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A NOTE ON THE SECOND CUBOID

CONJECTURE. PART I.

Ruslan Sharipov

Abstract. The problem of finding perfect Euler cuboids or proving their non-
existence is an old unsolved problem in mathematics. The second cuboid conjec-
ture is one of the three propositions suggested as intermediate stages in proving the
non-existence of perfect Euler cuboids. It is associated with a certain polynomial
Diophantine equation of the order 10. In this paper a structural theorem for the so-
lutions of this Diophantine equation is proved and some examples of its application
are considered.

1. Introduction.

Let’s denote through Qpq(t) the following polynomial of the order 10 depending
on two integer parameters p and q:

Qpq(t) = t10 + (2 q2 + p2) (3 q2 − 2 p2) t8 + (q8 + 10 p2 q6+

+4 p4 q4 − 14 p6 q2 + p8) t6 − p2 q2 (p8 + 10 q2 p6 + 4 q4 p4−

− 14 q6 p2 + q8) t4 − p6 q6 (2 p2 + q2) (3 p2 − 2 q2) t2 − q10 p10.

(1.1)

Conjecture 1.1 (second cuboid conjecture). For any positive coprime integers

p 6= q the polynomial Qpq(t) in (1.1) is irreducible in the ring Z[t].

The second cuboid conjecture 1.1 and the polynomialQpq(t) in it were introduced
in [1]. They are associated with the problem of constructing a perfect Euler cuboid
(see [2] and [3–37] for more details). Let’s write the equation

Qpq(t) = 0. (1.2)

The equation (1.2) can be understood as a Diophantine equation of the order 10
with two integer parameters p and q. The second cuboid conjecture 1.1 implies the
following theorem.

Theorem 1.1. For any positive coprime integers p 6= q the polynomial Diophantine

equation (1.2) has no integer solutions.

Note that a similar theorem associated with the first cuboid conjecture was formu-
lated and proved in [38].

The theorem 1.1 is a weaker proposition than the conjecture 1.1 itself. However,
even proving this proposition in the case of the second cuboid conjecture is rather
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difficult. Below in section 4 we formulate and prove a structural theorem for the
solutions of the Diophantine equation (1.2), if any, and in section 5 we use it in
order to prove the theorem 1.1 for some particular values p and q.

2. The inversion symmetry and parity.

The polynomial Qpq(t) in (1.1) possesses some special properties. They are
expressed by the following formulas which can be verified by direct calculations:

Qpq(t) = −
Qqp(p

2 q2/t) t10

p10 q10
, Qpq(t) = Qpq(−t),

(2.1)

Qqp(t) = −
Qpq(p

2 q2/t) t10

p10 q10
, Qqp(t) = Qqp(−t).

Note that in (2.1) we have two polynomials Qpq(t) and Qqp(t). The polynomial
Qqp(t) is produced from (1.1) by exchanging parameters p and q:

Qqp(t) = t10 + (2 p2 + q2) (3 p2 − 2 q2) t8 + (p8 + 10 q2 p6+

+4 q4 p4 − 14 q6 p2 + q8) t6 − q2 p2 (q8 + 10 p2 q6 + 4 p4 q4+

− 14 p6 q2 + p8) t4 − q6 p6 (2 q2 + p2) (3 q2 − 2 p2) t2 − p10 q10.

(2.2)

Two of the four symmetries in (2.1) contain the inversion of t. For this reason
they are called inversion symmetries. The other two symmetries in (2.1) mean that
the polynomials (1.1) and (2.2) are even with respect to their argument t.

