine the connection between the counts eC(P )
and e(P ) for a certain type of posets. Let P be an n-element poset with
connected components P1, . . . , Pm. The structure of every linear extension
g : P → [0, n−1]N naturally breaks down into structure of the individual restric-
tions g ↾Pi

. Every such a restriction represents, up to a monotone transforma-
tion, a linear extension of the corresponding connected component. In the other
way round, every linear extension of Pi together with the set g(Pi) determines
the restriction g ↾Pi

completely. Information about the sets g(Pi) is uniquely
represented by a mapping w : [0, n − 1]N → [1,m]N via the correspondence is
w−1({i}) = g(Pi). Since the mappings w can be seen as permutations of the
multiset {1|Pi|, . . . ,m|Pm|}, the number of linear extensions of P is

e(P ) =

(

n

|P1|, . . . , |Pm|

) m
∏

i=1

e(Pi) ,

the multinomial coefficient being the number of such permutations.
In order to derive a similar relationship for the number of cyclic extensions

eC(P ) we will consider the mappings w as words. Let us call them P -words.
Two generic words u and v are said to be letter-disjoint if the sets of letters
in u and v are disjoint. Let L = (l1, l2, . . . , lp) be a composition of n – that
is a tuple of positive integers that add up to n. We say that a word w is L-
detangled (alternatively, that L is a detanglement of w) if w can be written as a
concatenation w = u1 ·u2 · · ·up of pairwise letter-disjoint words uj with lengths
|uj| = lj .

Example 6. Consider the multiset A = {12, 23, 34} and some words that arise
as permutations of A. For example, the word 112223333 admits the detangle-
ments (9), (2, 7), (5, 4), and (2, 3, 4), since

112223333 = 11 · 2223333 = 11222 · 3333 = 11 · 222 · 3333

are all concatenations of letter-disjoint words. The word 122123333 admits only
two detanglements: (9) and (5, 4).

Let us denote Comp (n) the set of all compositions of n. There exists a
bijetive correspondence η : Comp (n) → O(Cn), between the compositions of n
and order-congruences of an n-element chain Cn; since members of O(Cn) are
exactly the partitions of Cn into intervals (compare with Example 3) we can
define η(L) to be the partition of Cn into intervals of lengths given by the entries
of L in the consecutive order. Let us write ⊏ for the pull-back of the standard
refinement order of partitions in O(Cn) by η. For L1, L2 in Comp (n), we say
that L1 is finer than L2 (or, that it refines L2), if L1 ⊏ L2. Dually, we say that
L2 is coarser than L1. By Example 3, the poset (Comp (n) ,⊏) is isomorphic
to a Boolean algebra with n− 1 atoms. The bottom element is the trivial com-
position of n into n consecutive ones, the top element is the trivial composition
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of n into one single n. Given a fixed P -word w, the detanglements of w form a
filter in (Comp (n) ,⊏). Indeed, every P -word is detangled by the trivial com-
position (n), meaning that the set of detanglements is non-empty. Given two
detanglements of w, their coarsest common refinement is a detanglement of w as
well, meaning that the set of detanglements is downwards directed. Finally, if w
admits a detanglement L1 which is a refinement of the composition L2, then L2

is also a detanglement of w, meaning that the set of detanglements is an upset.
Since the lattice of compositions of n is finite, the ideal of detanglements of w
has the finest composition L′. This finest composition is unique and, hence, an
inherent property of w. Let us say, that L′ is the finest detanglement of w.

A word w of length n is said to be entangled if the trivial composition (n)
is its finest detanglement. Notice that this is equivalent to the fact, that w
cannot be expressed as a concatenation of two nonempty, letter-disjoint words.
If L is the finest detanglement of w and w = u1 · u2 · · ·up is its letter-disjoint
decomposition given by L, then each uj is an entangled word. Indeed, were
some ui’s not entangled, the composition would admit a proper refinement that
detangles w, which cotradicts the assumption.

Since (Comp (n) ,⊏) is essentially a Boolean algebra, it is ranked; we will
denote its ranking function r

⊏
. If L = (l1, l2, . . . , lp) is a composition of n we

have r
⊏
(L) = n − p. Let w be a word and let L be its finest detanglement.

We will refer to the number n − r
⊏
(L) as the detanglement index of w and

will denote it di(w). The detanglement index of a word can be seen as the
maximal number of non-empty pairwise letter-disjoint words from which w can
be obtained by concatenation. Since the detanglements of a fixed word w form
a filter in a boolean algebra, the value di(w) − 1 is also the number of distinct
co-atomic detanglements of w.

