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Abstract: Reflexive polygons have attracted great interest both in mathematics and

in physics. This paper discusses a new aspect of the existing study in the context of

quiver gauge theories. These theories are 4d supersymmetric worldvolume theories of

D3 branes with toric Calabi-Yau moduli spaces that are conveniently described with

brane tilings. We find all 30 theories corresponding to the 16 reflexive polygons, some

of the theories being toric (Seiberg) dual to each other. The mesonic generators of the

moduli spaces are identified through the Hilbert series. It is shown that the lattice of

generators is the dual reflexive polygon of the toric diagram. Thus, the duality forms

pairs of quiver gauge theories with the lattice of generators being the toric diagram of

the dual and vice versa.
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1 Introduction

The study of N = 1 supersymmetric gauge theories living on D-branes probing singular

non-compact Calabi-Yau 3-folds has been an immensely active and fruitful endeavour in

string theory. The matter content of the 4 dimensional worldvolume theories is encoded

in a graph known as the quiver [1].1 An interesting subset of these theories possess

mesonic moduli spaces which are toric and are associated to convex lattice polygons.

These polygons are known as toric diagrams [4] of the Calabi-Yau singularity.

In the last two decades, a particular type of polytope caught the attention in

string theory in the context of mirror symmetry [5–11]. This polytope is known as

a reflexive polytope.

A reflexive polytope is a convex lattice polytope which possesses a single internal

lattice point.2 For a long time, del Pezzo surfaces [12–16] and more generally Fano

varieties [17–27] have been associated to a range of reflexive polytopes.

When Type II superstring theory is compactified on a Calabi-Yau 3-fold, its world-

sheet theory is a N = (2, 2) superconformal field theory. By swapping the Hodge

numbers h11 and h12 associated to the Calabi-Yau 3-fold, one obtains another Calabi-

Yau 3-fold. If one flips the signs of the U(1) R-charges of the left and right moving

components of the theory’s superalgebra, one obtains another superconformal field the-

ory which is the one compactified on the “mirror” of the original Calabi-Yau 3-fold.

Reflexive polytopes have played an important role in studying the relationship

between mirror paired Calabi-Yau manifolds and the corresponding superconformal

field theories. The reflexive polytopes are used for constructing Calabi-Yau manifolds

as hypersurfaces in toric varieties. The underlying property of reflexive polytopes is

that they have a polar dual partner which in turn is reflexive and relates to the mirror

Calabi-Yau manifold. This property led to a systematic study of mirror paired Calabi-

Yau manifolds. The resulting classification [28–33] found connections to for instance

heterotic string compactifications [34–36] or to F-theory backgrounds [37–40].

In the following work, reflexive polygons are used to study mesonic moduli spaces of

4d supersymmetric quiver gauge theories dual to Type IIB string theory on AdS5×X5

where X5 is a Sasaki-Einstein 5-manifold. There are 16 distinct reflexive polygons and

the corresponding theories are worldvolume theories of D3-branes probing Calabi-Yau

3-fold singularities. The mesonic moduli spaces are toric Calabi-Yau 3-folds and the

reflexive polygons are the corresponding toric diagrams.

The aim of the following work is to identify all 4d supersymmetric quiver gauge

theories whose moduli space is represented by a reflexive polygon. In order to do so,

1For more mathematical reviews on quivers see for example [2, 3].
2From Latin reflexus, Medieval Latin reflexivus, meaning to be turned back or reflected.
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extensive use is made of brane tilings [41, 42]3 which combine the matter content and

the superpotential of the quiver theory on a periodic graph on T2.

Every consistent brane tiling relates to a consistent quiver gauge theory. Starting

from the brane tiling for the orbifold of the form C3/Z4 × Z4 with orbifold action

(1, 0, 3)(0, 1, 3) [48–52], one applies the Higgs mechanism [14] and uses Seiberg

duality [12, 13, 15, 53–56] on brane tilings in order to find that there exist exactly 30

quiver gauge theories corresponding to the 16 reflexive polygons. Seiberg duality, also

known as toric duality in this context, relates theories with different matter content

and superpotential to the same mesonic moduli space.

In order to have a complete classification of the mesonic moduli spaces, the moduli

space generators for all 30 quiver gauge theories are found by computing a generating

function known as the Hilbert series [57–61]. The Hilbert series encodes information

about the moduli space generators. They are identified using a method known as

plethystics [62]. The lattice of generators formed by the mesonic charges is the dual

reflexive polygon for the 16 toric diagrams. It is shown that this is the case for all 30

quiver gauge theories.

The complete classification of 4d N = 1 supersymmetric gauge theories corre-

sponding to the 16 reflexive polygons leads to new observations. The most important

observation is that of a new duality which we name specular duality. It relates

quiver theories with different mesonic moduli spaces under a swap of external and in-

ternal points of the toric diagram. Specular duality partitions the set of 30 quiver gauge

theories in dual pairs and illustrates interesting physics at work. An illustration of this

new duality is given at the concluding section, and it is of great interest to explore it

further in future work.

The work is structured as follows. In section §2, the concepts and motivations

behind studying reflexive polygons are reviewed. In addition, the ideas behind brane

tilings and the mesonic Hilbert series are reviewed. A key ingredient of the discus-

sion is the lattice of mesonic generators which is reviewed in section §2. Sections §3
to §18 summarize the 30 quiver gauge theories associated to reflexive polygons, and

illustrate the duality between the toric diagram and generator lattices. In section §19,

the trees illustrating the relationships between toric (Seiberg) dual brane tiling models

corresponding to the same reflexive polygon are presented. For the purpose of having

a self-contained discussion, appendix §B reviews the concepts of toric (Seiberg) dual-

ity and the Higgs mechanism in the context of brane tiling models. As part of the

concluding section, the concept behind specular duality of the 30 brane tiling models

corresponding to reflexive polygons is introduced.

3For applications of brane tilings see for example [43–47].
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2 Background and Motivation

2.1 Reflexive Polytopes

Mirror Symmetry. Reflexive polytopes have been introduced in string theory in the

context of mirror symmetry [5–11]. A way to study mirror symmetry is to consider Type

II superstring theory compactified on a Calabi-Yau 3-fold. Its string worldsheet theory

is a N = (2, 2) superconformal field theory. It contains a superalgebra with left and

right moving components. When one flips the signs of the U(1) R-symmetry charges

of the left and right moving components, the Calabi-Yau transitions to a different

Calabi-Yau manifold with its Hodge numbers h11 and h12 being interchanged.

The understanding of mirror symmetry in the context of compactified superstring

theory led to a search of mirror paired Calabi-Yau manifolds. Batyrev-Borisov [7, 9] laid

the foundations for industrialising the search for mirror paired Calabi-Yau manifolds by

formulating the construction of Calabi-Yau manifolds as hypersurfaces in toric varieties

represented by reflexive polytopes. These reflexive polytopes are on a lattice with the

dual polytope and hence corresponding mirror Calabi-Yau manifold being identified by

a straightforward geometrical transformation.

Let the following summary review the notion of a reflexive polytope and the concept

of its dual:

• A reflexive polytope is a convex polytope with points in a lattice Zd and the

origin (0, . . . , 0) being the unique interior point of the polytope.

• A dual (polar) polytope exists for every reflexive polytope. The dual of poly-

tope ∆, ∆◦, is another lattice polytope with points

∆◦ = {v◦ ∈ Zd | 〈v◦, v〉 ≥ −1 ∀v ∈ ∆} (2.1)

The dual of every reflexive polygon is another reflexive polygon. A reflexive

polygon can be self-dual, ∆ = ∆◦.

• A classification of reflexive polytopes [29–31] is available for the dimensions

d ≤ 4 with the number of reflexive polytopes given in Table 1. It is unknown how

many exist for higher dimensions.
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Figure 1. The 16 convex polygons which are reflexive. The polygons have been GL(2,Z)

adjusted to reflect the duality under (2.1). The green internal points are the origins. G is the

area of the polygon with the smallest lattice triangle having normalized area 1, and nG is the

number of extremal points which are in black. The 4 polygons with G = 6 are self-dual. The

paired polygons in 8 and 10 are GL(2,Z) equivalent and are each others dual polygon.
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d Number of Polytopes

1 1

2 16

3 4319

4 473800776

Table 1. Number of reflexive lattice polytopes in dimension d ≤ 4. The number of polytopes

forms a sequence which has the identifier A090045 on OEIS.

D-branes on Calabi-Yau. Next to the study of mirror symmetry, reflexive polytopes

are playing an interesting role in a different context in string theory. Witten described

in 1993 an N = (2, 2) supersymmetric field theory with U(1) gauge groups [63] in the

language of what is today known as gauge linear sigma models (GLSM). He illustrated

how the Fayet-Iliopoulos parameter of the N = (2, 2) supersymmetric field theory

interpolates between the Landau-Ginzburg and Calabi-Yau phases of the theory. The

large parameter limit leads to the space of classical vacua as toric Calabi-Yau spaces

determined by the D- and F-terms of the supersymmetric field theory. The formulation

of GLSM is going to be used in the context of D-brane gauge theories in this work even

though the FI terms will not play a crucial role during the discussion.

Let the focus be on worldvolume theories living on a stack of D3-branes probing

Calabi-Yau 3-fold singularities. The gravity dual of these theories is Type IIB string

theory on the background AdS5 × X5 where X5 is a Sasaki-Einstein 5-manifold. The

worldvolume theories are 4d N = 1 supersymmetric quiver gauge theories whose space

of vacua being toric Calabi-Yau 3-fold are described by lattice polygons on Z2 known

as the toric diagrams.

A restriction that the toric diagrams are reflexive polygons is introduced for the

purpose of the study. A motivation for introducing the restriction is the fact that

there are only a finite number 16 of these reflexive polygons. The natural question

to ask, and the question which is fully answered in the following discussion, is which

supersymmetric quiver gauge theories exist whose space of vacua correspond to the 16

reflexive polygons.

There are useful properties of the quiver gauge theories which are considered in this

work. These properties provide the essential tools for finding all quiver gauge theories

corresponding to reflexive polygons:

• Brane Tilings (Dimers) [41–47] can be used to represent D3-brane worldvol-

ume theories whose vacuum moduli space is toric Calabi-Yau. A brane tiling

encodes the bifundamental matter content (quiver) and superpotential of the
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gauge theory. Every consistent brane tiling represents a consistent combination

of a quiver and superpotential, and hence a consistent quiver gauge theory.

• The Higgs Mechanism [14] in the context of quiver gauge theories has a natural

interpretation in terms of the geometrical blow down, i.e. ‘higgsing’, or blow up,

i.e. ‘un-higgsing’, of the toric variety corresponding to the gauge theory vacuum

moduli space. All 16 reflexive polygons and the corresponding toric varieties can

be related by the geometrical blow downs starting from the abelian orbifold of

the form C3/Z4×Z4 with orbifold action (1, 0, 3)(0, 1, 3) [48–52]. For the purpose

of a self-contained discussion, the Higgs mechanism in the context of brane tiling

theories is reviewed in Appendix §B.3.

• Toric (Seiberg) Duality [12, 13, 15, 53–56] in the context of quiver gauge

theories relates theories with the same vacuum moduli space. In other words, two

toric dual theories relate to the same reflexive polygon. Consequently, a single

toric variety can be the vacuum moduli space of multiple quiver gauge theories.

Such dual quiver gauge theories are known as toric phases of the moduli space.

More generally, Seiberg duality relates an infinite number of quiver gauge theories

by allowing the ranks of gauge groups in the theory to be greater than one. In

the following discussion based on brane tilings, only U(1) gauge groups are taken.

The search for brane tilings corresponding to the 16 reflexive polygons uses toric

duality in order to identify all toric phases. It turns out that there are 30 brane

tiling theories corresponding to the 16 reflexive polygons. For the purpose of a

self-contained discussion, toric (Seiberg) duality in the context of quiver gauge

theories and their brane tilings is reviewed in Appendix §B.1.

Many of the quiver gauge theories related to reflexive polygons have been studied

in the past. A selection of the available literature is given in Table 2. With the follow-

ing work, a complete classification of all 30 quiver gauge theories related to reflexive

polygons in Witten’s language of GLSM fields is provided for the first time. GLSM

fields relate the points of the toric diagram with the matter fields of the quiver gauge

theory. The F-term and D-term constraint charges on the GLSM fields are used to

obtain the mesonic Hilbert series. The mesonic Hilbert series encodes the moduli

space generators.

An intriguing property of theories corresponding to reflexive polygons, which is

exemplified in the work below, is as follows:

The global charges on moduli space generators form a lattice polygon on Z2 which is

reflexive and which is precisely the dual polygon of the toric diagram.
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Figure 2. The 16 reflexive polygons as toric diagrams for 30 brane tilings. The 16 polygons

have been GL(2,Z) transformed to illustrate the blow down from C3/Z4×Z4 (1, 0, 3)(0, 1, 3)

whose toric diagram contains all 16 reflexive polygons. Each polygon is labelled by (G|np :

ni|nW ), where G corresponds to the number of U(n) gauge groups, np to the number of GLSM

fields with non-zero R-charge (number of extremal points in the toric diagram or just the order

of the polygon), ni to the multiplicity of the single interior point of the toric diagram, and

nW to the number of superpotential terms. A reflexive polygon can correspond to multiple

quiver gauge theories which are related by toric (Seiberg) duality and distinguished via ni
and nW .
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Model # Model Name
Quiver & W

(Brane Tiling)
Toric Data Mesonic HS

Generators &

Generator Lattice

1 C3/Z3 × Z3 (1, 0, 2)(0, 1, 2) [41, 55]

2 C3/Z4 × Z2 (1, 0, 3)(0, 1, 1) [41]

3 L1,3,1/Z2 (0, 1, 1, 1) [43, 64] [64]

4 PdP5 , C/Z2 × Z2 (1, 0, 0, 1)(0, 1, 1, 0) [14, 41, 42, 65] [14, 42, 65]

5 PdP4b

6 PdP4a [14, 65, 66] [14, 65, 66] [57]

7 PdP3a , C3/Z6 (1, 2, 3) [41, 55] [41]

8 PdP3c , SPP/Z2 (0, 1, 1, 1) [14, 55, 67] [14, 67]

9 PdP3b [14, 55, 67] [14, 67]

10 dP3 [14, 15, 42, 55, 65, 67, 68] [13, 14, 42, 65, 67, 68] [57]

11 PdP2 [14, 67] [14, 67]

12 dP2 [15, 42, 65, 67–71] [13, 42, 65, 67, 68, 70] [57] [70]

13 Y 2,2 , C3/Z4 (1, 1, 2) [41, 42] [72] [57] [73, 74]

14 Y 2,1 , dP1 [15, 42, 65, 67, 69, 71] [13, 65, 67, 72] [57, 60] [73, 74]

15 F0 , Y
2,0 , C/Z2 (1, 1, 1, 1) [13, 41, 42, 65, 67, 68, 71, 75] [13, 65, 67, 68, 72, 75] [57] [73, 74]

16 dP0 , C3/Z3 (1, 1, 1) [15, 41, 44, 71, 76] [13, 14, 76] [57, 60, 76]

Table 2. A selection of the literature on quiver gauge theories corresponding to reflexive

polygons.

The two sections below provide a review of the physical concepts involved in order

to proceed with the complete classification of quiver gauge theories corresponding to

reflexive polygons.

2.2 The Brane Tiling and the Forward Algorithm

The worldvolume theory of a stack of n D3-branes probing singular non-compact

Calabi-Yau 3-folds is a 3 + 1 dimensional N = 1 supersymmetric gauge theory. The

corresponding Lagrangian is specified by the theory’s gauge groups, matter content and

superpotential.

The probed Calabi-Yau 3-fold is toric, and is the mesonic moduli space of the

worldvolume theory. It is of great interest to associate to each worldvolume theory the

corresponding mesonic moduli space. For the purpose of a self-contained discussion,

a brief review on the forward algorithm [12, 77] which translates the gauge theory

information into toric data is provided below.
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Figure 3. The quiver for phase b of the Hirzebruch F0 model. Vertices 1 and 3 share the

same incidence information with no matter fields between them. They are combined into a

block. All matter fields intersecting the block are colored red and are combined such that a

red arrow represents all possible connections from and to all vertices within the block.

Quiver Q. The matter content of the gauge theory is specified by a graph known as

the quiver [1–3]. It consists of the following components:

• Vertices in Q correspond to U(ni) gauge groups with i = 1, . . . , G.

• Edges in Q correspond to the matter fields Xij. The matter fields are bifunda-

mental and transform under the fundamental of U(ni) and antifundamental of

U(nj), imposing a direction on the quiver edges, i→ j. The anomaly cancellation

condition for the quiver gauge theory sets the number of incoming and outgoing

edges on a quiver vertex to be equal. Every matter field appears precisely once

in a positive and negative term in W , with the number of positive and negative

terms in W being the same. This is known as the toric condition [15].

• The incidence matrix dG×E for E bifundamental matter fields encodes the

quiver. Its entry for a gauge group U(ni) is −1 for Xij, +1 for Xji, and 0

otherwise. The matrix dG×E has G− 1 independent rows which can be collected

in a new matrix called ∆(G−1)×e.

If two or more quiver vertices share the same intersection number with other quiver

vertices and have no matter fields between any two of them, then the quiver vertices

can be grouped into a block [78, 79]. This property is illustrated in the example for
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phase b of the Hirzebruch F0 model as shown in Figure 3.

Brane Tilings/Dimers: The superpotential and the quiver can be combined into a

single representation of the supersymmetric gauge theory. The representation is known

as a brane tiling or dimer [2, 41–43]. It is a periodic bipartite graph on T2 and has the

following components:

• White (resp. black) nodes correspond to positive (negative) terms in the

superpotential. They have a clockwise (anti-clockwise) orientation.

• Edges connect to nodes and correspond to the bifundamental fields in the super-

potential. Going along the induced orientations around nodes, one can identify

the matter fields associated to a specific superpotential term in the correct cyclic

order.

• Faces correspond to U(ni) gauge groups. Every edge Xij in the tiling has two

neighbouring faces corresponding to U(ni) and U(nj). The quiver orientation

of the bifundamental field Xij is given by the orientation around the black and

white nodes at the two ends of the corresponding tiling edge.

The fundamental domain of the 2-torus on which the brane tiling is drawn is inter-

preted as a section of the periodic tiling which contains the quiver and superpotential

information without repetition. Copying the domain along the fundamental cycles of

the torus reproduces the complete brane tiling.

Perfect Matchings/GLSM fields and F-and D-term charges. A new basis of

fields can be defined from the set of bifundamental matter fields. The purpose of the new

basis of fields is to describe both F-term and D-term constraints of the supersymmetric

gauge theory with a common setting. The new fields are known as gauge linear sigma

model fields (GLSM) and are represented as perfect matchings in the brane tiling. They

have the following properties:

• A perfect matching pα is a set of bifundamental fields which connect all nodes in

the brane tiling uniquely once. The perfect matchings corresponding to extremal

(corner) points of the toric diagram have non-zero U(1)R R-charge. The internal

as well as all non-extremal toric points on the perimeter of the toric diagram

have zero R-charge. All points on the perimeter are called external, including

extremal ones. They can be summarized in a matrix PE×c where E is the number

of matter fields and c the number of perfect matchings.

– 11 –



• F-terms are encoded in the perfect matching matrix PE×c. The charges under

the F-term constraints are given by the kernel,

QF (c−G−2)×c = ker (PE×c) . (2.2)

• D-terms are of the form [63],

Di = −e2(
∑
a

dia|Xa|2 − ζi) , (2.3)

where Xa is the matter field corresponding to the a-th column of the incidence

matrix dG×E, i runs over the U(n) gauge groups in the quiver, e is the gauge

coupling, and ζi is the Fayet-Iliopoulos (FI) parameter. The D-terms are encoded

via the reduced quiver matrix ∆(G−1)×E
4 and are related to the perfect matching

matrix as follows,

∆(G−1)×E = QD (G−1)×c.P
t
c×E , (2.4)

where the QD (G−1)×c matrix is the charge matrix under D-term constraints.

Equivalently, in terms of an interim matrix Q̃G×c, which maps perfect match-

ings into their quiver charges, one has the relation

dG×E = Q̃G×c.P
t
c×E . (2.5)

Overall, the charge matrices QF and QD can be concatenated to form a (c− 3)× c
matrix,

Qt =

(
QF

QD

)
. (2.6)

The kernel of the charge matrix,

Gt = ker (Qt) , (2.7)

precisely encodes the coordinates of the toric diagram points with columns and hence

perfect matchings and GLSM fields corresponding to points of the toric diagram.

4Since the sum of rows in dG×E vanishes, there are G − 1 independent rows giving the reduced

matrix ∆(G−1)×E .
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2.3 Hilbert Series and Lattice of Generators

The generating function of mesonic gauge invariant operators (GIOs) is known as the

mesonic Hilbert series [57–61]. The Hilbert series encodes the generators of the as-

sociated moduli space. These are essential for a complete classification of the mesonic

moduli spaces of brane tilings corresponding to reflexive polygons. The moduli space

generators can be extracted from the Hilbert series using a method known as plethys-

tics. These carry charges under the mesonic symmetry. The charges on a Z2 lattice

form a convex polygon which is the dual polygon of the toric diagram.

Let the section below provide a review of the concepts involved.

Mesonic Symmetry. The mesonic moduli space of a given brane tiling is a non-

compact toric Calabi-Yau 3-fold. The mesonic symmetry of the associated quiver gauge

theory takes one of the following forms,

• U(1)f1 × U(1)f2 × U(1)R

• SU(2)x × U(1)f × U(1)R

• SU(2)x1 × SU(2)x2 × U(1)R

• SU(3)x1,x2 × U(1)R ,

where the lower case indices denote fugacities of the gauge group with the exemption

of the R-symmetry group U(1)R. The fugacity associated to the U(1)R charge is t.

The above global symmetries derive from the isometry group of the Calabi-Yau

3-fold. The enhancement of a U(1) flavour to SU(2) or SU(3) is indicated by repeated

columns in the total charge matrix Qt.

Mesonic Hilbert Series. The mesonic moduli space is the space of invariants under

F-term charges QF and D-term charges QD. The c GLSM fields corresponding to

perfect matchings of the brane tiling form the space Cc known as the space of perfect

matchings.

• The Symplectic Quotient

Mmes = (Cc//QF )//QD . (2.8)

is the mesonic moduli space of the quiver gauge theory.5 The invariants under

the symplectic quotient are mesonic GIOs.

5The symplectic quotient F [ = Cc//QF is known as the Master space [65, 68, 75, 76, 80, 81] and

is the space of invariants including both mesonic and baryonic degrees of freedom.
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• The mesonic Hilbert series is a generating function which counts mesonic

GIOs on the moduli space. The mesonic Hilbert series is obtained via the Molien

integral formula,

g1(yα;Mmes) =
c−3∏
i=1

∮
|zi|=1

dzi
2πizi

c∏
α=1

1

(1− yα
∏c−3

j=1 z
(Qt)jα
j )

, (2.9)

where c is the number of perfect matchings labelled by α = 1, . . . , c and Qt is

the total charge matrix in (2.6). GLSM fields corresponding to extremal perfect

matchings pα carry non-zero R-charges and have fugacities denoted by yα = tα.

For all other GLSM fields sm with zero R-charges one assigns the fugacity yα =

ysm . The perfect matchings associated to these fields are non-extremal. Certain

products of non-extremal perfect matchings such as s =
∏

m sm are assigned a

single fugacity denoted by ys.

• The plethystic logarithm of the Hilbert series encodes information about the

generators of the moduli space and the relations formed by them. It is defined as

PL[g1(yα;M)] =
∞∑
k=1

µ(k)

k
log
[
g1(y

k
α;M)

]
, (2.10)

where µ(k) is the Möbius function. If the expansion of the plethystic logarithm

is finite, the moduli space is a complete intersection generated by a finite number

of generators subject to a finite number of relations. If the expansion is infinite,

the moduli space is a non-complete intersection. The first positive terms of the

expansion refer to generators of the moduli space.6 All higher order terms refer

to relations among generators and relations among relations called syzygies.

R-charges.7 The mesonic moduli space is a toric Calabi-Yau cone over a Sasaki-

Einstein 5-manifold whose volume is related under minimization to the U(1) R-charges

of the divisors of the toric geometry [84–86]. The toric divisors relate to the extremal

points of the toric diagram and the corresponding GLSM fields.

The volume of the Sasaki Einstein 5-manifold X5 is

Vol(rα;X5) =
8π3

27
lim
µ→0

µ3g1(tα = e−µrα ;M = C(X5)) . (2.11)

6The Groebner basis of the set of gauge invariant operators forms the generators of the moduli

space.
7We review here volume minimisation as a means to calculate R-charges. For alternative methods

see for example [64, 82, 83].
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where g1(tα;M) is the mesonic Hilbert series in (2.9), tα is the fugacity for GLSM field

pα, and rα is the corresponding minimization parameter. The Hilbert series related to

the divisor Dα and the corresponding GLSM field pα is obtained through the following

modified Molien integral,

gDα(tα;Mmes) =
c−3∏
i=1

∮
|zi|=1

dzi
2πizi

(
tα

c−3∏
k=1

z
(Qt)kα
k

)−1
g1(tα, zi;Cc)

=
c−3∏
i=1

∮
|zi|=1

dzi
2πizi

c∏
β=1

(
tα
∏c−3

k=1 z
(Qt)kα
k

)−1
1− tβ

∏c−3
j=1 z

(Qt)jβ
j

. (2.12)

The associated R-charge is then

Rα = lim
µ→0

1

µ

[
gDα(e−µrα ;Mmes)

gmes(e−µrα ;Mmes)
− 1

]
. (2.13)

For superconformality, the superpotential has R-charge 2 which sets the following

restriction on the R-charges ∑
α

Rα = 2. (2.14)

Lattice of Generators. The lattice of generators is determined by the mesonic charges

carried by the generators of the mesonic moduli space. Ignoring the U(1)R factor, the

remaining flavour symmetries have ranks which sum up to 2. Hence, there are always

2 fugacities which count flavour charges. The pair of flavour charges carried by each

generator is taken as coordinates of a point on the plane. The convex hull of the

collection of points corresponding to the collection of moduli space generators forms a

convex polygon. This is known as the lattice of generators.

For a non-vanishing convex polygon on Z2, the flavour charges are subject to the

following constraints:

• The pairs of flavour charges carried by all np extremal perfect matchings form a

pair of np-dimensional charge vectors. For a non-trivial choice of flavour charges,

the charge vectors are linearly independent.

• The elements of the np-dimensional charge vectors sum up to zero.

• The charges on GLSM fields are scaled such that the charges on mesonic moduli

space generators take integer values and the lattice of generators is on Z2.
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The lattice of generators subject to the constraints above still exhibits a remaining

GL(2,Z) degree of freedom. Moreover, each generator also carries a R-charge which

plays the role of a third coordinate for each point in the lattice of generators. In order

to remove these remaining degrees of freedom, one makes use of a particular property

of generator lattices introduced below.

Duality between Generator Lattices and Toric Diagrams.

The lattice of generators of a brane tiling is

the dual of the toric diagram.

The duality between reflexive polygons follows (2.1). Hence, for reflexive polygons as

toric diagrams, the lattice of generators is another reflexive polygon in Z2. Accordingly,

the remaining GL(2,Z) degree of freedom on the lattice of generators can be removed

by making the duality for reflexive polygons exact as defined in (2.1). In addition, for

reflexive polygons the lattice of generators always lies on Z2.

When the lattice of generators is considered as a toric diagram of a new brane

tiling, the duality between reflexive polygons manifestly relates between two quiver

gauge theories with toric moduli spaces. In terms of the number of U(n) gauge groups

G and the number of GLSM fields with non-zero R-charge np, the duality map takes

the form

Model A ↔ Model B

G ↔ 12−G
np ↔ np (2.15)

as illustrated in Figure 2.

In the following sections, all 30 quiver gauge theories with their brane tilings cor-

responding to the 16 reflexive polygons are classified. All 30 quiver gauge theories are

obtained by higgsing and toric (Seiberg) dualizing the theory related to the abelian

orbifold of the form C3/Z4 × Z4 with orbifold action (1, 0, 3)(0, 1, 3). The details for

the parent theory for all reflexive polygon theories are given in appendix §A.
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3 Model 1: C3/Z3 × Z3 (1, 0, 2)(0, 1, 2)
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Figure 4. The quiver, toric diagram, and brane tiling of Model 1. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X15X56X61 +X29X91X12 +X31X18X83 +X42X23X34 +X53X37X75 +X67X72X26

+X78X89X97 +X86X64X48 +X94X45X59 −X15X59X91 −X29X97X72 −X31X12X23

−X42X26X64 −X53X34X45 −X67X75X56 −X78X83X37 −X86X61X18 −X94X48X89 .