3. Some prerequisites.

Assume that the polynomial Qpq(t) has an integer root t = A0. Since p 6= 0
and q 6= 0, we have A0 6= 0. Then due to the inversion symmetries in (2.1) the
polynomial Qqp(t) has an integer root t = B0, where

B0 =
p2 q2

A0

. (3.1)

Since p 6= 0 and q 6= 0, from (3.1) we derive B0 6= 0. Applying the parity symme-
try from (2.1), we conclude that the polynomial Qpq(t) has the other integer root
t = −A0, while Qqp(t) has the other integer root t = −B0. As a result the polyno-
mials Qpq(t) and Qqp(t) split into factors

Qpq(t) = (t2 −A2

0) C8(t), Qqp(t) = (t2 −B2

0) D8(t) (3.2)

with A0 > 0 and B0 > 0. Here C8(t) and D8(t) are eighth order polynomials
complementary to t2 −A2

0 and t2 −B2
0 . Applying (2.1) to (3.2) we derive

C8(t) = C8(−t), D8(t) = D8(−t). (3.3)

Due to (3.3) the polynomials C8(t) and D8(t) are given by the formulas

C8(t) = t8 + C6 t
6 + C4 t

4 + C2 t
2 + C0,

D8(t) = t8 +D6 t
6 +D4 t

4 +D2 t
2 +D0.

(3.4)
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The coefficients of the polynomials (3.4) are integer numbers.
Now let’s apply the inversion symmetries from (2.1) to (3.2). As a result we get

C8(t) =
D8(p

2 q2/t) t8

p6 q6 A2

0

, D8(t) =
C8(p

2 q2/t) t8

p6 q6 B2

0

. (3.5)

Applying the symmetries (3.5) to (3.4), we derive a series of relationships for the
coefficients of the polynomials C8(t) and D8(t):

C0 A
2

0 = p10 q10, C2 A
2

0 = p6 q6 D6,

C4 A
2

0
= p2 q2 D4, C6 A

2

0
p2 q2 = D2,

A2

0
p6 q6 = D0, D0 B

2

0
= p10 q10, (3.6)

D2B
2

0
= p6 q6 C6, D4 B

2

0
= p2 q2 C4,

D6B
2

0 p
2 q2 = C2, B2

0 p
6 q6 = C0.

The equations (3.6) are excessive. Due to (3.1) some of them are equivalent to some
others. For this reason we can eliminate excessive variables:

D0 = p6 q6 A2

0, D2 = C6 p
2 q2 A2

0,
(3.7)

C0 = p6 q6 B2

0
, C2 = D6 p

2 q2 B2

0
.

Substituting (3.7) into the formulas (3.4) for C8(t) and D8(t), we get

C8(t) = t8 + C6 t
6 + C4 t

4 +D6 p
2 q2 B2

0
t2 + p6 q6 B2

0
,

D8(t) = t8 +D6 t
6 +D4 t

4 + C6 p
2 q2 A2

0
t2 + p6 q6 A2

0
.

(3.8)

Unlike C0, D0, C2, and D2 in (3.7), the coefficients C4 and D4 in (3.8) are not
expressed through other coefficients. However, they are not independent. They are
related with each other by means of the equation

A0 C4 = B0 D4. (3.9)

The equation (3.9) is derived from (3.6) by means of the formula (3.1).
Having derived the formulas (3.8), we substitute them back into the relationships

(3.2). As a result we derive the following formulas:

Qpq(t) = t10 + (C6 −A2

0) t
8 + (C4 −A2

0 C6) t
6 + (D6 p

2 q2 B2

0 −

−A2

0
C4) t

4 + q2 p2 B2

0
(p4 q4 −A2

0
D6) t

2 −A2

0
p6 q6 B2

0
,

(3.10)

Qqp = t10 + (D6 −B2

0
) t8 + (D4 −B2

0
D6) t

6 + (C6 p
2 q2 A2

0
−

−B2

0
D4) t

4 + p2 q2 A2

0
(p4 q4 −B2

0
C6) t

2 −A2

0
p6 q6 B2

0
.