Example 7. Consider the same multiset A = {12, 23, 34} as in the previous
example. The finest detanglement of 112223333 is (2, 3, 4), meaning that the
word is not entangled. Also di(112223333) = 3 and, indeed, there are 3− 1 = 2
co-atomic detanglements of this word: (2, 7) and (5, 4). Example of an entagled
word would be 221231333 since the only detanglement of this word is the trivial
composition (9); the detanglement index of this word is 1.

By Proposition 1 two linear extensions f and g of P are cyclically equivalent
if and only if there exists k ∈ Zn such that f(x) = g(x) ⊕ k for every x ∈ P .
Further, by Proposition 2.b, given a linear extension g and a number k ∈ Zn, the
mapping f(x) = g(x)⊕ k is a linear extension if and only if for every connected
component Pi of P one has either g(Pi) < n − k or g(Pi) ≥ n − k. Let w be
the P -word induced by g. The latter property, translated into the language
of detanglements, reads: either k = 0 or w is (n − k, k)-detangled. Since the
detanglements of type (n − k, k) are co-atomic, there are di(w) − 1 of them;
including also the case k = 0, there are di(w) different k’s that satisfy the latter
condition. Hence the number of different linear extensions that are cyclically
equivalent with g is di(w). As a consequence, the number of cyclic extensions
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of P is

eC(P ) =

(

m
∑

t=1

U(P, t)

t

)

m
∏

i=1

e(Pi)

where U(P, t) stands for the number of distinct P -words w with di(w) = t.
In the sequel of the present section we will elaborate the combinatorial count

U(P, t) for the special case when all the connected components P1, P2, . . . , Pm

of P are of the same size s, that is n = ms. For such posets, detanglements of
any P -word are compositions L = (l1, l2, . . . , lp) where every li is a multiple of
s. The set of all such compositions forms a sublattice of Comp (n) isomorphic
with Comp (m) via the correspondence L 7→ (1/s)L where the multiplication of
a tuple by a number is defined componentwise. On the other hand, for every
L ∈ Comp (m) there exists a P -word w detangled by sL. Hence (Comp (m) ,⊏)
is the lattice of representations of all detanglements of all P -words. Given
L ∈ Comp (m), let us denote by dw (P,L) the set of all sL-detangled P -words.
For the combinatorial count | dw (P,L) | we have

| dw (P,L) | = m!

|L|
∏

i=1

1

li!

(

sli
s, s, . . . , s

)

=

(

m

l1, l2, . . . , lp

) |L|
∏

i=1

(

sli
s, s, . . . , s

)

.

In order to establish the first equality, we can view the multinomial coeffi-
cient under the product as the number of distinct words over the alphabet
{1s, 2s, . . . , lsi }. Dividing this count by li! we obtain the number of distinct
word-patterns of such words. Hence the overall product counts the distinct
patterns of P -words which are detangled by sL. Finally, every such a pattern
represents m! different words, which explains the leading multiplicative term.

Let us denote fdw (P,L) the set of all P -words for which sL is their finest de-
tanglement. For L′ ranging over Comp (m) such that L′ ⊏ L the sets fdw (P,L′)
form a partition of dw (P,L). Therefore

| dw (P,L) | =
∑

L′∈Comp(m)
L′

⊏L

| fdw (P,L′) |.

and the count | fdw (P,L) | can be obtained by Möbius inversion of | dw (P,L) |
over the poset (Comp (m) ,⊏). Knowing that the poset is is essentially a Boolean
algebra, the Möbius inversion boils down to the standard inclusion-exclusion
principle and yields

| fdw (P,L) | =
∑

L′∈Comp(m)
L′

⊏L

(−1)(r⊏ (L)−r
⊏(L

′))| dw (P,L′) |.

Example 8. Let us compute the count | fdw (P, (m)) | of the entangled P -words.
Clearly, the count is a function of m and s. The latter combinatorial identity
allows us to evaluate its values for small m and s.
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s
m 1 2 3 4
1 1 1 1 1
2 0 4 18 68
3 0 60 1566 34236
4 0 1776 354456 62758896
5 0 84720 163932120 304863598320
6 0 5876640 134973740880 3242854167461280
7 0 556466400 180430456454640 66429116436728636640
8 0 68882446080 366311352681348480 2389384600126093124110080

Notice, that the second row of this table conincides with the OEIS sequence
A115112 [6]. To our best knowledge, no other feature of the table is present in
the OEIS database (as of Dec. 2011).