(3.1)

The perfect matching matrix is

P =



p1 p2 p3 q1 q2 q3 r1 r2 r3 u1 u2 u3 v1 v2 v3 w1 w2 w3 x1 x2 x3 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21
X89 1 0 0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1

X37 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0

X45 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0

X64 1 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 0

X18 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0

X23 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0

X72 1 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

X56 1 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1

X91 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 0 0 0 0

X29 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0

X67 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0

X15 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0

X31 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 0

X42 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1

X86 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1

X78 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

X53 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1

X94 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0

X59 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1

X34 0 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0

X12 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1

X61 0 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0

X75 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

X83 0 0 1 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1

X48 0 0 1 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0

X26 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0

X97 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0


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The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 q1 q2 q3 r1 r2 r3 u1 u2 u3 v1 v2 v3 w1 w2 w3 x1 x2 x3 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21
1 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 −1 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0

1 0 0 0 −1 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

1 0 0 0 0 0 −1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 −1 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 −1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 −1 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1

0 0 1 0 0 0 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 −1 0 0 −1 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0



The D-term charge matrix is

QD =



p1 p2 p3 q1 q2 q3 r1 r2 r3 u1 u2 u3 v1 v2 v3 w1 w2 w3 x1 x2 x3 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0



The total charge matrix Qt exhibits no repeated columns. Accordingly, the global

symmetry group is U(1)f1×U(1)f2×U(1)R. Following the discussion on flavour symme-

try and R-charges in section §2.3, the charges on GLSM fields with non-zero R-charges

are chosen as shown in Table 3.

U(1)f1 U(1)f2 U(1)R fugacity

p1 1/3 0 2/3 t1
p2 -1/3 -1/3 2/3 t2
p3 0 1/3 2/3 t3

Table 3. The GLSM fields corresponding to extremal points of the toric diagram with their

mesonic charges (Model 1).

Products of non-extremal perfect matchings are labelled by a single variable as
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follows,

q = q1q2q3 , r = r1r2r3 , u = u1u2u3 , v = v1v2v3 ,

w = w1w2w3 , x = x1x2x3 , s =
21∏
m=1

sm . (3.2)

The fugacities tα count extremal perfect matchings corresponding to GLSM fields with

non-zero R-charge. The fugacity of the form yq counts the product of non-extremal

perfect matchings q above.

The mesonic Hilbert series of Model 1 is calculated using the Molien integral for-

mula in (2.9). It is

g1(tα, yq, yr, yu, yv, yw, yx, ys;Mmes
1 ) =

1− y3qy3ry3uy3vy3wy3xy3s t31t32t33
(1− y2qyry2vywys t31)(1− yqyuy2wy2xys t32)(1− y2ry2uyvyxys t33)(1− yqyryuyvywyxys t1t2t3)

.

(3.3)

The plethystic logarithm of the mesonic Hilbert series is

PL[g1(tα, yq, yr, yu, yv, yw, yx, ys;Mmes
1 )] = yqyryuyvywyxys t1t2t3 + y2qyry

2
vywys t

3
1

+y2ry
2
uyvyxys t

3
3 + yqyuy

2
wy

2
xys t

3
2 − y3qy3ry3uy3vy3wy3xy3s t31t32t33 . (3.4)

The finite plethystic logarithm indicates that the mesonic moduli space is a complete

intersection.

In terms of the fugacity map

f1 =
yqyv t

2
1

yuyx t2t3
, f2 =

yryu t
2
3

yqyw t1t2
, t = y1/3q y1/3r y1/3u y1/3v y1/3w y1/3x y1/3s t

1/3
1 t

1/3
2 t

1/3
3 , (3.5)

where f1, f2 and t are the fugacities counting the mesonic charges, the above plethystic

logarithm becomes

PL[g1(t, f1, f2;Mmes
1 )] =

(
1 + f1 + f2 +

1

f1f2

)
t3 − t9 (3.6)

The above plethystics logarithm identifies both the moduli space generators and the

mesonic charges carried by them. The generators and the corresponding mesonic

charges are summarized in Table 4. The generators can be presented on a charge

lattice. It is a convex polygon as shown in Table 4 and is the dual reflexive polygon of

the toric diagram of Model 16.
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The relation formed among the generators is as follows,

A1A2A3 = B3 . (3.7)

Generator U(1)f1 U(1)f2

A1 = p31 q
2 r v2 w s 1 0

A2 = p32 q u w
2 x2 s -1 -1

A3 = p33 r
2 u2 v x s 0 1

B = p1p2p3 q r u v w x s 0 0

Table 4. The generators and lattice of generators of the mesonic moduli space of Model 1

in terms of GLSM fields with the corresponding flavor charges.

Generator U(1)f1 U(1)f2

X18X89X91 = X23X37X72 = X45X56X64 1 0

X15X53X31 = X29X94X42 = X67X78X86 -1 -1

X12X26X61 = X34X48X83 = X59X97X75 0 1

X12X23X31 = X12X29X91 = X15X56X61 = X15X59X91 = X18X83X31 = X18X86X61 = X23X34X42 = X26X64X42 = X26X67X72 0 0

= X29X97X72 = X34X45X53 = X37X75X53 = X37X78X83 = X45X59X94 = X48X86X64 = X48X89X94 = X56X67X75 = X78X89X97

Table 5. The generators in terms of bifundamental fields (Model 1).

With the following fugacity map

T1 = f
1/3
1 t = y2/3q y1/3r y2/3v y1/3w y1/3s t1 ,

T2 = f
−1/3
1 f

−1/3
2 t = y1/3q y1/3u y2/3w y2/3x y1/3s t2 ,

T3 = f
1/3
2 t = y2/3r y2/3u y1/3v y1/3x y1/3s t3 , (3.8)

the mesonic Hilbert series becomes

g1(T1, T2, T3;Mmes
1 ) =

1− T 3
1 T

3
2 T

3
3

(1− T 3
1 )(1− T 3

2 )(1− T 3
3 )(1− T1T2T3)

(3.9)

with the plethystic logarithm being

PL[g1(T1, T2, T3;Mmes
1 )] = T1T2T3 + T 3

1 + T 3
3 + T 3

2 − T 3
1 T

3
2 T

3
3 . (3.10)

The above refinement of the Hilbert series exemplifies the conical structure of the toric

Calabi-Yau space.
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4 Model 2: C3/Z4 × Z2 (1, 0, 3)(0, 1, 1)
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Figure 5. The quiver, toric diagram, and brane tiling of Model 2.

The superpotential is

W = +X17X72X21 +X28X81X12 +X31X14X43 +X42X23X34

+X53X36X65 +X64X45X56 +X75X58X87 +X86X67X78

−X17X78X81 −X28X87X72 −X31X12X23 −X42X21X14

−X53X34X45 −X64X43X36 −X75X56X67 −X86X65X58 . (4.1)

The perfect matching matrix is
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P =



p1 p2 p3 q1 q2 r1 r2 u1 u2 u3 u4 v1 v2 v3 v4 w1 w2 w3 w4 w5 w6 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
X67 1 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0

X45 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0

X58 1 0 0 0 1 0 0 1 1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0

X36 1 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1

X23 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0

X81 1 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1

X14 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0

X72 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0

X28 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0

X31 0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1

X17 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0

X42 0 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0

X64 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0

X75 0 1 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0

X53 0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0

X86 0 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 1

X65 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0

X21 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 1

X43 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0

X87 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 1

X78 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0

X34 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1

X12 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0

X56 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1



The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 q1 q2 r1 r2 u1 u2 u3 u4 v1 v2 v3 v4 w1 w2 w3 w4 w5 w6 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
1 1 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 1

1 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 1 0 0 0

1 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 −1 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 −1 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 −1 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 1 −1



The D-term charge matrix is
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QD =



p1 p2 p3 q1 q2 r1 r2 u1 u2 u3 u4 v1 v2 v3 v4 w1 w2 w3 w4 w5 w6 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0



The total charge matrix Qt does not exhibit repeated columns. Accordingly, the

global symmetry is U(1)f1×U(1)f2×U(1)R. Following the discussion in §2.3, the flavour

and R-charges on the extremal prefect matchings are found as shown in Table 6.

U(1)f1 U(1)f2 U(1)R fugacity

p1 -1/4 1/4 2/3 t1
p2 -1/4 -1/4 2/3 t2
p3 1/2 0 2/3 t3

Table 6. The GLSM fields corresponding to extremal points of the toric diagram with their

mesonic charges (Model 2).

Products of non-extremal perfect matchings are set to be associated with a single

variable as follows,

q = q1q2 , r = r1r2 , u = u1u2u3u4 , v = v1v2v3v4 , w = w1w2w3w4w5w6 , s =
12∏
m=1

sm .

(4.2)

The fugacities tα counts extremal perfect matchings pα with non-zero R-charge. The

fugacity yq counts the product of non-extremal perfect matchings q above.

The mesonic Hilbert series of Model 2 is calculated using the Molien integral for-

mula in (2.9). It is

g1(tα, yq, yr, yu, yv, yw, ys;Mmes
2 ) = (1− y2qy2ry4uy4vy4wy2s t41t42)(1− y2qy2ry2uy2vy2wy2s t21t22t23)

× 1

(1− y2qy3uyvy2wys t41)(1− y2ryuy3vy2wys t42)(1− yqyrys t23)

× 1

(1− yqyry2uy2vy2wys t21t22)(1− yqyryuyvywys t1t2t3)
. (4.3)

The plethystic logarithm of the mesonic Hilbert series is

PL[g1(tα, yq, yr, yu, yv, yw, ys;Mmes
2 )] = yqyrys t

2
3 + yqyryuyvywys t1t2t3

+yqyry
2
uy

2
vy

2
wys t

2
1t

2
2 + y2qy

3
uyvy

2
wys t

4
1 + y2ryuy

3
vy

2
wys t

4
2

−y2qy2ry2uy2vy2wy2s t21t22t23 − y2qy2ry4uy4vy4wy2s t41t42 . (4.4)
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The finite plethystic logarithm indicates that the mesonic moduli space is a complete

intersection.

With the fugacity map

f1 = y1/3q y1/3r y−2/3u y−2/3v y−2/3w y−2/3s t
−2/3
1 t

−2/3
2 t

4/3
3 ,

f2 = yqy
−1
r yuy

−1
v t21t

−2
2 ,

t = y1/3q y1/3r y1/3u y1/3v y1/3w y1/3s t
1/3
1 t

1/3
2 t

1/3
3 , (4.5)

where f1, f2 and t are the mesonic charge fugacities, the plethystic logarithm becomes

PL[g1(t, f1, f2;Mmes
2 )] = f1t

2 + t3 +
1

f1

(
1 + f2 +

1

f2

)
t4 − t6 − 1

f 2
1

t8 . (4.6)

From the above plethystic logarithm, one can identify the moduli space generators

as well as their mesonic charges. They are shown in Table 7. The charge lattice of

generators in Table 7 is the dual reflexive polygon of the toric diagram of Model 2. The

two relations formed by the generators are

A1A3 = A2
2 , B1B2 = A2

3 . (4.7)

Generator U(1)f1 U(1)f2

A1 = p23 q r s 1 0

A2 = p1p2p3 q r uv w s 0 0

A3 = p21p
2
2 q r u

2v2 w2 s -1 0

B1 = p41 q
2 u3v w2 s -1 1

B2 = p42 r
2 uv3 w2 s -1 -1

Table 7. The generators and lattice of generators of the mesonic moduli space of Model 2

in terms of GLSM fields with the corresponding flavor charges.

Generator U(1)f1 U(1)f2

X12X21 = X34X43 = X56X65 = X78X87 1 0

X12X23X31 = X12X28X81 = X14X42X21 = X14X43X31 = X17X72X21 = X17X78X81 = X23X34X42 = X28X87X72 = X34X45X53 0 0

= X36X64X43 = X36X65X53 = X45X56X64 = X56X67X75 = X58X86X65 = X58X87X75 = X67X78X86

X14X42X23X31 = X14X42X28X81 = X14X45X53X31 = X17X72X23X31 = X17X72X28X81 = X17X75X58X81 = X23X36X64X42 -1 0

= X28X86X67X72 = X36X64X45X53 = X36X67X75X53 = X45X58X86X64 = X58X86X67X75

X14X45X58X81 = X23X36X67X72 -1 1

X17X75X53X31 = X28X86X64X42 -1 -1

Table 8. The generators in terms of bifundamental fields (Model 2).

With the fugacity map

T1 = f
−1/4
1 f

1/4
2 t = y1/2q y3/4u y1/4v y1/2w y1/4s t1 ,

T2 = f
−1/4
1 f

−1/4
2 t = y1/2r y1/4u y3/4v y1/2w y1/4s t2 ,

T3 = f
1/2
1 t = y1/2q y1/2r y1/2s t3 , (4.8)
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the mesonic Hilbert series takes the form

g1(T1, T2, T3;Mmes
2 ) =

(1− T 4
1 T

4
2 )(1− T 2

1 T
2
2 T

2
3 )

(1− T 4
1 )(1− T 4

2 )(1− T 2
3 )(1− T 2

1 T
2
2 )(1− T1T2T3)

, (4.9)

with the plethystic logarithm being

PL[g1(T1, T2, T3;Mmes
2 )] = T 2

3 + T1T2T3 + T 2
1 T

2
2 + T 4

1 + T 4
2 − T 2

1 T
2
2 T

2
3 − T 4

1 T
4
2 .

(4.10)

The above refinement of the mesonic Hilbert series emphasises the conical structure of

the toric Calabi-Yau space.

5 Model 3: L1,3,1/Z2 (0, 1, 1, 1)

5.1 Model 3 Phase a
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Figure 6. The quiver, toric diagram, and brane tiling of Model 3a.

The superpotential is

W = +X31X18X83 +X32X27X73 +X53X37X75 +X78X81X17

−X14X48X81 −X31X17X73 −X78X83X37 −X86X61X18

+X14X45X56X61 +X62X24X48X86 −X32X24X45X53 −X62X27X75X56 . (5.1)

The perfect matching matrix is
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P =



p1 p2 p3 p4 q1 q2 r1 r2 u1 u2 u3 v1 v2 v3 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
X81 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0

X73 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1

X37 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 1 0

X18 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1

X24 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0

X56 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0

X45 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1

X62 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0

X83 0 0 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0

X61 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0

X17 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0

X48 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1

X75 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1

X32 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0

X27 0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0

X86 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0

X53 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0

X14 0 0 0 1 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0

X31 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0

X78 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 1



The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 p4 q1 q2 r1 r2 u1 u2 u3 v1 v2 v3 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
1 0 1 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 −1 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 −1 0 0

0 1 1 0 −1 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 −1 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0

1 0 0 0 0 0 1 0 1 0 0 0 0 0 −1 −1 0 0 −1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 −1 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 −1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 −1 1 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 −1 0 0 1



The D-term charge matrix is

QD =



p1 p2 p3 p4 q1 q2 r1 r2 u1 u2 u3 v1 v2 v3 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1



The total charge matrix does not exhibit repeated columns. Accordingly, the global

symmetry is U(1)f1 × U(1)f2 × U(1)R. Following the discussion in §2.3, the mesonic
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charges on the extremal perfect matchings are found as shown in Table 9.

U(1)f1 U(1)f2 U(1)R fugacity

p1 1/2 1/2 R1 = 1
6

(
5−
√

7
)

t1
p2 0 -1/2 R1 = 1

6

(
5−
√

7
)

t2
p3 -1/2 -1/2 R2 = 1

6

(
1 +
√

7
)

t3
p4 0 1/2 R2 = 1

6

(
1 +
√

7
)

t4

Table 9. The GLSM fields corresponding to extremal points of the toric diagram with their

mesonic charges (Model 3a). The R-charges are obtained using a-maximization.

Products of non-extremal perfect matchings are associated to a single variable as

follows

q = q1q2 , r = r1r2 , u = u1u2u3 , v = v1v2v3 , s =
12∏
m=1

sm . (5.2)

The fugacity tα counts extremal perfect matchings. The fugacity yq counts the product

of non-extremal perfect matchings q above.

The mesonic Hilbert series of Model 3a is calculated using the Molien integral

formula in (2.9). It is

g1(tα, yq, yr, yu, yv, ys;Mmes
3a ) = (1− y2qy2ry2uy2vy2s t21t22t23t24)(1− y2qy2ry3uy3vy2s t1t2t33t34)

× 1

(1− yqyrys t21t22)(1− y2qy2uyvys t1t33)(1− yqyry2uy2vys t23t24)

× 1

(1− y2ryuy2vys t2t34)(1− yqyryuyvys t1t2t3t4)
.

(5.3)

The plethystic logarithm of the mesonic Hilbert series is

PL[g1(tα, yq, yr, yu, yv, ys;Mmes
3a )] = yqyrys t

2
1t

2
2 + yqyryuyvys t1t2t3t4 + y2qy

2
uyvys t1t

3
3

+y2ryuy
2
vys t2t

3
4 + yqyry

2
uy

2
vys t

2
3t

2
4 − y2qy2ry2uy2vy2s t21t22t23t24 − y2qy2ry3uy3vy2s t1t2t33t34 .

(5.4)

The finite plethystic logarithm indicates that the mesonic moduli space is a complete

intersection.
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Consider the fugacity map

f1 =
1

yuyv
,

f2 =
yryv t

1/2
2 t

3/2
4

yq t
1/2
1 t

3/2
3

,

t̃1 = y1/4q y1/4r y1/4u y1/4v y1/4s t
1/2
1 t

1/2
2 ,

t̃2 = y1/4q y1/4r y1/4u y1/4v y1/4s t
1/2
3 t

1/2
4 , (5.5)

where f1 and f2 are the flavor fugacities, and t̃1 and t̃2 are the fugacities for the R-

charges R1 and R2 in Table 9 respectively. Under the above fugacity map, the plethystic

logarithm becomes

PL[g1(tα, f1, f2;Mmes
3a )] = f1t̃

4
1 + t̃21t̃

2
2 +

(
1

f1f2
+ f2

)
t̃1t̃

3
2 +

t̃42
f1
− t̃41t̃42 −

t̃21t̃
6
2

f1
.

(5.6)

The above plethystic logarithm indicates both the moduli space generators as well

as their mesonic charges. They are summarized in Table 11. The generators can be

presented on a charge lattice. The convex polygon formed by the generators in Table 11

is the dual reflexive polygon of the toric diagram of Model 3a. The generators satisfy

the following relations

A1A2 = B2 , A2B = C1C2 . (5.7)

Generator U(1)f1 U(1)f2

A1 = p21p
2
2 q r s 1 0

A2 = p23p
2
4 q r u

2v2 s -1 0

B = p1p2p3p4 q r uv s 0 0

C1 = p1p
3
3 q

2 u2v s -1 -1

C2 = p2p
3
4 r

2 uv2 s 0 1

Table 10. The generators and lattice of generators of the mesonic moduli space of Model 3a

in terms of GLSM fields with the corresponding flavor charges.
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Generator U(1)f1 U(1)f2

X24X45X56X62 = X18X81 = X37X73 1 0

X14X48X83X31 = X14X48X86X61 = X17X75X53X31 = X17X78X83X31 -1 0

= X17X78X86X61 = X27X75X53X32 = X27X78X83X32

X14X45X56X61 = X24X45X53X32 = X24X48X86X62 = X27X75X56X62 = X14X48X81 0 0

= X17X73X31 = X17X78X81 = X18X83X31 = X18X86X61 = X27X73X32 = X37X75X53 = X37X78X83

X17X75X56X61 = X24X48X83X32 -1 -1

X14X45X53X31 = X27X78X86X62 0 1

Table 11. The generators in terms of bifundamental fields (Model 3a).

The mesonic Hilbert series and the plethystic logarithm can be re-expressed in

terms of the following 3 fugacities,

T1 =
f2

t̃31t̃2
=

t4
y2qyuys t

2
1t2t

2
3

, T2 =
1

f1f2
t̃1t̃

3
2 = y2qy

2
uyvys t1t

3
3 , T3 = f1 t̃

4
1 = yqyrys t

2
1t

2
2 ,

(5.8)

such that

g1(T1, T2, T3;Mmes
3a ) =

(1− T 2
1 T

2
2 T

2
3 )(1− T 3

1 T
3
2 T

2
3 )

(1− T3)(1− T2)(1− T 2
1 T

2
2 T3)(1− T 3

1 T
2
2 T

2
3 )(1− T1T2T3)

(5.9)

and

PL[g1(T1, T2, T3;Mmes
3a )] = T3 + T1T2T3 + T2 + T 2

1 T
2
2 T3 + T 3

1 T
2
2 T

2
3

−T 2
1 T

2
2 T

2
3 − T 3

1 T
3
2 T

2
3 . (5.10)

The above refinement of the mesonic Hilbert series and the plethystic logarithm illus-

trates the conical structure of the toric Calalbi-Yau 3-fold.
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5.2 Model 3 Phase b
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Figure 7. The quiver, toric diagram, and brane tiling of Model 3b. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X31X18X83 +X42X23X34 +X53X37X75 +X67X72X26

−X14X48X81 −X42X26X64 −X53X34X45 −X67X75X56

+X78X81X17 +X86X64X48 +X14X45X56X61

−X78X83X37 −X86X61X18 −X17X72X23X31 . (5.11)

The perfect matching matrix is

P =



p1 p2 p3 p4 q1 q2 r1 r2 u1 u2 u3 v1 v2 v3 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14
X37 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0

X18 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0

X81 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 1

X64 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0

X67 1 0 1 0 1 1 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0

X34 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0

X45 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0

X23 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0

X56 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1

X72 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1

X86 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1

X31 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

X14 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

X78 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0

X42 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0 1 0 1

X53 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 1

X17 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

X48 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0

X83 0 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1

X61 0 0 0 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0

X26 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0

X75 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0


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The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 p4 q1 q2 r1 r2 u1 u2 u3 v1 v2 v3 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14
1 0 1 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0

0 1 0 0 0 0 −1 0 0 1 0 0 0 0 1 −1 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 −1 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 −1 0 0 0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 −1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 −1 0 0 0 0 0 0 −1 0 0 1 0 0 −1 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 −1 0 0 0 0 −1 1 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 −1 0 −1 0 0 0 0 0 1 −1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 −1 0 0 0 0 0 0 1 0



The D-term charge matrix is

QD =



p1 p2 p3 p4 q1 q2 r1 r2 u1 u2 u3 v1 v2 v3 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0



The total charge matrix does not exhibit repeated columns. Accordingly, the global

symmetry is U(1)f1 × U(1)f2 × U(1)R. The mesonic charges on the GLSM fields with

non-zero R-charges are the same as for Model 3a and are shown in Table 9.

Products of non-extremal perfect matchings are expressed in terms of single vari-

ables as follows

q = q1q2 , r = r1r2 , u = u1u2u3 , v = v1v2v3 , s =
14∏
m=1

sm . (5.12)

The fugacity tα counts GLSM fields corresponding to extremal perfect matchings pα.

The fugacity yq for instance counts the product of non-extremal perfect matchings q

shown above.

The refined mesonic Hilbert series and the corresponding plethystic logarithm are

found using the Molien integral formula in (2.9). The Hilbert series is found to be the

same as the one for Model 3a given in (5.3), (5.4) and (5.6). Accordingly, the mesonic

moduli spaces of Model 3a and 3b are the same, with the corresponding quiver gauge

theories being toric (Seiberg) duals.
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The generators in terms of all perfect matchings of Model 3b are given in Table 11

with the corresponding mesonic symmetry charges. The corresponding mesonic gener-

ators in terms of quiver fields are given in Table 12. The mesonic moduli space is a

complete intersection, and the generators satisfy the relation in (5.7).

Generator U(1)f1 U(1)f2

X18X81 = X23X37X72 = X45X56X64 1 0

X14X42X26X61 = X14X48X83X31 = X14X48X86X61 = X17X75X53X31 = X17X78X83X31 = X17X78X86X61 -1 0

X14X45X56X61 = X17X72X23X31 = X14X48X81 = X17X78X81 = X18X83X31 = X18X86X61 = X23X34X42 0 0

= X26X64X42 = X26X67X72 = X34X45X53 = X37X75X53 = X37X78X83 = X48X86X64 = X56X67X75

X34X48X83 = X17X72X26X61 = X17X75X56X61 -1 -1

X67X78X86 = X14X42X23X31 = X14X45X53X31 0 1

Table 12. The generators in terms of bifundamental fields (Model 3b).

6 Model 4: C/Z2 × Z2 (1, 0, 0, 1)(0, 1, 1, 0), PdP5

6.1 Model 4 Phase a
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Figure 8. The quiver, toric diagram, and brane tiling of Model 4a. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X23X38X81X12 +X41X16X63X34 +X67X74X45X56 +X85X52X27X78

−X27X74X41X12 −X45X52X23X34 −X63X38X85X56 −X81X16X67X78

(6.1)

The perfect matching matrix is
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P =



p1 p2 p3 p4 q1 q2 r1 r2 u1 u2 v1 v2 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
X23 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

X41 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0

X85 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0

X67 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0

X56 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0

X78 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1

X34 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1

X12 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0

X74 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1

X52 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0

X16 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0

X38 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1

X81 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0

X63 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0

X27 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0

X45 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0



The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 p4 q1 q2 r1 r2 u1 u2 v1 v2 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
1 1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0 1 0 −1 0 0 0 −1 0 −1 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 1 0 0 −1 0 −1 0 0 0 0 −1 0 0 0

1 0 0 0 0 0 0 1 0 0 1 0 0 −1 0 0 0 −1 −1 0 −1 0 0 1

1 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 −1 0 0 0 0 0 0 0 0

0 0 1 1 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 −1 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 −1 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 −1 0 0 1



The D-term charge matrix is

QD =



p1 p2 p3 p4 q1 q2 r1 r2 u1 u2 v1 v2 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0


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The total charge matrix Qt does not exhibit repeated columns. Accordingly, the

global symmetry is U(1)f1×U(1)f2×U(1)R. The mesonic charges on the extremal per-

fect matchings are found following the discussion in §2.3. They are shown in Table 13.

U(1)f1 U(1)f2 U(1)R fugacity

p1 1/4 -1/4 1/2 t1
p2 1/4 1/4 1/2 t2
p3 -1/4 -1/4 1/2 t3
p4 -1/4 1/4 1/2 t4

Table 13. The GLSM fields corresponding to extremal points of the toric diagram with their

mesonic charges (Model 4a).

Products of GLSM fields corresponding to non-extremal perfect matchings are

called by single variables as follows

q = q1q2 , r = r1r2 , u = u1u2 , v = v1v2 , s =
12∏
m=1

sm . (6.2)

The fugacity tα counts extremal perfect matchings pα. The fugacity yq for instance

corresponds to the product of non-extremal perfect matchings q shown above.

The refined mesonic Hilbert series of Model 4a is calculated using the Molien inte-

gral formula in (2.9). It is

g1(tα, yq, yr, yu, yv, ys;Mmes
4a ) = (1− y2qy2ry2uy2vy2s t21t22t23t24)2

× 1

(1− y2qyuyvys t21t22)(1− yqyry2uys t21t23)(1− yqyry2vys t22t24)

× 1

(1− y2ryuyvys t23t24)(1− yqyryuyvys t1t2t3t4)
.

(6.3)

The plethystic logarithm of the mesonic Hilbert series is

PL[g1(tα, yq, yr, yu, yv, ys;Mmes
4a )] = yqyryuyvys t1t2t3t4 + y2qyuyvys t

2
1t

2
2 + y2ryuyvys t

2
3t

2
4

+yqyry
2
vys t

2
2t

2
4 + yqyry

2
uys t

2
1t

2
3 − 2 y2qy

2
ry

2
uy

2
vy

2
s t

2
1t

2
2t

2
3t

2
4 .

(6.4)

The finite plethystic logarithm indicates that the mesonic moduli space is a complete

intersection.
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With the fugacity map

f1 =
yq t1t2
yr t3t4

, f2 =
yv t2t4
yu t1t3

, t = y1/4q y1/4r y1/4u y1/4v y1/4s t
1/4
1 t

1/4
2 t

1/4
3 t

1/4
4 , (6.5)

where the fugacities f1, f2 and t count mesonic charges, the Hilbert series becomes

g1(t, f1, f2;Mmes
4a ) =

(1− t8)2
(1− t4)(1− 1

f1
t4)(1− f1t4)(1− 1

f2
t4)(1− f2t4)

. (6.6)

The corresponding plethystic logarithm is

PL[g1(t, f1, f2;Mmes
4a )] =

(
1 + f1 +

1

f1
+ f2 +

1

f2

)
t4 − 2t8 . (6.7)

The above plethystic logarithm identifies the moduli space generators with their mesonic

charges. They are summarized in Table 14. The charge lattice of generators in Table 14

is the dual reflexive polygon of the toric diagram of Model 4a. The generators satisfy

the following relations

A1A2 = B1B2 = C2 . (6.8)

Generator U(1)f1 U(1)f2

A1 = p21p
2
3 q r u

2 s 0 -1

A2 = p22p
2
4 q r v

2 s 0 1

B1 = p21p
2
2 q

2 u v s 1 0

B2 = p23p
2
4 r

2 u v s -1 0

C = p1p2p3p4 q r u v s 0 0

Table 14. The generators and lattice of generators of the mesonic moduli space of Model 4a

in terms of GLSM fields with the corresponding flavor charges.