(3.11)

Comparing the formula (3.10) with (1.1) and comparing the formula (3.11) with
(2.2), we derive ten equations for the coefficients of the polynomials (3.8). Two of
them are equivalent to the equation (3.1) written as

A0 B0 = p2 q2. (3.12)
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The other eight equations are written as follows:

C6 −A2

0
= (2 q2 + p2) (3 q2 − 2 p2),

D6 −B2

0
= (2 p2 + q2) (3 p2 − 2 q2),

(3.13)

C4 −A2

0
C6 = p8 − 14 p6 q2 + 4 p4 q4 + 10 p2 q6 + q8,

D4 −B2

0
D6 = q8 − 14 q6 p2 + 4 q4 p4 + 10 q2 p6 + p8,

(3.14)

A2

0
C4 −D6 p

2 q2 B2

0
= p2 q2 (q8 − 14 q6 p2 + 4 q4 p4 + 10 q2 p6 + p8),

B2

0 D4 − C6 p
2 q2 A2

0 = p2 q2 (p8 − 14 p6 q2 + 4 p4 q4 + 10 p2 q6 + q8),
(3.15)

B2

0
(A2

0
D6 − p4 q4) = p4 q4 (2 p2 + q2) (3 p2 − 2 q2),

A2

0 (B
2

0 C6 − p4 q4) = p4 q4 (2 q2 + p2) (3 q2 − 2 p2).
(3.16)

The equations (3.12), (3.13), (3.14), (3.15), (3.16) are excessive. Indeed, the equa-
tions (3.16) follow from (3.12) and (3.13). Similarly, the equations (3.15) can be
derived from (3.14) with the use of (3.9) and (3.12). As for the equations (3.13) and
(3.14), when complemented with the equations (3.9) and (3.12), they constitute a
system of Diophantine equations with respect to C4, D4, C6, D6, A0 and B0. The
results of the above calculations are summarized in the following lemma.

Lemma 3.1. For p 6= 0 and q 6= 0 the polynomial Qpq(t) in (1.1) has integer roots
if and only if the system of Diophantine equations (3.9), (3.12), (3.13), and (3.14)
is solvable with respect to the integer variables C4, D4, C6, D6, A0 > 0 and B0 > 0.

4. The structural theorem.

Below we continue studying the equations (3.9), (3.12), (3.13), (3.14) implicitly
assuming p 6= q to be two positive coprime integer numbers. Let p1, . . . , pm be the
prime factors of p and let q1, . . . , qn be the prime factors of q:

p = pα1

1
· . . . · pαm

m , q = qβ1

1
· . . . · qβn

n . (4.1)

Usually the multiplicities α1, . . . , αm and β1, . . . , βn in (4.1) are positive numbers.
However, in order to cover two special cases p = 1 and q = 1 we assume them to
be non-negative numbers. Since p and q are assumed coprime, i. e.

gcd(p, q) = 1, (4.2)

the prime factors p1, . . . , pm and q1, . . . , qn in (4.1) are distinct, i. e. pi 6= qj .

Lemma 4.1. For any solution of the Diophantine equations (3.9), (3.12), (3.13),
and (3.14) with A0 > 0 and B0 > 0 if A0 6= 1, each prime factor r of A0 is a

prime factor of p or a prime factor of q, i. e. r = pi or r = qj.

Lemma 4.2. For any solution of the Diophantine equations (3.9), (3.12), (3.13),
and (3.14) with A0 > 0 and B0 > 0 if B0 6= 1, each prime factor r of B0 is a

prime factor of p or a prime factor of q, i. e. r = pi or r = qj.

The lemmas 4.1 and 4.2 are immediate from (4.2) and (3.12). Due to the lem-
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mas 4.1 and 4.2 we can write the following expansions for A0 and B0:

A0 = pµ1

1
· . . . · pµm

m qν1
1

· . . . · qνnn ,

B0 = pη1

1
· . . . · pηm

m qτ1
1

· . . . · qτnn .
(4.3)

The multiplicities µ1, . . . , µm, ν1, . . . , νn, η1, . . . , ηm, and τ1, . . . , τn in the ex-
pansions (4.3) obey the following relationships:

µi + ηi = 2αi, νi + τi = 2 βi. (4.4)

The formulas (4.4) are easily derived by substituting the expansions (4.1) and (4.3)
into the equation (3.12).

