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ABSTRACT: Reflexive polygons have attracted great interest both in mathematics and
in physics. This paper discusses a new aspect of the existing study in the context of
quiver gauge theories. These theories are 4d supersymmetric worldvolume theories of
D3 branes with toric Calabi-Yau moduli spaces that are conveniently described with
brane tilings. We find all 30 theories corresponding to the 16 reflexive polygons, some
of the theories being toric (Seiberg) dual to each other. The mesonic generators of the
moduli spaces are identified through the Hilbert series. It is shown that the lattice of
generators is the dual reflexive polygon of the toric diagram. Thus, the duality forms
pairs of quiver gauge theories with the lattice of generators being the toric diagram of
the dual and vice versa.
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1 Introduction

The study of N' = 1 supersymmetric gauge theories living on D-branes probing singular
non-compact Calabi-Yau 3-folds has been an immensely active and fruitful endeavour in
string theory. The matter content of the 4 dimensional worldvolume theories is encoded
in a graph known as the quiver [1].! An interesting subset of these theories possess
mesonic moduli spaces which are toric and are associated to convex lattice polygons.
These polygons are known as toric diagrams [4] of the Calabi-Yau singularity.

In the last two decades, a particular type of polytope caught the attention in
string theory in the context of mirror symmetry [5-11]. This polytope is known as
a reflexive polytope.

A reflexive polytope is a convex lattice polytope which possesses a single internal
lattice point.? For a long time, del Pezzo surfaces [12-16] and more generally Fano
varieties [17-27] have been associated to a range of reflexive polytopes.

When Type 11 superstring theory is compactified on a Calabi-Yau 3-fold, its world-
sheet theory is a NV = (2,2) superconformal field theory. By swapping the Hodge
numbers hi; and hio associated to the Calabi-Yau 3-fold, one obtains another Calabi-
Yau 3-fold. If one flips the signs of the U(1) R-charges of the left and right moving
components of the theory’s superalgebra, one obtains another superconformal field the-
ory which is the one compactified on the “mirror” of the original Calabi-Yau 3-fold.

Reflexive polytopes have played an important role in studying the relationship
between mirror paired Calabi-Yau manifolds and the corresponding superconformal
field theories. The reflexive polytopes are used for constructing Calabi-Yau manifolds
as hypersurfaces in toric varieties. The underlying property of reflexive polytopes is
that they have a polar dual partner which in turn is reflexive and relates to the mirror
Calabi-Yau manifold. This property led to a systematic study of mirror paired Calabi-
Yau manifolds. The resulting classification [28-33] found connections to for instance
heterotic string compactifications [34-36] or to F-theory backgrounds [37-40].

In the following work, reflexive polygons are used to study mesonic moduli spaces of
4d supersymmetric quiver gauge theories dual to Type IIB string theory on AdSs x X5
where X5 is a Sasaki-Einstein 5-manifold. There are 16 distinct reflexive polygons and
the corresponding theories are worldvolume theories of D3-branes probing Calabi-Yau
3-fold singularities. The mesonic moduli spaces are toric Calabi-Yau 3-folds and the
reflexive polygons are the corresponding toric diagrams.

The aim of the following work is to identify all 4d supersymmetric quiver gauge
theories whose moduli space is represented by a reflexive polygon. In order to do so,

!For more mathematical reviews on quivers see for example [2, 3].
2From Latin reflezus, Medieval Latin reflerivus, meaning to be turned back or reflected.



extensive use is made of brane tilings [41, 42]* which combine the matter content and
the superpotential of the quiver theory on a periodic graph on T?.

Every consistent brane tiling relates to a consistent quiver gauge theory. Starting
from the brane tiling for the orbifold of the form C3*/Z; x Z4 with orbifold action
(1,0,3)(0,1,3) [48-52], one applies the Higgs mechanism [14] and uses Seiberg
duality [12, 13, 15, 53-56] on brane tilings in order to find that there exist exactly 30
quiver gauge theories corresponding to the 16 reflexive polygons. Seiberg duality, also
known as toric duality in this context, relates theories with different matter content
and superpotential to the same mesonic moduli space.

In order to have a complete classification of the mesonic moduli spaces, the moduli
space generators for all 30 quiver gauge theories are found by computing a generating
function known as the Hilbert series [57-61]. The Hilbert series encodes information
about the moduli space generators. They are identified using a method known as
plethystics [62]. The lattice of generators formed by the mesonic charges is the dual
reflexive polygon for the 16 toric diagrams. It is shown that this is the case for all 30
quiver gauge theories.

The complete classification of 4d N' = 1 supersymmetric gauge theories corre-
sponding to the 16 reflexive polygons leads to new observations. The most important
observation is that of a new duality which we name specular duality. It relates
quiver theories with different mesonic moduli spaces under a swap of external and in-
ternal points of the toric diagram. Specular duality partitions the set of 30 quiver gauge
theories in dual pairs and illustrates interesting physics at work. An illustration of this
new duality is given at the concluding section, and it is of great interest to explore it
further in future work.

The work is structured as follows. In section §2, the concepts and motivations
behind studying reflexive polygons are reviewed. In addition, the ideas behind brane
tilings and the mesonic Hilbert series are reviewed. A key ingredient of the discus-
sion is the lattice of mesonic generators which is reviewed in section §2. Sections §3
to §18 summarize the 30 quiver gauge theories associated to reflexive polygons, and
illustrate the duality between the toric diagram and generator lattices. In section §19,
the trees illustrating the relationships between toric (Seiberg) dual brane tiling models
corresponding to the same reflexive polygon are presented. For the purpose of having
a self-contained discussion, appendix §B reviews the concepts of toric (Seiberg) dual-
ity and the Higgs mechanism in the context of brane tiling models. As part of the
concluding section, the concept behind specular duality of the 30 brane tiling models
corresponding to reflexive polygons is introduced.

3For applications of brane tilings see for example [43-47].



2 Background and Motivation

2.1 Reflexive Polytopes

Mirror Symmetry. Reflexive polytopes have been introduced in string theory in the
context of mirror symmetry [5-11]. A way to study mirror symmetry is to consider Type
IT superstring theory compactified on a Calabi-Yau 3-fold. Its string worldsheet theory
is a N/ = (2,2) superconformal field theory. It contains a superalgebra with left and
right moving components. When one flips the signs of the U(1) R-symmetry charges
of the left and right moving components, the Calabi-Yau transitions to a different
Calabi-Yau manifold with its Hodge numbers h;; and his being interchanged.

The understanding of mirror symmetry in the context of compactified superstring
theory led to a search of mirror paired Calabi-Yau manifolds. Batyrev-Borisov [7, 9] laid
the foundations for industrialising the search for mirror paired Calabi-Yau manifolds by
formulating the construction of Calabi-Yau manifolds as hypersurfaces in toric varieties
represented by reflexive polytopes. These reflexive polytopes are on a lattice with the
dual polytope and hence corresponding mirror Calabi-Yau manifold being identified by
a straightforward geometrical transformation.

Let the following summary review the notion of a reflexive polytope and the concept
of its dual:

e A reflexive polytope is a convex polytope with points in a lattice Z? and the
origin (0,...,0) being the unique interior point of the polytope.

e A dual (polar) polytope exists for every reflexive polytope. The dual of poly-
tope A, A° is another lattice polytope with points

A°={v° €Z| (v°,v) > —1 Vo€ A} (2.1)

The dual of every reflexive polygon is another reflexive polygon. A reflexive
polygon can be self-dual, A = A°.

e A classification of reflexive polytopes [29-31] is available for the dimensions
d < 4 with the number of reflexive polytopes given in Table 1. It is unknown how
many exist for higher dimensions.
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Figure 1. The 16 convex polygons which are reflexive. The polygons have been GL(2,Z)
adjusted to reflect the duality under (2.1). The green internal points are the origins. G is the
area of the polygon with the smallest lattice triangle having normalized area 1, and ng is the
number of extremal points which are in black. The 4 polygons with G = 6 are self-dual. The
paired polygons in 8 and 10 are GL(2,Z) equivalent and are each others dual polygon.
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‘ Number of Polytopes

d

1 1
2 16
3

4

4319
473800776

Table 1. Number of reflexive lattice polytopes in dimension d < 4. The number of polytopes
forms a sequence which has the identifier A090045 on OEIS.

D-branes on Calabi-Yau. Next to the study of mirror symmetry, reflexive polytopes
are playing an interesting role in a different context in string theory. Witten described
in 1993 an N = (2,2) supersymmetric field theory with U(1) gauge groups [63] in the
language of what is today known as gauge linear sigma models (GLSM). He illustrated
how the Fayet-Iliopoulos parameter of the N = (2,2) supersymmetric field theory
interpolates between the Landau-Ginzburg and Calabi-Yau phases of the theory. The
large parameter limit leads to the space of classical vacua as toric Calabi-Yau spaces
determined by the D- and F-terms of the supersymmetric field theory. The formulation
of GLSM is going to be used in the context of D-brane gauge theories in this work even
though the FI terms will not play a crucial role during the discussion.

Let the focus be on worldvolume theories living on a stack of D3-branes probing
Calabi-Yau 3-fold singularities. The gravity dual of these theories is Type IIB string
theory on the background AdSs x X5 where X5 is a Sasaki-Einstein 5-manifold. The
worldvolume theories are 4d N' = 1 supersymmetric quiver gauge theories whose space
of vacua being toric Calabi-Yau 3-fold are described by lattice polygons on Z? known
as the toric diagrams.

A restriction that the toric diagrams are reflexive polygons is introduced for the
purpose of the study. A motivation for introducing the restriction is the fact that
there are only a finite number 16 of these reflexive polygons. The natural question
to ask, and the question which is fully answered in the following discussion, is which
supersymmetric quiver gauge theories exist whose space of vacua correspond to the 16
reflexive polygons.

There are useful properties of the quiver gauge theories which are considered in this
work. These properties provide the essential tools for finding all quiver gauge theories
corresponding to reflexive polygons:

e Brane Tilings (Dimers) [41-47] can be used to represent D3-brane worldvol-
ume theories whose vacuum moduli space is toric Calabi-Yau. A brane tiling
encodes the bifundamental matter content (quiver) and superpotential of the



gauge theory. Every consistent brane tiling represents a consistent combination
of a quiver and superpotential, and hence a consistent quiver gauge theory.

The Higgs Mechanism [14] in the context of quiver gauge theories has a natural
interpretation in terms of the geometrical blow down, i.e. ‘higgsing’, or blow up,
i.e. ‘un-higgsing’, of the toric variety corresponding to the gauge theory vacuum
moduli space. All 16 reflexive polygons and the corresponding toric varieties can
be related by the geometrical blow downs starting from the abelian orbifold of
the form C3/Z4 x Z, with orbifold action (1,0, 3)(0,1, 3) [48-52]. For the purpose
of a self-contained discussion, the Higgs mechanism in the context of brane tiling
theories is reviewed in Appendix §B.3.

