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Automatic Solution of Richard Stanley’s Amer. Math. Monthly Problem #11610
and ANY Problem of That Type

Shalosh B. EKHAD and Doron ZEILBERGER!
Preamble

Suppose you toss a (fair) coin n times. If n is large, the law of large numbers promises you that
(with high probability) you would roughly get as many Heads as Tails. But what is the exact
probability that you would have exactly as many Heads as Tails? If n is odd, the answer is easy
(you do it!). If n is even, then it is almost as easy, and there is a nice, “closed-form” formula for
that probability, namely n!/((n/2)!?2").

Richard Stanley [St1] proposed the problem of finding, a(n), the number of n-letter words in the
alphabet {H, T} where there are as many occurrences of “HT” (i.e. Head immediately followed by
Tail) as there are occurrences of “T'T” (two Tails in a row). He didn’t give a “closed form” formula,
but he gave something almost as good, an explicit formula as an (algebraic, as it turned out, in fact

quadratic) formal power series for the (ordinary) generating function P(t) := > ", a(n)t™.

The fact that the generating function, P(t), is an algebraic generating function is not at all sur-
prising! This can be seen in (at least) two ways.

One way is to show that the “language” of words with as many occurrences of “HT” as “HH” is
context-free (type 2) with an unambiguous grammar, and hence its weight-enumerator is algebraic.
It is possible to (automatically!) generate its grammar, and then automatically generate a system
of algebraic equations one of whose unknowns is the desired generating function, and solving that
system would (presumbly, we didn’t do it) yield Stanley’s proposed expression.

A better way is to find (automatically, of course!), the rational generating function F(t; z[HT], z[TT1])
that is the weight-enumerator of all words in the alphabet { H, T'} according to the weight Weight(w) =
tlength(w) [T #AT W) L TT)#TT() This can be done in several ways, including the Goulden-

Jackson method, beautifully surveyed in [NZ], and efficiently implemented in the Maple package
http://www.math.rutgers.edu/ zeilberg/tokhniot/DAVID TAN
accompanying that article.

Having done that, the desired generating function, P(t), is the coefficient of s° (i.e. the constant
term) in F'(t;s,1/s). Hillel Furstenberg[F| promises us that P(t) is an algebraic formal power series
in ¢, and his proof implies a (rather awkward and inefficient) algorithm (using Cauchy’s integral
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formula and residues) for computing it. This should yield a second rigorous derivation of Stanley’s
proposed solution.

But since we know a priori (by “general nonsense”) that the desired sequence belongs to the alge-
braic ansatz (see [Z1] and the wonderful new book by Manuel Kauers and Peter Paule[KP], that
should be required reading to any mathematics student (and professional!)) a semi-rigorous deriva-
tion would be to crank out the first 40 (or even fewer) terms of Stanley’s sequence (a quick way would
be to find the first 40 terms in the expansion of the constant term, in s, of F(¢;s,1/s) above), and
then use a guessing program, e.g. listoalg in the Maple package gfun([SaZ]) (but please enlarge
the very small default values of the parameters) that now is part of Maple, or procedure Empir in
my own Maple package http://www.math.rutgers.edu/"zeilberg/tokhniot/SCHUTZENBERGER .

In order to make the above semi-rigorous derivation fully rigorous (for those obtuse people who
desire it), one would need to derive a priori bounds on the degree (in ¢t and P(t)) of the defining
equation F'(t, P(t)) = 0 for the desired generating function P(t). Unlike the C-finite ansatz (see
[Z2] and [KP]) where finding these upper bounds is trivial, I don’t know how to do it in the present
case. But there is another way to make everything fully rigorous. Via the holonomic ansatz!

Using the Continuous Almkvist-Zeilberger Algorithm[AlZ], that is implemented in procedure AZc of
the Maple package http://www.math.rutgers.edu/ zeilberg/tokhniot/EKHAD, one can obtain
a differential equation (and its proof (a certain certificate)), and then verify that the above “conjec-
tured” algebraic expression for P(t) satisfies that very same differential equation, and check that
the initial conditions match.

The general case

The beauty of algorithmic mathematics is that it is not much harder to write a general program to
handle a whole class of problems rather than just solve one problem. The above discussion applies
equally to any (finite) alphabet (not just a two-lettered one) and any two distinguished substrings,
wy and we not just HT and T7T.

The Maple package RPS

Since we require procedures from four different Maple packages (DAVID_IAN, SCHUTZENBERGER,
EKHAD and AsyRec), we conveniently assembled all the necessary procedures, together with new
“interfacing code” needed to solve problems of the above type. The result is the Maple package
RPS (named after Richard Peter Stanley), available free of charge from:

http://www.math.rutgers.edu/ zeilberg/tokhniot/RPS .