Now let’s return back to the equations (3.13) and (3.14). It is easy to see that
the equations (3.13) can be explicitly resolved with respect to C6 and D6:

C6 = A2

0 + (2 q2 + p2) (3 q2 − 2 p2),

D6 = B2

0 + (2 p2 + q2) (3 p2 − 2 q2).
(4.5)

Upon substituting (4.5) into the equations (3.14) we can explicitly resolve the equa-
tions (3.14) with respect to the variables C4 and D4:

C4 = A4

0 + (2 q2 + p2) (3 q2 − 2 p2)A2

0 +

+ p8 − 14 p6 q2 + 4 p4 q4 + 10 p2 q6 + q8,
(4.6)

D4 = B4

0
+ (2 p2 + q2) (3 p2 − 2 q2)B2

0
+

+ q8 − 14 q6 p2 + 4 q4 p4 + 10 q2 p6 + p8.
(4.7)

And finally, we can substitute (4.6) and (4.7) into the equation (3.9). As a result
we derive the following equation for the variables A0 and B0:

A0

(

A4

0
+ (2 q2 + p2) (3 q2 − 2 p2)A2

0
+

+ p8 − 14 p6 q2 + 4 p4 q4 + 10 p2 q6 + q8
)

=

= B0

(

B4

0 + (2 p2 + q2) (3 p2 − 2 q2)B2

0 +

+ q8 − 14 q6 p2 + 4 q4 p4 + 10 q2 p6 + p8
)

.

(4.8)

Summarizing these calculations, we can formulate the following lemma.

Lemma 4.3. The system of four Diophantine equations (3.9), (3.12), (3.13), (3.14)
is equivalent to the system of two Diophantine equations (3.12) and (4.8).

Lemma 4.4. For any solution of the Diophantine equations (3.9), (3.12), (3.13),
and (3.14) with A0 > 0 and B0 > 0 if µi > 0 and ηi > 0 in (4.3), then µi = ηi = αi.

Proof. The proof is by contradiction. Assume that µi > 0, ηi > 0, and µi 6= ηi.
Then from (4.6) and (4.7), applying (4.1), (4.2), (4.3), and (4.4), we derive

C4 ≡ q8 (mod pi), D4 ≡ q8 (mod pi). (4.9)
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Moreover, the formula (4.3) yields the relationships

A0 = A′

0
pµi

i , B0 = B′

0
pηi

i , (4.10)

where A′

0
6≡ 0 (mod pi) and B′

0
6≡ 0 (mod pi). Our assumption µi 6= ηi means that

µi > ηi or µi < ηi. If µi > ηi, then substituting (4.10) into (3.9), we derive

A′

0
C4 p

µi−ηi

i = B′

0
D4. (4.11)

Due to (4.10), (4.9) and (4.2) the left hand side of (4.11) is zero modulo pi, while
the right hand side of (4.11) is nonzero modulo pi, which is contradictory.

Similarly, if µi < ηi, substituting (4.10) into (3.9), we derive

A′

0
C4 = B′

0
D4 p

ηi−µi

i . (4.12)

In this case the left hand side of (4.12) is nonzero modulo pi, while the right hand
side of (4.12) is zero modulo pi, which is also contradictory.

The contradictions obtained prove that µi = ηi. The equalities µi = αi and
ηi = αi are immediate from µi = ηi due to (4.4). The lemma 4.4 is proved. �

Lemma 4.5. For any solution of the Diophantine equations (3.9), (3.12), (3.13),
and (3.14) with A0 > 0 and B0 > 0 if νi > 0 and τi > 0 in (4.3), then νi = τi = βi.

The lemma 4.5 is analogous to the lemma 4.4. Its proof is similar to the above
proof of the lemma 4.4.