Our main aim, however, is the count U(P, t) of all P -words w with di(w) = t.
Knowing the values | fdw (P,L) |, computation of this count is fairly simple. In
view of the Möbius inversion used above and knowing the precise structure of
the poset (Comp (m) ,⊏), we can express the count also in terms of | dw (P,L) |
as follows

U(P, t) =
∑

L∈Comp(m)
r
⊏
(L)=n−t

| fdw (P,L) |

=
∑

L∈Comp(m)
r
⊏
(L)≤n−t

∑

L′∈Comp(m)
L′

⊏L

(−1)(r⊏ (L)−r
⊏(L

′))| dw (P,L′) |

=
∑

L∈Comp(m)
r
⊏
(L)≤n−t

(

n− t

r
⊏
(L)

)

(−1)(n−t−r
⊏
(L))| dw (P,L) |.

6. Main result

Theorem 5. Let P be a finite poset with n elements, n ≥ 3. Then ∆(Ô(P )) is
homotopy equivalent to a wedge of eC(P ) spheres of dimension n− 3.

Our goal is to show that the number of cyclic extensions is the same as the
number of spheres in ∆(Ô(P )). To do this, we prove that the recurrence for
sO(P ) from Theorem 4 holds for eC(P ) as well. Since it is easy to check that
sO(P ) = eC(P ) for any 3-element poset P , the quantities must be equal.

To prove the recurrence for eC(P ), we need to link cyclic extensions of the
poset P with the cyclic extensions of the posets πa,b, where πa,b is an order-
preserving partition P .

Let us outline the schema of the proof of Theorem 5.

1. We prove that, for a fixed minimal element a, there is a mapping Sa from
the set of all linear extensions of P to the disjoint union of sets of all linear
extensions of all πa,b, where πa,b is order-preserving (Lemmas 2 and 3).
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2. We prove that this mapping is surjective (Lemma 4).

3. We prove that two linear extensions f, g of P are cyclically equivalent if
and only if their images Sa(f), Sa(g) are cyclically equivalent (Lemma 5).

4. These facts imply that Sa determines a bijection from the set of all cyclic
extensions of P to the disjoint union of sets of all cyclic extensions of all
πa,b, where πa,b is an order-preserving partition of P .

5. This implies that the sO(P ) and eC(P ) satisfy the same recurrence. Since
sO and eC are equal for 3-element posets, they are equal for any poset
with at least 3 elements.

Lemma 2. Let P be a finite poset with n elements, n ≥ 2. Let f be a linear
extension of P , let a be a minimal element of P . Then πa,a⊕f1 is an order-
preserving partition of P .

Proof. If f(a) < n− 1, then f
(

a⊕f 1
)

= f(a)+ 1, hence a 6≥ a⊕f 1. Therefore,
either a ≤ a⊕f 1 or a ‖ a⊕f 1. If a ‖ a⊕f 1, the πa,a⊕f1 is order-preserving. If
a ≤ a⊕f 1 then πa,a⊕f1 is order-preserving iff a ≺ a⊕f 1. Suppose that a < b <

a⊕f 1. Then f(a) < f(b) < f
(

a⊕f 1
)

, which contradicts f
(

a⊕f 1
)

= f(a) + 1.
If f(a) = n − 1 (or, equivalently, f(a ⊕f 1) = 0), then a is maximal. Since

we assume that a is minimal, this implies that a is an isolated element, hence a
and a⊕f 1 are incomparable. This implies that πa,a⊕f1 is order-preserving.

For a finite poset P with n ≥ 2 elements, a linear extension f of P , and a
minimal element a of P , let us define a mapping fa : πa,a⊕f1 → [0, n − 2]N by
the rule

fa(B) =











f(x) if B = {x} and f(x) < f(a),

min
(

f(a), f
(

a⊕f 1
))

if B = {a, a⊕f 1},

f(x)− 1 if B = {x} and f(x) > f(a) + 1.

Example 9. Consider the 6-element poset P from the left-hand side of Figure
4. Let g be a linear extension given by the number in the picture. Then the
order-preserving partition πu,u⊕f1 is equal to πu,x, see the right hand side of
Figure 4.

The values of the mapping fu : πu,x → [0, 4] are computed as follows.
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• Since 0 = f(v) < f(u) = 1, fu({v}) = f(v) = 0.

• f({u, x}) = min(f(u), f(x)) = 1.

• Since 3 = f(w) > f(u) + 1 = 2, fu({w}) = f(w) − 1 = 2.

• Similarly, f({y}) = 3 and f({z}) = 4.