Generator U(1)f1 U(1)f2

X16X67X74X41 = X23X38X85X52 0 -1

X12X23X34X41 = X56X67X78X85 1 0

X12X23X38X81 = X12X27X74X41 = X16X63X34X41 = X16X67X78X81 = X23X34X45X52 = X27X78X85X52 = X38X85X56X63 = X45X56X67X74 0 0

X16X63X38X81 = X27X74X45X52 -1 0

X12X27X78X81 = X34X45X56X63 0 1

Table 15. The generators in terms of bifundamental fields (Model 4a).

The fugacities

T1 =
y2ry

2
uys t1t

3
3t4

t2
=

t4

f1f2
, T2 =

yq t1t2
yr t3t4

= f1 , T3 =
yv t2t4
yu t1t3

= f2 ,

(6.9)
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can be introduced to rewrite the Hilbert series and plethystic logarithm as

g1(T1, T2, T3;Mmes
4a ) =

(1− T 2
1 T

2
2 T

2
3 )2

(1− T1T2T3)(1− T1T3)(1− T1T 2
2 T3)(1− T1T2)(1− T1T2T 2

3 )

(6.10)

and

PL[g1(T1, T2, T3;Mmes
4a )] = T1T2T3 + T1T

2
2 T3 + T1T3 + T1T2T

2
3 + T1T2 − T 2

1 T
2
2 T

2
3

(6.11)

such that powers of the fugacities in the expressions are positive. This illustrates the

cone structure of the variety.

6.2 Model 4 Phase b
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Figure 9. The quiver, toric diagram, and brane tiling of Model 4b. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X23X38X82 +X45X56X64 +X63X34X46 +X85X52X28 +X21X14X47X72 +X61X18X87X76

−X21X18X82 −X47X76X64 −X87X72X28 −X61X14X46 −X45X52X23X34 −X63X38X85X56

(6.12)

The perfect matching matrix is
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P =



p1 p2 p3 p4 q1 q2 r2 u1 u2 v1 v2 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
X61 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0

X47 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0

X34 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0

X56 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0

X63 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0

X45 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1

X14 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0

X76 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1

X85 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

X23 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0

X72 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1

X18 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0

X87 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0

X21 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0

X52 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0

X38 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0

X82 1 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1

X28 1 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0

X64 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

X46 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1



The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 p4 q1 q2 r1 r2 u1 u2 v1 v2 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
1 1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 −1 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 −1

0 0 1 0 0 0 −1 0 0 0 1 0 0 0 −1 0 1 0 0 0 0 0 −1 0

0 0 1 0 0 0 −1 0 0 0 1 0 1 0 −1 0 0 0 −1 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 −1 0 −1 0 1 0 0 0 0 −1 0 0 0 0

0 0 0 1 0 0 −1 0 1 0 0 0 −1 0 −1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 −1 0 1 0 0



The D-term charge matrix is
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QD =



p1 p2 p3 p4 q1 q2 r1 r2 u1 u2 v1 v2 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1



The total charge matrix Qt does not have repeated columns. Accordingly, the

global symmetry is U(1)f1 × U(1)f2 × U(1)R. This is the same global symmetry as for

Model 4a, and the same mesonic charges on extremal perfect matchings are assigned

as for Model 4a, as shown in Table 13.

Let products of non-extremal perfect matchings be associated to a single variable

as follows

q = q1q2 , r = r1r2 , u = u1u2 , v = v1v2 , s =
12∏
m=1

sm . (6.13)

The extremal perfect matchings pα are counted by tα. The fugacity of the form yq
counts the non-extremal perfect matching product q above.

The refined mesonic Hilbert series is calculated using the Molien integral formula

in (2.9). The Hilbert series and the corresponding plethystic logarithm turn out to

be the same as for Model 4a. The mesonic Hilbert series and the refined plethystic

logarithms are given in (6.3), (6.4) and (6.7). Accordingly, the mesonic moduli spaces

of Model 4a and 4b are the same, with the corresponding quiver gauge theories being

toric dual.

The generators in terms of perfect matchings of Model 4b are given in Table 14

with the correspoding mesonic symmetry charges. The corresponding generators in

terms of quiver fields are shown in Table 16. The mesonic moduli space is a complete

intersection, with the generators satisfying the relations in (6.8).

Generator U(1)f1 U(1)f2

X56X18X85X61 = X23X34X47X72 0 -1

X28X82 = X14X45X56X61 = X14X47X76X61 = X34X45X56X63 = X34X47X76X63 1 0

X21X14X47X72 = X61X18X87X76 = X23X34X45X52 = X56X38X85X63 = X14X46X61 = X21X18X82 0 0

= X23X38X82 = X52X28X85 = X72X28X87 = X34X46X63 = X45X56X64 = X64X47X76

X46X64 = X21X18X85X52 = X21X18X87X72 = X23X38X85X52 = X23X38X87X72 -1 0

X21X14X45X52 = X63X38X87X76 0 1

Table 16. The generators in terms of bifundamental fields (Model 4b).
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6.3 Model 4 Phase c
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Figure 10. The quiver, toric diagram, and brane tiling of Model 4c. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X21X14X42 +X23X38X82 +X61X18X86 +X63X34X46 +X67X74X45X56 +X85X52X27X78

−X21X18X82 −X27X74X42 −X61X14X46 −X67X78X86 −X45X52X23X34 −X63X38X85X56

(6.14)

The perfect matching matrix is

P =



p1 p2 p3 p4 q1 q2 r1 r2 u1 u2 v1 v2 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14
X61 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0

X78 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0

X34 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0

X56 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

X45 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

X63 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1

X27 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1

X14 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1

X67 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1

X85 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0

X18 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1

X23 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 1

X38 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0

X21 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 1 0

X52 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

X74 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0

X82 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0

X42 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0

X86 0 1 0 1 0 1 0 0 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0

X46 0 0 1 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0


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The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 p4 q1 q2 r1 r2 u1 u2 v1 v2 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14
1 1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 1 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 −1

1 0 0 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 1 0 0 0

1 0 0 0 −1 0 −1 0 0 0 0 0 0 1 0 1 0 0 0 −1 0 0 0 0 0 0

0 0 1 0 1 0 −1 0 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 −1 0 1 −1 0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 −1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 −1 −1 0 0 0 0 0 0



The D-term charge matrix is

QD =



p1 p2 p3 p4 q1 q2 r1 r2 u1 u2 v1 v2 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1



The global symmetry is U(1)f1 × U(1)f2 × U(1)R. The global symmetry charge

assignment on the GLSM fields with non-zero R-charges is the same as for Model 4a

and is shown Table 13.

Products of non-extremal perfect matchings are labelled in terms of single variables

as follows

q = q1q2 , r = r1r2 , u = u1u2 , v = v1v2 , s =
14∏
m=1

sm . (6.15)

The fugacity which counts GLSM fields corresponding to extremal perfect matchings pα
is tα. A product non-extremal perfect matchings, for instance q, is assigned a fugacity

of the form yq.
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The mesonic Hilbert series and plethystic logarithm for Model 4c is the same form

as for Model 4a. They are given respectively in (6.3), (6.4) and (6.7). Accordingly, the

mesonic moduli space of Model 4c is the same as for Model 4a. In other words they

are toric (Seiberg) duals.

The generators in terms of the perfect matching variables of Model 4c are given in

Table 14 with their mesonic charges. The generators in terms of quiver fields are given

in Table 17. The mesonic moduli space is a complete intersection and the generators

satisfy the relations given in (6.8).

Generator U(1)f1 U(1)f2

X27X78X82 = X14X45X56X61 = X34X45X56X63 0 -1

X23X34X42 = X56X18X85X61 = X56X67X78X85 1 0

X23X34X45X52 = X52X27X78X85 = X56X38X85X63 = X45X56X67X74 = X21X14X42 = X14X46X61 0 0

= X21X18X82 = X61X18X86 = X23X38X82 = X42X27X74 = X34X46X63 = X67X78X86

X63X38X86 = X21X14X45X52 = X45X27X74X52 -1 0

X46X67X74 = X21X18X85X52 = X23X38X85X52 0 1

Table 17. The generators in terms of bifundamental fields (Model 4c).
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Figure 11. The quiver, toric diagram, and brane tiling of Model 4d. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X21X14X
1
42 +X23X38X

1
82 +X25X54X

2
42 +X27X78X

2
82

+X61X18X
1
86 +X63X34X

1
46 +X65X58X

2
86 +X67X74X

2
46

−X21X18X
1
82 −X23X34X

2
42 −X25X58X

2
82 −X27X74X

1
42

−X61X14X
1
46 −X63X38X

2
86 −X65X54X

2
46 −X67X78X

1
86 (6.16)
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The perfect matching matrix is

P =



p1 p2 p3 p4 q1 q2 r1 r2 u1 u2 v1 v2 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21
X1

42 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1

X86 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

X1
46 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1

X82 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0

X58 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1

X63 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 0

X27 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0

X14 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 1 1 0 1 0 1 0 0

X46 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1

X1
82 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0

X38 0 1 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1

X65 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 0

X21 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0

X74 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0

X42 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1

X1
86 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

X78 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

X61 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 0 1 0 1 0

X25 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 1 0

X34 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0

X18 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1

X67 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 0

X23 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0

X54 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0



The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 p4 q1 q2 r1 r2 u1 u2 v1 v2 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21
1 0 1 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 −1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 −1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 −1 1 0

1 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 −1 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 −1 0 0 0 1 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 −1 0 1 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 −1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 −1 0 0 −1 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 −1 0 0 −1 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0



The D-term charge matrix is
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QD =



p1 p2 p3 p4 q1 q2 r1 r2 u1 u2 v1 v2 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0



The global symmetry is U(1)f1 × U(1)f2 × U(1)R. The global symmetry charge

assignment on perfect matchings with non-zero R-charge is the same as for Model 4a

and is shown in Table 13.

Products of non-extremal perfect matchings are expressed in terms of single vari-

ables as follows

q = q1q2 , r = r1r2 , u = u1u2 , v = v1v2 , s =
21∏
m=1

sm . (6.17)

The fugacity which counts extremal perfect matchings is tα. A product of non-extremal

perfect matchings such as q is assigned a fugacity of the form yq.

The mesonic Hilbert series and the plethystic logarithm are the same as for Model

4a. The mesonic Hilbert series and the refined plethystic logarithms are given in (6.3),

(6.4) and (6.7) respectively.

The mesonic moduli space generators in terms of perfect matching variables of

Model 4d are given in Table 14. In terms of quiver fields, the generators with their

mesonic charges are shown in Table 18. The mesonic moduli space is a complete

intersection and the generators satisfy the relations in (6.8).

Generator U(1)f1 U(1)f2

X21X14X
2
42 = X2

42X27X74 = X63X38X
1
86 = X65X58X

1
86 0 -1

X14X
2
46X61 = X25X58X

1
82 = X27X78X

1
82 = X34X

2
46X63 1 0

X21X14X
1
42 = X14X

1
46X61 = X21X18X

1
82 = X61X18X

1
86 = X23X34X

2
42 = X23X38X

1
82 0 0

= X2
42X25X54 = X25X58X

2
82 = X1

42X27X74 = X27X78X
2
82 = X34X

1
46X63 = X63X38X

2
86

= X54X
2
46X65 = X2

46X67X74 = X65X58X
2
86 = X67X78X

1
86

X21X18X
2
82 = X23X38X

2
82 = X54X

1
46X65 = X1

46X67X74 -1 0

X61X18X
2
86 = X23X34X

1
42 = X1

42X25X54 = X67X78X
2
86 0 1

Table 18. The generators in terms of bifundamental fields (Model 4d).
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7 Model 5: PdP4b
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Figure 12. The quiver, toric diagram, and brane tiling of Model 5.

The superpotential is

W = +X21X17X72 +X42X26X64 +X56X62X25 +X67X71X16 +X75X53X37 +X13X34X45X51

−X13X37X71 −X16X62X21 −X56X64X45 −X67X72X26 −X75X51X17 −X25X53X34X42

(7.1)

The perfect matching matrix is

P =



p1 p2 p3 p4 q1 q2 r1 r2 r3 u1 u2 u3 s1 s2 s3 s4 s5 s6 s7 s8 s9
X45 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0

X53 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0

X26 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0

X17 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1

X62 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 0 1

X71 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0

X25 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0

X75 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0

X51 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0

X56 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0

X37 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1

X42 0 0 1 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0

X64 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0 1

X13 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0

X16 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0

X72 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0

X21 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0

X67 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 1

X34 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1


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The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 p4 q1 q2 r1 r2 r3 u1 u2 u3 s1 s2 s3 s4 s5 s6 s7 s8 s9
1 1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 −1 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 −1 0

1 0 0 0 −1 0 1 0 0 0 0 0 1 −1 0 −1 0 0 0 0 0

0 1 0 0 −1 0 0 −1 0 0 0 0 0 1 0 0 1 −1 0 0 0

0 1 0 0 0 0 −1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 −1 0 −1 0 1 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0

0 0 1 −1 1 0 −1 0 0 0 0 0 −1 0 0 0 0 1 0 0 0

0 0 0 0 1 0 −1 0 0 0 1 0 −1 1 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 1 0 0 −1



The D-term charge matrix is

QD =



p1 p2 p3 p4 q1 q2 r1 r2 r3 u1 u2 u3 s1 s2 s3 s4 s5 s6 s7 s8 s9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1



The total charge matrix Qt does not have repeated columns. Accordingly, the

global symmetry is U(1)f1 × U(1)f2 × U(1)R. Following the discussion in §2.3, the

flavour and R-charges on GLSM fields corresponding to extremal points in the toric

diagram in Figure 12 are found. They are shown in Table 19.

U(1)f1 U(1)f2 U(1)R fugacity

p1 0 -1/2 R1 ' 0.577 t1
p2 0 1/2 R2 ' 0.640 t2
p3 -1 -1 R3 ' 0.539 t3
p4 1 1 R4 ' 0.243 t4

Table 19. The GLSM fields corresponding to extremal points of the toric diagram with their

mesonic charges (Model 5).

Fine-tuning R-charges. The exact R-charges can be expressed in terms of roots of the
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following polynomials

0 = 75 + 110x− 684x2 + 162x3 + 81x4

0 = −1124565 + 2218649x0 − 1141683x20 − 16497x30

+(746100− 259716x0 + 4428x20 − 64476x30)y

+(775170 + 520182x0 − 390258x20 − 70470x30)y
2

+(14580 + 100764x0 + 164268x20 + 26244x30)y
3

+(−110565− 26487x0 − 19683x20 − 6561x30)y
4

+38880y5 , (7.2)

where the roots satisfy the bounds 0 ≤ 1 − x0 ≤ 2
3

and 0 ≤ 1 − y0 ≤ 2
3
. The exact

R-charges are

R1 =
1

8989575077760
(−443015521905 + 10382230129225x0 − 1861588105479x20

−1223569555569x30 + 788576007420y0 + 7322446656900x0y0 − 1514870485020x20y0

−803839472100x30y0 + 105890430210y20 − 45532791090x0y
2
0 + 616773772782x20y

2
0

+132554296962x30y
2
0 − 87638359380y30 − 829308203820x0y

3
0 + 57898633140x20y

3
0

+57715867980x30y
3
0 + 9044838615y40 + 354606896385x0y

4
0 − 66414222351x20y

4
0

−37556288361x30y
4
0)

R2 = y0 , R3 = x0 , (7.3)
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R4 =
1

27630249136420257145191668008550400
(443015521905− 10382230129225x0

+1861588105479x20 + 1223569555569x30 − 788576007420y0 − 7322446656900x0y0

+1514870485020x20y0 + 803839472100x30y0 − 105890430210y20 + 45532791090x0y
2
0

−616773772782x20y
2
0 − 132554296962x30y

2
0 + 87638359380y30 + 829308203820x0y

3
0

−57898633140x20y
3
0 − 57715867980x30y

3
0 − 9044838615y40 − 354606896385x0y

4
0

+66414222351x20y
4
0 + 37556288361x30y

4
0) (3435680922231398676675−

10875934309383304858731x0 + 2208889158465224949597x20

+1149691223996073074763x30 + 1308961575315964402860y0

−5303703543601718636316x0y0 + 1007391627507047358708x20y0

+577767803346582055164x30y0 − 41445446612526178750y20

+324345443167855962702x0y
2
0 − 267480237660960501378x20y

2
0

−83757129586072681230x30y
2
0 − 143402222077829778740y30

+581897049297268121604x0y
3
0 − 73669737309435993132x20y

3
0

−53860834564699887396x30y
3
0 + 46554904501591527955y40

−286145797904951411547x0y
4
0 + 58286941395335651277x20y

4
0

+31675092179803827579x30y
4
0) . (7.4)

Products of non-extremal perfect matchings are expressed in terms of single vari-

ables as follows

q = q1q2 , r = r1r2 , u = u1u2 , s =
9∏

m=1

sm . (7.5)

The fugacity which counts extremal perfect matchings is tα. The fugacity of the form

yq counts the product of non-extremal perfect matchings q.

The mesonic Hilbert series of Model 5 is found using the Molien integral formula

in (2.9). It is

g1(tα, yq, yr, yu, ys;Mmes
5 ) = (1 + yqyryuys t1t2t3t4 + yqy

2
ry

2
uys t

2
2t

2
3t4 − y3qy3ry2uy2s t21t42t3t4

−y3qy4ry3uy2s t1t52t23t4 − y4qy5ry4uy3s t21t62t33t24)

× 1

(1− y2qy2ryuys t1t32)(1− y2qy3ry2uys t42t3)(1− yqys t21t4)(1− yry2uys t33t24)
. (7.6)

– 47 –



The plethystic logarithm of the mesonic Hilbert series is

PL[g1(tα, yq, yr, yu, ys;Mmes
5 )] = yqyryuys t1t2t3t4 + yqys t

2
1t4 + y2qy

2
ryuys t1t

3
2

+yry
2
uys t

3
3t

2
4 + yqy

2
ry

2
uys t

2
2t

2
3t4 + y2qy

3
ry

2
uys t

4
2t3 − y2qy2ry2uy2s t21t22t23t24

−y3qy3ry2uy2s t21t42t3t4 − y2qy3ry3uy2s t1t32t33t24 − y3qy4ry3uy2s t1t52t23t4 − y2qy4ry4uy2s t42t43t24
+y4qy

4
ry

3
uy

3
s t

3
1t

5
2t

2
3t

2
4 + . . . . (7.7)

Consider the following fugacity map

f1 =
1

yuyr
, f2 =

1

yuys
,

t̃1 = y1/2q y1/2r y1/2u y1/2s t1 , t̃2 = y1/2q y1/2r y1/2u y1/2s t2 ,

t̃3 = t3 , t̃4 = t4 , (7.8)

where f1 and f2 are the fugacities for the flavor charges, and t̃i is the fugacity for the

R-charge Ri in table Table 19. In terms of the fugacity map above, the plethystic

logarithm becomes

PL[g1(t̃α, f1, f2;Mmes
5 )] = t̃1t̃2t̃3t̃4 + f1t̃

2
1t̃4 + f2t̃1t̃

3
2 +

1

f1f2
t̃33t̃

2
4 +

1

f1
t̃22t̃

2
3t̃4 +

f2
f1
t̃42t̃3

−t̃21t̃22t̃23t̃24 − f2t̃21t̃42t̃3t̃4 −
1

f1
t̃1t̃

3
2t̃

3
3t̃

2
4 + . . . . (7.9)

The above plethystic logarithm exhibits the moduli space generators with their mesonic

charges.

The generators can be presented as points on a Z2 with the U(1)f1×U(1)f2 charges

giving the lattice coordinates. The convex polygon formed by the generators on the

lattice in Table 20 is the dual reflexive polygon of the toric diagram of Model 5.

Generator U(1)f1 U(1)f2

p21p4 q s 1 0

p1p2p3p4 q r u s 0 0

p1p
3
2 q

2 r2 u s 0 1

p33p
2
4 r u

2 s -1 -1

p22p
2
3p4 q r

2 u2 s -1 0

p42p3 q
2 r3 u2 s -1 1

Table 20. The generators and lattice of generators of the mesonic moduli space of Model 5

in terms of GLSM fields with the corresponding flavor charges.
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Generator U(1)f1 U(1)f2

X34X45X53 = X17X71 = X26X62 1 0

X13X34X45X51 = X25X53X34X42 = X13X37X71 = X16X62X21 = X16X67X71 = X17X72X21 0 0

= X17X75X51 = X25X56X62 = X26X64X42 = X26X67X72 = X37X75X53 = X45X56X64

X16X62X25X51 = X16X64X45X51 = X17X72X25X51 = X25X53X37X72 0 1

X56X67X75 = X13X34X42X21 -1 -1

X13X34X42X25X51 = X13X37X72X21 = X13X37X75X51 = X16X64X42X21 -1 0

= X16X67X72X21 = X16X67X75X51 = X25X56X64X42 = X25X56X67X72

X13X37X72X25X51 = X16X64X42X25X51 = X16X67X72X25X51 -1 1

Table 21. The generators in terms of bifundamental fields (Model 5).

The Hilbert series and the plethystic logarithm can be re-expressed in terms of just

3 fugacities

T1 =
t̃3

f1f2 t̃21t̃
2
2

=
t3

y2qyrys t
2
1t

2
2

,

T2 = f2 t̃1t̃
3
2 = y2qy

2
ryuys t1t

3
2 ,

T3 = f1 t̃
2
1t̃4 = yqys t

2
1t4 , (7.10)

such that

g1(T1, T2, T3;Mmes
5 ) =

1 + T1T2T3 + T 2
1 T

2
2 T3 − T1T 2

2 T3 − T 2
1 T

3
2 T3 − T 3

1 T
4
2 T

2
3

(1− T2)(1− T1T 2
2 )(1− T3)(1− T 3

1 T
2
2 T

2
3 )

(7.11)

and

PL[g1(T1, T2, T3;Mmes
5 )] = T1T2T3 + T3 + T2 + T 3

1 T
2
2 T

2
3 + T1T

2
2 + T 2

1 T
2
2 T3 − T1T 2

2 T3

−T 2
1 T

2
2 T

2
3 − T 2

1 T
3
2 T3 − T 3

1 T
3
2 T

2
3 − T 4

1 T
4
2 T

2
3 + T 2

1 T
3
2 T

2
3 + T 3

1 T
4
2 T

2
3 + T 4

1 T
4
2 T

3
3 + T 4

1 T
5
2 T

2
3

+T 5
1 T

5
2 T

3
3 − T 3

1 T
4
2 T

3
3 . . . . (7.12)

The above mesonic Hilbert series and plethystic logarithm illustrates the conical struc-

ture of the toric Calalbi-Yau 3-fold.
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8 Model 6: PdP4a

8.1 Model 6 Phase a
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Figure 13. The quiver, toric diagram and brane tiling of Model 6a. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X32X27X73 +X14X45X56X61 +X31X17X75X53 +X62X24X47X76

−X76X61X17 −X31X14X47X73 −X32X24X45X53 −X62X27X75X56

(8.1)

The perfect matching matrix is

P =



p1 p2 p3 p4 p5 q1 q2 r1 r2 s1 s2 s3 s4 s5 s6 s7 s8 s9
X17 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0

X73 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0

X56 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0

X24 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0

X45 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0

X62 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1

X32 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1

X75 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0

X47 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0

X61 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 1

X76 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0

X27 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0

X31 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1

X14 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0

X53 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0


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The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 p4 p5 q1 q2 r1 r2 s1 s2 s3 s4 s5 s6 s7 s8 s9
0 0 1 0 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 −1 −1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 −1 −1 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 −1 −1 0 0 0

0 0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0

0 0 0 1 0 0 0 0 1 0 0 0 0 0 −1 0 −1 0

0 0 0 0 1 0 −1 1 0 −1 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 −1 1



The D-term charge matrix is

QD =



p1 p2 p3 p4 p5 q1 q2 r1 r2 s1 s2 s3 s4 s5 s6 s7 s8 s9
0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1



The total charge matrix Qt does not exhibit repeated columns. Accordingly, the

global symmetry is U(1)f1 ×U(1)f2 ×U(1)R. The mesonic charges on the GLSM fields

corresponding to extremal points in the toric diagram in Figure 13 are found following

the discussion in §2.3. They are presented in Table 22.

U(1)f1 U(1)f2 U(1)R fugacity

p1 -1 0 R1 ' 0.427 t1
p2 1 0 R2 ' 0.298 t2
p3 0 0 R3 ' 0.550 t3
p4 0 1 R2 ' 0.298 t4
p5 0 -1 R1 ' 0.427 t5

Table 22. The GLSM fields corresponding to extremal points of the toric diagram with their

mesonic charges (Model 6a).

Fine-tuning R-charges. The exact R-charges on extremal perfect matchings can be

expressed in terms of a root x0 of the following polynomial

0 = 289− 695x+ 331x2 + 3x3 , (8.2)
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where the root of interest lies in the range 0 ≤ 1− x0 ≤ 2
3
. The exact R-charges are

R1 = R5 = x0 ,

R2 = R4 = 1
2497416307960655824746468547906174933430973669888 (1791039188638478428147683691212722044339352504896−

14898979385812450997203995618175138834683612621776x0+9465606277116561007612744735839203666371878276840x20

+81716323060687762935758761257370794928088890023074x30−106622759169801872631350808556548913284672579964562x40

−22312936155603381509800509872608673629726066365173x50+47625288680151873547605102674953720401814301943043x60

+17436573584263377204018474073188553946245197817747x70−10640233660391309102082256624734477840137858566189x80

−5762098668974680244859599181817775913551620378815x90+420178930354717433094049925945927510179738217313x100

+721282505298136032927398268634974111953118024491x110 +84691631710249529644695474904666891867205565263x120

−28845127177680312829862811387042101533046922792x130 −5936715130045788144646704656470430250253226360x140

−98568203174737761263257326460337456059549812x150 −427836112588315949366063712216265071084900x160 )

R3 = 1
162164293596963665649085313948683843212137836604660555443821244188609125275748366817763000746246144×

(1169229461732080766319602708065371848435839320818952726286766174485578754720869791380548487029993472

+211180778264971290234686689177114661495550847435083609777692608446996489161070763569563200559556608x0

−8045911260354654893884448259742088551904830575685775809252492449742813094597380760696064423664722176x20

+7868186882915851426335876977581680670251639520854407669554513212398555158000171156489937456815968256x30

+1061412415136716326837022119308869488382612389978875078709377550354824411184572440342496757041597952x40

−1653502269547432808110213130155065398558657253926330204747817424734038646912023554904414840355605600x50

−1803409805355686010966266040602399537481777012614017830538582946961232414356541894961178034998651796x60

−549776367467559089730992163878433891954155708884076666297519890732983478315466620106823873137240968x70

+1567205800812219625317948680985038429143438706488862950374641790454745258466005289304610895198165728x80

+1433721411232234278937225795709815998152998730166082929889466098261318411272932929131404259129653584x90

−613688233093161903664079322747531650516395529165734417290427408319218066807931662878404186231703821x100

−1113293590933793106422270537761639133335738086439537494201648209333162655868499870321712814024965074x110

−102041918652529018684594920735103376517462333159418315892949204114090196647595956807850428412457223x120

+423971220164725630883036801237262772103566877143219798793826532397912386224511438398003376083572668x130

+180759001526368976093293859900166369755100685781123847882792925416562642901424926786767271598815811x140

−64076409612708878884915082831557118415463407072251976303703677310275213068268096657416079746613630x150

−65515048191365797148208738907166511172835001443254598513046452678884061405276488997002820753820879x160

−6673543248212741805371881957906917086875901203329952658459597394917113521671659599449171717221560x170
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+9783618126417420629286524671582244856923708960297834037315293570385351437452828996816592454899857x180

+3743596998189704676218096923916451542387351120245899948167098322376252076440477648997681642932578x190

−275998133977857656048993198548594390031696954517741623737712596072996328801012600935299966017093x200

−476041152324864443368732013757192469363702044100009981148537231549870724895965447800279556079204x210

−85609276841164659611375420767097192313538344215051215501287679764566381328323514407504142650419x220

+17367562182813808407040196634409802339840610442753700821338207976254354309961105906728375495974x230

+8815437949275542972852271440501158360572534817622944767660802051044839059890817853038120935475x240

+810859117231117720381035609644014422426938987804828817976536807039578657743651484402841788080x250

−192053072909652328210545003570080037621773138610979153812374936807238481083663630535339645040x260

−53654746591696330685568418173933234993477414863583111739501098102715138908233779767156870480x270

−4633797214013132583423895629091032185087243889634863057878937498434947801893349846356567080x280

−125288849075771386136313950769094507337581594854187196969684084483533817892821528939996160x290

−1502297452596476410349719722105724798487349802028494174267727244065661237915976256430480x300

−8418891003214045205392116768323041884281772276495435205984021439684373541279712292000x310

−18079841511425240505298612186248088798565454098873210645653293047869238161800450000x320 ) . (8.3)

Products of non-extremal perfect matchings are expressed in terms of single vari-

ables as follows

q = q1q2 , r = r1r2 , s =
9∏

m=1

sm . (8.4)

Extremal perfect matchings are counted by the fugacity tα. The fugacity yq is assigned

to the product of non-extremal perfect matchings q above.