Toric (Seiberg) Duality [12, 13, 15, 53-56] in the context of quiver gauge
theories relates theories with the same vacuum moduli space. In other words, two
toric dual theories relate to the same reflexive polygon. Consequently, a single
toric variety can be the vacuum moduli space of multiple quiver gauge theories.
Such dual quiver gauge theories are known as toric phases of the moduli space.
More generally, Seiberg duality relates an infinite number of quiver gauge theories
by allowing the ranks of gauge groups in the theory to be greater than one. In
the following discussion based on brane tilings, only U(1) gauge groups are taken.
The search for brane tilings corresponding to the 16 reflexive polygons uses toric
duality in order to identify all toric phases. It turns out that there are 30 brane
tiling theories corresponding to the 16 reflexive polygons. For the purpose of a
self-contained discussion, toric (Seiberg) duality in the context of quiver gauge
theories and their brane tilings is reviewed in Appendix §B.1.

Many of the quiver gauge theories related to reflexive polygons have been studied

in the past. A selection of the available literature is given in Table 2. With the follow-

ing work, a complete classification of all 30 quiver gauge theories related to reflexive
polygons in Witten’s language of GLSM fields is provided for the first time. GLSM
fields relate the points of the toric diagram with the matter fields of the quiver gauge
theory. The F-term and D-term constraint charges on the GLSM fields are used to
obtain the mesonic Hilbert series. The mesonic Hilbert series encodes the moduli

Space generators.

An intriguing property of theories corresponding to reflexive polygons, which is

exemplified in the work below, is as follows:

The global charges on moduli space generators form a lattice polygon on Z* which is

reflexive and which is precisely the dual polygon of the toric diagram.
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Figure 2. The 16 reflexive polygons as toric diagrams for 30 brane tilings. The 16 polygons
have been GL(2,7) transformed to illustrate the blow down from C3/Z4 x Z4 (1,0, 3)(0, 1, 3)
whose toric diagram contains all 16 reflexive polygons. Each polygon is labelled by (G|n,, :
n;i|nw ), where G corresponds to the number of U(n) gauge groups, n, to the number of GLSM
fields with non-zero R-charge (number of extremal points in the toric diagram or just the order
of the polygon), n; to the multiplicity of the single interior point of the toric diagram, and
nyw to the number of superpotential terms. A reflexive polygon can correspond to multiple
quiver gauge theories which are related by toric (Seiberg) duality and distinguished via n;
and nyy .
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Quiver & W . , . Generators &

Model # Model Name (Brane Tiling) Toric Data Mesonic HS Generator Lattice

1 C3/Zs x Zy (1,0,2)(0,1,2) [41, 55]

2 C3/Zy x Zy (1,0,3)(0,1,1) [41]

3 Lis1/Z (0,1,1,1) 43, 64] [64]

4 PdPs , C/Zy x Zy (1,0,0,1)(0,1,1,0) [14, 41, 42, 65] [14, 42, 65]

5 PdP,,

6 PdP,, [14, 65, 66] [14, 65, 66] [57]

7 PdP;, , C*/Zg (1,2,3) [41, 55] [41]

8 PdP;, , SPP/Z, (0,1,1,1) [14, 55, 67] 14, 67]

9 PdPy, 14, 55, 67] 14, 67]

10 dP; [14, 15, 42, 55, 65, 67, 68] | [13, 14, 42, 65, 67, 68] [57]

11 PdP, [14, 67) 14, 67]

12 dpP, [15, 42, 65, 67-71] [13, 42, 65, 67, 68, 70] [57] [70]

13 Y22 C3/Z4 (1,1,2) 41, 42] [72] [57] [73, 74]

14 Y21 dp, (15, 42, 65, 67, 69, 71] (13, 65, 67, T2] 57, 60] (73, 74]

15 Fo, Y20 C/Zy (1,1,1,1) (13, 41, 42, 65, 67, 68, 71, 75] | [13, 65, 67, 68, 72, 75] [57] [73, 74]

16 dPy , C3/Z5 (1,1,1) [15, 41, 44, 71, 76] 13, 14, 76] 57, 60, 76]

Table 2. A selection of the literature on quiver gauge theories corresponding to reflexive
polygons.

The two sections below provide a review of the physical concepts involved in order
to proceed with the complete classification of quiver gauge theories corresponding to
reflexive polygons.

2.2 The Brane Tiling and the Forward Algorithm

The worldvolume theory of a stack of m D3-branes probing singular non-compact
Calabi-Yau 3-folds is a 3 + 1 dimensional N' = 1 supersymmetric gauge theory. The
corresponding Lagrangian is specified by the theory’s gauge groups, matter content and
superpotential.

The probed Calabi-Yau 3-fold is toric, and is the mesonic moduli space of the
worldvolume theory. It is of great interest to associate to each worldvolume theory the
corresponding mesonic moduli space. For the purpose of a self-contained discussion,
a brief review on the forward algorithm [12, 77] which translates the gauge theory
information into toric data is provided below.
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Figure 3. The quiver for phase b of the Hirzebruch Fy model. Vertices 1 and 3 share the
same incidence information with no matter fields between them. They are combined into a
block. All matter fields intersecting the block are colored red and are combined such that a
red arrow represents all possible connections from and to all vertices within the block.

Quiver Q. The matter content of the gauge theory is specified by a graph known as
the quiver [1-3]. It consists of the following components:

e Vertices in Q correspond to U(n;) gauge groups with i =1,... G.

e Edges in Q correspond to the matter fields X;;. The matter fields are bifunda-
mental and transform under the fundamental of U(n;) and antifundamental of
U(n;), imposing a direction on the quiver edges, ¢ — j. The anomaly cancellation
condition for the quiver gauge theory sets the number of incoming and outgoing
edges on a quiver vertex to be equal. Every matter field appears precisely once
in a positive and negative term in W, with the number of positive and negative
terms in W being the same. This is known as the toric condition [15].

e The incidence matrix dgyxg for E bifundamental matter fields encodes the
quiver. Its entry for a gauge group U(n;) is —1 for X;;, +1 for X,;, and 0
otherwise. The matrix dgyg has G — 1 independent rows which can be collected
in a new matrix called Ag_1)xe.

If two or more quiver vertices share the same intersection number with other quiver
vertices and have no matter fields between any two of them, then the quiver vertices
can be grouped into a block [78, 79]. This property is illustrated in the example for

— 10 —



phase b of the Hirzebruch Fy model as shown in Figure 3.

Brane Tilings/Dimers: The superpotential and the quiver can be combined into a
single representation of the supersymmetric gauge theory. The representation is known
as a brane tiling or dimer [2, 41-43]. It is a periodic bipartite graph on T? and has the
following components:

e White (resp. black) nodes correspond to positive (negative) terms in the
superpotential. They have a clockwise (anti-clockwise) orientation.

e Edges connect to nodes and correspond to the bifundamental fields in the super-
potential. Going along the induced orientations around nodes, one can identify
the matter fields associated to a specific superpotential term in the correct cyclic
order.

e Faces correspond to U(n;) gauge groups. Every edge X;; in the tiling has two
neighbouring faces corresponding to U(n;) and U(n;). The quiver orientation
of the bifundamental field X;; is given by the orientation around the black and
white nodes at the two ends of the corresponding tiling edge.

The fundamental domain of the 2-torus on which the brane tiling is drawn is inter-
preted as a section of the periodic tiling which contains the quiver and superpotential
information without repetition. Copying the domain along the fundamental cycles of
the torus reproduces the complete brane tiling.

Perfect Matchings/GLSM fields and F-and D-term charges. A new basis of
fields can be defined from the set of bifundamental matter fields. The purpose of the new
basis of fields is to describe both F-term and D-term constraints of the supersymmetric
gauge theory with a common setting. The new fields are known as gauge linear sigma
model fields (GLSM) and are represented as perfect matchings in the brane tiling. They
have the following properties:

e A perfect matching p, is a set of bifundamental fields which connect all nodes in
the brane tiling uniquely once. The perfect matchings corresponding to extremal
(corner) points of the toric diagram have non-zero U(1)g R-charge. The internal
as well as all non-extremal toric points on the perimeter of the toric diagram
have zero R-charge. All points on the perimeter are called external, including
extremal ones. They can be summarized in a matrix Pgy. where F is the number
of matter fields and ¢ the number of perfect matchings.

—11 —



e F-terms are encoded in the perfect matching matrix Pgy.. The charges under
the F-term constraints are given by the kernel,

QF (c—G—-2)xc — ker (PEXC) . (22)

e D-terms are of the form [63],

Di=—*>_ dilXo* = C) (2.3)

where X, is the matter field corresponding to the a-th column of the incidence
matrix dgxp, © runs over the U(n) gauge groups in the quiver, e is the gauge
coupling, and (; is the Fayet-Iliopoulos (FI) parameter. The D-terms are encoded
via the reduced quiver matrix Ag_1)x £* and are related to the perfect matching
matrix as follows,

A(G—1)><E - QD (G—l)xc-Pcth ) (24)

where the Qp (¢-1)x. matrix is the charge matrix under D-term constraints.
Equivalently, in terms of an interim matrix QQgx., which maps perfect match-
ings into their quiver charges, one has the relation

doxe = Qaxe- Pl p (2.5)

Overall, the charge matrices Qr and )p can be concatenated to form a (¢ —3) x ¢

Q, = (QF) . (2.6)

matrix,

@b

The kernel of the charge matrix,
Gt = ker (Qt) s (27)

precisely encodes the coordinates of the toric diagram points with columns and hence
perfect matchings and GLSM fields corresponding to points of the toric diagram.

4Since the sum of rows in dgx g vanishes, there are G — 1 independent rows giving the reduced
matrix Ag_1)xg-

- 12 —



2.3 Hilbert Series and Lattice of Generators

The generating function of mesonic gauge invariant operators (GIOs) is known as the
mesonic Hilbert series [57-61]. The Hilbert series encodes the generators of the as-
sociated moduli space. These are essential for a complete classification of the mesonic
moduli spaces of brane tilings corresponding to reflexive polygons. The moduli space
generators can be extracted from the Hilbert series using a method known as plethys-
tics. These carry charges under the mesonic symmetry. The charges on a Z, lattice
form a convex polygon which is the dual polygon of the toric diagram.
Let the section below provide a review of the concepts involved.

Mesonic Symmetry. The mesonic moduli space of a given brane tiling is a non-
compact toric Calabi-Yau 3-fold. The mesonic symmetry of the associated quiver gauge
theory takes one of the following forms,

e U(l)y, x U(1)p, x U(1)r

o SU(2), x U(1)y x U(1)g

o SU(2)s, X SU(2)a, x U(1)g
® SUB)ayae xU(L)R

where the lower case indices denote fugacities of the gauge group with the exemption
of the R-symmetry group U(1)g. The fugacity associated to the U(1)g charge is t.

The above global symmetries derive from the isometry group of the Calabi-Yau
3-fold. The enhancement of a U(1) flavour to SU(2) or SU(3) is indicated by repeated
columns in the total charge matrix Q.