Lemma 3. Let P be a finite poset with n ≥ 2 elements, let f be a linear
extension of P , a be a minimal element of P . Then fa is a linear extension of
the poset (πa,a⊕f1,≤).

Proof. It is obvious that fa is a bijection. It remains to prove that fa is order-
preserving. Let B1, B2 be blocks of πa,a⊕f1 such that B1 ≤ B2.

(Case 1) If both B1 and B2 are singletons, say B1 = {x1} and B2 = {x2},
then x1 ≤ x2.

If f(x1) ≤ f(x2) < f(a), then fa(B1) = f(x1) and fa(B2) = f(x2), so
fa(B1) ≤ fa(B2).

The case f(a) + 1 < f(x1) ≤ f(x2) can be handled in a similar way.
If f(x1) < f(a) and f(a) + 1 < f(x2), then fa(B1) = f(x1) < f(a) and

fa(B2) = f(x2)− 1 > f(a). This implies fa(B1) < fa(B2).
(Case 2) Suppose that B1 = {x1} is a singleton and that B2 is a non-

singleton, that means B2 = {a, a ⊕f 1}. As B1 ≤ B2, x1 ≤ a or x1 ≤ a ⊕f 1.
However, a is minimal. Since it is clear that x1 6= a, we see that x1 ≤ a⊕f 1.

If f(a) < n− 1, then f(a⊕f 1) = f(a) + 1 and hence

fa(B2) = min
(

f(a), f
(

a⊕f 1
))

= f(a).

Thus, fa(B1) = f(x1) < f(a) = fa(B2).
If f(a) = n + 1, then f(a ⊕f 1) = 0. This implies that a ⊕f 1 is minimal.

However, x1 ≤ a⊕f 1 implies x1 = a⊕f 1, which is not true.
(Case 3) Suppose thatB1 = {a, a⊕f1} is a non-singleton and thatB2 = {x2}

is a singleton.
If f(a) = n+ 1, then fa(B1) = 0 and it is clear that fa(B1) ≤ fa(B2).
If f(a) < n− 1 then fa(B1) = f(a). Since B1 ≤ B2, a ≤ x2 or a⊕f 1 ≤ x2.

If a ≤ x2, then
fa(B1) = f(a) ≤ f(x2) = fa(B2).

If a⊕f 1 ≤ x2, then

fa(B1) = f(a) < f(a) + 1 = f(a⊕f 1) ≤ f(x2) = fa(B2).

Let a be a minimal element of a finite poset P . By the previous two propo-
sitions, there is a mapping

Sa : ℓ(P ) →
⋃

{ℓ(πa,b) : πa,b is order-preserving}

given by Sa(f) := fa. In fact, this mapping is surjective, as shown by the
following lemma.
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Lemma 4. Let P be a finite poset with n ≥ 2 elements. Let a be a minimal
element of P . Let b ∈ P be such that πa,b is an order-preserving partition. For
every linear extension g of πa,b there is a linear extension f of P such that
a⊕f 1 = b and fa = g.

Proof. The mapping f : P → [0, n− 1] is given as follows:

f(x) =



















g({x}) If g({x}) < g({a, b}),

g({a, b}) if x = a,

g({a, b}) + 1 if x = b,

g({x}) + 1 if g({x}) > g({a, b}).

Obviously, f is a bijection. We shall prove that f is order-preserving. Let
x, y ∈ P be such that x ≤ y.

(Case 1) If {x, y}∩ {a, b} = ∅, then x ≤ y in P is equivalent to {x} ≤ {y} in
πa,b. Therefore g({x}) ≤ g({y}). There are three subcases determined by the
position of g({a, b}) with respect to g({x}) and g({y}).

(Case 1.1) If g({x}) ≤ g({y}) < g({a, b}), then f(x) = g({x}) ≤ g({y}) =
f(y).

(Case 1.2) If g({x}) < g({a, b}) < g({y}), then

f(x) < f(x) + 1 = g({x}) + 1 < g({y}) + 1 = f(y).

(Case 1.3) If g({a, b}) < g({x}) ≤ g({y}), then f(x) = g({x})+1 ≤ g({y})+
1 = f(y).

(Case 2) Suppose that x ∈ {a, b}, y /∈ {a, b}. Then x ≤ y in P implies
{a, b} < {y} in πa,b, hence g({a, b}) < g({y}) and f(y) = g({y})+1. Therefore,

f(x) ≤ g({a, b}) + 1 < g({y}) + 1 = f(y).