The refined mesonic Hilbert series of Model 6a is

g1(tα, yq, yr, ys;Mmes
6a ) = (1 + yqyrys t1t2t3t4t5 − y2qy3ry2s t31t22t33t4t5 − y3qy3ry2s t21t2t43t4t25

−y2qy2ry2s t21t22t23t24t25 − y3qy2ry2s t1t2t33t24t35 + y4qy
4
ry

3
s t

3
1t

2
2t

5
3t

2
4t

3
5 + y5qy

5
ry

4
s t

4
1t

3
2t

6
3t

3
4t

4
5)

× 1

(1− yqy2rys t21t2t23)(1− yrys t21t22t4)(1− y2qy2rys t1t33t5)

× 1

(1− y2qyrys t23t4t25)(1− yqys t2t24t25)
.

(8.5)
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The plethystic logarithm of the mesonic Hilbert series is

PL[g1(tα, yq, yr, ys;Mmes
6a )] = yqys t2t

2
4t

2
5 + yrys t

2
1t

2
2t4 + yqyrys t1t2t3t4t5

+yqy
2
rys t

2
1t2t

2
3 + y2qyrys t

2
3t4t

2
5 + y2qy

2
rys t1t

3
3t5 − 2 y2qy

2
ry

2
s t

2
1t

2
2t

2
3t

2
4t

2
5

−y3qy3ry2s t21t2t43t4t25 + . . . . (8.6)

Consider the following fugacity map

f1 =
1

yr t21t
2
2t4

, f2 =
1

yq t2t24t
2
5

, t̃1 = y1/2q y1/2r y1/2s t1t5 , t̃2 = t2t4 , t̃3 =
t3

t1t2t4t5
,

(8.7)

where f1 and f2 are the flavour charge fugacities, and t̃i is the fugacity for the R-charge

Ri in Table 22.

In terms of the fugacity map above, the plethystic logarithm becomes

PL[g1(t̃α, f1, f2;Mmes
6a )] = (f1 + f2) t̃

2
1t̃

3
2 + t̃21t̃

2
2t̃3 +

(
1

f1
+

1

f2

)
t̃21t̃2t̃

2
3 +

1

f1f2
t̃21t̃

3
3

−2t̃41t̃
4
2t̃

2
3 −

1

f1f2
t̃41t̃

2
2t̃

4
3 + . . . . (8.8)

The above plethystic logarithm exhibits the moduli space generators with the corre-

sponding mesonic charges. They are summarized in Table 23. The generators can be

presented on a charge lattice. The convex polygon formed by the generators in Table 23

is the dual reflexive polygon of the toric diagram of Model 6a.

Generator U(1)f1 U(1)f2

p2p
2
4p

2
5 q s 1 0

p21p
2
2p4 r s 0 1

p1p2p3p4p5 q r s 0 0

p23p4p
2
5 q

2 r s 0 -1

p21p2p
2
3 q r

2 s -1 0

p1p
3
3p5 q

2 r2 s -1 -1

Table 23. The generators and lattice of generators of the mesonic moduli space of Model 6a

in terms of GLSM fields with the corresponding flavor charges.
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Generator U(1)f1 U(1)f2

X27X76X62 = X14X45X53X31 1 0

X17X73X31 = X24X45X56X62 0 1

X17X76X61 = X27X73X32 = X14X47X73X31 = X14X45X56X61 0 0

= X17X75X53X31 = X24X45X53X32 = X24X47X76X62 = X27X75X56X62

X14X47X75X53X31 = X14X47X76X61 = X27X75X53X32 0 -1

X24X47X75X56X62 = X17X75X56X61 = X24X47X73X32 -1 0

X14X47X75X56X61 = X24X47X75X53X32 -1 -1

Table 24. The generators in terms of bifundamental fields (Model 6a).

The mesonic Hilbert series and plethystic logarithm can be re-expressed in terms

of just 3 fugacities

T1 =
f1

f2 t̃21t̃
2
2t̃3

=
t5

y2rys t
3
1t

2
2t3

, T2 =
t̃21t̃2t̃

2
3

f1
= yqy

2
rys t

2
1t2t

2
3 , T3 = f2 t̃

2
1t̃

3
2 = yrys t

2
1t

2
2t4 ,

(8.9)

such that

g1(T1, T2, T3;Mmes
6a ) =

1 + T1T2T3 − T1T 2
2 T3 − T 2

1 T
3
2 T3 − T 2

1 T
2
2 T

2
3 − T 3

1 T
3
2 T

2
3 + T 3

1 T
4
2 T

2
3 + T 4

1 T
5
2 T

3
3

(1− T2)(1− T3)(1− T1T 2
2 )(1− T 2

1 T
2
2 T3)(1− T 2

1 T2T
2
3 )

(8.10)

and

PL[g1(T1, T2, T3;Mmes
6a )] = T 2

1 T2T
2
3 + T3 + T1T2T3 + T2 + T 2

1 T
2
2 T3 + T1T

2
2

−2T 2
1 T

2
2 T

2
3 − T 2

1 T
3
2 T3 + . . . . (8.11)

The Hilbert series and plethystic logarithm above illustrate the conical structure of the

toric Calabi-Yau 3-fold.
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8.2 Model 6 Phase b
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Figure 14. The quiver, toric diagram, and brane tiling of Model 6b. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X42X23X34 +X67X72X26 +X76X64X47 +X14X45X56X61 +X31X17X75X53

−X67X75X56 −X76X61X17 −X42X26X64 −X53X34X45 −X14X47X72X23X31

(8.12)

The perfect matching matrix is

P =



p1 p2 p3 p4 p5 q1 q2 r1 r2 s1 s2 s3 s4 s5 s6 s7 s8 s9
X67 1 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0

X76 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1

X42 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0

X14 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

X53 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0

X31 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

X45 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0

X34 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 0 1

X17 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0

X64 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0

X72 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0

X23 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0

X56 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1

X26 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1

X47 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0

X75 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0

X61 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0


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The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 p4 p5 q1 q2 r1 r2 s1 s2 s3 s4 s5 s6 s7 s8 s9
1 0 1 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 −1 0 0 −1 0 0 0 0

0 1 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 −1

0 1 0 0 0 0 1 0 0 0 0 0 −1 0 0 −1 0 0

0 0 1 1 0 −1 0 0 0 0 1 0 −1 0 −1 0 0 0

0 0 1 0 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 −1 0 0 0 0 −1 0 0 0

0 0 0 1 −1 1 0 0 0 −1 1 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 1 1 −1 0 0 0 −1 0



The D-term charge matrix is

QD =



p1 p2 p3 p4 p5 q1 q2 r1 r2 s1 s2 s3 s4 s5 s6 s7 s8 s9
0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0



The global symmetry of Model 6b has the form U(1)f1 × U(1)f2 × U(1)R. The

charges under the global symmetry on the extremal perfect matchings pα are the same

as for Model 6a. They are shown in Table 22.

Product of non-extremal perfect matchings are expressed in terms of single variables

as follows

q = q1q2 , r = r1r2 , s =
9∏

m=1

sm . (8.13)

The fugacity counting extremal perfect matchings pα is tα. The fugacity yq counts the

product of non-extremal perfect matchings q.

The refined mesonic Hilbert series of Model 6b is identical to the mesonic Hilbert

series for Model 6a. The mesonic Hilbert series and the corresponding plethystic loga-

rithm is shown in (8.5) and (8.8) respectively. The mesonic Hilbert series for Model 6a

and 6b are identical and are not complete intersections.

The generators in terms of perfect matchings of Model 6b are shown in Table 23.

The charge lattice of generators forms a reflexive polygon which is the dual of the toric

diagram. The generators in terms of quiver fields of Model 6b are shown in Table 25.

– 57 –



Generator U(1)f1 U(1)f2

X45X56X64 = X17X72X23X31 0 1

X67X76 = X14X42X23X31 = X14X45X53X31 1 0

X14X47X72X23X31 = X14X45X56X61 = X17X75X53X31 = X17X76X61 = X23X34X42 0 0

= X26X64X42 = X26X67X72 = X34X45X53 = X47X76X64 = X56X67X75

X17X72X26X61 = X17X75X56X61 = X23X34X47X72 = X26X64X47X72 = X47X75X56X64 -1 0

X14X47X75X53X31 = X14X42X26X61 = X14X47X76X61 0 -1

X34X47X75X53 = X14X47X72X26X61 = X14X47X75X56X61 -1 -1

Table 25. The generators in terms of bifundamental fields (Model 6b).
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Figure 15. The quiver, toric diagram, and brane tiling of Model 6c. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X41X13X
2
34 +X42X23X

1
34 +X45X56X

2
64 +X67X72X26 +X75X53X37 +X47X71X16X

1
64

−X41X16X
2
64 −X42X26X

1
64 −X45X53X

1
34 −X67X75X56 −X71X13X37 −X47X72X23X

2
34

(8.14)

The perfect matching matrix is
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P =



p1 p2 p3 p4 p5 q1 q2 r1 r2 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
X37 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0

X1
64 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

X41 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0

X1
34 1 0 1 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0

X72 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0

X56 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1

X67 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0

X45 0 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0

X23 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1

X2
64 0 0 1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0

X75 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0

X26 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1

X13 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1

X47 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

X2
34 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

X42 0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0

X16 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1

X71 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

X53 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1



The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 p4 p5 q1 q2 r1 r2 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
1 0 0 1 0 0 1 0 0 −1 −1 0 0 0 0 0 0 0 −1 0 0

1 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0

0 1 0 0 0 1 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 −1 0 −1 0 1 −1 0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 −1 0 0 0 0 0 0 −1 0 −1 0 1

0 0 0 1 0 0 0 1 0 −1 0 0 0 0 0 −1 0 0 −1 1 0

0 0 0 1 0 0 0 0 1 0 −1 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 1 0 −1 0 0 1 0 0 0 −1 0 0 0

0 0 0 0 1 0 −1 1 0 −1 1 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 −1 −1 1 0 1 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 1 0 −1



The D-term charge matrix is

QD =



p1 p2 p3 p4 p5 q1 q2 r1 r2 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0


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The global symmetry of Model 6c is U(1)f1×U(1)f2×U(1)R. The global symmetry

is the same as for Model 6a and 6b. The charges on the extremal perfect matchings

are shown in Table 22.

Products of non-extremal perfect matchings are chosen to be associated to a single

variable as shown below

q = q1q2 , r = r1r2 , s =
12∏
m=1

sm . (8.15)

Extremal perfect matchings are counted by the fugacity tα. Products of non-extremal

perfect matchings such as q are counted by fugacities of the form yq.

The refined mesonic Hilbert series of Model 6c computed using the Molien integral

formula is identical to the mesonic Hilbert series of Model 6a and 6b in (8.5). Accord-

ingly, the plethystic logarithm are identical as well and hence the mesonic moduli space

is a non-complete intersection.

The moduli space generators in terms of perfect matchings of Model 6c are shown

in Table 23. The lattice of generators is a reflexive polygon and is the dual of the toric

diagram. The generators in terms of quiver fields of Model 6c are shown in Table 26.

Generator U(1)f1 U(1)f2

X16X67X71 = X23X
2
34X42 = X2

34X45X53 1 0

X41X16X
1
64 = X23X37X72 = X45X56X

1
64 0 1

X47X71X16X
1
64 = X23X

2
34X47X72 = X13X

2
34X41 = X13X37X71 = X41X16X

2
64 = X23X

1
34X42 0 0

= X42X26X
1
64 = X26X67X72 = X1

34X45X53 = X53X37X75 = X45X56X
2
64 = X56X67X75

X42X26X
2
64 = X13X

2
34X47X71 = X47X71X16X

2
64 = X2

34X47X75X53 0 -1

X13X
1
34X41 = X23X

1
34X47X72 = X47X72X26X

1
64 = X56X47X75X

1
64 -1 0

X13X
1
34X47X71 = X47X72X26X

2
64 = X1

34X47X75X53 = X56X47X75X
2
64 -1 -1

Table 26. The generators in terms of bifundamental fields (Model 6c).
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9 Model 7: C3/Z6 (1, 2, 3), PdP3a
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Figure 16. The quiver, toric diagram, and brane tiling of Model 7.

The superpotential is

W = +X12X26X61 +X63X34X46 +X24X43X32 +X35X51X13 +X41X15X54 +X56X62X25

−X12X25X51 −X63X32X26 −X24X46X62 −X35X54X43 −X41X13X34 −X56X61X15

(9.1)

The perfect matching matrix is

P =



p1 p2 p3 q1 q2 r1 r2 r3 u1 u2 u3 s1 s2 s3 s4 s5 s6
X26 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0

X62 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1

X15 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0

X51 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1

X43 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1

X34 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0

X46 0 1 0 1 0 1 0 0 1 1 0 1 0 0 0 0 0

X32 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0

X13 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0

X54 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0

X25 0 1 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0

X61 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1

X56 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0

X12 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0

X41 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1

X35 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0

X24 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0

X63 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1


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The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 q1 q2 r1 r2 r3 u1 u2 u3 s1 s2 s3 s4 s5 s6
1 1 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 −1 −1 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0 0 −1 −1 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 −1

1 0 0 0 −1 0 0 0 1 0 0 −1 0 −1 0 0 1

0 1 1 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0

0 1 1 0 0 0 −1 0 0 −1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0

0 0 1 0 0 −1 −1 0 1 0 0 0 0 0 0 0 0



The D-term charge matrix is

QD =



p1 p2 p3 q1 q2 r1 r2 r3 u1 u2 u3 s1 s2 s3 s4 s5 s6
0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1



The total charge matrix Qt does not exhibit repeated columns. Accordingly, the

global symmetry is U(1)f1 ×U(1)f2 ×U(1)R. The flavour and R-charges on the GLSM

fields corresponding to extremal points in the toric diagram in Figure 16 are found as

shown in Table 27 following the discussion in §2.3.

U(1)f1 U(1)f2 U(1)R fugacity

p1 1/2 0 2/3 t1
p2 -1/6 1/3 2/3 t2
p3 -1/3 -1/3 2/3 t3

Table 27. The GLSM fields corresponding to extremal points of the toric diagram with their

mesonic charges (Model 7).

Products of non-extremal perfect matchings are expressed in terms of single vari-

ables as follows

q = q1q2 , r = r1r2r3 , u = u1u2u3 , s =
6∏

m=1

sm . (9.2)

Extremal perfect matchings are counted by the fugacity tα. Products of non-extremal

perfect matchings such as q are counted by fugacities of the form yq.
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The mesonic Hilbert series of Model 7 is

g1(tα, yq, yr, yu, ys;Mmes
7 ) =

1 + y2qyry
2
uys t1t

3
2 + yqyryuys t1t2t3 + y2qy

2
ry

3
uys t

4
2t3 + yqy

2
ry

2
uys t

2
2t

2
3 + y3qy

3
ry

4
uy

2
s t1t

5
2t

2
3

(1− yqys t21)(1− y3qy2ry4uys t62)(1− y2ryuys t33)
.

(9.3)

The plethystic logarithm of the mesonic Hilbert series is

PL[g1(tα, yq, yr, yu, ys;Mmes
7 )] = yqys t

2
1 + yqyryuys t1t2t3 + y2ryuys t

3
3

+yqy
2
ry

2
uys t

2
2t

2
3 + y2qyry

2
uys t1t

3
2 + y2qy

2
ry

3
uys t

4
2t3 − y2qy2ry2uy2s t21t22t23

+y3qy
2
ry

4
uys t

6
2 − y2qy3ry3uy2s t1t32t33 − y3qy2ry3uy2s t21t42t3 + . . . . (9.4)

With the following fugacity map

f1 = y1/3q y−2/3r y−2/3u ys1/3 t
4/3
1 t

−2/3
2 t

−2/3
3 ,

f2 = y2/3q y−1/3r y2/3u y−1/3s t
−1/3
1 t

5/3
2 t

−4/3
3 ,

t = y1/3q y1/3r y1/3u y1/3s t
1/3
1 t

1/3
2 t

1/3
3 , (9.5)

where the fugacities f1, f2 and t count the mesonic symmetry charges. Under the

fugacity map above, the above plethystic logarithm becomes

PL[g1(t, f1, f2;Mmes
7 )] = f1t

2 +

(
1 +

1

f1f2

)
t3 +

(
1

f1
+ f2

)
t4 +

f2
f1
t5 − t6 +

f 2
2

f1
t6

−
(

1

f1
+ f2

)
t7 + . . . .

(9.6)

The plethystic logarithm above exhibits the moduli space generators with their mesonic

charges. They are summarized in Table 28. The mesonic generators can be presented

on a charge lattice. The convex polygon formed by the generators in Table 28 is the

dual reflexive polygon of the toric diagram of Model 7. For the case of Model 7, the

toric diagram is self-dual, and the charge lattice of the generators forms again the toric

diagram of Model 7.
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Generator U(1)f1 U(1)f2

p21 q s 1 0

p1p2p3 q r u s 0 0

p1p
3
2 q

2 r u2 s 0 1

p33 r
2 u s -1 -1

p22p
2
3 q r

2 u2 s -1 0

p42p3 q
2 r2 u3 s -1 1

p62 q
3 r2 u4 s -1 2

Table 28. The generators and lattice of generators of the mesonic moduli space of Model 7

in terms of GLSM fields with the corresponding flavor charges.

Generator U(1)f1 U(1)f2

X15X51 = X26X62 = X34X43 1 0

X12X25X51 = X12X26X61 = X13X34X41 = X13X35X51 = X15X54X41 = X15X56X61 0 0

= X24X43X32 = X24X46X62 = X25X56X62 = X26X63X32 = X34X46X63 = X35X54X43

X13X32X25X51 = X13X32X26X61 = X13X34X46X61 = X15X54X46X61 = X25X54X43X32 = X25X54X46X62 0 1

X12X24X41 = X35X56X63 -1 -1

X12X24X46X61 = X12X25X54X41 = X12X25X56X61 = X13X32X24X41 = X13X35X54X41 -1 0

= X13X35X56X61 = X24X46X63X32 = X25X56X63X32 = X35X54X46X63

X12X25X54X46X61 = X13X32X24X46X61 = X13X32X25X54X41 -1 1

= X13X32X25X56X61 = X13X35X54X46X61 = X25X54X46X63X32

X13X32X25X54X46X61 -1 2

Table 29. The generators in terms of bifundamental fields (Model 7).

With the fugacity map

T1 = f
1/2
1 t = y1/2q y1/2s t1 ,

T2 =
f
1/3
2 t

f
1/6
1

= y1/2q y1/3r y2/3u y1/6s t2 ,

T3 =
t

f
1/3
1 f

1/3
2

= y2/3r y1/3u y1/3s t3 (9.7)

the mesonic Hilbert series becomes

g1(T1, T2, T3;Mmes
7 ) =

1 + T1T
3
2 + T1T2T3 + T 4

2 T3 + T 2
2 T

2
3 + T1T

5
2 T

2
3

(1− T 2
1 )(1− T 6

2 )(1− T 2
3 )

(9.8)

with the plethystic logarithm being

PL[g1(T1, T2, T3;Mmes
7 )] = T 2

1 + T1T2T3 + T 3
3 + T2T3 + T1T

3
2

+T 4
2 T3 − T 2

1 T
2
2 T

2
3 + T 6

2 − T1T 3
2 T

3
3 − T 2

1 T
4
2 T3 + . . . (9.9)
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The above Hilbert series and plethystic logarithm illustrate the conical structure of the

toric Calabi-Yau 3-fold.

10 Model 8: SPP/Z2 (0, 1, 1, 1), PdP3c
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Figure 17. The quiver, toric diagram, and brane tiling of Model 8a.

The superpotential is

W = +X56X62X25 +X65X53X36 +X13X34X45X51 +X21X16X64X42

−X56X64X45 −X65X51X16 −X13X36X62X21 −X25X53X34X42 (10.1)

The perfect matching matrix is

P =



p1 p2 p3 p4 q1 q2 r1 r2 s1 s2 s3 s4 s5 s6
X16 1 0 0 0 1 0 0 0 0 1 1 0 0 0

X45 1 0 0 0 1 0 0 0 0 0 0 0 1 1

X62 1 0 0 0 0 1 0 0 1 0 0 0 0 1

X53 1 0 0 0 0 1 0 0 0 0 1 1 0 0

X36 0 1 0 0 1 0 1 0 0 1 0 0 0 0

X25 0 1 0 0 1 0 0 1 0 0 0 0 1 0

X51 0 1 0 0 0 1 1 0 0 0 0 1 0 0

X64 0 1 0 0 0 1 0 1 1 0 0 0 0 0

X56 0 0 1 1 0 0 1 0 0 1 1 1 0 0

X65 0 0 1 1 0 0 0 1 1 0 0 0 1 1

X34 0 0 1 0 0 0 0 0 1 1 0 0 0 0

X21 0 0 1 0 0 0 0 0 0 0 0 1 1 0

X42 0 0 0 1 0 0 1 0 0 0 0 0 0 1

X13 0 0 0 1 0 0 0 1 0 0 1 0 0 0


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The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 p4 q1 q2 r1 r2 s1 s2 s3 s4 s5 s6
1 1 0 0 −1 −1 0 0 0 0 0 0 0 0

1 0 0 0 −1 0 0 1 −1 1 −1 0 0 0

0 1 0 0 −1 0 −1 0 −1 1 0 0 0 1

0 1 0 1 0 0 −1 −1 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 −1 0 0 −1 0

0 0 1 0 0 1 0 0 −1 0 0 −1 0 0



The D-term charge matrix is

QD =



p1 p2 p3 p4 q1 q2 r1 r2 s1 s2 s3 s4 s5 s6
0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1



The total charge matrix Qt does not have repeated columns. Accordingly, the

global symmetry is U(1)f1 ×U(1)f2 ×U(1)R. The mesonic charges on the GLSM fields

corresponding to extremal points in the toric diagram in Figure 17 are presented in

Table 30. The charges have been found using the constraints discussed in §2.3.

U(1)f1 U(1)f2 U(1)R fugacity

p1 1 0 R1 = 1/
√

3 t1
p2 -1/2 1/2 R1 = 1/

√
3 t2

p3 -1 0 R2 = 1− 1/
√

3 t3
p4 1/2 -1/2 R2 = 1− 1/

√
3 t4

Table 30. The GLSM fields corresponding to extremal points of the toric diagram with their

mesonic charges (Model 8a). The R-charges are obtained using a-maximization.

Products of non-extremal perfect matchings are labelled in terms of single variables

as follows

q = q1q2 , r = r1r2 , s =
6∏

m=1

sm . (10.2)

The fugacity which counts extremal perfect matchings pα is tα. A product of non-

extremal perfect matchings such as q above is associated to the fugacity of the form

yq.
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The mesonic Hilbert series of Model 8a is calculated using the Molien integral

formula in (2.9). It is

g1(tα, yq, yr, ys;Mmes
8a ) = (1 + y2qy

2
rys t1t

3
2t4 + yqyrys t1t2t3t4 − y3qy2ry2s t31t32t3t4

+yqy
2
rys t

2
2t3t

2
4 − y3qy3ry2s t21t42t3t24 − y2qy2ry2s t21t22t23t24 − y4qy4ry3s t31t52t23t34)

× 1

(1− y2qyrys t21t22)(1− yqys t21t3)(1− y2qy3rys t42t24)(1− yrys t23t24)
. (10.3)

The plethystic logarithm of the mesonic Hilbert series is

PL[g1(tα, yq, yr, ys;Mmes
8a )] = y2qyrys t

2
1t

2
2 + yqys t

2
1t3 + y2qy

2
rys t1t

3
2t4 + yqyrys t1t2t3t4

+y2qy
3
rys t

4
2t

2
4 − y3qy2ry2s t31t32t3t4 − y4qy4ry2s t21t62t24 + yqy

2
rys t

2
2t3t

2
4 − 2 y3qy

3
ry

2
s t

2
1t

4
2t3t

2
4

+ . . . . (10.4)

Consider the following fugacity map

f1 =
t1t

1/2
3

yr t2t
1/2
4

, f2 =
t2t

1/2
4

ys t1t
1/2
3

, t̃1 = y1/2q y1/2r y1/2s t
1/2
1 t

1/2
2 , t̃2 = t

1/2
3 t

1/2
4 , (10.5)

where the fugacities f1 and f2 count flavour charges, and the fugacities t̃1 and t̃2 count

R-charges R1 and R2 in Table 30 respectively. Under the fugacity map above, the

plethystic logarithm becomes

PL[g1(t̃α, f1, f2;Mmes
8a )] = f1f2t̃

4
1 + f1t̃

2
1t̃2 + f2t̃

4
1t̃2 + t̃21t̃

2
2 +

f2
f1
t̃41t̃

2
2 − f1f2t̃61t̃22

−f 2
2 t̃

8
1t̃

2
2 +

1

f1
t̃21t̃

3
2 − 2f2t̃

6
1t̃

3
2 . . . . (10.6)

The above plethystic logarithm exhibits the moduli space generators with their corre-

sponding mesonic charges. They are summarized in Table 31. The generators can be

presented on a charge lattice. The convex polygon formed by the generators in Table 31

is the dual reflexive polygon of the toric diagram of Model 8a. For the case of Model

8a, the toric diagram is self-dual, and the charge lattice of the generators forms again

the toric diagram of Model 8a.
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Generator U(1)f1 U(1)f2

p21p3 q s 1 0

p23p
2
4 r s -1 -1

p1p2p3p4 q r s 0 0

p21p
2
2 q

2 r s 1 1

p22p3p
2
4 q r

2 s -1 0

p1p
3
2p4 q

2 r2 s 0 1

p42p
2
4 q

2 r3 s -1 1

Table 31. The generators and lattice of generators of the mesonic moduli space of Model 8a

in terms of GLSM fields with the corresponding flavor charges.

Generator U(1)f1 U(1)f2

X16X62X21 = X34X45X53 1 0

X56X65 = X13X34X42X21 -1 -1

X16X65X51 = X25X56X62 = X36X65X53 = X45X56X64 0 0

= X13X36X62X21 = X13X34X45X51 = X16X64X42X21 = X25X53X34X42

X16X62X25X51 = X16X64X45X51 = X25X53X36X62 = X36X64X45X53 1 1

X13X36X65X51 = X25X56X64X42 = X13X36X64X42X21 = X13X34X42X25X51 -1 0

X13X36X62X25X51 = X13X36X64X45X51 = X16X64X42X25X51 = X25X53X36X64X42 0 1

X13X36X64X42X25X51 -1 1

Table 32. The generators in terms of bifundamental fields (Model 8a).

The mesonic Hilbert series and the plethystic logarithm can be re-expressed in

terms of just 3 fugacities

T1 =
t̃2

f 2
1 f2 t̃

4
1

=
t4

y2qys t
3
1t2

, T2 = f1f2 t̃
4
1 = y2qyrys t

2
1t

2
2 , T3 = f1 t̃

2
1t̃2 = yqys t

2
1t3 ,

(10.7)

such that

g1(T1, T2, T3;Mmes
8a ) =

1 + T1T
2
2 + T1T2T3 − T1T 2

2 T3 + T 2
1 T

2
2 T3 − T 2

1 T
3
2 T3 − T 2

1 T
2
2 T

2
3 − T 3

1 T
4
2 T

2
3

(1− T2)(1− T3)(1− T 2
1 T

3
2 )(1− T 2

1 T2T
2
3 )

(10.8)

and

PL[g1(T1, T2, T3;Mmes
8a )] = T2 + T3 + T1T

2
2 + T1T2T3 + T 2

1 T
3
2 − T1T 2

2 T3 − T 2
1 T

4
2

+T 2
1 T

2
2 T3 − 2T 2

1 T
3
2 T3 + . . . . (10.9)
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The above Hilbert series and plethystic logarithm in terms of just three fugacities with

positive powers illustrate the conical structure of the toric Calabi-Yau 3-fold.

10.2 Model 8 Phase b
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Figure 18. The quiver, toric diagram, and brane tiling of Model 8b. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X31X12X23 +X56X62X25 +X64X42X26 +X61X15X
1
53X36 +X34X45X

2
53

−X31X15X
2
53 −X36X62X23 −X56X64X45 −X61X12X26 −X25X

1
53X34X42 .

(10.10)

The perfect matching matrix is
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P =



p1 p2 p3 p4 q1 q2 r1 r2 s1 s2 s3 s4 s5 s6 s7
X560 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0

X23 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0

X26 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0

X15 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1

X34 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1

X2
53 0 1 0 1 1 0 1 1 0 0 0 1 0 0 0

X42 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0

X61 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0

X62 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1

X1
53 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0

X45 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0

X31 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0

X12 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1

X64 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1

X36 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0

X25 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0



The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 p4 q1 q2 r1 r2 s1 s2 s3 s4 s5 s6 s7
1 1 1 1 0 0 −1 0 0 −1 0 0 −1 −1 0

1 1 0 0 −1 −1 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 −1 0 1 0 −1 0 0 −1 0

0 0 1 0 1 0 0 0 0 0 0 0 0 −1 −1

0 0 0 1 1 0 −1 0 0 −1 1 0 0 −1 0

0 0 0 1 1 0 −1 0 1 0 0 −1 0 −1 0

0 0 0 1 1 0 0 −1 −1 0 1 0 0 0 −1



The D-term charge matrix is

QD =



p1 p2 p3 p4 q1 q2 r1 r2 s1 s2 s3 s4 s5 s6 s7
0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1



The total charge matrix Qt does not have repeated columns. Accordingly, the

global symmetry is U(1)f1 ×U(1)f2 ×U(1)R. The flavour and R-charges on the GLSM

fields corresponding to extremal points in the toric diagram are the same as in Model

8a, and are given in Table 30.
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Products of non-extremal perfect matchings are expressed as

q = q1q2 , r = r1r2 , s =
7∏

m=1

sm . (10.11)

The extremal perfect matchings are counted by tα. Products of non-extremal perfect

matchings such as q are associated to a fugacity of the form yq.