Mesonic Hilbert Series. The mesonic moduli space is the space of invariants under
F-term charges Qr and D-term charges )p. The ¢ GLSM fields corresponding to
perfect matchings of the brane tiling form the space C¢ known as the space of perfect
matchings.

e The Symplectic Quotient

M™ = (C°//Qr)//Qp - (2.8)

is the mesonic moduli space of the quiver gauge theory.® The invariants under
the symplectic quotient are mesonic GIOs.

5The symplectic quotient > = C¢//Qp is known as the Master space [65, 68, 75, 76, 80, 81] and
is the space of invariants including both mesonic and baryonic degrees of freedom.

— 13 —



e The mesonic Hilbert series is a generating function which counts mesonic
GIOs on the moduli space. The mesonic Hilbert series is obtained via the Molien
integral formula,

c—3

1
a; mes — s 2_
91 (Yoi; M) | [ ]{ - 12%21 ] | 3 _(Qja (29)

a=1 1 — Ya Hj:l Zj )

where ¢ is the number of perfect matchings labelled by a = 1,...,c and @y is

the total charge matrix in (2.6). GLSM fields corresponding to extremal perfect
matchings p, carry non-zero R-charges and have fugacities denoted by y, = t,.
For all other GLSM fields s,, with zero R-charges one assigns the fugacity vy, =
Ys,,- Lhe perfect matchings associated to these fields are non-extremal. Certain
products of non-extremal perfect matchings such as s = [[, sn are assigned a
single fugacity denoted by ys,.

e The plethystic logarithm of the Hilbert series encodes information about the
generators of the moduli space and the relations formed by them. It is defined as

= (k)
PLg1(Ya; M Z”(k log [g1(yE; M)] (2.10)
k=1

where (k) is the Mobius function. If the expansion of the plethystic logarithm
is finite, the moduli space is a complete intersection generated by a finite number
of generators subject to a finite number of relations. If the expansion is infinite,
the moduli space is a non-complete intersection. The first positive terms of the
expansion refer to generators of the moduli space.® All higher order terms refer
to relations among generators and relations among relations called syzygies.

" The mesonic moduli space is a toric Calabi-Yau cone over a Sasaki-

R-charges.
Einstein 5-manifold whose volume is related under minimization to the U(1) R-charges
of the divisors of the toric geometry [84-86]. The toric divisors relate to the extremal
points of the toric diagram and the corresponding GLSM fields.

The volume of the Sasaki Einstein 5-manifold X5 is

813 o
Vol(ra; X5) = 2—7£gg)u3gl(ta — e e M =C(X5)) . (2.11)

6The Groebner basis of the set of gauge invariant operators forms the generators of the moduli
space.

"We review here volume minimisation as a means to calculate R-charges. For alternative methods
see for example [64, 82, 83].
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where g1 (to; M) is the mesonic Hilbert series in (2.9), ¢, is the fugacity for GLSM field
Pa, and 7, is the corresponding minimization parameter. The Hilbert series related to
the divisor D, and the corresponding GLSM field p,, is obtained through the following
modified Molien integral,

c—3 c—3 -1
dz;
D . mes 1 (Qt)ka ald
(to; M :” : ta” ta, 255 C
J ( ) i—1 j{zﬂ:l 27TZZ¢ ( k=1 o ) gl( ’ )

—1
s gy
B . 2.12
H]{ i|=1 27”7% ;‘_[:1 1—ts H (Qt)]ﬁ ( )

j=17%j

The associated R-charge is then

1 [ gPe(e7rmes M) 1} (2.13)

R, = lim —
e u=0 [ gmes(e—um;Mmes)

For superconformality, the superpotential has R-charge 2 which sets the following
restriction on the R-charges

Y R.=2. (2.14)

Lattice of Generators. The lattice of generators is determined by the mesonic charges
carried by the generators of the mesonic moduli space. Ignoring the U(1)g factor, the
remaining flavour symmetries have ranks which sum up to 2. Hence, there are always
2 fugacities which count flavour charges. The pair of flavour charges carried by each
generator is taken as coordinates of a point on the plane. The convex hull of the
collection of points corresponding to the collection of moduli space generators forms a
convex polygon. This is known as the lattice of generators.

For a non-vanishing convex polygon on Z?2, the flavour charges are subject to the
following constraints:

e The pairs of flavour charges carried by all n, extremal perfect matchings form a
pair of n,-dimensional charge vectors. For a non-trivial choice of flavour charges,
the charge vectors are linearly independent.

e The elements of the n,-dimensional charge vectors sum up to zero.

e The charges on GLSM fields are scaled such that the charges on mesonic moduli
space generators take integer values and the lattice of generators is on Z?2.
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The lattice of generators subject to the constraints above still exhibits a remaining
GL(2,Z) degree of freedom. Moreover, each generator also carries a R-charge which
plays the role of a third coordinate for each point in the lattice of generators. In order
to remove these remaining degrees of freedom, one makes use of a particular property
of generator lattices introduced below.

Duality between Generator Lattices and Toric Diagrams.

The lattice of generators of a brane tiling is
the dual of the toric diagram.

The duality between reflezive polygons follows (2.1). Hence, for reflexive polygons as
toric diagrams, the lattice of generators is another reflexive polygon in Z?. Accordingly,
the remaining GL(2,7Z) degree of freedom on the lattice of generators can be removed
by making the duality for reflexive polygons exact as defined in (2.1). In addition, for
reflexive polygons the lattice of generators always lies on Z2.

When the lattice of generators is considered as a toric diagram of a new brane
tiling, the duality between reflexive polygons manifestly relates between two quiver
gauge theories with toric moduli spaces. In terms of the number of U(n) gauge groups
G and the number of GLSM fields with non-zero R-charge n,, the duality map takes
the form

Model A <« Model B
G « 12-@4
n, < N, (2.15)

as illustrated in Figure 2.

In the following sections, all 30 quiver gauge theories with their brane tilings cor-
responding to the 16 reflexive polygons are classified. All 30 quiver gauge theories are
obtained by higgsing and toric (Seiberg) dualizing the theory related to the abelian
orbifold of the form C?/Z4 x Z4 with orbifold action (1,0,3)(0,1,3). The details for
the parent theory for all reflexive polygon theories are given in appendix §A.
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C*/Zs x Zs3 (1,0,2)(0, 1,2)

3 Model 1

P1

OXOXO,

{V1, V, V3}

{r1, ra, ra}

P3

Figure 4. The quiver, toric diagram, and brane tiling of Model 1. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X15X56X61 + XogXo1 X12 + X351 X158 Xs3 + XuoXo3 X34 + X53X37 X75 + X7 X720 X6

+ X738 X9 Xo7 + XgeXeaXug + XogaXus X59 — X15X50 X091 — Xog Xogr Xro — X351 X120 X03

_X42X26X64 - X53X34X45 - X67X75X56 - X78X83X37 - X86X61X18 - X94X48X89

(3.1)

The perfect matching matrix is

S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21

s S7 S8

Sy S3 S4 S5

s1

1

0O 0 0 0 0O 0O o 0 O

1

0O 0 0 0 0 0 O

0O 0 0 O

1

0O 0 0 0 0O O O

1

1

0O 0 0 0 0 O

1

0O 0 0 0 0O 0 0 0 O

1

0O 0 0 0 0 O

1 0 0 0 0 O

0

0O 0 0 0 0 0 O

1
0O 0 0 0 0 0 O

1

0O 0 0 0 0 0 O

0O 0 0 0 0 1

0
0

0

0O 0 0 0 0 O

1

0

0

0

0O 0 0 O

1
o 0 0 0 0 0 o 0 O

1

0

0

0

0

0

0

1

1

0

0

0

0 0

0

1

0

0O 0 O
0O 0 O
0O 0 O

0O 0 O
0O 0 O
0O 0 O

0
0
0

1
1
1

0
0

0
0
0

0
0
0

0
0

P1 P2 P3|91 92 g3 |71 T2 T3 | U] U2 U3 |V] V2 V3 |W] W2 W3 |T] T2 T3

0

1

1

0

0

1

0 0

0 0

0 0

Xsgo

Xar

Xas

Xe4

X18

X23

X72

Xs6

Xo1

Xo29

Xe7| O

Xis

X31

X53

Xog4| 0

X340

Xi12

Xe61

X7s

Xs3

Xag

X26

Xo7| 0O
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The F-term charge matrix Qr = ker (P) is

510 S11 S12 S13 S14 S15 S16 S17 S18 519 S20 S21

S2 S3 S4 S5 S6 ST S8 S9

S1

T2 Z3

V2 V3 |WwW] w2 w3 |T]

uz U3 | vi

0
—1

-1 -1
—1

—1

r2 T3 |U1

T1

0

—1

0
-1

-1 -1
-1

—1

g3

92

0
—1

-1 -1
-1

0

—1

P1 P2 P3| 91

0 O
0 O
0 O

]

Soocoococoo

00 0 O
0[O0 0 O
0[O0 0 O
0 0 0|0 O O
0 0 0|0 O O
0 0 0|0 O O
0 0 0|0 O O
0[O0 0 O

0
0
0
0

The D-term charge matrix is

P1 P2 P3|a1 g2 gs|r1i r2 rs|ui us us|vi vy vz|wi wy ws|z1 @y m3|s1 sy s3 s4 S5 S¢ ST _Ss S9 S10 S11 S12 S13 S14 S15 S16_S17_S18 S19 S20 S21
1
0
0
0
0
0
0
0

0 010
0 010
0 010
0 0
0 0
0 0
0 0
0O 00

0
0
0
0
0
0
0
0

:

The total charge matrix (); exhibits no repeated columns. Accordingly, the global

symmetry group is U (1), xU(1)s, xU(1)g. Following the discussion on flavour symme-

try and R-charges in section §2.3, the charges on GLSM fields with non-zero R-charges

are chosen as shown in Table 3.

H Ul)g ‘ U(l)y, ‘ U)g H fugacity ‘

— N M
= =
QeI ArENAR]
~ T~ T
AN AN AN
P m
~
e
o M
~
==
1
— N M
STRRSHNY

Table 3. The GLSM fields corresponding to extremal points of the toric diagram with their

mesonic charges (Model 1).

Products of non-extremal perfect matchings are labelled by a single variable as
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follows,

q = 414293 , T =T1T2T3 , U = UU2U3 , U = VU203 ,
21

W = WiWolW3 , T = T1ToT3 , S = H S - (3.2)

m=1
The fugacities t,, count extremal perfect matchings corresponding to GLSM fields with
non-zero R-charge. The fugacity of the form y, counts the product of non-extremal
perfect matchings ¢ above.