(Case 3) Suppose that x /∈ {a, b} and y ∈ {a, b}. As x ≤ y in P , {x} < {a, b}
in πa,b. This implies that g({x}) < g({a, b} and that f(x) = g({x}). Since
y ∈ {a, b}, f(y) ≤ g({a, b}) + 1. Therefore,

f(x) = g({x}) < g({a, b}) ≤ f(y).

(Case 4) Suppose that x, y ∈ {a, b}. If x = y, there is nothing to prove.
Suppose that x < y. Since a is minimal, x = a and y = b. Thus,

f(x) = g({a, b}) < g({a, b}) + 1 = f(y).

Thus, f is a linear extension of P .
Clearly,

a⊕f 1 = f−1(f(a)⊕ 1) = f−1(g({a, b}) + 1) = f−1(f(b)) = b.

Let us prove that fa = g. Let B ∈ πa,b = πa,a⊕f1. Let B ∈ πa,b, we shall
prove that fa(B) = g(B).
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If B = {x} and f(x) < f(a) then fa(B) = f(x). As f(a) = g({a, b}),
f(x) < g({a, b}) and it is easy to see that f(x) = g({x}). Hence, fa(B) =
g({x}) = g(B).

If B = {a, b}, then

fa(B) = min(f(a), f(a⊕f 1)) = min(f(a), f(b)) = g({a, b}) = g(B).

If B = {x} and f(x) > f(a)+ 1 then fa(B) = f(x)− 1. As f(a) = g({a, b}),
f(x) > g({a, b}) + 1 and it is easy to see that f(x) = g(x) + 1. Hence, fa(B) =
f(x)− 1 = g({x}) = g(B).

Lemma 5. Let P be a finite poset with n ≥ 2 elements. Let f, g be linear
extensions of P , let a be a minimal element of P . Then ⊕f = ⊕g if and only if
⊕fa = ⊕ga .

Proof. Suppose that ⊕f = ⊕g. This implies that C(f, P ) = C(g, P ). The
mapping f 7→ fa, g 7→ ga corresponds to the contraction of the same edge
(a, a⊕f 1) = (a, a⊕g 1). Thus, C(fa, πa,a⊕f1) = C(fb, πa,a⊕g1) and this implies
that ⊕fa = ⊕ga .

Suppose that ⊕fa = ⊕ga . The domains of equal maps must be the same,
so πa,a⊕f1 = πa,a⊕g1. Hence, C(fa, πa,a⊕f1) = C(ga, πa,a⊕g1). The digraph
C(f, P ) arises from C(fa, πa,a⊕f1) by an expansion of the vertex {a, a ⊕f 1}.
Principally, there are two possible orientations of the new edge between a, a⊕f 1.
However, only one of them gives us an oriented cycle. Therefore, C(f, P ) is de-
termined by C(fa, πa,a⊕f1). Similarly, C(g, P ) is determined by C(ga, πa,a⊕g1).

Proof of the main result. It is easy to check that for any 3-element poset P ,
eC(P ) = sO(P ).

Let a be a minimal element of a finite poset P , |P | > 3. Then Lemma 5
implies that the mapping Sa factors through the mapping f 7→ [f ]∼. By Lemma
4, Sa is surjective. This implies that Sa determines a bijection

S∼
a : (ℓ(P )/ ∼) →

⋃

{ℓ(πa,b)/ ∼: πa,b is order-preserving}

given by [f ]∼ 7→ [fa]∼. Since the union of the right-hand side is clearly disjoint,
this gives us the following recurrence

eC(P ) =
∑

πa,b is order-preserving

eC(πa,b).

Therefore, for any finite P with |P | > 3, sO(P ) = eC(P ).

Corollary 2. Let P be a finite connected poset with n elements, n ≥ 3. Then
∆(Ô(P )) is homotopy equivalent to a wedge of e(P ) spheres of dimension n−3.

Proof. By Theorem 5 and Corollary 1.
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1/0297/11,G-2/0059/12 of MŠ SR, Slovakia and by the Slovak Research and
Development Agency under the contracts APVV-0071-06 and APVV-0073-10.

19



References

[1] G. Czédli and A. Lenkehegyi. On classes of ordered algebras and quasiorder
distributivity. Acta Sci. Math., 46:41–54, 1983.

[2] G. Czédli and A. Lenkehegyi. On congruence n-distributivity of ordered
algebras. Acta Mathematica Hungarica, 41(1-2):17–26, 1983.

[3] Jon Folkman. The homology groups of a lattice. Journal of Mathematics
and Mechanics, 15:631636, 1966.

[4] R. Forman. Users guide to discrete Morse theory. Sèm. Lothar. Combin.,
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