The mesonic Hilbert series and the plethystic logarithm are identical to the ones

for Model 8a and are given in (10.3) and (10.6) respectively. As a result, the mesonic

moduli spaces for Models 8a and 8b are the same.

The generators of the mesonic moduli space in terms of all perfect matchings of

Model 8b are shown in Table 31. In terms of Model 8b quiver fields, the generators

are shown in Table 33. From the plethystic logarithm in (10.6) one observes that the

mesonic moduli space is not a complete intersection.

Generator U(1)f1 U(1)f2

X26X62 = X15X
1
53X31 = X34X45X

1
53 1 0

X15X56X61 = X23X34X42 -1 -1

X15X
1
53X36X61 = X25X

1
53X34X42 = X12X23X31 = X12X26X61 = X15X

2
53X31 0 0

= X23X36X62 = X25X56X62 = X26X64X42 = X34X45X
2
53 = X45X56X64

X12X25X
1
53X31 = X25X

1
53X36X62 = X36X64X45X

1
53 1 1

X12X23X36X61 = X12X25X56X61 = X15X
2
53X36X61 -1 0

= X23X36X64X42 = X25X
2
53X34X42 = X25X56X64X42

X12X25X
1
53X36X61 = X25X

1
53X36X64X42 = X12X25X

2
53X31 = X25X

2
53X36X62 = X36X64X45X

2
53 0 1

X12X25X
2
53X36X61 = X25X

2
53X36X64X42 -1 1

Table 33. The generators in terms of bifundamental fields (Model 8b).
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11 Model 9: PdP3b

11.1 Model 9 Phase a
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Figure 19. The quiver, toric diagram, and brane tiling of Model 9a.

The superpotential is

W = +X12X26X61 +X25X53X32 +X42X21X14 +X13X34X46X65X51

−X13X32X21 −X25X51X12 −X46X61X14 −X26X65X53X34X42 (11.1)

The perfect matching matrix is

P =



p1 p2 p3 p4 p5 q1 q2 s1 s2 s3 s4 s5 s6
X26 1 0 0 0 0 1 0 1 0 0 0 0 0

X51 1 0 0 0 0 0 1 0 1 0 0 0 0

X13 0 1 0 0 0 1 0 0 0 1 0 0 0

X42 0 1 0 0 0 0 1 0 0 0 1 0 0

X46 0 0 1 0 0 0 0 1 0 0 1 0 0

X53 0 0 1 0 0 0 0 0 1 1 0 0 0

X14 1 0 0 1 0 1 0 0 0 1 0 1 0

X32 1 0 0 1 0 0 1 0 0 0 1 1 0

X25 0 1 0 0 1 1 0 1 0 0 0 0 1

X61 0 1 0 0 1 0 1 0 1 0 0 0 1

X12 0 0 1 1 0 0 0 0 0 1 1 1 0

X21 0 0 1 0 1 0 0 1 1 0 0 0 1

X65 0 0 0 1 0 0 0 0 0 0 0 0 1

X34 0 0 0 0 1 0 0 0 0 0 0 1 0



The F-term charge matrix QF = ker (P ) is
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QF =



p1 p2 p3 p4 p5 q1 q2 s1 s2 s3 s4 s5 s6
1 1 0 0 0 −1 −1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 −1 −1

1 0 1 0 1 0 0 −1 −1 0 0 −1 0

0 0 1 0 0 1 0 −1 0 −1 0 0 0

0 0 1 0 0 0 1 0 −1 0 −1 0 0



The D-term charge matrix is

QD =



p1 p2 p3 p4 p5 q1 q2 s1 s2 s3 s4 s5 s6
0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 0 0 0 1 −1



The total charge matrix does not exhibit repeated columns. Accordingly, the global

symmetry is U(1)f1 × U(1)f2 × U(1)R. Following the discussion in §2.3, the mesonic

charges on extremal perfect matchings are found. They are shown in Table 34.

U(1)f1 U(1)f2 U(1)R fugacity

p1 -2/5 1/2 R1 = 2
(
−2 +

√
5
)

t1
p2 -1/5 -1/2 R1 = 2

(
−2 +

√
5
)

t2
p3 2/5 0 R1 = 2

(
−2 +

√
5
)

t3
p4 1/5 0 R2 = 7− 3

√
5 t4

p5 0 0 R2 = 7− 3
√

5 t5

Table 34. The GLSM fields corresponding to extremal points of the toric diagram with their

mesonic charges (Model 9a). The R-charges are obtained using a-maximization.

Products of non-extremal perfect matchings are expressed as

q = q1q2 , s =
6∏

m=1

sm . (11.2)

Extremal perfect matchings are counted by tα. Products of non-extremal perfect match-

ings such as q are counted by a fugacity of the form yq.

The mesonic Hilbert series of Model 9a is found using the Molien integral formula

– 73 –



in (2.3). It is

g1(tα, yq, ys;Mmes
9a ) =

P (tα)

(1− y2qys t31t2t24)(1− yqys t21t3t24)(1− ys t23t4t5)(1− y2qys t1t32t25)(1− yqys t22t3t25)
.

(11.3)

The numerator is given by the polynomial

P (tα) = 1 + y2qys t
2
1t

2
2t4t5 + yqys t1t2t3t4t5 − y3qy2s t41t22t3t34t5 − y2qy2s t31t2t23t34t5

−y3qy2s t31t32t3t24t25 − y2qy2s t21t22t23t24t25 − y3qy2s t21t42t3t4t35 − y2qy2s t1t32t23t4t35
+y4qy

3
s t

4
1t

4
2t

2
3t

3
4t

3
5 + y3qy

3
s t

3
1t

3
2t

3
3t

3
4t

3
5 + y5qy

4
s t

5
1t

5
2t

3
3t

4
4t

4
5 . (11.4)

The plethystic logarithm of the mesonic Hilbert series is

PL[g1(tα, yq, ys;Mmes
9a )] = ys t

2
3t4t5 + yqys t1t2t3t4t5 + yqys t

2
1t3t

2
4 + yqys t

2
2t3t

2
5

+y2qys t
2
1t

2
2t4t5 + y2qys t1t

3
2t

2
5 + y2qys t

3
1t2t

2
4 − 2 y2qy

2
s t

2
1t

2
2t

2
3t

2
4t

2
5 − y2qy2s t31t2t23t34t5

−y2qy2s t1t32t23t4t35 + . . . . (11.5)

Consider the following fugacity map

f1 = y−2/3q y1/3s t
−2/3
1 t

2/3
2 t

4/3
3 , f2 =

t1t4
t2t5

, t̃1 = y1/3q y1/3s t
1/3
1 t

1/3
2 t

1/3
3 , t̃2 = t

1/2
4 t

1/2
5 ,

(11.6)

where the fugacities f1 and f2 count flavour charges, and the fugacities t̃1 and t̃2 count

the R-charges R1 and R2 in Table 34 respectively. Under the fugacity map above, the

plethystic logarithm becomes

PL[g1(t̃α, f1, f2;Mmes
9a )] = f1t̃

2
1t̃

2
2 +

(
1 + f2 +

1

f2

)
t̃31t̃

2
2 +

(
1

f1
+

1

f1f2
+
f2
f1

)
t̃41t̃

2
2

−
(

2 + f2 +
1

f2

)
t̃61t̃

4
2 + . . . . (11.7)

This plethystic logarithm exhibits the moduli space generators with their mesonic

charges. They are summarized in Table 35. The generators can be presented on a

charge lattice. The convex polygon formed by the generators in Table 35 is the dual

reflexive polygon of the toric diagram of Model 9a. For the case of Model 9a, the

toric diagram is self-dual, and the charge lattice of the generators forms again the toric

diagram of Model 9a.
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Generator U(1)f1 U(1)f2

p23p4p5 s 1 0

p21p3p
2
4 q s 0 1

p1p2p3p4p5 q s 0 0

p22p3p
2
5 q s 0 -1

p31p2p
2
4 q

2 s -1 1

p21p
2
2p4p5 q

2 s -1 0

p1p
3
2p

2
5 q

2 s -1 -1

Table 35. The generators and lattice of generators of the mesonic moduli space of Model 9a

in terms of GLSM fields with the corresponding flavor charges.

Generator U(1)f1 U(1)f2

X12X21 = X34X46X65X53 1 0

X12X26X65X51 = X14X46X65X51 = X26X65X53X32 0 1

X13X34X46X65X51 = X26X65X53X34X42 = X12X25X51 = X12X26X61 0 0

= X13X32X21 = X14X42X21 = X14X46X61 = X25X53X32

X13X34X42X21 = X13X34X46X61 = X25X53X34X42 0 -1

X13X32X26X65X51 = X14X42X26X65X51 -1 1

X13X34X42X26X65X51 = X13X32X25X51 = X13X32X26X61 = X14X42X25X51 = X14X42X26X61 -1 0

X13X34X42X25X51 = X13X34X42X26X61 -1 -1

Table 36. The generators in terms of bifundamental fields (Model 9a).

The mesonic Hilbert series and the plethystic logarithm can be re-expressed in

terms of 3 fugacities

T1 =
t5

y2qys t
4
1t

3
4

, T2 = y2qys t
3
1t2t

2
4 , T3 = yqys t

2
1t3t

2
4 , (11.8)

such that

g1(T1, T2, T3;Mmes
9a ) =

(1 + T1T
2
2 + T1T2T3 − T1T 2

2 T3 − T1T2T 2
3 − T 2

1 T
3
2 T3 − T 2

1 T
2
2 T

2
3 − T 3

1 T
4
2 T3 − T 3

1 T
3
2 T

2
3

+T 3
1 T

4
2 T

2
3 + T 3

1 T
3
2 T

3
3 + T 4

1 T
5
2 T

3
3 )× 1

(1− T2)(1− T3)(1− T 2
1 T

3
2 )(1− T1T 2

3 )(1− T 2
1 T

2
2 T3)

(11.9)

and

PL[g1(T1, T2, T3;Mmes
9a )] = T1T

2
3 + T1T2T3 + T3 + T 2

1 T
2
2 T3 + T1T

2
2 + T 2

1 T
3
2 + T2

−2T 2
1 T

2
2 T

2
3 − T1T2T 2

3 − T 3
1 T

3
2 T

2
3 + . . . . (11.10)
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The above Hilbert series and plethystic logarithm illustrate the conical structure of the

toric Calabi-Yau 3-fold.

11.2 Model 9 Phase b
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Figure 20. The quiver, toric diagram, and brane tiling of Model 9b. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X2
25X53X32 +X56X62X

1
25 +X13X34X45X51 +X21X16X64X42

−X13X32X21 −X56X64X45 −X16X62X
2
25X51 −X1

25X53X34X42 (11.11)

The perfect matching matrix is

P =



0 p1 p2 p3 p4 p5 q1 q2 s1 s2 s3 s4 s5 s6 s7
X32 1 0 0 1 0 1 0 0 1 0 1 0 1 0

X1
25 1 0 0 1 0 0 1 1 0 0 0 0 0 0

X51 1 0 0 0 0 1 0 0 0 0 0 0 0 1

X64 1 0 0 0 0 0 1 0 0 1 0 0 1 0

X56 0 1 0 0 1 1 0 0 1 0 0 1 0 1

X2
25 0 1 0 0 1 0 1 1 0 0 0 0 0 0

X42 0 1 0 0 0 1 0 0 0 0 1 0 0 0

X13 0 1 0 0 0 0 1 0 0 1 0 1 0 0

X45 0 0 1 1 0 0 0 1 0 0 1 0 0 0

X21 0 0 1 0 1 0 0 1 0 0 0 0 0 1

X62 0 0 1 0 0 0 0 0 0 1 1 0 1 0

X53 0 0 1 0 0 0 0 0 0 1 0 1 0 1

X16 0 0 0 1 0 0 0 0 1 0 0 1 0 0

X34 0 0 0 0 1 0 0 0 1 0 0 0 1 0


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The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 p4 p5 q1 q2 s1 s2 s3 s4 s5 s6 s7
1 1 0 0 0 −1 −1 0 0 0 0 0 0 0

0 0 0 1 1 0 0 −1 −1 0 0 0 0 0

1 0 0 0 1 −1 0 −1 0 0 1 0 −1 0

1 0 0 0 1 0 −1 0 0 1 0 0 −1 −1

0 1 1 1 0 0 0 −1 0 0 −1 −1 0 0

0 0 1 0 0 1 0 0 0 0 −1 0 0 −1



The D-term charge matrix is

QD =



p1 p2 p3 p4 p5 q1 q2 s1 s2 s3 s4 s5 s6 s7
0 0 0 0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1



The total charge matrix Qt does not have repeated columns. Accordingly, the

global symmetry group for the Model 9b theory is U(1)f1 × U(1)f2 × U(1)R. The

flavour and R-charges on the extremal perfect matchings pα are the same as for Model

9a, and are summarised in Table 34. They are found following the discussion in §2.3.

Products of non-extremal perfect matchings are expressed as

q = q1q2 , s =
7∏

m=1

sm . (11.12)

The fugacity counting extremal perfect matchings pα is tα. The fugacity yq counts the

product of non-extremal perfect matchings q above.

The mesonic Hilbert series for Model 9b is identical to the one for Model 9a. The

mesonic Hilbert series is shown in (11.3). The corresponding plethystic logarithm in

(11.7) indicates that the mesonic moduli space is not a complete intersection. As a

summary, both Model 9a and 9b mesonic moduli spaces are identical.

The generators of the mesonic moduli space in terms of the perfect matching fields

of Model 9b are presented in Table 35. The charge lattice of mesonic generators forms

a convex polygon which is another reflexive polygon precisely being the dual of the

toric diagram. The generators of the mesonic moduli space in terms of quiver fields of

Model 9b are shown in Table 37.
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Generator U(1)f1 U(1)f2

X16X62X21 = X34X45X53 1 0

X1
25X53X32 = X16X62X

1
25X51 = X16X64X45X51 0 1

X13X32X21 = X1
25X56X62 = X2

25X53X32 = X45X56X64 0 0

= X13X34X45X51 = X16X64X42X21 = X16X62X
2
25X51 = X1

25X53X34X42

X2
25X56X62 = X13X34X42X21 = X2

25X53X34X42 0 -1

X13X32X
1
25X51 = X16X64X42X

1
25X51 -1 1

X13X32X
2
25X51 = X1

25X56X64X42 = X13X34X42X
1
25X51 = X16X64X42X

2
25X51 -1 0

X2
25X56X64X42 = X13X34X42X

2
25X51 -1 -1

Table 37. The generators in terms of bifundamental fields (Model 9b).

11.3 Model 9 Phase c
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Figure 21. The quiver, toric diagram, and brane tiling of Model 9c. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X21X16X
2
62 +X24X43X

2
32 +X2

25X53X
1
32 +X51X13X35 +X54X46X

1
62X

1
25

−X13X
1
32X21 −X24X46X

2
62 −X1

25X53X
2
32 −X54X43X35 −X16X

1
62X

2
25X51

(11.13)

The perfect matching matrix is
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P =



p1 p2 p3 p4 p5 q1 q2 s1 s2 s3 s4 s5 s6 s7 s8
X1

25 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0

X1
32 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1

X2
25 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0

X2
32 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1

X43 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0

X51 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0

X13 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0

X54 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0

X53 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0

X1
62 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1

X2
62 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1

X24 0 0 1 1 0 0 0 0 1 0 0 1 0 1 0

X21 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0

X16 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0

X46 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0

X35 0 0 1 1 1 0 0 1 1 0 0 0 0 0 1



The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 p4 p5 q1 q2 s1 s2 s3 s4 s5 s6 s7 s8
1 1 0 0 0 −1 −1 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 −1 −1 0 0 0 0 0 0

1 0 0 0 1 −1 0 −1 0 0 0 1 0 −1 0

1 0 0 0 1 −1 0 −1 0 1 0 0 −1 0 0

0 1 0 1 0 −1 0 −1 0 1 0 −1 0 0 0

0 0 1 0 0 1 0 0 −1 0 −1 0 0 0 0

0 0 0 0 0 0 0 −1 0 1 −1 0 0 0 1



The D-term charge matrix is

QD =



p1 p2 p3 p4 p5 q1 q2 s1 s2 s3 s4 s5 s6 s7 s8
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1



The total charge matrix Qt does not have repeated columns. Accordingly, the

global symmetry of Model 9c is the same as for Model 9a and 9b above and takes the

form U(1)f1 ×U(1)f2 ×U(1)R. The mesonic charges on the extremal perfect matchings

are summarised in Table 34.

The following products of non-extremal perfect matchings are assigned single vari-
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ables

q = q1q2 , s =
8∏

m=1

sm . (11.14)

The extremal perfect matchings are counted by the fugacity tα. Products of non-

extremal perfect matchings such as q above are associated to fugacities of the form

yq.

The mesonic Hilbert series is identical to the mesonic Hilbert series of Model 9a

and 9b. The mesonic Hilbert series is given in (11.3) with the corresponding plethystic

logarithm in (11.7). The mesonic Hilbert series of Models 9a, 9b and 9c are identical

and are not complete intersections.

The generators of the mesonic moduli space in terms of Model 9c GLSM fields

are shown in Table 35. The mesonic charges of the generators correspond to lattice

coordinates of points which form a reflexive polygon being the dual of the toric diagram.

The generators in terms of quiver fields of Model 9c are shown in Table 38.

Generator U(1)f1 U(1)f2

X35X53 = X16X
1
62X21 = X24X46X

1
62 1 0

X16X
1
62X

1
25X51 = X24X43X

1
32 = X1

25X53X
1
32 0 1

X16X
1
62X

2
25X51 = X1

25X54X46X
1
62 = X13X

1
32X21 = X13X35X51 = 0 0

X16X
2
62X21 = X24X43X

2
32 = X24X46X

2
62 = X1

25X53X
2
32 = X2

25X53X
1
32 = X35X54X43

X2
25X54X46X

1
62 = X13X

2
32X21 = X2

25X53X
2
32 0 -1

X13X
1
32X

1
25X51 = X16X

2
62X

1
25X51 = X1

25X54X43X
1
32 -1 1

X13X
2
32X

1
25X51 = X13X

1
32X

2
25X51 = X16X

2
62X

2
25X51 = X1

25X54X43X
2
32 = X1

25X54X46X
2
62 = X2

25X54X43X
1
32 -1 0

X13X
2
32X

2
25X51 = X2

25X54X43X
2
32 = X2

25X54X46X
2
62 -1 -1

Table 38. The generators in terms of bifundamental fields (Model 9c).

– 80 –



12 Model 10: dP3

12.1 Model 10 Phase a
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Figure 22. The quiver, toric diagram, and brane tiling of Model 10a.

The superpotential is

W = +X13X32X21 +X56X64X45 +X43X35X52X26X61X14

−X13X35X56X61 −X14X45X52X21 −X26X64X43X32 (12.1)

The perfect matching matrix is

P =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6
X45 1 0 0 0 1 0 1 0 0 0 1 0

X13 1 0 0 0 0 1 1 0 0 0 0 1

X56 0 1 1 0 0 0 0 1 1 0 0 0

X21 0 1 0 1 0 0 0 1 0 1 0 0

X32 0 0 1 0 1 0 0 0 1 0 1 0

X64 0 0 0 1 0 1 0 0 0 1 0 1

X26 1 0 0 0 0 0 0 1 0 0 0 0

X43 0 1 0 0 0 0 1 0 0 0 0 0

X14 0 0 1 0 0 0 0 0 0 0 0 1

X35 0 0 0 1 0 0 0 0 0 0 1 0

X61 0 0 0 0 1 0 0 0 0 1 0 0

X52 0 0 0 0 0 1 0 0 1 0 0 0



The F-term charge matrix QF = ker (P ) is

– 81 –



QF =


p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6
1 1 0 0 0 0 −1 −1 0 0 0 0

0 0 0 1 1 0 0 0 0 −1 −1 0

0 1 0 0 1 1 −1 0 −1 −1 0 0

0 0 1 0 0 1 0 0 −1 0 0 −1



The D-term charge matrix is

QD =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6
0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 0 0 1 −1



The total charge matrix Qt does not exhibit repeated columns. Accordingly, the

global symmetry is U(1)f1 ×U(1)f2 ×U(1)R. The mesonic charges on the GLSM fields

corresponding to extremal points in the toric diagram in Figure 22 are found following

the discussion in §2.3. They are presented in Table 39.

U(1)f1 U(1)f2 U(1)R fugacity

p1 -1 0 1/3 t1
p2 -1 1 1/3 t2
p3 1 0 1/3 t3
p4 1 -1 1/3 t4
p5 0 0 1/3 t5
p6 0 0 1/3 t6

Table 39. The GLSM fields corresponding to extremal points of the toric diagram with their

mesonic charges (Model 10a).

The product of all internal perfect matchings is labelled as follows

s =
6∏

m=1

sm . (12.2)

The fugacity counting extremal perfect matchings is tα. The product of internal perfect

matchings is associated to the fugacity ys.

The refined mesonic Hilbert series of Model 10a is found using the Molien integral
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formula in (2.9). It is

g1(tα, ys;Mmes
10a ) =

P (tα)

(1− ys t22t23t4t5)(1− ys t1t2t23t25)(1− ys t22t3t24t6)
× 1

(1− ys t21t3t25t6)(1− ys t1t2t24t26)(1− ys t21t4t5t26)
.

(12.3)

The numerator is given by the polynomial

P (tα) = 1 + ys t1t2t3t4t5t6 − y2s t1t32t33t24t25t6 − y2s t21t22t33t4t35t6 − y2s t1t32t23t34t5t26
−2 y2s t

2
1t

2
2t

2
3t

2
4t

2
5t

2
6 − y2s t31t2t23t4t35t26 + y3s t

2
1t

4
2t

4
3t

3
4t

3
5t

2
6 + y3s t

3
1t

3
2t

4
3t

2
4t

4
5t

2
6

−y2s t21t22t3t34t5t36 − y2s t31t2t3t24t25t36 + y3s t
2
1t

4
2t

3
3t

4
4t

2
5t

3
6 + 2 y3s t

3
1t

3
2t

3
3t

3
4t

3
5t

3
6

+y3s t
4
1t

2
2t

3
3t

2
4t

4
5t

3
6 + y3s t

3
1t

3
2t

2
3t

4
4t

2
5t

4
6 + y3s t

4
1t

2
2t

2
3t

3
4t

3
5t

4
6 − y4s t41t42t43t44t45t46

−y5s t51t52t53t54t55t56 . (12.4)

The plethystic logarithm of the mesonic Hilbert series is

PL[g1(tα, ys;Mmes
10a )] = ys t1t2t3t4t5t6 + ys t

2
1t3t

2
5t6 + ys t

2
2t3t

2
4t6 + ys t1t2t

2
4t

2
6 + ys t1t2t

2
3t

2
5

+ys t
2
1t4t5t

2
6 + ys t

2
2t

2
3t4t5 − 3 y2s t

2
1t

2
2t

2
3t

2
4t

2
5t

2
6 − y2s t31t2t23t4t35t26 − y2s t1t32t23t34t5t26

−y2s t21t22t3t34t5t36 − y2s t21t22t33t4t35t6 − y2s t31t2t3t24t25t36 − y2s t1t32t33t24t25t6 + . . . .

(12.5)

Under the following fugacity map

f1 =
t2t4
t1t5

, f2 =
t3t5
t4t6

, t = y1/6s t
1/6
1 t

1/6
2 t

1/6
3 t

1/6
4 t

1/6
5 t

1/6
6 , (12.6)

where f1, f2 and t are the mesonic charge fugacities, the mesonic Hilbert series and the

plethystic logarithm are expressed as

g1(t, f1, f2;Mmes
10a ) =

(
1 + t6 −

(
2 +

1

f1
+ f1 +

1

f2
+

1

f1f2
+ f2 + f1f2

)
t12

+
(

2 +
1

f1
+ f1 +

1

f2
+

1

f1f2
+ f2 + f1f2

)
t18 − t24 − t30

)
×

1(
1− 1

f1
t6
)

(1− f1t6)
(

1− 1
f2
t6
)(

1− 1
f1f2

t6
)

(1− f2t6)(1− f1f2t6)
(12.7)

and

PL[g1(t, f1, f2;Mmes
10a )] =

(
1 +

1

f1
+ f1 +

1

f2
+ f2 +

1

f1f2
+ f1f2

)
t6 −

(
3 +

1

f1
+ f1 +

1

f2

+f2 +
1

f1f2
+ f1f2

)
t12 + 2

(
2 +

1

f1
+ f1 +

1

f2
+ f2 +

1

f1f2
+ f1f2

)
t18 + . . . . (12.8)
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The above plethystic logarithm exhibits both the moduli space generators and the cor-

responding mesonic charges. They are summarized in Table 23. The generators can be

presented on a charge lattice. The convex polygon formed by the generators in Table 23

is the dual reflexive polygon of the toric diagram of Model 10a.

Generator U(1)f1 U(1)f2

p22p
2
3p4p5 s 1 1

p1p2p
2
3p

2
5 s 0 1

p22p3p
2
4p6 s 1 0

p1p2p3p4p5p6 s 0 0

p21p3p
2
5p6 s -1 0

p1p2p
2
4p

2
6 s 0 -1

p21p4p5p
2
6 s -1 -1

Figure 23. The generators and lattice of generators of the mesonic moduli space of Model

10a in terms of GLSM fields with the corresponding flavor charges.

Generator U(1)f1 U(1)f2

X14X43X32X21 = X14X43X35X56X61 1 1

X14X45X56X61 = X14X43X32X26X61 0 1

X35X56X64X43 = X14X43X35X52X21 1 0

X14X43X35X52X26X61 = X13X32X21 = X45X56X64 = X13X35X56X61 = X14X45X52X21 = X26X64X43X32 0 0

X13X32X26X61 = X14X45X52X26X61 -1 0

X13X35X52X21 = X26X64X43X35X52 0 -1

X26X64X45X52 = X13X35X52X26X61 -1 -1

Figure 24. The generators in terms of bifundamental fields (Model 10a).

Under the following fugacity map

T1 =
t6

f1f2
= ys t

2
1t4t5t

2
6 , T2 = f1 =

t2t4
t1t5

, T3 = f2 =
t3t5
t4t6

, (12.9)

the mesonic Hilbert series and the plethystic logarithm can be rewritten as

g1(T1, T2, T3;Mmes
10a ) =

(
1 + T1T2T3 − (2T 2

1 T
2
2 T

2
3 + T 2

1 T2T
2
3 + T 2

1 T
3
2 T

2
3 + T 2

1 T
2
2 T3

+T 2
1 T2T3 + T 2

1 T
2
2 T

3
3 + T 2

1 T
3
2 T

3
3 ) + (2T 3

1 T
3
2 T

3
3 + T 3

1 T
2
2 T

3
3 + T 3

1 T
4
2 T

3
3 + T 3

1 T
3
2 T

2
3

+T 3
1 T

2
2 T

2
3 + T 3

1 T
3
2 T

4
3 + T 3

1 T
4
2 T

4
3 )− T 4

1 T
4
2 T

4
3 − T 5

1 T
5
2 T

5
3

)
×

1

(1− T1T3)(1− T1T 2
2 T3)(1− T1T2)(1− T1)(1− T1T2T 2

3 )(1− T1T 2
2 T

2
3 )

(12.10)
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and

PL[g1(t, f1, f2;Mmes
10a )] = T1T2T3 + T1T3 + T1T

2
2 T3 + T1T2 + T1T2T

2
3 + T1 + T1T

2
2 T

2
3

−(3T 2
1 T

2
2 T

2
3 + T 2

1 T2T
2
3 + T 2

1 T
3
2 T

2
3 + T 2

1 T
2
2 T3 + T 2

1 T
2
2 T

3
3 + T 2

1 T2T3 + T 2
1 T

3
2 T

3
3 )

+4T 3
1 T

3
2 T

3
3 + T 3

1 T
2
2 T

3
3 + T 3

1 T
4
2 T

3
3 + T 3

1 T
3
2 T

2
3 + T 3

1 T
3
2 T

4
3 + T 3

1 T
2
2 T

2
3 + T 3

1 T
4
2 T

4
3 + . . .

(12.11)

such that the powers of the fugacities are all positive indicating the cone structure of

the variety.