This Maple package does much more! It computes holonomic representations (or as Richard Stanley
[St2] would say, P-recursive ones), that are used, in turn, to derive asymptotic expressions using
procedures borrowed from

http://www.math.rutgers.edu/"zeilberg/tokhniot/AsyRec



Hence we have “three-quarters” of the Kauers-Paule “concrete tetrahedron”: generating function,

recurrence, and asymptotics. The last one “definite sum” could also be obtained, but we would

(usually) get complicated and ugly multi-sums with many sigmas, so it would be stupid to look for

these.

Out of sheer laziness we have only programmed the case where the two distinguished words, w-,

wa, have the same length.

Precomputed Output of the Maple package RPS

The “front” of this article, the webpage

http://www.math.rutgers.edu/"zeilberg/mamarim/mamarimhtml/rps.html

contains links to several “webbooks” that systematically states (proved!) (algebraic) generating

functions, recurrence equations, and asymptotics for analogs of Stanley’s problem for all possible

pairs of words (up to trivial images under permutations of the letters) of the same length (let’s call

it k) for an m-letter alphabet for the following cases.

e m = 2k = 2: http://www.math.rutgers.edu/ zeilberg/tokhniot/oRPS22 (containing 3

propositions)

em =2k=3

propositions)

em=2k=14

propositions)

em = 3,k =

propositions)

em =3,k =3

propositions)

em = 4,k =

propositions)

em =4,k =3

propositions)

em = 5k =

propositions)

em =5,k =3

propositions)

http://www.math.rutgers.edu/ zeilberg/tokhniot/oRPS23 (containing 11

http://www.math.rutgers.edu/ zeilberg/tokhniot/oRPS24 (containing 38

http://www.math.rutgers.edu/ zeilberg/tokhniot/oRPS32 (containing 6

http://www.math.rutgers.edu/ zeilberg/tokhniot/oRPS32 (containing 40

http://www.math.rutgers.edu/ zeilberg/tokhniot/oRPS42 (containing 7

http://www.math.rutgers.edu/ zeilberg/tokhniot/oRPS43 (containing 63

http://www.math.rutgers.edu/ zeilberg/tokhniot/oRPS52 (containing 7

http://www.math.rutgers.edu/ zeilberg/tokhniot/oRPS53 (containing 69



e m = 6,k = 2: http://www.math.rutgers.edu/ zeilberg/tokhniot/oRPS62 (containing 7
propositions)

e m = 6,k = 3: http://www.math.rutgers.edu/ zeilberg/tokhniot/oRPS63 (containing 70

propositions)

For Neil Sloane’s sake, we have also computed the first 50 terms of each of the considered enumer-
ating sequences. All the sequences for m = 2 and k = 2, 3,4 have already been entered to OEIS
by R.H. Hardin, for example http://oeis.org/A164147. Some of the pages for these sequences
come with conjectured recurrences. The present webbooks supply rigorous proofs to all them, and
supplies proved recurrences for the remaining ones.

The Maple Package RPSplus

With hardly any more (programming) effort, one can consider the enumerating sequences of words
for which, for three given positive integers ai,as and r,

“aj times [the numer of occurrences of w1]” minus as times “[the numer of occurrences of wy] “

equals 7.

Once again the generating functions are guaranteed to be algebraic and everything goes through.
See the procedures listed in ezraG() ; in the more general Maple package RPSplus, available from

http://www.math.rutgers.edu/ zeilberg/tokhniot/RPSplus

Readers are welcome to generate their own output.
What About Several Distinguished Words?

The more general case where one has a finite alphabet of, say, m letters, and s, say, distinguished
words wq,...,ws, and v diophantine affine linear relations between the quantities “number of
occurrences of w;”, then we leave the algebraic ansatz and enter the holonomic ansatz. By WZ
theory we are guaranteed that the enumerating sequence, in each case, is holonomic (alias P-
recursive), and we are justified, semi-rigorously, just to guess the holonomic description, using
gfun’s listtorec, or procedure Findrec in the Maple package RPS.

For those obtuse people who insist on a rigorous proof, they are welcome to use the Maple package
http://www.math.rutgers.edu/"zeilberg/tokhniot/MultiAlmkvistZeilberger

that is one of the Maple packages accompanying the seminal article [ApZ]. Alas, it may take them
quite some time, and frankly, for us, a semi-rigorous proof suffices. But so far, we ran out of steam,

and we do not even have an implementation of the semi-rigorous, pure guessing, version.
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