The mesonic Hilbert series of Model 1 is calculated using the Molien integral for-
mula in (2.9). It is

G1(tas Ygs Yrs Yus Yo, Yuws Yar Y3 MT) =

1 — yaylysysysysys tHsts
(1 - ygyrygywys t?)(l - yqyuy?uy%ys t%)(l - ygyz%yvywys t§)<1 - yqyryuyvywyxys t1t2t3)
(3.3)
The plethystic logarithm of the mesonic Hilbert series is
PLg1(tas Ygs Yrs Yur Yoo Yus Yor Ysi MT)] = Yl thuhoYulals tritats + Yayyoyuwys £
FYZYaUuYals B3 YgUulmlals ts — Yaysysysyysys 16585 (3.4)

The finite plethystic logarithm indicates that the mesonic moduli space is a complete
intersection.
In terms of the fugacity map

Yoo 11 YrYu t3 1/3,1/3,1/3,1/3,1/3,1/3, 1/3 ,1/3,1/3,1/3
fl N Yulz tol3 A YqYw T1l2 ’ t:yq Yr" Yu Yo' Y Yz s tl t2 t3 7(35)
uwYz qYw

where f1, fo and t are the fugacities counting the mesonic charges, the above plethystic
logarithm becomes

PL{gi(t, f1, fo; MT"*)] = (1+f1+f2+i> -t (3.6)
fifs
The above plethystics logarithm identifies both the moduli space generators and the
mesonic charges carried by them. The generators and the corresponding mesonic
charges are summarized in Table 4. The generators can be presented on a charge
lattice. It is a convex polygon as shown in Table 4 and is the dual reflexive polygon of
the toric diagram of Model 16.
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The relation formed among the generators is as follows,

A AyAs = B?
Generator ‘ Ul)y ‘ UQl)y, ‘
Al=pd@Pro’>ws 1 0
Ay =p3 quw® 2? s -1 -1
As=pir*vivas 0 1
B=pipspsqruvwaxs 0

Table 4. The generators and lattice of generators of the mesonic moduli space of Model 1

in terms of GLSM fields with the corresponding flavor charges.

Generator ‘ U(l)y, ‘ U(l)y, ‘
K15 Xg9Xo1 = Xo3 Xar Xr2 = Xu5 X56Xe4 1 0
Xi15X53 X531 = Xo9 X4 Xaz = Xe7X75 Xz - -1
X129 X906 X1 = X34 Xys Xy = X59Xo7 X735 0 1
X12X93X51 = X129 X290 X1 = X15X56X61 = X15X50 X1 = X153 X3 X1 = X5 Xs6 X1 = Xo3 X34 X2 = Xos XeaXaz = Xo6Xe7X72 0 0

= X9 Xog7r X720 = X34 X5 X553 = X7.X75 X535 = Xar X7s Xy = X5 X9 Xo4 = Xus XesXes = Xus X9 Xog = X6 Xg7.X75 = X7 X539 Xo7

Table 5. The generators in terms of bifundamental fields (Model 1).

With the following fugacity map
Ty = f17% t = 2Byl 3y2 3y L3y 13

—-1/3 0—1/3
Ty 0 = R

Ty = f* t = 2323y 3y 3y 3y

the mesonic Hilbert series becomes

| - TRTRTS

T To T mesy _
g (Ty, Ty, Ts; MT?) 1-TH(1 =T (1 - T3 (1 — YT, T3)

with the plethystic logarithm being

PL[g\(Ty, Ty, Ta; M) = TV TyTs + T2 + T3 + T3 — TETITS

(3.10)

The above refinement of the Hilbert series exemplifies the conical structure of the toric

Calabi-Yau space.
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4 Model 2: C3/Zy x Zsy (1,0,3)(0,1,1)

Figure 5. The quiver, toric diagram, and brane tiling of Model 2.

The superpotential is

W = +X17 X790 Xo1 + Xog X1 X12 + X31 X14 X3 + X2 X3 X34
+X53X36X65 + XeaXus X56 + X75 X538 Xs7 + X Xe7X78
— X17X78 Xg1 — Xog Xgr Xro — X31 X12X03 — X420 Xo1 X1y
— X53 X34 X5 — X4 Xu3X36 — X75X56X67 — Xs6X65X58 -

The perfect matching matrix is

- 921 —
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The F-term charge matrix Qr = ker (P) is
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Qr =

The D-term charge matrix is
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Qp =

P1 P2 P3|G1 2|71 T2 Ul U2 U3 U4 V1 V2 U3 V4|W1 W2 W3 W4 W5 We|S1 S2 S3 S4 S5 S¢ S7 S8 S9 S10 S11 S12
o o000 O|OO|jO O O OO OOO}|]O OOOOOO1 -100U0O0O0OWO0OTGO0OO0oO0
o o000 0jOOjO O O OO OOO}jO OOOOOOOC1T 10 0 0 0 0 0 0 o0
o o000 0jOO|jO O O OO OOO}jO OOOO OO OOOOT1T-=10 09090 0 0o0
o o000 O|O O|jO O O OO OOO}|]O OO OO OO OOOOOT11T-109010 0 000
o o000 0jOO|jO O O OO OOO}jO OO OOOOOOOOT11T-=1090 0 00
o o000 O|O O|jO O O OO OOO}|]O OOOOOOOOOOOT11T=-=10 0 00
o o000 O|OO|O0 O O OO OOO}|O OO O OOOOOOOOOT11-=10 00

The total charge matrix (); does not exhibit repeated columns. Accordingly, the
global symmetry is U(1) s, xU(1) s, xU(1)g. Following the discussion in §2.3, the flavour
and R-charges on the extremal prefect matchings are found as shown in Table 6.

L Uy [UQ)y, [UQ)s || fugacity |
pL || -1/4 1/4 2/3 || t
po |l <174 | -1/4 | 2/3 | t
ps || 1/2 0 2/3 || t3

Table 6. The GLSM fields corresponding to extremal points of the toric diagram with their
mesonic charges (Model 2).

Products of non-extremal perfect matchings are set to be associated with a single
variable as follows,
12
q=dqi14a , T =T1T2 , U = U1ULU3U4 , UV = V1V2V3V4 , W = W1WW3W4W5Wg , S = H Sm -

m=1

(4.2)

The fugacities t, counts extremal perfect matchings p, with non-zero R-charge. The
fugacity y, counts the product of non-extremal perfect matchings ¢ above.

The mesonic Hilbert series of Model 2 is calculated using the Molien integral for-
mula in (2.9). It is

91(tas Yg Yrs Yus Yoo Yurs Ys3 ME) = (1 — y2y2yayeyny? 1163) (1 — y2ylyoyoyay? 16583

1
X
(1 = y2ydyuy2ys t1) (1 — v2yuydy2ys t3) (1 — ygyrys t3)
1
X 4.3
(1 = Youry2y2yays B13) (1 = YU YuYoYuys titats) (43)
The plethystic logarithm of the mesonic Hilbert series is
PL[gl (taa yqa Yrs Yus Yvs Yws Yss M;nes)] = yqyrys t?; + yqyryuyvywys t1t2t3
FYgUrYalanYs Eits + Yoyahulals U + YoyuYaays s
—YaYRYa Yy ys T — Yayry,Unu¥s tits - (4.4)
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The finite plethystic logarithm indicates that the mesonic moduli space is a complete
intersection.
With the fugacity map

_ _ _ _ —2/3,-2/3,4/3
i = LByt By 2By By 2y 2 3y R RS
fo = you; 'y, 152
t =yl PyLByL Ryl Byl B P (4.5)

where f1, fo and t are the mesonic charge fugacities, the plethystic logarithm becomes

PLIgi(t, fr fos M) = fif? +8 4 <1 + fo+ i) th— 1% — %tg . (4.6)
1 f2 fi

From the above plethystic logarithm, one can identify the moduli space generators
as well as their mesonic charges. They are shown in Table 7. The charge lattice of
generators in Table 7 is the dual reflexive polygon of the toric diagram of Model 2. The
two relations formed by the generators are

AjA3 = A} | BBy = A3 . (4.7)
Generator ‘ U(l)y ‘ U(l)y, ‘
A =piqrs 1 0
Ay =pipaps ¢ T uv w s 0 0
Az = pips g r vt w? s -1 0
By = p} ¢® vdv w? s -1 1
By = p3 r* uv® w? s -1 -1

Table 7. The generators and lattice of generators of the mesonic moduli space of Model 2
in terms of GLSM fields with the corresponding flavor charges.

‘ Generator ‘ U(l)y ‘ U(1)y, ‘
X12X21 = X34X43 = XSSXGS = X78X87 1 O
X12 X3 X31 = X192 Xog X1 = X14Xup Xo1 = X1u X3 X1 = X17 X720 Xo1 = Xi7 X7 X1 = Xo3 X34 Xup = Xog Xgr X790 = X34 X5 X553 0 0
= X36X64X43 = X36X65X53 = X45X56X64 = X:)GX67X75 = X58XSGX65 = X58X87X75 = X67X78X86
X14X42X23X31 = X14X42X28X81 = X14X45X53X31 = X17X7‘2X23X31 = X17X72X28X81 = X17X75X58X81 = X23X3GXG4X42 >1 O
= Xos Xs6Xer X2 = X36X64Xa5X53 = X6 Xo7X75X53 = X X5s X6 Xea = X5 Xs6Xo7X75
X14X45X58X81 = X23X:i(iX‘$7X72 -1 1
X17X75X53X31 = X28X86X64X42 >1 >1

Table 8. The generators in terms of bifundamental fields (Model 2).

With the fugacity map

—1/4 p1/4
Ty = f Rt = gy L2yt g

Ty = fi V= gl Pyl Ry gy

1/2
Ty = £, t = g2yl 22 1y (4.8)
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the mesonic Hilbert series takes the form

(1 - TTH)(1 - TPTETY)
1—TH1 - 1)1 - )1 - T2T3)(1 - TITy)

g1 (Th 15,T5; M;nes) = (4-9)

with the plethystic logarithm being

PL[gi(Ty, Ty, Ty; M) = T2 + ThToTs + TET2 + T} + Ty — TAT3T8 — TP Ty
(4.10)

The above refinement of the mesonic Hilbert series emphasises the conical structure of
the toric Calabi-Yau space.

5 Model 3: L17371/Z2 (O, 1, 1, 1)

5.1 Model 3 Phase a

P4

{ug, Up, Us}

P3 {01, G2} P1

Figure 6. The quiver, toric diagram, and brane tiling of Model 3a.

The superpotential is

W = +X31 X138 Xg3 + X30 X7 X735 + X3 X357 X5 + X7 X1 X7
— X114 X4 Xg1 — X351 X7 X753 — X7g X3 Xar — XgeXe1X13
+ X174 X5 X56X61 + Xe2 X204 Xus X6 — X320 X204 Xu5 X553 — X Xor X75X56 - (5.1)

The perfect matching matrix is
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The F-term charge matrix Qr = ker (P) is
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The total charge matrix does not exhibit repeated columns. Accordingly, the global

D

The D-term charge matrix is
Q

symmetry is U(1)y, x U(1)y, x U(1)g. Following the discussion in §2.3, the mesonic
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charges on the extremal perfect matchings are found as shown in Table 9.