12.2 Model 10 Phase b
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Figure 25. The quiver, toric diagram and brane tiling of Model 10b. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X31X15X53 +X42X23X34 +X56X64X
2
45 +X52X26X61X14X

1
45

−X42X26X64 −X53X34X
1
45 −X56X61X15 −X14X

2
45X52X23X31 (12.12)

The perfect matching matrix is
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P =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6 s7
X2

45 1 0 0 0 0 1 0 0 0 0 1 0 0

X15 1 0 1 0 1 0 0 0 0 0 1 1 0

X34 1 0 0 0 1 0 1 0 1 0 0 1 0

X26 1 0 0 0 0 0 1 0 0 1 0 0 0

X42 0 1 0 1 0 1 0 0 0 0 1 0 1

X56 0 1 0 1 0 0 1 0 0 1 0 0 1

X1
45 0 1 1 0 0 0 0 0 0 0 1 0 0

X31 0 1 0 0 0 0 1 0 1 0 0 0 0

X64 0 0 1 0 1 0 0 1 1 0 0 1 0

X23 0 0 1 0 0 0 0 1 0 1 0 0 0

X53 0 0 0 1 0 1 0 1 0 1 0 0 1

X14 0 0 0 1 0 0 0 0 0 0 0 1 0

X52 0 0 0 0 1 0 0 0 0 0 0 0 1

X61 0 0 0 0 0 1 0 1 1 0 0 0 0



The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6 s7
1 1 0 0 0 0 −1 0 0 0 −1 0 0

1 0 1 0 −1 0 0 0 0 −1 −1 0 1

1 0 0 1 0 −1 −1 0 1 0 0 −1 0

0 0 0 1 1 0 0 0 0 0 0 −1 −1

0 0 0 0 0 0 1 1 −1 −1 0 0 0



The D-term charge matrix is

QD =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6 s7
0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 0 0 0 1 −1



The total charge matrix Qt does not exhibit repeated columns. Accordingly, the

global symmetry of Model 10b is identical to the one for Model 10a, U(1)f1 ×U(1)f2 ×
U(1)R. The flavour and R-charges on the extremal perfect matchings are found follow-

ing the discussion in §2.3. They are identical to Model 10a, and are shown in Table 39.

The product of all internal perfect matchings is given by the variable

s =
7∏

m=1

sm . (12.13)

The fugacity for extremal perfect matchings pα is tα and the fugacity for the above

product of internal perfect matchings is ys.
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The mesonic Hilbert series of Model 10a and 10b are identical. They are called

phases of the same toric moduli space. The Hilbert series is found in (12.4) with the

plethystic logarithm in (12.8). The moduli space is not a complete intersection.

The generators of the mesonic moduli space in terms of the perfect matchings of

Model 10b are shown in Table 23. The generators in terms of quiver fields of Model 10b

are shown in Table 24. The charge lattice of generators is the dual reflexive polygon of

the toric diagram of Model 10b.

Generator U(1)f1 U(1)f2

X15X52X23X31 = X23X34X
1
45X52 = X26X64X

1
45X52 1 1

X15X52X26X61 = X23X34X
2
45X52 = X26X64X

2
45X52 0 1

X1
45X56X64 = X14X

1
45X52X23X31 1 0

X14X
2
45X52X23X31 = X14X

1
45X52X26X61 = X15X53X31 = X15X56X61 = X23X34X42 = X26X64X42 = X34X

1
45X53 = X2

45X56X64 0 0

X34X
2
45X53 = X14X

2
45X52X26X61 -1 0

X14X42X23X31 = X14X
1
45X53X31 = X14X

1
45X56X61 0 -1

X14X42X26X61 = X14X
2
45X53X31 = X14X

2
45X56X61 -1 -1

Table 40. The generators in terms of bifundamental fields (Model 10b).

12.3 Model 10 Phase c
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Figure 26. The quiver, toric diagram, and brane tiling of Model 10c. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X41X13X
2
34 +X42X23X

1
34 +X1

45X52X26X
2
64 +X51X16X

1
64X

2
45

−X41X16X
2
64 −X42X26X

1
64 −X2

45X52X23X
2
34 −X51X13X

1
34X

1
45 (12.14)

The perfect matching matrix is
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P =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6 s7 s8
X42 1 0 0 0 1 1 0 0 1 0 1 1 0 0

X2
34 1 0 0 0 1 0 0 1 0 0 0 0 0 1

X2
64 1 0 0 0 0 1 0 0 0 0 0 0 1 1

X51 1 0 0 0 0 0 0 0 0 1 0 1 0 0

X41 0 1 1 1 0 0 0 0 1 1 0 1 0 0

X1
64 0 1 1 0 0 0 0 0 0 0 0 0 1 1

X1
34 0 1 0 1 0 0 0 1 0 0 0 0 0 1

X52 0 1 0 0 0 0 0 0 0 0 1 1 0 0

X1
45 0 0 1 0 1 0 0 0 1 0 0 0 0 0

X23 0 0 1 0 0 0 1 0 0 1 0 0 1 0

X2
45 0 0 0 1 0 1 0 0 1 0 0 0 0 0

X26 0 0 0 1 0 0 1 1 0 1 0 0 0 0

X16 0 0 0 0 1 0 1 1 0 0 1 0 0 0

X13 0 0 0 0 0 1 1 0 0 0 1 0 1 0



The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6 s7 s8
1 1 0 0 0 0 0 0 0 0 0 −1 0 −1

1 0 0 1 0 −1 0 −1 0 0 1 −1 0 0

0 0 1 0 0 1 0 0 −1 0 0 0 −1 0

0 0 0 1 1 0 0 −1 −1 0 0 0 0 0

0 0 0 0 0 0 1 −1 0 0 0 0 −1 1

0 0 0 0 0 0 1 0 0 −1 −1 1 0 0



The D-term charge matrix is

QD =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6 s7 s8
0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1



The global symmetry for Model 10c is identical to the global symmetries of Model

10a and Model 10b, U(1)f1 × U(1)f2 × U(1)R. The mesonic charges on the extremal

perfect matchings with non-zero R-charge are shown in Table 39.

The product of all internal perfect matchings is expressed as

s =
8∏

m=1

sm . (12.15)

The fugacity tα counts extremal perfect matchings and the fugacity ys counts the above

product of internal perfect matchings.
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The mesonic Hilbert series is identical to the Hilbert series for Models 10a and 10b

in (12.3).

The moduli space generators in terms of all perfect matchings of Model 10c are

shown in Table 23, with the corresponding lattice of generators being the dual reflexive

polygon of the toric diagram. The generators in terms of quiver fields of Model 10c are

shown in Table 41.

Generator U(1)f1 U(1)f2

X16X
1
64X41 = X23X

1
34X

1
45X52 = X26X

1
64X

1
45X52 1 1

X13X
1
34X41 = X23X

1
34X

2
45X52 = X26X

1
64X

2
45X52 0 1

X16X
1
64X

1
45X51 = X23X

2
34X

1
45X52 1 0

X13X
2
34X41 = X16X

2
64X41 = X23X

1
34X42 = X26X

1
64X42 0 0

= X13X
1
34X

1
45X51 = X16X

1
64X

2
45X51 = X23X

2
34X

2
45X52 = X26X

2
64X

1
45X52

X13X
1
34X

2
45X51 = X26X

2
64X

2
45X52 -1 0

X23X
2
34X42 = X13X

2
34X

1
45X51 = X16X

2
64X

1
45X51 0 -1

X26X
2
64X42 = X13X

2
34X

2
45X51 = X16X

2
64X

2
45X51 -1 -1

Table 41. The generators in terms of bifundamental fields (Model 10c).

12.4 Model 10 Phase d
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Figure 27. The quiver, toric diagram, and brane tiling of Model 10d. The red arrows in the

quiver indicate all possible connections between blocks of nodes.
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The superpotential is

W = +X15X
1
54X

2
41 +X25X

2
54X

2
42 +X26X

2
64X

3
42 +X1

41X13X
2
34 +X16X

1
64X

3
41 +X1

42X23X
1
34

−X15X
2
54X

3
41 −X13X

1
34X

2
41 −X23X

2
34X

2
42 −X25X

1
54X

3
42 −X1

41X16X
2
64 −X1

42X26X
1
64 .

(12.16)

The perfect matching matrix is

P =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
X2

42 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0

X3
42 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0

X1
41 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0

X34 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1

X64 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1

X15 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1

X3
41 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

X2
64 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1

X1
42 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0

X2
41 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0

X2
34 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1

X25 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1

X54 0 0 1 0 1 0 0 1 1 0 0 0 0 1 1 0 0

X13 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0

X2
54 0 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0

X16 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 0

X26 0 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0

X23 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0



The F-term charge matrix QF = ker (P ) is

QF =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
1 1 0 −1 −1 0 0 0 0 0 0 0 0 1 0 −1 0

1 0 0 1 0 −1 0 0 0 0 0 −1 0 1 −1 0 0

1 0 0 1 0 −1 0 0 0 0 0 −1 0 0 0 1 −1

0 1 0 −1 0 1 0 0 0 1 −1 0 0 0 0 0 −1

0 1 0 −1 0 1 0 0 0 0 0 1 −1 0 0 −1 0

0 0 1 0 0 1 0 −1 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 −1 −1 0

0 0 0 0 0 0 0 1 0 1 0 0 0 0 −1 −1 0

0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 −1 1



The D-term charge matrix is
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QD =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0



The symmetry U(1)f1 ×U(1)f2 ×U(1)R of Model 10d is identical to Models 10a to

10c discussed above. The symmetry charges on the extremal perfect matchings with

non-zero R-charges are shown in Table 39.

The product of all internal perfect matchings is

s =
11∏
m=1

sm . (12.17)

The fugacity ys counts the above product of internal perfect matchings whereas the

fugacity tα counts the external perfect matchings pα.

The mesonic Hilbert series of Model 10d is identical to Models 10a, 10b and 10c.

This indicates that the mesonic moduli spaces are identical, and given the corresponding

plethystic logarithm in (12.8), the mesonic moduli spaces are not complete intersections.

The moduli space generators in terms of all perfect matchings of Model 10d are

shown in Table 23 with the corresponding charge lattice of generators forming a reflexive

polygon which is the dual polygon of the toric diagram. The generators in terms of

quiver fields of Model 10d are shown in Table 28.

Generator U(1)f1 U(1)f2

X13X
2
34X

3
41 = X3

41X16X
2
64 = X1

42X25X
1
54 = X1

42X26X
2
64 1 1

X13X
1
34X

3
41 = X3

41X15X
1
54 = X2

42X25X
1
54 = X2

42X26X
2
64 0 1

X13X
2
34X

2
41 = X2

41X16X
2
64 = X23X

2
34X

1
42 = X1

42X25X
2
54 1 0

X13X
1
34X

2
41 = X13X

2
34X

1
41 = X2

41X15X
1
54 = X3

41X15X
2
54 = X1

41X16X
2
64 = X3

41X16X
1
64 = X23X

1
34X

1
42 0 0

= X23X
2
34X

2
42 = X2
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2
54 = X3

42X25X
1
54 = X1

42X26X
1
64 = X3

42X26X
2
64

X13X
1
34X

1
41 = X1

41X15X
1
54 = X23X

1
34X

2
42 = X2

42X26X
1
64 -1 0

X2
41X15X

2
54 = X2

41X16X
1
64 = X23X

2
34X

3
42 = X3

42X25X
2
54 0 -1

X1
41X15X

2
54 = X1

41X16X
1
64 = X23X

1
34X

3
42 = X3

42X26X
1
64 -1 -1

Figure 28. The generators in terms of bifundamental fields (Model 10d).
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13 Model 11: PdP2
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Figure 29. The quiver, toric diagram, and brane tiling of Model 11.

The superpotential is

W = +X21X14X42 +X53X32X
2
25 +X2

51X12X
1
25 +X13X34X45X

1
51

−X13X32X21 −X14X45X
2
51 −X1

51X12X
2
25 −X53X34X42X

1
25 (13.1)

The perfect matching matrix is

P =



p1 p2 p3 p4 q1 q2 s1 s2 s3 s4 s5
X14 1 0 0 0 1 0 1 0 0 1 0

X32 1 0 0 0 0 1 1 0 0 0 1

X1
25 1 0 0 0 1 0 0 1 0 0 0

X2
25 0 1 1 0 1 0 0 1 0 0 0

X1
51 1 0 0 0 0 1 0 0 1 0 0

X2
51 0 1 1 0 0 1 0 0 1 0 0

X13 0 1 0 0 1 0 0 0 0 1 0

X42 0 1 0 0 0 1 0 0 0 0 1

X21 0 0 1 1 0 0 0 1 1 0 0

X12 0 0 0 1 0 0 1 0 0 1 1

X34 0 0 1 0 0 0 1 0 0 0 0

X45 0 0 0 1 0 0 0 1 0 0 1

X53 0 0 0 1 0 0 0 0 1 1 0



The F-term charge matrix QF = ker (P ) is

QF =


p1 p2 p3 p4 q1 q2 s1 s2 s3 s4 s5
1 1 0 0 −1 −1 0 0 0 0 0

1 1 0 1 −1 0 0 0 −1 0 −1

0 1 −1 0 −1 0 1 1 0 0 −1

0 0 0 1 1 0 0 −1 0 −1 0


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The D-term charge matrix is

QD =


p1 p2 p3 p4 q1 q2 s1 s2 s3 s4 s5
0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 0 1 −1



The total charge matrix Qt does not exhibit repeated columns. Accordingly, the

global symmetry is U(1)f1 ×U(1)f2 ×U(1)R. The flavour and R-charges on the GLSM

fields corresponding to extremal points in the toric diagram in Figure 29 are found

following the discussion in §2.3. They are presented in Table 42.

U(1)f1 U(1)f2 U(1)R fugacity

p1 -1/4 -1/3 R1 ' 0.622 t1
p2 -1/4 0 R2 ' 0.502 t2
p3 0 2/3 R3 ' 0.306 t3
p4 1/2 -1/3 R4 ' 0.570 t4

Table 42. The GLSM fields corresponding to extremal points of the toric diagram with their

mesonic charges (Model 11).

Fine-tuning R-charges. The exact R-charges are expressed in terms of the root x0 in

the range 0 ≤ 1− x0 ≤ 2
3

of the polynomial

27− 42x− 68x2 + 42x3 + 9x4 = 0, (13.2)

where

R1 = 1 +
1

144

(
−63 + 250x0 − 422x20 − 384x30 + 261x40 + 54x50

)
R2 = 1 +

1

72

(
−189 + 281x0 + 257x20 − 177x30 − 36x40

)
R3 = 1 +

1

288

(
333− 1351x0 − 294x20 + 1450x30 − 327x40 − 99x50

)
R4 = 1− x0 . (13.3)

Products of non-extremal perfect matchings are assigned the following variables

q = q1q2 , s =
5∏

m=1

sm . (13.4)

The fugacities yq and ys count respectively the above products of internal perfect match-

ings. The fugacity tα counts all other extremal perfect matchings pα.
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The mesonic Hilbert series of Model 11 is found using the Molien integral formula

in (2.9). It is

g1(tα, yq, ys;Mmes
11 ) = (1 + yqys t1t2t3t4 + y2qys t1t

3
2t

2
3 + y2qys t

2
1t

2
2t3 − y2qy2s t21t22t23t24

−y2qy2s t31t2t3t24 − y3qy2s t31t32t23t4 − y3qy2s t41t22t3t4 − y3qy3s t41t42t33t24 + yqys t
2
2t

2
3t4)

× 1

(1− y2qys t31t2)(1− y2qys t42t33)(1− yqys t21t4)(1− ys t3t24)
. (13.5)

The plethystic logarithm of the mesonic Hilbert series is

PL[g1(tα, yq, ys;Mmes
11 )] = yqys t

2
1t4 + ys t3t

2
4 + y2qys t

3
1t2 + yqys t1t2t3t4 + y2qys t

2
1t

2
2t3

+yqys t
2
2t

2
3t4 + y2qys t1t

3
2t

2
3 + y2qys t

4
2t

3
3 − y2qy2s t31t2t3t24 − y3qy2s t41t22t3t4 − 2 y2qy

2
s t

2
1t

2
2t

2
3t

2
4

+ . . . . (13.6)

Consider the following fugacity map

f1 = y−3/4q y1/4s , f2 = y−1/4q y−1/4s ,

t̃1 = y1/4q y1/4s t1 , t̃2 = y1/4q y1/4s t2 , t̃3 = y1/4q y1/4s t3 , t̃4 = y1/4q y1/4s t4 , (13.7)

where the fugacities f1 and f2 count flavour charges, and the fugacity t̃i counts the

R-charge Ri in Table 42.

Under the fugacity map above, the plethystic logarithm becomes

PL[g1(t̃α, f1, f2;Mmes
11 )] =

1

f2
t̃21t̃4 + f1t̃3t̃

2
4 +

1

f1f2
t̃31t̃2 + t̃1t̃2t̃3t̃4 +

1

f1
t̃21t̃

2
2t̃3

+f2t̃
2
2t̃

2
3t̃4 +

f2
f1
t̃1t̃

3
2t̃

2
3 +

f 2
2

f1
t̃42t̃

3
3 −

1

f2
t̃31t̃2t̃3t̃

2
4 −

1

f1f2
t̃41t̃

2
2t̃3t̃4 − 2t̃21t̃

2
2t̃

2
3t̃

2
4 + . . . .

(13.8)

The plethsytic logarithm above exhibits the moduli space generators with the corre-

sponding mesonic charges. They are summarized in Table 43. The generators can be

presented on a charge lattice. The convex polygon formed by the generators in Table 43

is the dual reflexive polygon of the toric diagram of Model 11.
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Generator U(1)f1 U(1)f2

p3p
2
4 s 1 0

p21p4 q s 0 -1

p1p2p3p4 q s 0 0

p22p
2
3p4 q s 0 1

p31p2 q
2 s -1 -1

p21p
2
2p3 q

2 s -1 0

p1p
3
2p

2
3 q

2 s -1 1

p42p
3
3 q

2 s -1 2

Table 43. The generators and lattice of generators of the mesonic moduli space of Model 11

in terms of GLSM fields with the corresponding flavor charges.

Generator U(1)f1 U(1)f2

X12X21 = X34X45X53 1 0

X12X
1
25X

1
51 = X14X45X

1
51 = X32X

1
25X53 0 -1

X13X34X45X
1
51 = X34X

1
25X53X42 = X12X

1
25X

2
51 = X12X

2
25X

1
51 0 0

= X21X13X32 = X21X14X42 = X14X45X
2
51 = X32X

2
25X53

X12X
2
25X

2
51 = X21X13X34X42 = X13X34X45X

2
51 = X34X

2
25X53X42 0 1

X1
25X

1
51X13X32 = X1

25X
1
51X14X42 -1 -1

X1
25X

1
51X13X34X42 = X1

25X
2
51X13X32 = X2

25X
1
51X13X32 = X1

25X
2
51X14X42 = X2

25X
1
51X14X42 -1 0

X2
25X

2
51X13X32 = X2

25X
2
51X14X42 = X1

25X
2
51X13X34X42 = X2

25X
1
51X13X34X42 -1 1

X2
25X

2
51X13X34X42 -1 2

Table 44. The generators in terms of bifundamental fields (Model 11).

The mesonic Hilbert series and the plethystic logarithm can be re-expressed in

terms of just 3 fugacities

T1 =
f2 t̃2

f1 t̃1t̃24
=

t2
ys t1t24

, T2 =
1

f2
t̃21t̃4 = yqys t

2
1t4 , T3 = f1 t̃3t̃

2
4 = ys t3t

2
4 , (13.9)

such that

g1(T1, T2, T3;Mmes
11 ) =

(1 + T1T2T3 + T 3
1 T

2
2 T

2
3 + T 2

1 T
2
2 T3 − T 2

1 T
2
2 T

2
3 − T1T 2

2 T3 − T 3
1 T

3
2 T

2
3 − T 2

1 T
3
2 T3

−T 4
1 T

4
2 T

3
3 + T 2

1 T2T
2
3 )× 1

(1− T1T 2
2 )(1− T 4

1 T
2
2 T

3
3 )(1− T2)(1− T3)

(13.10)
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and

PL[g1(T1, T2, T3;Mmes
11 )] = T2 + T3 + T1T

2
2 + T1T2T3 + T 2

1 T
2
2 T3 + T 2

1 T2T
2
3

+T 3
1 T

2
2 T

2
3 + T 4

1 T
2
2 T

3
3 − T 2

1 T
3
2 T3 − T1T 2

2 T3 + 2T 2
1 T

2
2 T

2
3 + . . . . (13.11)

The powers of the fugacities in the Hilbert series and plethystic logarithm above are

all positive. This illustrates the conical structure of the toric Calabi-Yau 3-fold.

14 Model 12: dP2

14.1 Model 12 Phase a

1

5 4

2

3

8s1, ... , s5<

p5

p4

p1

p3

p2

Figure 30. The quiver, toric diagram, and brane tiling of Model 12a.

The superpotential is

W = +X21X14X
1
42 +X2

25X53X32 +X2
42X

1
25X51X13X34

−X13X32X21 −X14X
2
42X

2
25X51 −X1

25X53X34X
1
42 . (14.1)

The perfect matching matrix is
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P =



p1 p2 p3 p4 p5 s1 s2 s3 s4 s5
X14 1 0 0 0 0 1 0 0 0 1

X34 0 1 0 0 0 1 0 0 0 0

X1
25 1 0 0 0 0 0 1 0 0 0

X2
25 0 1 0 0 1 0 1 0 0 0

X1
42 0 0 1 0 1 0 0 1 0 0

X2
42 0 0 0 1 0 0 0 1 0 0

X32 1 0 1 0 0 1 0 1 0 0

X21 0 1 0 1 0 0 1 0 1 0

X51 0 0 1 0 0 0 0 0 1 0

X53 0 0 0 1 0 0 0 0 1 1

X13 0 0 0 0 1 0 0 0 0 1



The F-term charge matrix QF = ker (P ) is

QF =


p1 p2 p3 p4 p5 s1 s2 s3 s4 s5
1 1 0 0 0 −1 −1 0 0 0

0 0 1 1 0 0 0 −1 −1 0

0 1 0 −1 −1 −1 0 1 0 1



The D-term charge matrix is

QD =


p1 p2 p3 p4 p5 s1 s2 s3 s4 s5
0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 1 −1



The total charge matrix Qt does not exhibit repeated columns. Accordingly, the

global symmetry is U(1)f1 × U(1)f2 × U(1)R. The mesonic charges on the extremal

perfect matchings are found following the discussion in §2.3. They are presented in

Table 45.

U(1)f1 U(1)f2 U(1)R fugacity

p1 1/2 0 R1 = 1
16

(
−21 + 5

√
33
)

t1
p2 -1/2 0 R2 = 3

16

(
19− 3

√
33
)

t2
p3 0 -1/2 R2 = 3

16

(
19− 3

√
33
)

t3
p4 0 1/2 R1 = 1

16

(
−21 + 5

√
33
)

t4
p5 0 0 R3 = 1

2

(
−5 +

√
33
)

t5

Table 45. The GLSM fields corresponding to extremal points of the toric diagram with their

mesonic charges (Model 12a). The R-charges are obtained using a-maximization [69].
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The product of all internal perfect matchings is

s =
5∏

m=1

sm . (14.2)

The above product is counted by the fugacity ys. The extremal perfect matchings pα
are counted by tα.

The mesonic Hilbert series of Model 12a is calculated using the Molien integral

formula in (2.9). It is

g1(tα, ys;Mmes
12a ) =

P (tα)

(1− ys t21t3t4)(1− ys t1t2t24)(1− ys t21t23t5)(1− ys t22t24t5)(1− ys t22t23t35)
,

(14.3)

where the numerator is the polynomial

P (tα) = 1 + ys t1t2t3t4t5 − y2s t31t2t23t24t5 − y2s t21t22t3t34t5 + ys t1t2t
2
3t

2
5 + ys t

2
2t3t4t

2
5

−y2s t31t2t33t4t25 − 2 y2s t
2
1t

2
2t

2
3t

2
4t

2
5 − y2s t1t32t3t34t25 + y3s t

4
1t

2
2t

3
3t

3
4t

2
5 + y3s t

3
1t

3
2t

2
3t

4
4t

2
5

−y2s t21t22t33t4t35 − y2s t1t32t23t24t35 + y3s t
3
1t

3
2t

3
3t

3
4t

3
5 + y4s t

4
1t

4
2t

4
3t

4
4t

4
5 . (14.4)

The mesonic moduli space of Model 12a is not a complete intersection. The plethystic

logarithm of the mesonic Hilbert series is

PL[g1(tα, ys;Mmes
12a )] = ys t

2
1t3t4 + ys t1t2t

2
4 + ys t1t2t3t4t5 + ys t

2
1t

2
3t5 + ys t

2
2t

2
4t5

+ys t
2
2t3t4t

2
5 + ys t1t2t

2
3t

2
5 + ys t

2
2t

2
3t

3
5 − y2s t31t2t23t24t5 − y2s t21t22t3t34t5 − 3 y2s t

2
1t

2
2t

2
3t

2
4t

2
5

−y2s t31t2t33t4t25 − y2s t1t32t3t34t25 + . . . . (14.5)

Consider the following fugacity map

f1 = t3t4 , f2 =
t2t

2
4

t1
, t̃1 = y1/4s t

1/2
1 , t̃2 = y1/4s t

1/2
1 , t̃3 =

t2t3t4t5
t1

, (14.6)

where f1 and f2 are flavour charge fugacities, and t̃i is the fugacity for R-charge Ri in

Table 45. Under the fugacity map above, the above plethystic logarithm becomes

PL[g1(t̃α, f1, f2;Mmes
12a )] = (f1 + f2) t̃

3
1t̃2 +

(
1 +

f1
f2

+
f2
f1

)
t̃21t̃

2
2t̃3

+

(
1

f1
+

1

f2

)
t̃1t̃

3
2t̃

2
3 +

1

f1f2
t̃42t̃

3
3 − (f1 + f2) t̃

5
1t̃

3
2t̃3 −

(
3− f1

f2
− f2
f1

)
t̃41t̃

4
2t̃

2
3 + . . . .

(14.7)
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The above plethystic logarithm with its refinement exhibits all the moduli space gen-

erators with their mesonic charges. They are summarized in Table 46. The generators

can be presented on a charge lattice. The convex polygon formed by the generators in

Table 46 is the dual reflexive polygon of the toric diagram of Model 12a.

Generator U(1)f1 U(1)f2

p21p3p4 s 1 0

p1p2p
2
4 s 0 1

p21p
2
3p5 s 1 -1

p1p2p3p4p5 s 0 0

p22p
2
4p5 s -1 1

p1p2p
2
3p

2
5 s 0 -1

p22p3p4p
2
5 s -1 0

p22p
2
3p

3
5 s -1 -1

Table 46. The generators and lattice of generators of the mesonic moduli space of Model

12a in terms of GLSM fields with the corresponding flavor charges.

Generator U(1)f1 U(1)f2

X1
25X53X32 = X14X

2
42X

1
25X51 1 0

X14X
2
42X21 = X1

25X53X34X
2
42 0 1

X13X32X
1
25X51 = X14X

1
42X

1
25X51 1 -1

X13X34X
2
42X

1
25X51 = X14X

2
42X

2
25X51 = X1

25X53X34X
1
42 = X13X32X21 = X14X

1
42X21 = X2

25X53X32 0 0

X13X34X
2
42X21 = X2

25X53X34X
2
42 -1 1

X13X34X
1
42X

1
25X51 = X13X32X

2
25X51 = X14X

1
42X

2
25X51 0 1

X13X34X
2
42X

2
25X51 = X13X34X

1
42X21 = X2

25X53X34X
1
42 -1 0

X13X34X
1
42X

2
25X51 -1 -1

Table 47. The generators in terms of bifundamental fields (Model 12a).

The mesonic Hilbert series and the plethystic logarithm can be re-expressed in

terms of just 3 fugacities

T1 =
t̃3

f1f2 t̃41
=

t5
ys t21t

2
4

, T2 = f1 t̃
3
1t̃2 = ys t

2
1t3t4 , T3 = f2 t̃

3
1t̃2 = ys t1t2t

2
4 , (14.8)
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such that

g1(T1, T2, T3;Mmes
12a ) =

(1 + T1T2T3 − T1T 2
2 T3 − T1T2T 2

3 + T 2
1 T

2
2 T3 + T 2

1 T2T
2
3 − T 2

1 T
3
2 T3 − 2T 2

1 T
2
2 T

2
3

−T 2
1 T2T

3
3 + T 2

1 T
3
2 T

2
3 + T 2

1 T
2
2 T

3
3 − T 3

1 T
3
2 T

2
3 − T 3

1 T
2
2 T

3
3 + T 3

1 T
3
2 T

3
3 + T 4

1 T
4
2 T

4
3 )

× 1

(1− T2)(1− T3)(1− T1T 2
2 )(1− T1T 2

3 )(1− T 3
1 T

2
2 T

2
3 )

(14.9)

and

PL[g1(T1, T2, T3;Mmes
12a )] = T2 + T3 + T1T2T3 + T1T

2
2 + T1T

2
3 + T 2

1 T2T
2
3 + T 2

1 T
2
2 T3

+T 3
1 T

2
2 T

2
3 − T1T 2

2 T3 − T1T2T 2
3 − T 2

1 T
3
2 T3 − 3T 2

1 T
2
2 T

2
3 − T 2

1 T
3
2 T3 − T 2

1 T2T
3
3

+ . . . . (14.10)

The above Hilbert series and plethystic logarithm illustrate the conical structure of the

toric Calabi-Yau 3-fold.