Now, relying on the lemmas 4.4 and 4.5, we define the following integer numbers:

ap =
∏

ηi=0

pαi

i , bp =
∏

µi=0

pαi

i , cp =
∏

µi>0

ηi>0

pαi

i , (4.13)

aq =
∏

τi=0

qβi

i , bq =
∏

νi=0

qβi

i , cq =
∏

νi>0

τi>0

qβi

i . (4.14)

Note that the numbers (4.13) and (4.14) are pairwise mutually coprime, i. e.

gcd(ap, bp) = 1, gcd(ap, cp) = 1, gcd(ap, aq) = 1,

gcd(ap, bq) = 1, gcd(ap, cq) = 1, gcd(bp, cp) = 1,

gcd(bp, aq) = 1, gcd(bp, bq) = 1, gcd(bp, cq) = 1, (4.15)

gcd(cp, aq) = 1, gcd(cp, bq) = 1, gcd(cp, cq) = 1,

gcd(aq, bq) = 1, gcd(aq, cq) = 1, gcd(bq, cq) = 1.

If µi = 0, then ηi = 2αi, and if ηi = 0, then µi = 2αi. Similarly, if νi = 0, then
τi = 2 βi and if τi = 0, then νi = 2 βi. These implications are derived from (4.4).
The lemmas 4.4 and 4.5 say that if µi > 0 and ηi > 0, then µi = ηi = αi, and if
νi > 0 and τi > 0, then νi = τi = βi. As a result from (4.13) and (4.14) we derive

A0 = a2p cp a
2

q cq, B0 = b2p cp b
2

q cq,
(4.16)

p = ap bp cp, q = aq bq cq.
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The result expressed by the formulas (4.15) and (4.16) is rather important. For
this reason it is formulated as a lemma.

Lemma 4.6. For any solution of the Diophantine equations (3.9), (3.12), (3.13),
and (3.14) with A0 > 0 and B0 > 0 there are six positive pairwise mutually coprime

integer numbers ap, bp, cp, aq, bq, cq such that the numbers A0, B0, p, q are

expressed through them by means of the formulas (4.16).

Let’s substitute (4.16) into the equation (4.10). As a result we obtain the fol-
lowing equation with respect to the numbers ap, bp, cp, aq, bq, cq:

a10p a10q c4p c
4

q + 6 a6p a
10

q c2p c
6

q b
4

q − a8p a
8

q c
4

p c
4

q b
2

q b
2

p −

− 2 a10p a6q c
6

p c
2

q b
4

p + 4 a6p a
6

q b
4

p c
4

p b
4

q c
4

q + a10p a2q b
8

p c
8

p +

+ a2p a
10

q b8q c
8

q + 10 a4p a
8

q b
2

p c
2

p b
6

q c
6

q − 14 a8p a
4

q b
6

p c
6

p b
2

q c
2

q =

= b10p b10q c4p c
4

q + 6 b10p b6q c
6

p c
2

q a
4

p − b8p b
8

q c
4

p c
4

q a
2

q a
2

p −

−2 b6p b
10

q c2p c
6

q a
4

q + 4 b6p b
6

q a
4

p c
4

p a
4

q c
4

q + b2p b
10

q a8q c
8

q +

+ b10p b2q a
8

p c
8

p + 10 b8p b
4

q a
6

p c
6

p a
2

q c
2

q − 14 b4p b
8

q a
2

p c
2

p a
6

q c
6

q.

(4.17)

Lemma 4.7. For a given pair of positive coprime integer numbers p 6= q the system

of Diophantine equations (3.9), (3.12), (3.13), and (3.14) is resolvable if and only

if there are six positive integer numbers ap, bp, cp, aq, bq, cq obeying the equation

(4.17), obeying the coprimality conditions (4.15), and such that p and q are expressed
through them by means of the formulas p = ap bp cp and q = aq bq cq.