’ H Ul)yg ‘ U(l)y, ‘ U)g H fugacity
| 1/2 1/2 |Ri=1(6-V7) |t
P 0 1/2 | Ri=1(56-VT7) | t
ps || -1/2 | -1/2 | Re=1(14+V7) | t
paf O 1/2 |Re=%(1+V7) | t

Table 9. The GLSM fields corresponding to extremal points of the toric diagram with their
mesonic charges (Model 3a). The R-charges are obtained using a-maximization.

Products of non-extremal perfect matchings are associated to a single variable as
follows

12
q=q1q2 , T =T1T2 , U =UUU3 , U= U1VaV3 , S = HSm . (5.2)
m=1
The fugacity ¢, counts extremal perfect matchings. The fugacity y, counts the product
of non-extremal perfect matchings q above.
The mesonic Hilbert series of Model 3a is calculated using the Molien integral
formula in (2.9). It is

91(taes Ygs Yr Yus Yo Yss M) = (1 — y2ytyiyoys t1650565) (1 — yoyryaysys titatsty)
1
X
(1 = ygurys t33) (1 — y292y0ys t13)(1 — yury2y2ys t363)
y 1
(1 - yzyuygys t2t2)<1 — Yq¥YrYulYvls t1t2t3t4)

(5.3)
The plethystic logarithm of the mesonic Hilbert series is

PLg1(tar Yas Yrs Yus Yor Uss M) = Yarts 115 + Yalruthols trtatats + ysyayoys tit;
FYRYaYays ot + YeUrVaays 1385 — Yoytyiysys G55 — yoytyaysys titatsty
(5.4)

The finite plethystic logarithm indicates that the mesonic moduli space is a complete
intersection.
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Consider the fugacity map

fi=—
Yulo
o
Yg 113
£, =yl Ayttt iyt g Pe
fo =y, Myt (5.5)

where f, and f, are the flavor fugacities, and ¢, and #, are the fugacities for the R-
charges R; and Ry in Table 9 respectively. Under the above fugacity map, the plethystic
logarithm becomes

N 1 N @“o 128
PL[g1(tas f1, fo; MES)] = fil] + 615 + <— + f2> hity+ 2 — 1ty — =2 .
fif fi fi

(5.6)

The above plethystic logarithm indicates both the moduli space generators as well
as their mesonic charges. They are summarized in Table 11. The generators can be
presented on a charge lattice. The convex polygon formed by the generators in Table 11
is the dual reflexive polygon of the toric diagram of Model 3a. The generators satisfy
the following relations

A1Ay = B? | AyB = (.0, . (5.7)
Generator ‘ Ul)y, ‘ U(l)y, ‘
Ar=pipsqrs 1 0
Ay = pip2 g r u*v? s -1 0
B = pipapsps q 7 uv s 0 0
Cy =pip3 ¢° v’ s -1 -1
Cy = pzpi r? w? s 0 1

Table 10. The generators and lattice of generators of the mesonic moduli space of Model 3a
in terms of GLSM fields with the corresponding flavor charges.
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Generator ‘ Uy | UQ)y, ‘
Koa X5 X6 X62 = X18Xs1 = X37 X3 1 0
X14Xag X3 X1 = X14 Xug X6 X61 = X7 Xr5 X53X31 = X17 X75 X3 X3 -1 0

= X17 X78 X6 X61 = Xo7 X75 X53X30 = Xor X7s X3 X0

X14Xa5X56X61 = Xoa X5 X53 X320 = Xoa Xug Xgs Xz = Xor X75X56X62 = X714 X4 X1 0 0

= X17X73 X531 = X7 X7s X1 = X1s Xs3 X351 = X158 Xs6X61 = Xor X73 X2 = X7 X75 X553 = X7 X7s Xss

K17 X725 X56 X61 = Xoa Xug X3 X30 -1 -1
X14 X5 X53X31 = Xor X7 X6 X2

Table 11. The generators in terms of bifundamental fields (Model 3a).

The mesonic Hilbert series and the plethystic logarithm can be re-expressed in
terms of the following 3 fugacities,

fo (7 L. 2 9 3 = 2,2
T === = Ty = — tits = WYs tits . T = f1 tf = yoy,ys 212
= RN 2= 7 il = Ygbubeys tits, Ty J1 11 = Ygyrys 11ty
(5.8)
such that
1 — T2T2T2)(1 — T3T3T2
g1(T1,T2,T3; g{zles) _ ( 1 22 23)( 1 32 23)2
(5.9)
and
PL[gy(Ty, Ty, Ty; M5)] = Tz + Ty ToTs + Ty + TP T3 Ty + T T3 Ty
~TETTS — TPTSTy (5.10)

The above refinement of the mesonic Hilbert series and the plethystic logarithm illus-
trates the conical structure of the toric Calalbi-Yau 3-fold.
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5.2 Model 3 Phase b

{V1, Vo, V3}

{uy, Uz, ug}

P2

{ru, ra}

Pa

Figure 7. The quiver, toric diagram, and brane tiling of Model 3b. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

+ X351 X8 X3 + Xyo Xo3 Xy + X53X37 X5 + X7 X72 X026
—X14Xug Xg1 — XyoXogXga — X3 X34 Xu5 — X7 X75X56

+ X738 X1 X7 + XgeXeaXug + X714 X45X56X61

W:

(5.11)

_X78X83X37 - X86X61X18 - X17X72X23X31 .
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The perfect matching matrix is

P1 P2 P3 P4|q1 G2|T1 T2|Ul U2 U3 |Vl V2 V3|81 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

1 00

1 0 0|0 1

1 001 0|0 1j0 O 0|0 O O|O 1 0 1 01 00O O

1 0 0j{0 1|0 1

1

0 1 01 1/0 0[]0 O
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1

0

0 o001 0/O O}jO0O O OO O OO0 O 1 0 0 0 1

000|010 O|{O0 O 0|0 O O|O O OOOT1TT1O01

1000 0|1 O|O O O|O O 0|0 O O 1 0 O0O0OO0OT1
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1
1
1
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0 0 0

X37| 1

Xis| 1

Xs1

Xeq| 1

Xe7| 1

X341 0

X451

Xo3| 1

X56| 0

X720 1 0 0|0 O|O 1|0 O 0|0 O OO O O O 1 0 0 1 O

Xgs|/0 0 1 0|1 0|0 O

X31

X140 0 1 0|0 1|0 O

X780 0 1 0|0 1|0 OfO

X420 0 1 0|1 0|0 OO O

X530 01 0{0 1|0 0[O0 O

X17{0 0 O

X480 0 O

Xg3/0 0 O

Xe1

Xo6|0 0 O

X7510 0 O

P =
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The F-term charge matrix Qr = ker (P) is

P1 P2 P3 P4|q1 QG2 |7r1 T2 |Ul U2 U3 |Vl V2 V3 |S1 S2 S3 S4 S5 S S7 S8 S9 S10 S11 S12 S13 S14
$1P o010{-1-140 0|0 O OO0 O OO O O O O O O OO O O O O0 o
01010 0|-1-1f0 O OO O OO O O O O O O O O O O o0 o0 o0
1P 0 0 0O|]O OfO O|1T O O[O O O|-1 0 O OO OOOTU OUO-10 00
1P 0o00/O OO O[O 1T O|0O O 0|0 -10 OOO=-10T0 0 0 0 0 o
o 1000 OO O}jO O OfO 1 Of-1 0 0 0 OOO O O O O 0 0 -1
o10o0/,0 OjO O}jO O OO O 10 -1 0 O O O O O O -1 0 O 0 O
010600 0O/|-2 00 1 OO O Of1 -1 0 0.1 0 0 0 0 O O 0 0 O
oo011{0 0j0 0Of(-1 0 0OfO O —-1fO O O O O O O O O O O o0 o0 O
Qr = oo011{0 oyjo oj06 -1 00 -1 00 0 0 O O O O O O O O o0 o0 O
oo0o01{0 0oj0 0{(-1 0 -1y0 1 0O O O O O O O O O O O o0 o0 O
ooo60141 0jo0 0f{-12 0 0fj0 0 0j7 -1-1 0 O 0O O O O 0o O O o0 O
oo0oo01{0 ojo 0j-1-1 041 0 0O O O O O O O O O O O o0 o0 O
oo0oo011{1 oj0 0f(-1 0 00 OO|O -10 01 0 0 -10 0 0 0 0 O
oo0oo01,0 1{0 0|0 -1 0|0 O O0Ofj-12 1 0 0 0O-.1 0 0 O 0 O O o0 O
oo0oo011{0 0/-10{(-1 0 0O0fO O Of1 -1 0 1. 0 0 0 0 0 O O 0 0 O
oo0o0O0O1 0O 1}]0 O OO O OO -1 0 O O O O O O O O -1 0 o0
o o0O0O0Oj]O0O 1|1 00 O OO O O0f|—-1 o o o o0 o0 0 -10 0o 0 0 O
o o0o0o0jo0o ojo ojo o ofo o ofo 1 0 -1 0 -10 0 0 O0 O o0 1 o0

The D-term charge matrix is

P1 P2 P3 P4|q1 G271 T2|Ul U2 UZ|V]l V2 V3|S] S2 S3 S4 S5 S6 ST S8 S9 S10 S11 S12 S13 S14
oo0o0SO00 0/OOjO OOIOO0OO0O|]OLT~-10 0 0 0 0O O 0 0O 0 0 O

o0 o0o0O0O0O0O/O0O0O/O0O0O0O/OO0OO0O][]OOB1T =10 0 0 0 0 0 0 0 o0 o

~ |} o0oo0o0o0j0O0|O0O0flOOO0OO0OOO0OOO0O0OT1-1000 0 0 0 0 0 O
@p = oo0o0SO0O0O0O0O0OO0OOSO0OO0O0OOOOOOOTOT11T-10 00 0 0 0 o0 O
0o 0o0O0OO0O0O0O0O0OO0OO0OO0OO0O0OOOUOOOOO?I1T-10 0 0 0 0 0 o0
oo0o0SO0O0 00O 0O|jO OO0 O0OO0O|jOOO OO OT11T-10 0 0 0 00

o0 o0o0OO0OO0OOOTOO0O0OO0OOO0OOOOOOOOOILT-10 0 0 00

The total charge matrix does not exhibit repeated columns. Accordingly, the global
symmetry is U(1)g x U(1)s, x U(1)g. The mesonic charges on the GLSM fields with
non-zero R-charges are the same as for Model 3a and are shown in Table 9.

Products of non-extremal perfect matchings are expressed in terms of single vari-
ables as follows

14
q=qq2 , T =TTy, U = UjUUz , U = VU035 , § = H Sm - (5.12)
m=1
The fugacity t, counts GLSM fields corresponding to extremal perfect matchings p,.
The fugacity y, for instance counts the product of non-extremal perfect matchings ¢
shown above.