14.2 Model 12 Phase b

5

4
2

13

8s1, ... , s6<

p5

p4

p1

p3

p2

Figure 31. The quiver, toric diagram, and brane tiling of Model 12b. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X15X
2
52X

2
21 +X1

21X14X
1
42 +X35X

1
52X23 +X13X34X

2
42X

3
21

−X14X
2
42X

2
21 −X15X

1
52X

3
21 −X34X

1
42X23 −X1

21X13X35X
2
52 . (14.11)
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The perfect matching matrix is

P =



p1 p2 p3 p4 p5 s1 s2 s3 s4 s5 s6
X1

21 1 0 1 0 0 1 0 0 0 0 0

X2
42 1 0 0 0 0 0 1 1 0 0 0

X2
21 0 1 1 0 1 1 0 0 0 0 0

X3
21 0 1 0 1 0 1 0 0 0 0 0

X23 1 0 0 1 0 1 0 0 0 0 1

X1
42 0 1 0 0 1 0 1 1 0 0 0

X1
52 0 0 1 0 1 0 1 0 1 0 0

X2
52 0 0 0 1 0 0 1 0 1 0 0

X15 1 0 0 0 0 0 0 1 0 1 1

X35 0 1 0 0 0 0 0 1 0 1 0

X34 0 0 1 0 0 0 0 0 1 1 0

X14 0 0 0 1 0 0 0 0 1 1 1

X13 0 0 0 0 1 0 0 0 0 0 1



The F-term charge matrix QF = ker (P ) is

QF =


p1 p2 p3 p4 p5 s1 s2 s3 s4 s5 s6
1 1 0 0 0 −1 0 −1 0 0 0

0 0 1 1 0 −1 0 0 −1 0 0

0 1 1 0 −1 −1 0 0 0 −1 1

0 0 0 0 0 0 1 −1 −1 1 0



The D-term charge matrix is

QD =


p1 p2 p3 p4 p5 s1 s2 s3 s4 s5 s6
0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 0 1 −1



The total charge matrix Qt does not have repeated columns. Accordingly, the

global symmetry is U(1)f1 × U(1)f2 × U(1)R. The charge assignment on the extremal

perfect matchings with non-zero R-charge is the the same as for Model 12a in Table 45.

The product of all internal perfect matchings is expressed as

s =
6∏

m=1

sm . (14.12)

The product is counted by the fugacity ys. The remaining extremal perfect matchings

pα are counted by the fugacity tα.

The mesonic Hilbert series and the plethystic logarithm of the Hilbert series is

the same as for Model 12a. They are shown respectively in (14.3), (14.5) and (14.7).
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Accordingly, the mesonic moduli spaces of Model 12a and 12b are toric duals.

The moduli space generators in terms of perfect matching variables of Model 12b

are shown in Table 46 with their corresponding mesonic charges. The generators in

terms of quiver fields are shown in Table 48.

Generator U(1)f1 U(1)f2

X14X
2
42X

1
21 = X15X

2
52X

1
21 = X23X34X

2
42 1 0

X14X
2
42X

3
21 = X15X

2
52X

3
21 = X23X35X

2
52 0 1

X15X
1
52X

1
21 = X13X34X

2
42X

1
21 1 -1

X13X35X
2
52X

1
21 = X13X34X

2
42X

3
21 = X14X

1
42X

1
21 = X14X

2
42X

2
21 = X15X

2
52X

2
21 = X15X

1
52X

3
21 = X23X34X

1
42 = X23X35X

1
52 0 0

X14X
1
42X

3
21 = X13X35X

2
52X

3
21 -1 1

X15X
1
52X

2
21 = X13X34X

1
42X

1
21 = X13X35X

1
52X

1
21 = X13X34X

2
42X

2
21 0 -1

X14X
1
42X

2
21 = X13X35X

2
52X

2
21 = X13X34X

1
42X

3
21 = X13X35X

1
52X

3
21 -1 0

X13X34X
1
42X

2
21 = X13X35X

1
52X

2
21 -1 -1

Table 48. The generators in terms of bifundamental fields (Model 12b).

15 Model 13: C3/Z4,(1,1,2), Y
2,2

4

12

3

8s1, ... , s4<8q1, q2<
p4

p2

p1 2

1

2

3

1

2

3

2

4

1

2

3

4

1

2

3

4

2

4

1

2

3

4

1

2

3

4

4 4 4

Figure 32. The quiver, toric diagram, and brane tiling Model 13.

The superpotential is

W = +X12X24X
1
41 +X31X

2
12X

2
23 +X2

41X13X
1
34 +X2

34X42X
1
23

−X12X23X31 −X13X
2
34X

1
41 −X2

41X
2
12X24 −X1

34X42X
2
23 . (15.1)

The perfect matching matrix is
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P =



p1 p2 p3 q1 q2 s1 s2 s3 s4
X1

34 1 0 0 1 0 1 0 0 0

X2
34 0 1 0 1 0 1 0 0 0

X2
12 1 0 0 1 0 0 1 0 0

X1
12 0 1 0 1 0 0 1 0 0

X1
23 1 0 0 0 1 0 0 1 0

X2
23 0 1 0 0 1 0 0 1 0

X1
41 1 0 0 0 1 0 0 0 1

X2
41 0 1 0 0 1 0 0 0 1

X24 0 0 1 0 0 1 0 1 0

X31 0 0 1 0 0 1 0 0 1

X13 0 0 1 0 0 0 1 1 0

X42 0 0 1 0 0 0 1 0 1



The F-term charge matrix QF = ker (P ) is

QF =


p1 p2 p3 q1 q2 s1 s2 s3 s4
1 1 0 −1 −1 0 0 0 0

0 0 1 1 0 −1 −1 0 0

0 0 1 0 1 0 0 −1 −1



The D-term charge matrix is

QD =


p1 p2 p3 q1 q2 s1 s2 s3 s4
0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 1 −1



The GLSM fields p1 and p2 are equally charged under the F-term and D-term

constraints. This is shown by the corresponding columns in the total charge matrix

Qt which are identical. Accordingly, the global symmetry is enhanced from U(1)3 to

SU(2)x × U(1)f × U(1)R with U(1)R being the R-symmetry. The mesonic charges on

the GLSM fields corresponding to extremal points in the toric diagram in Figure 32

are found following the discussion in §2.3. They are presented in Table 49.

U(1)f SU(2)x U(1)R fugacity

p1 -1/4 1/2 2/3 t1
p2 -1/4 -1/2 2/3 t2
p3 1/2 0 2/3 t3

Table 49. The GLSM fields corresponding to extremal points of the toric diagram with their

mesonic charges (Model 13).
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Products of non-extremal perfect matchings are expressed as follows

q = q1q2 , s =
4∏

m=1

sm . (15.2)

The fugacities counting the above products are respectively yq and ys. The fugacity

which counts extremal perfect matchings is tα.

The mesonic Hilbert series of Model 13 is computed using the Molien integral

formula in (2.9). It is

g1(tα, yq, ys;Mmes
13 ) =

1 + y2qys t
3
1t2 + y2qys t

2
1t

2
2 + y2qys t1t

3
2 + yqys t

2
1t3 + yqys t1t2t3 + yqys t

2
2t3 + y3qy

2
s t

3
1t

3
2t3

(1− y2qys t41)(1− y2qys t42)(1− ys t23)
.

(15.3)

The mesonic moduli space of Model 13 is not a complete intersection. The plethystic

logarithm of the mesonic Hilbert series is

PL[g1(tα, yq, ys;Mmes
13 )] = ys t

2
3 + yqys t1t2t3 + yqys t

2
1t3 + yqys t

2
2t3 + y2qys t

4
1

+y2qys t
3
1t2 + y2qys t

2
1t

2
2 + y2qys t1t

3
2 + y2qys t

4
2 − 2 y2qy

2
s t

2
1t

2
2t

2
3 + . . . . (15.4)

Consider the following fugacity map

f = y−2/3q y1/3s t
−2/3
1 t

−2/3
2 t

4/3
3 , x̃2 = x =

t1
t2
, t = y1/3q y1/3s t

1/3
1 t

1/3
2 t

1/3
3 , (15.5)

where the fugacities f , x and t are mesonic charge fugacities. x is the charge fugacity

for the enhanced symmetry SU(2)x. Using the redefinition of this fugacity to x̃ =
√
x

and the fugacities f and t, one can rewrite the expansion of the Hilbert series in terms

of characters of irreducible representations of SU(2) as follows

g1(t, x̃, f ;Mmes
13 ) =

∞∑
m=0

∞∑
n=0

(
[2m]x̃f

nt2n+3m + [4(n+ 1) + 2m]x̃f
−(n+1)t4(n+1)+3m

)
.

(15.6)

The corresponding plethystic logarithm is

PL[g1(t, x̃, f ;Mmes
13 )] = ft2 + [2]x̃t

3 + [4]x̃
1

f
t4 − (1 + [4]x̃)t

6 − ([2]x̃ + [4]x̃)
1

f
t7

−(1 + [4]x̃)
1

f 2
t8 + ([2]x̃ + [4]x̃)t

9 + (1 + 2[2]x̃ + 2[4]x̃ + [6]x̃)
1

f
t10 + . . . .

(15.7)
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In terms of the mesonic charge fugacities f , x and t, the above plethystic logarithm

exhibits the moduli space generators and their mesonic charges. They are summarized

in Table 50. The flavour charges of generators are integers using f and x. They can

be presented on a charge lattice. The convex polygon formed by the generators is the

dual reflexive polygon of the toric diagram.

As indicated in (15.7), the generators fall into irreducible representation of SU(2)

with the characters

ft2 + [2]x̃t
3 + [4]x̃

1

f
t4 = ft2 +

(
x̃2 + 1 +

1

x̃2

)
t3 +

(
x̃4 + x̃2 + 1 +

1

x̃2
+

1

x̃4

)
1

f
t4 .

(15.8)

The above three terms correspond to the three columns of points in the lattice of gen-

erators in Table 50. The generators in terms of quiver fields are shown in Table 51.

Generator U(1)f SU(2)x

p23 s 1 0

p21p3 q s 0 1

p1p2p3 q s 0 0

p22p3 q s 0 -1

p41 q
2 s -1 2

p31p2 q
2 s -1 1

p21p
2
2 q

2 s -1 0

p1p
3
2 q

2 s -1 -1

p42 q
2 s -1 -2

Table 50. The generators and lattice of generators of the mesonic moduli space of Model 13

in terms of GLSM fields with the corresponding flavor charges.

Generator U(1)f SU(2)x

X13X31 = X24X42 1 0

X2
12X

1
23X31 = X2

12X24X
1
41 = X13X

1
34X

1
41 = X1

23X
1
34X42 0 1

X1
12X

1
23X31 = X1

12X24X
1
41 = X2

12X
2
23X31 = X2

12X24X
2
41 = X13X

1
34X

2
41 = X13X

2
34X

1
41 = X1

23X
2
34X42 = X2

23X
1
34X42 0 0

X1
12X

2
23X31 = X1

12X24X
2
41 = X13X

2
34X

2
41 = X2

23X
2
34X42 0 -1

X2
12X

1
23X

1
34X

1
41 -1 2

X1
12X

1
23X

1
34X

1
41 = X2

12X
1
23X

1
34X

2
41 = X2

12X
1
23X

2
34X

1
41 = X2

12X
2
23X

1
34X

1
41 1 -1

X1
12X

1
23X

1
34X

2
41 = X1

12X
1
23X

2
34X

1
41 = X1

12X
2
23X

1
34X

1
41 = X2

12X
1
23X

2
34X

2
41 = X2

12X
2
23X

1
34X

2
41 = X2

12X
2
23X

2
34X

1
41 -1 0

X1
12X

1
23X

2
34X

2
41 = X1

12X
2
23X

1
34X

2
41 = X1

12X
2
23X

2
34X

1
41 = X2

12X
2
23X

2
34X

2
41 -1 -1

X1
12X

2
23X

2
34X

2
41 -1 -2

Table 51. The generators in terms of bifundamental fields (Model 13).
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With the fugacity map

T1 = f−1/4x1/2 t = y1/2q y1/4s t1 , T2 = f−1/4x−1/2 t = y1/2q y1/4s t2 , T3 = f 1/2 t = y1/2s t3 ,

(15.9)

the mesonic Hilbert series takes the form

g1(T1, T2, T3;Mmes
13 ) =

1 + T 3
1 T2 + T 2

1 T
2
2 + T1T

3
2 + T 2

1 T3 + T1T2T3 + T 2
2 T3 + T 3

1 T
3
2 T3

(1− T 4
1 )(1− T 4

2 )(1− T 2
3 )

,

(15.10)

with the plethystic logarithm becoming

PL[g1(T1, T2, T3;Mmes
13 )] = T 2

3 + T1T2T3 + T 2
1 T3 + T 2

2 T3 + T 4
1 + T 3

1 T2 + T 2
1 T

2
2

+T1T
3
2 + T 4

2 − 2T 2
1 T

2
2 T

2
3 + . . . . (15.11)

The above Hilbert series and plethystic logarithm is written in terms of just three fugac-

ities with positive powers. This illustrates the conical structure of the toric Calabi-Yau

3-fold.

16 Model 14: dP1

24

13

8s1, ... , s4<

p4

p3

p2 p1

1

2

3
4

1

2

3
4

2

3
4

1

2

4

1

2

3
4

1

2

3
4

1 1

2

3
4

1

2

3
4

3

3
4

3
4

3
4

Figure 33. The quiver, toric diagram, and brane tiling of Model 14.

The superpotential is

W = +X1
21X14X

1
42 +X3

21X
2
13X32 +X2

42X
2
21X

1
13X34

−X1
13X32X

1
21 −X14X

2
42X

3
21 −X2

21X
2
13X34X

1
42 (16.1)
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The perfect matching matrix is

P =



p1 p2 p3 p4 s1 s2 s3 s4
X2

21 1 0 0 0 1 0 0 0

X32 1 0 0 0 0 1 0 1

X3
21 0 1 1 0 1 0 0 0

X1
21 0 1 0 1 1 0 0 0

X1
42 0 0 1 0 0 1 0 0

X2
42 0 0 0 1 0 1 0 0

X1
13 0 0 1 0 0 0 1 0

X2
13 0 0 0 1 0 0 1 0

X14 1 0 0 0 0 0 1 1

X34 0 1 0 0 0 0 0 1



The F-term charge matrix QF = ker (P ) is

QF =

 p1 p2 p3 p4 s1 s2 s3 s4
1 1 0 0 −1 0 0 −1

1 0 1 1 −1 −1 −1 0



The D-term charge matrix is

QD =


p1 p2 p3 p4 s1 s2 s3 s4
0 0 0 0 1 −1 0 0

0 0 0 0 0 1 −1 0

0 0 0 0 0 0 1 −1



The total charge matrix Qt does not have repeated columns. Accordingly, the

global symmetry is U(1)f1 ×U(1)f2 ×U(1)R. The flavour and R-charges on the GLSM

fields corresponding to extremal points in the toric diagram in Figure 33 are found

following the discussion in §2.3. They are presented in Table 52.

U(1)f1 U(1)f2 U(1)R fugacity

p1 1 0 R1 =
√

13− 3 t1
p2 1 1 R2 = (5

√
13− 17)/3 t2

p3 -1 -1 R3 = 4(4−
√

13)/3 t3
p4 -1 0 R3 = 4(4−

√
13)/3 t4

Table 52. The GLSM fields corresponding to extremal points of the toric diagram with their

mesonic charges (Model 14). The R-charges are obtained using a-maximization [69].

The product of all internal perfect matchings is

s =
4∏

m=1

sm . (16.2)
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The fugacity counting the above product is ys. The fugacity which counts the remaining

extremal perfect matchings pα is tα.

The mesonic Hilbert series of Model 14 is found using the Molien integral formula

in (2.9). It is

g1(tα, ys;Mmes
14 ) =

P (tα)

(1− ys t21t3)(1− ys t22t33)(1− ys t21t4)(1− ys t22t34)
, (16.3)

where the numerator is given by the polynomial

P (tα) = 1 + ys t1t2t
2
3 + ys t1t2t3t4 − y2s t31t2t23t4 + ys t

2
2t

2
3t4 − y2s t21t22t33t4

+ys t1t2t
2
4 − y2s t31t2t3t24 + ys t

2
2t3t

2
4 − y2s t21t22t23t24 − y2s t21t22t3t34 − y3s t31t32t33t34 .

(16.4)

The plethystic logarithm of the mesonic Hilbert series is

PL[g1(tα, ys;Mmes
14 )] = ys t

2
1t4 + ys t

2
1t3 + ys t1t2t3t4 + ys t1t2t

2
4 + ys t1t2t

2
3

+ys t
2
2t

2
3t4 + ys t

2
2t

3
3 + ys t

2
2t3t

2
4 + ys t

2
2t

3
4 − y2s t31t2t3t24 − y2s t31t2t23t4 + . . . . (16.5)

Consider the following fugacity map

f1 = t
−1/2
3 t

1/2
4 , f2 =

t4
t3
, t̃1 = y1/2s t1 , t̃2 = y1/2s t2 , t̃3 = t

1/2
3 t

1/2
4 , (16.6)

where the fugacities f1 and f2 count flavour charges, and the fugacity t̃i count the

R-charge Ri in Table 52. Accordingly, the plethystic logarithm becomes

PL[g1(t̃α, f1, f2;Mmes
14 )] =

(
f1 +

f1
f2

)
t̃21t̃3 +

(
1 + f2 +

1

f2

)
t̃1t̃2t̃

2
3

+

(
1

f1
+

1

f1f2
+
f2
f1

+
f 2
2

f1

)
t̃22t̃

3
3 −

(
f1 +

f1
f2

)
t̃31t̃2t̃

3
3 + . . . . (16.7)

The first positive terms in the above plethystic logarithm correspond to moduli space

generators with the corresponding flavour charge counted by the fugacities f1 and f2.

The generators and the corresponding mesonic charges are shown in Table 53. The

generators can be presented on a charge lattice. The convex polygon formed by the

generators in Table 53 is the dual reflexive polygon of the toric diagram of Model 14.
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Generator U(1)f1 U(1)f2

p21p3 s 1 -1

p1p2p
2
3 s 0 -1

p22p
3
3 s -1 -1

p21p4 s 1 0

p1p2p3p4 s 0 0

p22p
2
3p4 s -1 0

p1p2p
2
4 s 0 1

p22p3p
2
4 s -1 1

p22p
3
4 s -1 2

Table 53. The generators and lattice of generators of the mesonic moduli space of Model 14

in terms of GLSM fields with the corresponding flavor charges. The lattice of generators is

the toric diagram of Model 3.

Generator U(1)f1 U(1)f2

X1
13X32X

2
21 = X14X

1
42X

2
21 1 -1

X1
13X34X

1
42X

2
21 = X1

13X32X
3
21 = X14X

1
42X

3
21 0 -1

X1
13X34X

1
42X

3
21 -1 -1

X2
13X32X

2
21 = X14X

2
42X

2
21 1 0

X1
13X34X

2
42X

2
21 = X2

13X34X
1
42X

2
21 = X1

13X32X
1
21 = X2

13X32X
3
21 = X14X

1
42X

1
21 = X14X

2
42X

3
21 0 0

X1
13X34X

1
42X

1
21 = X1

13X34X
2
42X

3
21 = X2

13X34X
1
42X

3
21 -1 0

X2
13X34X

2
42X

2
21 = X2

13X32X
1
21 = X14X

2
42X

1
21 0 1

X1
13X34X

2
42X

1
21 = X2

13X34X
1
42X

1
21 = X2

13X34X
2
42X

3
21 -1 1

X2
13X34X

2
42X

1
21 -1 2

Table 54. The generators in terms of bifundamental fields (Model 14).

The mesonic Hilbert series and the plethystic logarithm can be re-expressed in

terms of just 3 fugacities

T1 =
f2 t̃2

f 2
1 t̃

3
1

=
t2
ys t31

, T2 =
f1
f2

t̃21t̃3 = ys t
2
1t3 , T3 = f1 t̃

2
1t̃3 = ys t

2
1t4 , (16.8)

such that

g1(T1, T2, T3;Mmes
14 ) =

(1 + T1T
2
2 + T1T2T3 − T1T 2

2 T3 + T 2
1 T

2
2 T3 − T 2

1 T
3
2 T3 + T1T

2
3 − T1T2T 2

3 + T 2
1 T2T

2
3

−T 2
1 T

2
2 T

2
3 − T 2

1 T2T
3
3 − T 3

1 T
3
2 T

3
3 )× 1

(1− T2)(1− T 2
1 T

3
2 )(1− T3)(1− T 2

1 T
3
3 )

(16.9)
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and

PL[g1(T1, T2, T3;Mmes
14 )] = T3 + T2 + T1T2T3 + T1T

2
3 + T1T

2
2 + T 2

1 T
2
2 T3 + T 2

1 T
3
2

+T 2
1 T2T

2
3 + T 2

1 T
3
3 − T1T2T 2

3 − T1T 2
2 T3 + . . . . (16.10)

The above Hilbert series and plethystic logarithm illustrate the conical structure of the

toric Calabi-Yau 3-fold.

17 Model 15: C/Z2 (1, 1, 1, 1), F0

17.1 Model 15 Phase a

43

12

8s1, ... , s4<
p2

p3

p1

p4

3 2 3 2 3

3

4 1

2 3

4 1

2 3

4

3

4 1

2 3

4 1

2 3

4

Figure 34. The quiver, toric diagram, and brane tiling of Model 15a.

The superpotential is

W = +X1
12X

1
23X

2
34X

2
41 +X2

12X
2
23X

1
34X

1
41 −X1

12X
2
23X

2
34X

1
41 −X2

12X
1
23X

1
34X

2
41 .

(17.1)

The perfect matching matrix is

P =



p1 p2 p3 p4 s1 s2 s3 s4
X1

12 1 0 0 0 1 0 0 0

X2
12 0 1 0 0 1 0 0 0

X1
34 1 0 0 0 0 1 0 0

X2
34 0 1 0 0 0 1 0 0

X1
23 0 0 1 0 0 0 1 0

X2
23 0 0 0 1 0 0 1 0

X1
41 0 0 1 0 0 0 0 1

X2
41 0 0 0 1 0 0 0 1


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The F-term charge matrix QF = ker (P ) is

QF =

 p1 p2 p3 p4 s1 s2 s3 s4
1 1 0 0 −1 −1 0 0

0 0 1 1 0 0 −1 −1



The D-term charge matrix is

QD =


p1 p2 p3 p4 s1 s2 s3 s4
0 0 0 0 1 −1 0 0

0 0 0 0 0 1 −1 0

0 0 0 0 0 0 1 −1



The pairs of GLSM fields {p1, p2} and {p3, p4} have the same charge under the

F-term and D-term constraints. This is shown by the identical columns in the total

charge matrix Qt. Accordingly, the global symmetry is enhanced from U(1)2 × U(1)R
to SU(1)x1×SU(2)x2×U(1)R. The mesonic charges on the GLSM fields corresponding

to extremal points in the toric diagram in Figure 34 are found following the discussion

in §2.3. They are presented in Table 55.

SU(2)x1 SU(2)x2 U(1)R fugacity

p1 1/2 0 1/2 t1
p2 -1/2 0 1/2 t2
p3 0 1/2 1/2 t3
p4 0 -1/2 1/2 t4

Table 55. The GLSM fields corresponding to extremal points of the toric diagram with their

mesonic charges (Model 15a).

The product of all internal perfect matchings labelled by

s =
4∏

m=1

sm . (17.2)

The above product is counted by the fugacity ys. All remaining extremal perfect

matchings pα are counted by the fugacity tα.

The mesonic Hilbert series of Model 15a is calculated using the Molien integral

formula in (2.9). It is

g1(tα, ys;Mmes
15a ) =

P (tα)

(1− ys t21t23)(1− ys t22t23)(1− ys t21t24)(1− ys t22t24)
, (17.3)
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where the numerator is given by the polynomial

P (tα) = 1 + ys t1t2t
2
3 + ys t

2
1t3t4 + ys t1t2t3t4 + ys t

2
2t3t4 − y2s t21t22t33t4

+ys t1t2t
2
4 − y2s t31t2t23t24 − y2s t21t22t23t24 − y2s t1t32t23t24 − y2s t21t22t3t34 − y3s t31t32t33t34 .

(17.4)

The plethystic logarithm of the mesonic Hilbert series is

PL[g1(tα, ys;Mmes
15a )] = ys t

2
1t

2
3 + ys t1t2t

2
3 + ys t

2
2t

2
3 + ys t

2
1t3t4 + ys t1t2t3t4 + ys t

2
2t3t4

+ys t
2
1t

2
4 + ys t1t2t

2
4 + ys t

2
2t

2
4 − y2s t21t22t43 − y2s t31t2t33t4 − 2 y2s t

2
1t

2
2t

3
3t4 − y2s t1t32t33t4

−y2s t41t23t24 − 2 y2s t
3
1t2t

2
3t

2
4 − 4 y2s t

2
1t

2
2t

2
3t

2
4 − 2 y2s t1t

3
2t

2
3t

2
4 − y2s t42t23t24 − y2s t31t2t3t34

−2 y2s t
2
1t

2
2t3t

3
4 − y2s t1t32t3t34 − y2s t21t22t44 + . . . . (17.5)

From the infinite plethystic logarithm one concludes that the moduli space is not a

complete intersection.

Consider the following fugacity map

x̃21 = x1 =
t1
t2
, x̃22 = x2 =

t3
t4
, t = y1/4s t

1/4
1 t

1/4
2 t

1/4
3 t

1/4
4 , (17.6)

where x1, x2 and t are mesonic charge fugacities. In terms of x̃1 and x̃2 both the Hilbert

series and the plethystic logarithm can be expressed in terms of characters of irreducible

representations of SU(2)×SU(2). The Taylor expansion of the Hilbert series takes the

form

g1(t, x̃1, x̃2;Mmes
15a ) =

∞∑
n=0

[2n; 2n]x̃1,x̃2 t
4n . (17.7)

The plethystic logarithm in terms of characters of irreducible representations of SU(2)×
SU(2) is

PL[g1(t, x̃1, x̃2;Mmes
15a )] = [2; 2]x̃1,x̃2t

4 − (1 + [4; 0]x̃1,x̃2 + [2; 2]x̃1,x̃2 + [0; 4]x̃1,x̃2)t
8

+([2; 0]x̃1,x̃2 + [4; 0]x̃1,x̃2 + [0; 2]x̃1,x̃2 + 2[2; 2]x̃1,x̃2 + [4; 2]x̃1,x̃2 + [0; 4]x̃1,x̃2 + [2; 4]x̃1,x̃2)t
12

−(4[2; 0]x̃1,x̃2 + [4; 0]x̃1,x̃2 + [6; 0]x̃1,x̃2 + 4[0; 2]x̃1,x̃2 + 5[2; 2]x̃1,x̃2 + 4[4; 2]x̃1,x̃2 + [6; 2]x̃1,x̃2

+[0; 4]x̃1,x̃2 + 4[2; 4]x̃1,x̃2 + [4; 4]x̃1,x̃2 + [0; 6]x̃1,x̃2 + [2; 6]x̃1,x̃2)t
16 + . . . . (17.8)

In terms of the fugacities x1 and x2 the above plethystic logarithm exhibits the moduli

space generators with their mesonic charges, where the flavour charges as powers of

x1 and x2 take integer values. They are summarized in Table 56. The generators can

be presented on a charge lattice. The generators form a convex polygon on the charge

lattice which is the dual of the toric diagram of Model 15a.
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As indicated in (17.8), the generators fall into an irreducible representation of

SU(2)× SU(2) with the character

[2; 2]x̃1,x̃2t
4 =

(
x̃21 + 1 +

1

x̃21

)(
x̃22 + 1 +

1

x̃22

)
. (17.9)

The generators in terms of quiver fields are shown in Table 57.

Generator SU(2)x1 SU(2)x2

p21p
2
3 s 1 1

p1p2p
2
3 s 0 1

p22p
2
3 s -1 1

p21p3p4 s 1 0

p1p2p3p4 s 0 0

p22p3p4 s -1 0

p21p
2
4 s 1 -1

p1p2p
2
4 s 0 -1

p22p
2
4 s -1 -1

Table 56. The generators and lattice of generators of the mesonic moduli space of Model

15a in terms of GLSM fields with the corresponding flavor charges.