The lemma 4.7 follows from the lemmas 4.3 and 4.6 due to the calculations in
deriving the equation (4.17) from the equation (4.8). Combining the lemmas 3.1
and 4.7, now we derive the following structural theorem for the solutions of the
Diophantine equation (1.2).

Theorem 4.1. For a given pair of positive coprime integer numbers p 6= q the

Diophantine equation (1.2) is resolvable with respect to the variable t if and only

if there are six positive integer numbers ap, bp, cp, aq, bq, cq obeying the equation

(4.17), obeying the coprimality conditions (4.15), and such that p and q are expressed
through them by means of the formulas p = ap bp cp and q = aq bq cq. Under these

conditions the equation (1.2) has at least two solutions given by the formulas

t = a2p cp a
2

q cq, t = −a2p cp a
2

q cq. (4.18)

The structural theorem 4.1 is the main result of this paper. The formulas (4.18)
in this theorem are immediate from (4.16).

5. Some applications of the structural theorem.

Let’s choose q = 1 and assume that p is some prime number. Then p and q are
coprime, i. e. the relationship (4.2) is fulfilled. Applying the formula q = aq bq cq
from the theorem 4.1 to this case, we get

aq = 1 bq = 1 cq = 1. (5.1)
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Similarly, applying the formula p = ap bp cp from the theorem 4.1 and taking into
account that p is prime, we derive three options

ap = p, bp = 1, cp = 1; (5.2)

ap = 1, bp = p, cp = 1; (5.3)

ap = 1, bp = 1, cp = p. (5.4)

Substituting (5.1) and (5.2) into (4.17), we obtain the following equation for p:

16 p2 − 16 p8 = 0. (5.5)

The left hand side of the equation (5.5) factorizes as

−16 p2 (p− 1) (p+ 1) (p2 + p+ 1) (p2 − p+ 1) = 0. (5.6)

Therefore the only integer solutions of the equation (5.6) are

p = −1, p = 1. (5.7)

The first of them is negative. The second one is positive, but p = 1 contradicts the
inequality p 6= q in the theorem 4.1 since q = 1 in our present case.

The second option is given by the formulas (5.3). Substituting (5.1) and (5.3)
into (4.17), we obtain another equation for p:

−8 p10 − 8 p8 − 16 p6 + 16 p4 + 8 p2 + 8 = 0. (5.8)

The left hand side of the equation (5.8) factorizes as follows:

−8 (p− 1) (p+ 1) (p8 + 2 p6 + 4 p4 + 2 p2 + 1) = 0. (5.9)

Again the only integer solutions of the equation (5.9) are given by the formulas
(5.7). The first of these two solutions is negative, while the second contradicts the
inequality p 6= q in the theorem 4.1.

And finally, the third option is given by the formulas (5.4). Substituting (5.1)
and (5.4) into (4.17), we obtain the third equation for p:

−32 p6 + 32 p2 = 0. (5.10)

The left hand side of the equation (5.10) factorizes as follows:

−32 p2 (p− 1) (p+ 1) (p2 + 1) = 0. (5.11)

The integer solutions of the equation (5.11) are given by the formula (5.7). The
first of them is negative, while the second one contradicts the inequality p 6= q.
Thus, none of the equations (5.6), (5.9), and (5.11) has a solution suitable for the
theorem 4.1. Applying this theorem, we can formulate the following result.

Theorem 5.1. For q = 1 and for any positive prime integer p the polynomial

Diophantine equation (1.2) has no integer solutions.
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Exchanging p and q in the theorem 5.1, we obtain another theorem.

Theorem 5.2. For p = 1 and for any positive prime integer q the polynomial

Diophantine equation (1.2) has no integer solutions.

The proof of the theorem 5.2 is similar to the above proof of the theorem 5.1.
The theorems 5.1 and 5.2 prove the theorem 1.1 in two special cases where p is
prime and q = 1 and where q is prime and p = 1. Other examples of applying the
structural theorem 4.1 will be given in a separate paper.
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