The refined mesonic Hilbert series and the corresponding plethystic logarithm are
found using the Molien integral formula in (2.9). The Hilbert series is found to be the
same as the one for Model 3a given in (5.3), (5.4) and (5.6). Accordingly, the mesonic
moduli spaces of Model 3a and 3b are the same, with the corresponding quiver gauge
theories being toric (Seiberg) duals.
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The generators in terms of all perfect matchings of Model 3b are given in Table 11
with the corresponding mesonic symmetry charges. The corresponding mesonic gener-
ators in terms of quiver fields are given in Table 12. The mesonic moduli space is a
complete intersection, and the generators satisfy the relation in (5.7).

‘ Generator ‘ U(l)y, ‘ U(l)y, ‘
X8 X1 = X3 X37 X792 = Xy5 X56 X4 1
X14 X2 X6 X61 = X14Xyg X3 X31 = X14 X Xgs X1 = X17X75X53X31 = X17 X7 X3 X531 = X17 X7 X6 X1 -1
X14Xa5X56X61 = X17X72 X093 X531 = X1y Xug X1 = X17X7s Xg1 = X158 X3 X31 = X1 Xgs Xe1 = Xo3 X34 K42 0
= Xo6X64Xa2 = X Xe7Xr2 = X34 Xu5X53 = X7 X75 X553 = X37 X7 X3 = Xug XseXoa = X56X67X75
X34 X48 Xg3 = X17. X7 X6 X61 = X17X75 X56 X1 -1 -1
KNor Xrs Xgs = X14X42X03X31 = X1y X5 X53X31

o o o

Table 12. The generators in terms of bifundamental fields (Model 3b).

6 Model 4: C/ZQ X ZQ (1,0,0, 1)(0, 1, 1,0), PdP5

6.1 Model 4 Phase a

©

@ Pa {va, Vol
@

{ru, ra} O

®

Figure 8. The quiver, toric diagram, and brane tiling of Model 4a. The red arrows in the
quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X93 X33 Xg1 X192 + Xu1 X16X63 X34 + X7 X7 X5 X6 + Xgs X520 X7 X7g
—Xor X X Xy — Xus X5 X3 X34 — X3 X33 X5 X56 — Xg1. X16X67X78
(6.1)

The perfect matching matrix is
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X0 01 0/0 0f0 1|1 0|0 0|0 1T 00O0O0O0O0T1TO0O0

X3/0 0 1 0|0 0|0 1|0 1/0 0|0 O O0OO0OO0O1O0O01 0 O

X80 0O 1(j0 01 0j0 Of1 0|OOO1 1 01O0O0O0 0 O

X630 0 O 1(0 O0f1 0|0 OO0 1|2 01 0O0O0O0OO0OGO0O 1
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The F-term charge matrix Qr = ker (P) is
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The D-term charge matrix is
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1

-1 0 0 O

1

-1 0 0

1

D1 P2 P3 P4|q1 g2|T1 T2|UL U2|V1 V2|S1 S2 S3 S4 S5 S¢ S7 S8 S9 S10 S11 S12

0o0o0°O00|0O0(O0O0/O0O0/0O0O0/jOOC1T~-10 000 0 0 0O

0 0O0O0|O0OO0|OO0|O0 00 0{0O0O0 1

00o0O0O|0O0{OOOO0JO0OO0(OO0O0O0O O

00O0O0|0OO0(OO0O/O O0/O0O0(O0OO0O0 O
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000®O0|O0OO0|OO0|[OO0/0OO0O0jOOO0O0OO0 OO0 O

Qp =
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The total charge matrix ); does not exhibit repeated columns. Accordingly, the
global symmetry is U(1)s, x U(1)g, X U(1)g. The mesonic charges on the extremal per-
fect matchings are found following the discussion in §2.3. They are shown in Table 13.

‘ H Ul)g ‘ U(l)y, ‘ U)g H fugacity
| 1/4 | 14 | 172 [
po |l 14 | 14 | 172 ||t
pa |l 14 | 14 | o1y2 ||t
ol -1/4 | 14 | 12 | u

Table 13. The GLSM fields corresponding to extremal points of the toric diagram with their
mesonic charges (Model 4a).

Products of GLSM fields corresponding to non-extremal perfect matchings are
called by single variables as follows

12
q:qlqg,r:rlrg,u:u1u2,v:vlvg,s:Hsm. (6.2)
m=1
The fugacity ¢, counts extremal perfect matchings p,. The fugacity y, for instance
corresponds to the product of non-extremal perfect matchings ¢ shown above.
The refined mesonic Hilbert series of Model 4a is calculated using the Molien inte-
gral formula in (2.9). It is

91(tas Ygr Yrs Yus Yoo ¥ss M) = (1 — ylytylyly? it5t565)°
1
X
(1 = y2yuyoys 133)(1 — yeury2ys 1363) (1 — yaury2ys t313)
. 1
(1 — v2yuyoys 1383) (1 — YgUryuYols titatsts)

(6.3)

The plethystic logarithm of the mesonic Hilbert series is

PLg1(tas Ygs Yrs Yur Yoo Ysi M) = Yqurtpuhols trtatsts + yoyutols 1165 + Yryuyols 365
FYgUrYeys tts + YgUrUays tits — 2 yoytyiysys thi5t5t;
(6.4)

The finite plethystic logarithm indicates that the mesonic moduli space is a complete
intersection.
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With the fugacity map

t1t v Tot
ool g Sl g G (6
where the fugacities fi, fo and ¢ count mesonic charges, the Hilbert series becomes
(1—1%)?
gi1(t, fr, fos M) = (6.6)
R T O A )
The corresponding plethystic logarithm is
1 1
PLIn(fu s M) = (L4 fi 4 ot )28 (6D
1 2

The above plethystic logarithm identifies the moduli space generators with their mesonic
charges. They are summarized in Table 14. The charge lattice of generators in Table 14
is the dual reflexive polygon of the toric diagram of Model 4a. The generators satisfy
the following relations

AjAy = B1By, = C* . (6.8)
Generator ‘ U(l)y, ‘ U(l)y, ‘
Ay =pipsqru’s 0 -1
Ay =p2p2 qrv?s 1
Bi=pips ¢Cuvs 1 0
By =pipirtuwvs -1 0
C' =pipopspaqgruvs 0 0

Table 14. The generators and lattice of generators of the mesonic moduli space of Model 4a
in terms of GLSM fields with the corresponding flavor charges.

Generator Uy, | UQ)y,
Xi6Xe67X74Xa1 = Xo3 X33 Xs5X50 0 -1
K12 X3 X34 Xa1 = X6 X7 X78 X5 1 0
K12 X3 X35 X1 = X12Xor Xra Xy = X6 X3 X3a Xy = X1 Xor X7s X1 = Xog X Xus X = Xor Xy X5 Xoo = Xgs Xss X6 X3 = Xas Xo6 Xo7 X74 0 0
Xi16X63 X33 Xs1 = Xo7 X714 X5 X0 -1 0
X2 X7 X7s X1 = X34.X45X56 X3 0 L

Table 15. The generators in terms of bifundamental fields (Model 4a).

The fugacities

T

2.2 3 4
s T1t3t t t1t
2 fife Yr t3ly Yu 113
(6.9)
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can be introduced to rewrite the Hilbert series and plethystic logarithm as

(1 - TPT3T3)?
(1= TWTaT3)(1 — TiT3) (1 — TWT2Ts) (1 — TyTo) (1 — Ty T5T2)
(6.10)

G (Th, Ty, Ts; M) =

and

PL[gy(Ty, Ty, Ts; M) = TVToTs + Ty TETs + ThTs + TV To T2 + ThTy — T2T2TY
(6.11)

such that powers of the fugacities in the expressions are positive. This illustrates the
cone structure of the variety.

6.2 Model 4 Phase b

{v1, Vo}

{ug, U}

Figure 9. The quiver, toric diagram, and brane tiling of Model 4b. The red arrows in the
quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +Xo93 X33 Xgo + Xu5X56X6a + X3 X34 Xas + X5 X520 Xog + Xo1 X714 X7 X790 + X1 X138 X7 X76
— X021 X8 Xgo — X7 X7 Xea — XgrXraXog — Xe1 X14Xu6 — Xus X520 X03 X34 — X63X33 X35 X56
(6.12)

The perfect matching matrix is
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0 0
1

0
1
0
1
1
0
1
0

1
0

1

1

0 0

1
0
0
1

1
1
0

T2|U1 U2|V1 V2|81 S2 83 S84 S5 S¢ S7 S8 S9 S10 S11 S12

P1 P2 P3 P4|q1 G2

X111 0 0 0|2 000j1 00 0|2 01 0100O0OO0OO0 0O O

X47/1 0 0 0|2 O0O0j0 1|0 0j0 1 01 0100O0O0 0 O

X341 0 0 0j0 1001 OjOOCIT 0O0O0OO0OO0DO0D1TO01O0 0 O

X561 0 0 0|{0O 1{00(0 1{0 0j{O 1 0O0O0O0O0T1O0 1

X630 1 0 0|1 0|00(0 O|1 0|0 O 1 010O0O0O0OO

X410 1 0 0|2 000j0 00 1j]0001TO01O0O0O0O0 O

X140 1 0 0|0 1/00(0 O 0|OO0CO0OO0O0O01TO0T10O0

X7%/0 1 0 0j0 1/00/0 OjO 1({0 0 O0O0O0O0O0T1O0T1

Xg5/0 01 0|0 02 0j1 0|0 O[O OOOO1O0O01O0 O

X230 01 0|0 02 0({0 1{0 0jO O O0OO0O1O0O0O0O01

Xm0 01 0j0O001]1 0|0 0]|]0OO0O100O0O01O0TO0 O

Xig/0 01 0/{0O001]0 1|0 0j0001TO0O01O0O00O0

Xg7/0 0 O 1(j0 0200 0Oj2 0O|0O1T 00010010 0 O

X2/0 0 0 1|0 0{20(0 0|0 1|1 0O 0OO0O1O0O0O0O01

X520 0 0 1|0 0j01{0 0|1 0jO1T 1 0O0O0O0T1TO0OO0O O O

X3/0 0 0 1|0 001j0 00 1|1 001 0010O0O0 O O

Xg1 1 001 10041 0j2 0(01 10010110 0

Xog/1 1 0 Of1 1j00|0 1|10 1}j1 001 101001

Xes/0O O 1 1j0 0212412 02 0|2 01 0101010

X4(0O O 1 1j0 02140 1/0 1|01 01010101

P:

The F-term charge matrix Qr = ker (P) is

S2 83 S4 S5 S St S8 S9 S10 S11 S12

-1-10 0 0 0 0O 0O 0 O O O

-1-10 0 0 0 0 0 O O

-1-10 0 0 0 0 O

-10 0 0 0 O
-10 0 0 0 0 0 0 0 0 O

-1 0 0 0

-1

-1 0
-10 0 0 0 O

0 0 0 0 O

1

0

-1

-1 0 0 O
1

0

1

0 0o 0-10 0 0 O

-1 0
-1 0

0 000 0 O O

-1 0 1

1

1

0

-1 0 0 -1

0

V2 | S1

-1-10 0 0 0 0 0 0 0 0 0 0 O

0710 O
1

1

0[]0 O

1
1

0
-1 0

Uz | V1

-1-10 0{0 0 0 0 0 0 0 O O O O O

0 00 0|0 O

0

1
1

010

0710 O

1

T2 | U1

-1-10 0j0 O0j{O0O O O O O O O O O O O O

1

0j0o 0(0 00 O O O

1

-1 00 O
-1 00 O

0 0,0 O

-1 0

q2 | T1

0 0j]0 OjO0O OO0 O

010

1

0

1

P1 P2 P3 P4|q1

110¢0(-1~-10 00 O}jO OO O O O O O O O O O O O

0011{0 O

10100 0,0 O

0101{0 0j0 0]0 O

1 001

0000

0 0001

000O0|O0 O0]O0 O

000O0|O0O O]O0 O
0010[{0 O
0010{0 O

0 00T1|0

000T1{0 O

00000 OjO OO OO0 00 O

Qr =

The D-term charge matrix is
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P1 P2 P3 P4|q1 G2|71 T2|U1 U2 |Vl V2|81 S2 83 S4 S5 S¢ S7 S8 S9 S10 S11 S12

0 o0o0®O0|0O0(O0O0jO0O0/0O0O0jOOCOO1-10 00 000
0o0o0®O00|0O0(0O0/O00/0O0O0jOOCOCOO0OT1T-10 0 000

]l 00O0O0OO0O0O0O00O0OO[]OOO0OO0O01-10 0 00
@p = 00o0O0O|OO0(OO0[OO0/0OO0jOOOOOOOD 0 1T -10 00
0 0o0O0|0OO0(O0O0][]O0O0/0OO0jOOOOO0OOODO0 O0O1-100

0 0o0®O0|0O0(0O0}O00/0O0O0jOOCOOO0OOODO0 O0O0OT1-10
00o0®O0|O0OO0jOO0]O0 0/00O0{]OOCOO0OOO0ODO0 O0O0OO0 1 -1

The total charge matrix @); does not have repeated columns. Accordingly, the
global symmetry is U(1)y x U(1)s, x U(1)g. This is the same global symmetry as for
Model 4a, and the same mesonic charges on extremal perfect matchings are assigned
as for Model 4a, as shown in Table 13.

Let products of non-extremal perfect matchings be associated to a single variable
as follows

12
q=q1q2 , :TlTQ,U:U1U2,U:’U1U2,8:H8m. (6.13)
m=1
The extremal perfect matchings p, are counted by t,. The fugacity of the form y,
counts the non-extremal perfect matching product ¢ above.

The refined mesonic Hilbert series is calculated using the Molien integral formula
in (2.9). The Hilbert series and the corresponding plethystic logarithm turn out to
be the same as for Model 4a. The mesonic Hilbert series and the refined plethystic
logarithms are given in (6.3), (6.4) and (6.7). Accordingly, the mesonic moduli spaces
of Model 4a and 4b are the same, with the corresponding quiver gauge theories being
toric dual.

The generators in terms of perfect matchings of Model 4b are given in Table 14
with the correspoding mesonic symmetry charges. The corresponding generators in
terms of quiver fields are shown in Table 16. The mesonic moduli space is a complete
intersection, with the generators satisfying the relations in (6.8).

‘ Generator ‘ U(l)y, ‘ U1y, ‘
X6 X18 X85 X61 = X3 X34 Xar X2 0 -1
Xog X2 = X14Xus X56X61 = X14Xa7 X76X61 = X34 X5 X56X63 = X34 X47X76Xe3 1 0
X1 X14Xa7 X7 = X1 X1s Xer Xve = X3 X34 X5 X520 = X6 X38 X5 X3 = X14X46X61 = Xo1 X158 X2 0 0
= Xo3 X35 Xso = X520 Xog Xg5 = X72 Xog Xg7 = X34 Xu6Xe3 = Xy5 X56X6a = X1 Xa7 X76
X6 X614 = X1 X158 Xe5 X2 = X1 X138 Xgr Xro = Xo3 X3 X5 Xso = Xo3 X3 Xer Xro -1
X1 X14Xy5 X5 = X3 X33 Xs7 X6 0 1

Table 16. The generators in terms of bifundamental fields (Model 4b).
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6.3 Model 4 Phase ¢

{v1, Vo}

X0,

1+ S1a}
{0, G2}

S, 1

Figure 10. The quiver, toric diagram, and brane tiling of Model 4c. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

+ X071 X114 X + Xo3 X33 Xgo + X1 X18Xg6 + X3 X34 Xus + X7 XraXus X6 + Xgs X520 X7 X7g

W =

_X21X18X82 - X27X74X42 - X61X14X46 - X67X78X86 - X45X52X23X34 - X63X38X85X56

(6.14)

The perfect matching matrix is

0

1

0
1

1
0

1

0

0

1

1
1

0 0 O

0

0

1

1
0

0 0 0

0
0

1
0

1

1

0

1

0

1

0
0

1
0
0
0
0

1
1
0
1
0

1

0

1

P1 P2 P3 P4|q1 G2|T1 T2|U1 U2|V1 V2|S1 S2 S3 S4 S5 Se¢ S7 S8 S9 S10 S11 S12 S13 S14

1000101 0j0O0f(OO0IO0O0O111010O0O0 0 O
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Xgs/0 01 0j0 0|1 0]O0O 0|0 1|0 1 0O 0OO0OO0OO0OO0OO0O O O

X0 01 0{0 0{0 1|0 0|1 0O|]OOOO0OO0OT1O0O0T11

X230 01 0/{0 0|0 1|0 OjO 1|0 001100110 O 0 O

X330 0 0 1(0 0{0 O]1 0|1 0O|O O 1T 0O0O01O0O0O01

X2/0 0 0 1(0 0j0 0O}1 0|0 1|0 O0O1 1 10010 O0 O O

X520 0 O 1(0 0j0 O0]O0O 1|1 0|2 OOOOO0O1O0O0O0OO0O OO0OO0OO

X700 0 0 1(0 0(0 0}0 1|0 1jOO0OO0O0O1T1O0O01O0 O

Xg1 1001 112 0/0 1j00({1 100001000 O

X4p|1 01 01 0j1 1]0 0|1 0{2 2 00 0O01O0O0O0

Xs¢/0O 1 0 1(0 1|0 01 1j0 1|1 1 000O0O0OT1O0TO0 O

X460 01 1(0 0j0 11 0|1 1|21 1 00 0O0O0T1TO0O0

P:
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§2 83 S4 S5 S¢ St S8 S9 S10 S11 S12 S13 S14
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-1 0 0
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60 0j0 -1-10 0 0 0 O O O O O 0 O
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T2 |UL U2 | V1 V2 |S1

-1-10 00 0y0 0 O OO OO O OO O0OO0OO0OUO

-10 00 0|0 O O O O

-1 0|0 0|0 0]O0
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0 00 0|0 O
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The F-term charge matrix Qr = ker (P) is

P1 P2 P3 P4l q1

1 100(~-1-10 O0O/0 OO OjO O O OO O OO O OO OO0 O

101070 O

0101

0011

1 001

01100 0O O}jO OO OO0 -1 0 00 O O O O O O O O

100 0(-1 0|0

100 0(-10

0010]|1

0010{0 0|0 O

0000

0000

00O0O0O|O

00O0O0|0 O

000O0|0 O0]O

00000 O[O OjO OO0 O

Qr =

The D-term charge matrix is

P1 P2 P3 P4|q1 G2|T1 T2|U1 U2|V1 V2|S1 S2 S3 S4 S5 S¢ ST S8 S9 S10 S11 S12 513 S14

0 0o0®O0j0O0(O0O0]|]OO0/0OOjOOOOOO0O1-10 0 0 0 00

0 00O00O0(O0O0]O0 00 O0{OO0COO0OO0OOODSO01

00O0O0|0OO0jOO0O|]OO0IOO0]OO0O0O0OO0OOGO0OT®O
0o0o0O00O0(O 0[O OO0 OfOO0O0OO0ODOOO0O®O O

0 00O0|OO0|OO0]O 0O O0{]OOOOOO0OO0OTO0ODO0 O

0 00O0OO0OO0|O0O0jO 00O 0O0{]OOOOOO0OO0OTO0OO0 0 O

00o0®O0jO0O0|OO0|OO0/O00OjOOOOOO0OO0OO0OUO O O0 O

@p

The global symmetry is U(1)y, x U(1)s, x U(1)g. The global symmetry charge

assignment on the GLSM fields with non-zero R-charges is the same as for Model 4a

and is shown Table 13.

(6.15)

Products of non-extremal perfect matchings are labelled in terms of single variables
q=4qiq2 , T ="1T2 , U = UU2 , U ="V1V2 , §

as follows

is to. A product non-extremal perfect matchings, for instance ¢, is assigned a fugacity

The fugacity which counts GLSM fields corresponding to extremal perfect matchings p,

of the form y,.
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The mesonic Hilbert series and plethystic logarithm for Model 4c is the same form
as for Model 4a. They are given respectively in (6.3), (6.4) and (6.7). Accordingly, the
mesonic moduli space of Model 4c¢ is the same as for Model 4a. In other words they
are toric (Seiberg) duals.

The generators in terms of the perfect matching variables of Model 4c¢ are given in
Table 14 with their mesonic charges. The generators in terms of quiver fields are given
in Table 17. The mesonic moduli space is a complete intersection and the generators
satisfy the relations given in (6.8).

‘ Generator ‘ ULy ‘ ULy, ‘
Xor X7g Xgo = X14Xu5X56X61 = X34 X145 X56 X3 0 -1
X3 X34 X42 = X56X18Xs5X61 = X56X67X78Xs5 1 0
X3 X34 X5 X50 = X5o X7 Xrg Xgs = X6 X33 Xs5X63 = Xus X6 Xe7X74 = Xo1 X14Xup = X114 Xy6 X1 0 0
= Xo1 X18Xso = X1 X18 X6 = X3 X3z Xgo = X X7 Xy = X34 Xy X6z = X7 X7 Xs6
X3 X38 X6 = Xo1 X14Xu5 X520 = X5 Xo7 X74 X0 -1 0
X6 Xe7 X710 = Xo1 X158 X5 X502 = X3 X33 X5 X52 0 1

Table 17. The generators in terms of bifundamental fields (Model 4c).

6.4 Model 4 Phase d

®

@ P4 {v1, Vo)
©,

fry, ra) ©)

@
® @

P2

O)

Figure 11. The quiver, toric diagram, and brane tiling of Model 4d. The red arrows in the

{ug, U}

quiver indicate all possible connections between blocks of nodes.