Generator SU(2)x1 SU(2)x2

X1
12X

1
23X

1
34X

1
41 1 1

X1
12X

1
23X

2
34X

1
41 = X2

12X
1
23X

1
34X

1
41 0 1

X2
12X

1
23X

2
34X

1
41 -1 1

X1
12X

1
23X

1
34X

2
41 = X1

12X
2
23X

1
34X

1
41 1 0

X1
12X

1
23X

2
34X

2
41 = X1

12X
2
23X

2
34X

1
41 = X2

12X
1
23X

1
34X

2
41 = X2

12X
2
23X

1
34X

1
41 0 0

X2
12X

1
23X

2
34X

2
41 = X2

12X
2
23X

2
34X

1
41 -1 0

X1
12X

2
23X

1
34X

2
41 1 -1

X1
12X

2
23X

2
34X

2
41 = X2

12X
2
23X

1
34X

2
41 0 -1

X2
12X

2
23X

2
34X

2
41 -1 -1

Table 57. The generators in terms of bifundamental fields (Model 15a).

By introducing the fugacity map

T1 =
t4

x1x2
= ys t

2
2t

2
4 , T2 = x1 =

t1
t2
, T3 = x2 =

t3
t4
, (17.10)
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the mesonic Hilbert series can be expressed as

g1(T1, T2, T3;Mmes
15a ) =

(
1 + T1T2T3 + T1T3 + T1T

2
2 T3 + T1T2 + T1T2T

2
3

−(T 2
1 T

2
2 T

2
3 + T 2

1 T2T
2
3 + T 2

1 T
3
2 T

2
3 + T 2

1 T
2
2 T3 + T 2

1 T
2
2 T

3
3 )− T 3

1 T
3
2 T

3
3

)
×

1

(1− T1)(1− T1T 2
2 )(1− T1T 2

3 )(1− T1T 2
2 T

2
3 )

. (17.11)

The corresponding plethystic logarithm has the form

PL[g1(T1, T2, T3;Mmes
15a )] = T1T

2
2 T

2
3 + T1T2T

2
3 + T1T

2
3 + T1T

2
2 T3 + T1T2T3 + T1T3

+T1T
2
2 + T1T2 + T1 − T 2

1 T
2
2 − T 2

1 T
3
2 T

3
3 + . . . . (17.12)

The above Hilbert series and plethystic logarithm are in terms of three fugacities which

carry only positive powers. This illustrates the conical structure of the toric Calabi-Yau

3-fold.

17.2 Model 15 Phase b

1

4

2

3

8s1, ... , s5<
p2

p3

p1

p4

4 3 4 3 4 3

1 2

3 4

1 2

3 4

1 2

3 4 3

2 1 2

3 4

1 2

3 4

1

3 4

Figure 35. The quiver, toric diagram, and brane tiling of Model 15b. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X1
21X

1
14X

1
42 +X2

21X
2
14X

2
42 +X1

23X
2
34X

3
42 +X2

23X
1
34X

4
42

−X1
21X

2
14X

3
42 −X2

21X
1
14X

4
42 −X1

23X
1
34X

2
42 −X2

23X
2
34X

1
42 (17.13)

The perfect matching matrix is
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P =



p1 p2 p3 p4 s1 s2 s3 s4 s5
X2

42 1 0 1 0 0 0 1 0 0

X3
42 0 1 1 0 0 0 1 0 0

X4
42 1 0 0 1 0 0 1 0 0

X1
42 0 1 0 1 0 0 1 0 0

X1
21 1 0 0 0 1 0 0 1 0

X2
21 0 1 0 0 1 0 0 1 0

X2
34 1 0 0 0 0 1 0 1 0

X1
34 0 1 0 0 0 1 0 1 0

X2
23 0 0 1 0 1 0 0 0 1

X1
23 0 0 0 1 1 0 0 0 1

X1
14 0 0 1 0 0 1 0 0 1

X2
14 0 0 0 1 0 1 0 0 1



The F-term charge matrix QF = ker (P ) is

QF =


p1 p2 p3 p4 s1 s2 s3 s4 s5
1 1 0 0 0 0 −1 −1 0

0 0 1 1 0 0 −1 0 −1

0 0 0 0 1 1 0 −1 −1



The D-term charge matrix is

QD =


p1 p2 p3 p4 s1 s2 s3 s4 s5
0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 1 −1



The total charge matrix Qt exhibits two pairs of identical columns. Accordingly,

the global symmetry is enhanced to SU(2)x1 × SU(2)x2 ×U(1)R. The mesonic charges

on extremal perfect matchings are found following the discussion in §2.3. They are

identical to the ones for Model 15a and are presented in Table 55.

The product of all internal perfect matchings is expressed as

s =
5∏

m=1

sm . (17.14)

The fugacity which counts the above product is ys. The fugacity which counts the

remaining extremal perfect matchings pα is tα.

The mesonic Hilbert series for Model 15b is found using the Molien integral formula

in (2.9). The mesonic Hilbert series of Model 15b is identical to the one for Model 15a

in (17.3).
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The moduli space generators in terms of perfect matchings of Model 15b are shown

in Table 56. In terms of quiver fields of Model 15b, they are presented in Table 58.

The lattice of generators is a reflexive polygon and the dual of the toric diagram.

Generator SU(2)x1 SU(2)x2

X1
14X

2
42X

1
21 = X2

23X
2
34X

2
42 1 1

X1
14X

3
42X

1
21 = X1

14X
2
42X

2
21 = X2

23X
1
34X

2
42 = X2

23X
2
34X

3
42 0 1

X1
14X

3
42X

2
21 = X2

23X
1
34X

3
42 -1 1

X1
14X

4
42X

1
21 = X2

14X
2
42X

1
21 = X1

23X
2
34X

2
42 = X2

23X
2
34X

4
42 1 0

X1
14X

1
42X

1
21 = X1

14X
4
42X

2
21 = X2

14X
3
42X

1
21 = X2

14X
2
42X

2
21 = X1

23X
1
34X

2
42 = X1

23X
2
34X

3
42 = X2

23X
1
34X

4
42 = X2

23X
2
34X

1
42 0 0

X1
14X

1
42X

2
21 = X2

14X
3
42X

2
21 = X1

23X
1
34X

3
42 = X2

23X
1
34X

1
42 -1 0

X2
14X

4
42X

1
21 = X1

23X
2
34X

4
42 1 -1

X2
14X

1
42X

1
21 = X2

14X
4
42X

2
21 = X1

23X
1
34X

4
42 = X1

23X
2
34X

1
42 0 -1

X2
14X

1
42X

2
21 = X1

23X
1
34X

1
42 -1 -1

Table 58. The generators in terms of bifundamental fields (Model 15b).

18 Model 16: C3/Z3 (1, 1, 1), dP0

3

1

2

8s1, s2, s3<

p1

p2

p3 1 1

2

3

1

2

3

2

3

1

3

1

2

3

1

2

3

1 1

2

3

1

2

3

2

Figure 36. The quiver, toric diagram, and brane tiling of Model 16.

The superpotential is

W = +X1
12X

3
23X

2
31 +X2

12X
1
23X

3
31 +X3

12X
2
23X

1
31

−X1
12X

1
23X

1
31 −X3

12X
3
23X

3
31 −X2

12X
2
23X

2
31 (18.1)

The perfect matching matrix is
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P =



p1 p2 p3 s1 s2 s3
X3

12 1 0 0 1 0 0

X2
31 1 0 0 0 1 0

X1
23 1 0 0 0 0 1

X1
12 0 1 0 1 0 0

X3
31 0 1 0 0 1 0

X2
23 0 1 0 0 0 1

X2
12 0 0 1 1 0 0

X1
31 0 0 1 0 1 0

X3
23 0 0 1 0 0 1



The F-term charge matrix QF = ker (P ) is

QF =

(
p1 p2 p3 s1 s2 s3
1 1 1 −1 −1 −1

)

The D-term charge matrix is

QD =

 p1 p2 p3 s1 s2 s3
0 0 0 1 −1 0

0 0 0 0 1 −1



One observes that the GLSM fields corresponding to the extremal points of the

toric diagram in Figure 36 are equally charged under the F- and D-term constraints.

This is shown by three identical columns of the total charge matrix Qt. This leads to the

enhancement of the global symmetry from U(1)3 to SU(3)(x1,x2)×U(1)R. Accordingly,

the mesonic charges on the GLSM fields corresponding to extremal points in the toric

diagram in Figure 36 can be found following the discussion in §2.3. They are presented

in Table 59.

SU(3)(x1,x2) U(1)R fugacity

p1 (-1/3, -1/3) 2/3 t1
p2 (+2/3, -1/3) 2/3 t2
p3 (-1/3, +2/3) 2/3 t3

Table 59. The GLSM fields corresponding to extremal points of the toric diagram with their

mesonic charges (Model 16).

The product of all internal perfect matchings expressed as

s =
3∏

m=1

sm . (18.2)
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The above product is counted by the fugacity ys. The remaining extremal perfect

matchings pα are counted by tα.

The mesonic Hilbert series of Model 16 is calculated using the Molien integral

formula in (2.9). It is

g1(tα, ys;Mmes
16 ) =

1 + ys t
2
1t2 + ys t1t

2
2 + ys t

2
1t3 + ys t1t2t3 + ys t

2
2t3 + ys t1t

2
3 + ys t2t

2
3 + y2s t

2
1t

2
2t

2
3

(1− ys t31)(1− ys t32)(1− ys t33)
.

(18.3)

The plethystic logarithm of the mesonic Hilbert series is

PL[g1(tα, ys;Mmes
16 )] = ys t

3
1 + ys t

2
1t2 + ys t1t

2
2 + ys t

3
2 + ys t

2
1t3 + ys t1t2t3 + ys t

2
2t3

+ys t1t
2
3 + ys t2t

2
3 + ys t

3
3 − y2s t41t22 − y2s t31t32 − y2s t21t42 − y2s t41t2t3 − 2 y2s t

3
1t

2
2t3

−2 y2s t
2
1t

3
2t3 − y2s t1t42t3 − y2s t41t23 − 2 y2s t

3
1t2t

2
3 − 3 y2s t

2
1t

2
2t

2
3 − 2 y2s t1t

3
2t

2
3 − y2s t42t23

−y2s t31t33 − 2 y2s t
2
1t2t

3
3 − 2 y2s t1t

2
2t

3
3 − y2s t32t33 − y2s t21t43 − y2s t1t2t43 − y2s t22t43 + . . . .

(18.4)

Consider the following fugacity map

x1 =
t2
t1
, x2 =

t3
t1
, t = y1/3s t

1/3
1 t

1/3
2 t

1/3
3 , (18.5)

where x1, x2 and t count the mesonic charges. The fugacities x1 and x2 with their

powers being integers count integer flavour charges. With a further redefinition of

fugacities,

x̃1 =
1

x
1/3
1 x

1/3
2

, x̃2 =
x
1/3
1

x
2/3
2

(18.6)

the Hilbert series and plethystic logarithm can be expressed in terms of characters of

irreducible representations of SU(3). The expansion of the Hilbert series takes the form

g1(t, x̃1, x̃2;Mmes
16 ) =

∞∑
n=0

[3n, 0](x̃1,x̃2) t
3n . (18.7)

The plethystic logarithm is

PL[g1(t, x̃1, x̃2;Mmes
16 )] = [3, 0](x̃1,x̃2)t

3 − [2, 2](x̃1,x̃2)t
6 + ([1, 1](x̃1,x̃2) + [1, 4](x̃1,x̃2)

+[2, 2](x̃1,x̃2) + [4, 1](x̃1,x̃2))t
9 − (2[0, 3](x̃1,x̃2) + 2[1, 1](x̃1,x̃2) + 2[1, 4](x̃1,x̃2)

+2[2, 2](x̃1,x̃2) + [2, 5](x̃1,x̃2) + 2[3, 0](x̃1,x̃2) + 2[3, 3](x̃1,x̃2) + 2[4, 1](x̃1,x̃2)

+[5, 2](x̃1,x̃2))t
12 + . . . . (18.8)
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In terms of fugacities x1 and x2 the above plethystic logarithm exhibits the moduli space

generators with their integer flavour charges and R-charges. They are summarized in

Table 60. The generators can be presented on a charge lattice. The lattice of generators

is the dual polygon of the toric diagram. As indicated in (18.8), the generators fall into

an irreduciable representation of SU(3) with the character being

[3, 0](x̃1,x̃2)t
3 =

(
x̃31 + x̃1x̃2 +

x̃21
x̃2

+
x̃22
x̃1

+ 1 +
x̃32
x̃31

+
x̃1
x̃22

+
x̃2
x̃21

+
1

x̃1x̃2
+

1

x̃32

)
t3 .

(18.9)

The generators of the mesonic moduli space in terms of quiver fields of Model 16 are

shown in Table 61.

Generator SU(3)(x1,x2)

p31 s (-1, -1)

p21p2 s (0, -1)

p1p
2
2 s (1, -1)

p32 s (2, -1)

p21p3 s (-1, 0)

p1p2p3 s (0, 0)

p22p3 s (1, 0)

p1p
2
3 s (-1, 1)

p2p
2
3 s (0, 1)

p33 s (-1, 2)

Table 60. The generators and lattice of generators of the mesonic moduli space of Model 16

in terms of GLSM fields with the corresponding flavor charges.
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Generator SU(3)(x1,x2)

X3
12X

1
23X

2
31 (-1, -1)

X1
12X

1
23X

2
31 = X3

12X
1
23X

3
31 = X3

12X
2
23X

2
31 (0, -1)

X1
12X

1
23X

3
31 = X1

12X
2
23X

2
31 = X3

12X
2
23X

3
31 (1, -1)

X1
12X

2
23X

3
31 (2, -1)

X2
12X

1
23X

2
31 = X3

12X
1
23X

1
31 = X3

12X
3
23X

2
31 (-1, 0)

X1
12X

1
23X

1
31 = X1

12X
3
23X

2
31 = X2

12X
1
23X

3
31 = X2

12X
2
23X

2
31 = X3

12X
2
23X

1
31 = X3

12X
3
23X

3
31 (0, 0)

X1
12X

2
23X

1
31 = X1

12X
3
23X

3
31 = X2

12X
2
23X

3
31 (1, 0)

X2
12X

1
23X

1
31 = X2

12X
3
23X

2
31 = X3

12X
3
23X

1
31 (-1, 1)

X1
12X

3
23X

1
31 = X2

12X
2
23X

1
31 = X2

12X
3
23X

3
31 (0, 1)

X2
12X

3
23X

1
31 (-1, 2)

Table 61. The generators in terms of bifundamental fields (Model 16).

With the fugacity map

T1 =
t

x
1/3
1 x

1/3
2

= y1/3s t1 , T2 =
x
2/3
1 t

x
1/3
2

= y1/3s t2 , T3 =
x
2/3
2 t

x
1/3
1

= y1/3s t3 , (18.10)

the mesonic Hilbert series becomes

g1(T1, T2, T3;Mmes
16 ) =

1 + T 2
1 T2 + T1T

2
2 + T 2

1 T3 + T1T2T3 + T 2
2 T3 + T1T

2
3 + T2T

2
3 + T 2

1 T
2
2 T

2
3

(1− T 3
1 )(1− T 3

2 )(1− T 3
3 )

,

(18.11)

with the plethystic logarithm becoming

PL[g1(T1, T2, T3;Mmes
16 )] = T 3

1 + T 2
1 T2 + T1T

2
2 + T 3

2 + T 2
1 T3 + T1T2T3 + T 2

2 T3 + T1T
2
3

+T2T
2
3 + T 3

3 − T 4
1 T

2
2 − T 3

1 T
3
2 − T 2

1 T
4
2 − T 4

1 T2T3 − 2 T 3
1 T

2
2 T3 − 2 T 2

1 T
3
2 T3

−T1T 4
2 T3 − T 4

1 T
2
3 − 2 T 3

1 T2T
2
3 − 3 T 2

1 T
2
2 T

2
3 − 2 T1T

3
2 T

2
3 − T 4

2 T
2
3 − T 3

1 T
3
3

−2 T 2
1 T2T

3
3 − 2 T1T

2
2 T

3
3 − T 3

2 T
3
3 − T 2

1 T
4
3 − T1T2T 4

3 − T 2
2 T

4
3 + . . . . (18.12)

The above Hilbert series and plethystic logarithm are in terms of three fugacities with

positive powers. This illustrates the conical structure of the toric Calabi-Yau 3-fold.
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19 Seiberg Duality Trees

Figure 37. Toric Diagrams of toric (Seiberg) dual phases of quiver gauge theories with

brane tilings. The label (G|np : ni|nw) is used, where G, np, ni and nw are the number of U(n)

gauge groups, GLSM fields with non-zero R-charge, internal toric points and superpotential

terms respectively.
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The above sections have identified all 30 supersymmetric gauge theories with brane

tilings corresponding to the 16 reflexive polygons. 8 reflexive polygons are associated

to multiple quiver gauge theories as summarized in Figure 37. These are called phases

of the corresponding toric variety. For a given toric variety, the phases are so called toric

(Seiberg) dual and are related under toric (Seiberg) duality as discussed in appendix

§B.1. Multiple toric duality actions on various U(n) gauge groups corresponding to

4-sided faces in the brane tiling create closed orbits among the phases.

In Figure 38 to Figure 45, a summary of the orbits presented as duality trees is

shown, where nodes represent the brane tiling of the phase, and arrows are labelled

with the index of the gauge group on which one acts under toric (Seiberg) duality to

obtain the phase at the head of the arrow.
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20 Specular Duality and Conclusions

The work above uses the 16 reflexive polygons in Figure 1 as toric diagrams of Calabi-

Yau moduli spaces of 3 + 1 dimensional N = 1 supersymmetric gauge theories. These

quiver gauge theories are represented by brane tilings. A natural question to ask from

this setup is to identify all brane tilings corresponding to the 16 reflexive polygons. Mo-

tivated by this line of thought, the following comprehensive results have been presented

in this paper:

• There are exactly 30 brane tilings encoding supersymmetric quiver gauge theories

whose mesonic moduli spaces are represented by reflexive polygons. All gauge

theories are related by a cascade of Higgs mechanisms. In addition, toric (Seiberg)

duality maps multiple gauge theories to the same reflexive polygon.

• The generating function of mesonic gauge invariant operators known as the mesonic

Hilbert series is computed using the Molien integral formula for each of the 30

quiver theories. Fugacities of the Hilbert series are related both to perfect match-

ings and hence points in the toric diagram as well as charges under the global

symmetry of the gauge theory. Hilbert series of toric dual phases have been shown

to be identical.

• The generators of the mesonic moduli space of all 30 quiver gauge theories have

been found both in terms of chiral fields of the gauge theory as well as the perfect

matchings of the brane tiling.

• The mesonic charges on the moduli space generators have been found such that

they form for each generator a point on Z2. The convex hull of all such points

is a reflexive polygon. For all 30 quiver gauge theories, these reflexive polygons

known as lattice of generators are exactly the polar duals to the toric diagrams.

The above observations made by classifying all brane tilings corresponding to reflex-

ive polygons lead to a comprehensive overview of a special set of quiver gauge theories.

This overview is the precursor to a discovery of a new duality of quiver gauge theories.

This specular duality is best observed in the context of toric diagrams with points

labelled by perfect matchings of the brane tiling. Recall that extremal perfect match-

ings correspond to the corner points coloured black in the toric diagrams in Figure 2,

whereas internal perfect matchings are points lying strictly within the perimeter of the

polygon. External perfect matchings are all points on the perimeter of the polygon in-

cluding the extremal ones. All except extremal perfect matchings correspond to GLSM

fields with zero R-charge.
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The new duality we propose exchanges the internal perfect matchings with the

external perfect matchings. For the set of brane tilings corresponding to reflexive

polygons, the duality map is unique by forming duality pairs between models as follows

1↔ 1

2↔ 4d , 3a↔ 4c , 3b↔ 3b , 4a↔ 4a , 4b↔ 4b

5↔ 6c , 6a↔ 6a , 6b↔ 6b

7↔ 10d , 8a↔ 10c , 8b↔ 9c , 9a↔ 10b , 9b↔ 9b , 10a↔ 10a

11↔ 12b , 12a↔ 12a

13↔ 15b , 14↔ 14 , 15a↔ 15a

16↔ 16 . (20.1)

For instance, the dual pair 13 ↔ 15b in Figure 46 is exact under the indicated swap

between external and internal perfect matchings.

8s1, ... , s4<8q1, q2<
p4

p2

p1

8s1, ... , s5<
p2

p3

p1

p4
13 15b

Figure 46. Specular duality between Model 13 (C3/Z4(1, 1, 2)) and Model 15b (F0, phase

b). The exchange of internal and external perfect matchings map between the two models.

Accordingly, specular duality maps between brane tilings whose corresponding

quiver gauge theories have different mesonic moduli spaces. In [87], it is illustrated

how specular duality maps not the mesonic moduli spaces but the master spaces

[65, 68, 75, 76, 80, 81] of the dual pairs in (20.1). The master space is the com-

plete moduli space including both the mesonic and baryonic branches. It is shown that
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the master spaces of the dual pairs in (20.1) are identical under a translation of fields

given by the mapping of perfect matchings of the corresponding brane tilings. Further

study of this duality is of great interest and some interpretations are reported in [87].
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A The theory for C3/Z4 × Z4 (1, 0, 3)(0, 1, 3)
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Figure 47. The quiver, toric diagram, and brane tiling of the abelian orbifold of the form

C3/Z4 × Z4 with orbifold action (1, 0, 3)(0, 1, 3).
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The quiver, toric diagram and brane tiling of C3/Z4 × Z4 (1, 0, 3)(0, 1, 3) theory are

shown in Figure 47 with the superpotential8 having the form

W = +X7 8 X8 2 X2 7 +X12 9 X9 7 X7 12 +X13 14 X14 12 X12 13 +X2 3 X3 13 X13 2

+X8 5 X5 3 X3 8 +X9 10 X10 8 X8 9 +X14 15 X15 9 X9 14 +X3 4 X4 14 X14 3

+X5 6 X6 4 X4 5 +X10 11 X11 5 X5 10 +X15 16 X16 10 X10 15 +X4 1 X1 15 X15 4

+X6 7 X7 1 X1 6 +X11 12 X12 6 X6 11 +X16 13 X13 11 X11 16 +X1 2 X2 16 X16 1

−X7 8 X8 9 X9 7 −X12 9 X9 14 X14 12 −X13 14 X14 3 X3 13 −X2 3 X3 8 X8 2

−X8 5 X5 10 X10 8 −X9 10 X10 15 X15 9 −X14 15 X15 4 X4 14 −X3 4 X4 5 X5 3

−X5 6 X6 11 X11 5 −X10 11 X11 16 X16 10 −X15 16 X16 1 X1 15 −X4 1 X1 6 X6 4

−X6 7 X7 12 X12 6 −X11 12 X12 13 X13 11 −X16 13 X13 2 X2 16 −X1 2 X2 7 X7 1 .

(A.1)

B Review: Seiberg Duality, Integrating out Mass Terms, and

the Higgs Mechanism

B.1 Seiberg Duality

Two 3 + 1 dimensional worldvolume theories are called toric (Seiberg) dual if in

the UV they have different Lagrangians with a different field content and superpoten-

tial, but flow to the same universality class in the IR. The mesonic moduli spaces of

toric (Seiberg) dual theories are toric Calabi-Yau 3-folds which are identical. The cor-

responding toric diagrams are GL(2,Z) equivalent, however multiplicities of internal

toric points and hence GLSM fields with zero R-charge can differ.

The relationship between two toric (Seiberg) dual theories is best illustrated with

an example using brane tilings. Dualizing on a given gauge group U(n) has a natural

interpretation in the brane tiling picture. Let us consider the Hirzebruch F0 model.

The corresponding gauge theory has a superpotential of the form

WI = X1
14X

1
42X

1
23X

1
31

A

+X2
14X

2
42X

2
23X

2
31

B

−X2
14X

1
42X

2
23X

1
31

C

−X1
14X

2
42X

1
23X

2
31

D

,

(B.1)

8Note: The superpotential features an overall trace which is not explicitly written down in the

following discussion.
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Figure 48. The toric (Seiberg) duality action on the brane tiling of the zeroth Hirzebruch

surface F0 model with corresponding toric diagrams. The points in the toric diagram cor-

respond to GLSM fields which are presented as perfect matchings or sets of bifundamental

fields in the brane tiling picture.

whose corresponding brane tiling and toric diagram are shown in the first column of

Figure 48. The terms are labelled A to D and the corresponding brane tiling nodes

are indicated in Figure 48. By dualizing on the gauge group U(n2), the superpotential
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becomes

WII = X1
14X

1
43X

1
31

A

+X2
14X

2
43X

2
31

B

−X2
14X

3
43X

1
31

C

−X1
14X

4
43X

2
31

D

+X1
14X

3
43X

2
31

E

+X2
14X

4
43X

1
31

F

−X1
14X

1
43X

1
31

G

−X2
14X

2
43X

2
31

H

(B.2)

and the corresponding new brane tiling and quiver are shown in the second column

of Figure 48. One observes that under toric (Seiberg) duality, the number of gauge

groups G remains constant, the number of bifundamental fields E and the number of

superpotential terms both increase each by 4.

The change in the number of bifundamental fields and superpotential terms corre-

sponds to the change in the number of GLSM fields corresponding to internal points of

the corresponding toric diagram. The area of the toric diagram corresponding to the

number of gauge groups G remains constant. The two toric diagrams and brane tilings

in Figure 48 with the corresponding superpotentials given in (B.1) and (B.2) are called

phases of the F0 model.

The duality action often leads to superpotentials with quadratic mass terms. Quadratic

mass terms relate to massive fields which become non-dynamical in the IR. The removal

of quadratic mass terms and the corresponding deformation of the brane tiling are dis-

cussed in the following section.

B.2 Integrating out mass terms

Quadratic terms in the superpotential relate to massive fields which are non-dynamical

in the IR [42]. We are interested in the IR regime of the quiver gauge theories above,

and therefore need to integrate out the quadratic terms in the superpotential.

Figure 49. The removal of quadratic mass terms in the superpotential corresponds to the

removal of 2-valent vertices in the brane tiling.
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The procedure of integrating out quadratic mass terms in the superpotential has

a natural interpretation in the brane tiling context as illustrated in Figure 49. Let us

consider the superpotential corresponding to the case shown in Figure 49,

WI = · · ·+X31X12X23 +X32X24X43 −X23X32 + . . . , (B.3)

where the quadratic mass term and matter fields involved have been underlined. The

removal of the quadratic mass term in (B.3) leads to the new superpotential of the

form

WII = · · ·+X31X12X24X43 + . . . . (B.4)

One observes that the process of integrating out mass terms preserves the toric condi-

tion discussed in section §2.2.

B.3 Higgs Mechanism

The Higgs Mechanism has a natural interpretation in the brane tiling picture. By

giving a non-zero vacuum expectation value (VEV) to a gauge field in gauge theory I,

and integrating out resulting quadratic mass terms in the superpotential as explained

above, one obtains a new theory II whose mesonic moduli space is a different toric

Calabi-Yau 3-fold to the one of theory I. Giving a VEV to a bifundamental field Xij

results in the removal of the corresponding edge in the brane tiling picture. This results

in an effective merger between two adjacent faces, analogous of combining two gauge

groups U(n)i and U(n)j into one.

Let us consider the example of the C3/Z2×Z2 orbifold theory with orbifold action

(0, 1, 1)(1, 0, 1). The corresponding brane tiling and toric diagram is shown in Figure

50, and the superpotential is

WI = X42X23X34 +X31X14X43 +X24X41X12 +X13X32X21

−X42X21X14 −X31X12X23 −X24X43X32 −X13X34X41 . (B.5)

By giving the bifundamental field X14 a VEV, such that 〈X14〉 = 1, the superpotential

becomes,

WI ′ = X42X23X34 +X31X43 +X24X41X12 +X13X32X21

−X42X21 −X31X12X23 −X24X43X32 −X13X34X41 , (B.6)

which in turn, by integrating out the above underlined quadratic mass terms, becomes

WII = X13X32X23X31 +X12X21X11 −X12X23X32X21 −X13X31X11 . (B.7)
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Figure 50. By giving a non-zero vacuum expectation value to the bifundamental field X14

of the C3/Z2 × Z2 orbifold theory, one obtains the Suspended Pinch Point theory (SPP).

The bifundamental field X14 is represented by a red edge in the brane tiling. By setting

〈X14〉 = 1, one obtains quadratic mass terms represented by red nodes in the second brane

tiling, which are integrated out to give the third SPP tiling. The nodes of the corresponding

toric diagrams are labelled with perfect matching variables and the corresponding sets of

bifundamental fields. The Higgsing procedure corresponds to a blow down from C3/Z2 × Z2

to the cone over the Suspended Pinch Point.
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Theory II with the above superpotential and brane tiling shown in Figure 50 cor-

responds to the suspended pinch point (SPP) theory. Thus one has, by giving a VEV

to a field in theory I, blown down a toric point in C3/Z2 × Z2 to give the SPP model.

Figure 50 shows the perfect matchings and their field content for each toric point of

the toric diagrams of C3/Z2 × Z2 and SPP.

The claim is that the combination of toric duality procedures, integrating out mass

terms, and higgs mechanisms on the C3/Z4 × Z4 orbifold theory with orbifold action

(1, 0, 3)(0, 1, 3) results in all possible quiver gauge theories whose mesonic moduli space

is toric Calabi-Yau and has a toric diagram which is a reflexive polygon on Z2.
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