The superpotential is
W = + X1 X14 X}y + Xo3 X33 Xgy + Xos X54 X0 + Xor X7 Xy
+X61X18X816 + X63X34Xi6 + X65X58X§6 + X67X74X26
— X1 X18 X5y — X3 X34 X5y — Xos X5s Xgy — Xor X714 X}
— X1 X14 X — Xe3 X33 Xas — XosX54 X5 — Xo7 X8 Xag (6.16)
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The perfect matching matrix is
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0

1
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01 0 0|0 O

01 0 0|0 0|0 1

1

1

0

1

00101 0/OO(O O0O|O0 1|00 1 010101
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1
1

00 1|0 0|0 O]0O 1

1

1
42
Xgg| 1

Xigl1 01 01 1]{0 0|1

Xg2

X581 0 0 O

X631 0 0 O

Xo71 0 0 0|0 1|0 O

X141 0 0 0|0 1|0 O]O

X46/0 1 0 10 O

X300 1 0 1|0 0]1 1

X380 1 0 0|0 O

Xe5

X1

X740 1 0 0(0 0|0 1

X4210 O

1
Xds|0 01 1|0 1|0 1[0 0O
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Xe1

Xo5/0 O

X3410 0

X180 0 0 1|0 O

Xe7|0 0 0O 10 O

X230 0 O

X54/0 0 0 1]0 0|0 1

P =

The F-term charge matrix Qr = ker (P) is
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The D-term charge matrix is
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Qp

P1 P2 P3 P4|q1 G2|T1 T2 |Ul U2|V1 V2|81 S2 83 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21
0 o0o0OOOOO/O0 O|jO O|OOODOODOODBO11 -1 0 0 0 0O 0 0 0 0 00O
0oo0o0O0O0O0OOOO0OO0O0OOOCOOOCOOOOOT1T-10 0 0 0 0 0 00O
o0 o0o0O0OOOOOO0 O|jO O|]OOODOODOOOOOO 11T -1 0 0 0 0 0 00O
0o o0o0OOOOO|O0 O|]O O|OOODOODOODBOOOO OLT11T -190 0 0 0 00
o o0o0O0O0OOOOO0 OO O|OOODOOOOOOOO OO 1T -=10 00 00
0 o0o0OOOOO|O0 O|O O|OOODOODOODBOOOO OO O1T-=10 000
0o o0o0OOO(OO|O0 O|O O|OOCODOOODOOOBOOOO OO OO 1 -10 00

The global symmetry is U(1)y, x U(1)s, x U(1)g. The global symmetry charge
assignment on perfect matchings with non-zero R-charge is the same as for Model 4a
and is shown in Table 13.

Products of non-extremal perfect matchings are expressed in terms of single vari-
ables as follows

21
q:qlqg,r:rlm,u:ulu2,vzvlvg,s:Hsm. (6.17)
m=1
The fugacity which counts extremal perfect matchings is ¢,,. A product of non-extremal
perfect matchings such as ¢ is assigned a fugacity of the form y,.

The mesonic Hilbert series and the plethystic logarithm are the same as for Model
4a. The mesonic Hilbert series and the refined plethystic logarithms are given in (6.3),
(6.4) and (6.7) respectively.

The mesonic moduli space generators in terms of perfect matching variables of
Model 4d are given in Table 14. In terms of quiver fields, the generators with their
mesonic charges are shown in Table 18. The mesonic moduli space is a complete
intersection and the generators satisfy the relations in (6.8).

‘ Generator ‘ Uy ‘ ULy, ‘
X X14 X3y = X5 X0 Xy = X3 Xas X = Xes X5s X s 0 -1
X4 X35 X61 = Xos Xss Xgy = Xor X7s Xy = X34 X35 X3 1 0
X1 X1 X}y = XuuXjsXe1 = X1 X15 X3y = Xe1 X158 X5 = Xo3 X5 X7, = X3 X35 X3, 0 0
= X3 X5 X5 = Xos X5s X3 = Xy Xor Xna = Xor X5 X3 = X5a X Xes = Xez Xas X
= X5u X5 Xo5 = X3 X7 Xrs = X5 X8 X35 = Xer X7 Xgs
X X15X3) = Xos X3 X3, = X5a X X5 = Xjs Xer Xra -1
X1 X15 X35 = Xos Xau Xy = X}p Xo5 X5y = Xer X5 X35 0 1

Table 18. The generators in terms of bifundamental fields (Model 4d).
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PdPy,

7 Model 5

Figure 12. The quiver, toric diagram, and brane tiling of Model 5.

The superpotential is

W

+X01 X7 X790 + Xyo XoXes + X56Xe2Xos + X7 X71X16 + X75X53X37 + X135 X34 X5 X5

_X13X37X71 - X16X62X21 - X56X64X45 - X67X72X26 - X75X51X17 - X25X53X34X42

(7.1)

The perfect matching matrix is

P1 P2 P3 P4|q1 2|71 T2 T3|U1 U2 U3|S1 S2 S3 S4 S5 Sg S7 S8 S9

X401 0 0 0|1 0|0 O 0|0 0 0|2 1T 000O01O0O0

X531 0 0 0j0 1({0 0O 0Of0O O Oj]OO1100O010

X%|1 0 0 1}1 00 OO0 O Oj]OO1 010110

X710 0 01 0j0 O0OO0Of0O O O0O|2 01 110001

Xe2/1 0 0 0j0 1/0 0O0(0O O O0O|1 1 01 01001

X711 00 1|0 1/000(0 0 0|01 0001110

Xo5/0 1 0 0}1 01 010 1 0Oj]OOO0OO0O0O0OO0OT1O0O0

X710 01 1001 001 1 0j01 0001100

X501 00(01(01 10 0 10 0O0O0O0O0O0T1O0
Xs/0 01 1|0 001 041 0 1{00 1010010

X37/0 100|122 0/01 100 1|1 00010001

X420 01 0(j00(01 012 01210000000

X401 0 0(0 1j1 010 1 OO O0OO0O1O01O0O0T1

X310 01 0j0 01 OO0Of1 1 0j0OO1100O0O0O0

X0 1 00|12 021041 00{001O01O0O0O0O0

X701 00/01f1 1041 00{010O0O01O0O00O0

X»n|0 01 1(j00(00 10 1 1j0 00000110

Xe7/0 01 0j00j0O 010 1 1|2 001 00O0O0T1

X340 0 0 1]0 0j0 0O O0Of0O O O|OOO0OO0O11O0O0T1

P =
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The F-term charge matrix Qg

Qr =

= ker (P) i

—
n

The D-term charge matrix is

Qp =

P1 P2 P3 Pa|q1 QG2 |T1 T2 T3 |UL U2 U3 |S1 S2 S3 S4 S5 Se¢ St S8 S9
110 0|-1-1/0 O 0|0 O O}JO O O O O O O O O
100 0O 0OjJO O Of1 0 0|0 -1-=10 0 0 0 0 O
100 00O O0OjJO O OO0 O 1|-=120 0 O O O 0 -10
100 0(-1 0|1 0 00 O O|1 -1 0 -10 0 0 0 O
0o1ro00(-10{0 -10(j0 0 OO0 1T 0O O0O1-10 00
0o1ro0o0;j0 0|]-1—-10}j1 0 00 O O O OO O O O
01000 O0|-1 0 —-1{0 1 00 O O O OO O O O
01100 O|-10 0|0 O —1{0 O O O OO O O O
01100 0j]O-10|0-10f0 O O O0OOOO0O O O
0oo01-11 0{-10 0jO0 O Of-=120 0 O O 1T 0 0 O
ooo0oo0j1 0{—20 001 0f-=121 0 0 0 0 —-10 0
ooo0bo0jo 0j0 0o 0j]OO OfT =10 001 0 0 -1

P1 P2 P3 P4|q1 q2|T1 T2 T3|U1 U2 U3 |S1 S2 S3 S4 S5 S ST S8 S9

000O0O|00/OOO|]OO0OO0O|0OO1T-10 0 0 00

0 00O0|00/OOO|]OO0OO0O0OOOT1T =10 0 00

0 00 0lOO0OjOODO|]OODOBOOO0O 1T -10 00

0 00 0lOO0O0jOO0O0O|]OODO0OOOOO OT1-10 0

0 00O0l0OO0j0OO0O0O[]OODO0OOOO0O OO T1-10

00 0O0|00/OOO|]O0OOO0O|{OOOOTOTO0OOT1IT -

The total charge matrix ); does not have repeated columns.
global symmetry is U(1)y, x U(1)y, x U(1)g. Following the discussion in §2.3, the
flavour and R-charges on GLSM fields corresponding to extremal points in the toric

diagram in Figure 12 are found. They are shown in Table 19.

’ H Ul ‘ U(1)y, ‘ U)g H fugacity
D1 0 -1/2 | Ry ~0.577 || t4
D2 0 1/2 | Ry ~0.640 || ty
ps |l -1 1| Ry~ 0539 || ts
|l 1 1 | Ry~0243 | t,

Accordingly, the

Table 19. The GLSM fields corresponding to extremal points of the toric diagram with their

mesonic charges (Model 5).

Fine-tuning R-charges. The exact R-charges can be expressed in terms of roots of the
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following polynomials

0 = 75+ 110z — 6842% + 1622° + 81z*
0 = —1124565 + 2218649z, — 1141683z — 16497z}
+(746100 — 2597167 + 4428z7 — 6447627 )y
+(775170 + 5201827 — 39025875 — 70470z7)y”
+(14580 + 100764z + 164268z7 + 2624413 )y*
+(—110565 — 264872, — 1968323 — 65613 )y*
+38880y° (7.2)

where the roots satisfy the bounds 0 < 1 — xy < % and 0 < 1 -y < % The exact

R-charges are

1
R, = (—443015521905 + 10382230129225x — 1861588105479

8989575077760
—1223569555569x7 + 788576007420y, + 7322446656900z0y — 1514870485020250
—803839472100z7yo + 105890430210y3 — 45532791090z0y; + 616773772782x3y0
+132554296962z7y5 — 87638359380y — 829308203820x0y; + 57898633140z3y0
+57715867980x3ys + 9044838615y, + 3546068963850y, — 6641422235122y
—37556288361x5y5)

Ry =19y, R3 =, (7.3)
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1
Ry = 443015521905 — 10382230129225
* T 27630249136420257145191668008550400 ( o

+1861588105479x3 + 1223569555569x5 — 788576007420y, — 7322446656900y
+1514870485020210 + 8038394721002 yo — 105890430210y 4 4553279109020y2
—616773772782x5y; — 1325542969622y + 87638359380y, + 8293082038202y
—57898633140x2y5 — 57715867980x3y; — 90448386151, — 3546068963857y,
+66414222351x2ys + 37556288361 5y;) (3435680922231398676675 —
1087593430938330485873 17 + 2208889158465224949597x2
+1149691223996073074763z) + 1308961575315964402860y,
—5303703543601718636316z0yo + 10073916275070473587085y0
+5TTT6780334658205516475y0 — 41445446612526178750y;
+324345443167855962702x0yg — 267480237660960501378x5y5
—83757129586072681230x3y2 — 143402222077829778740y5
+581897049297268121604x0ys — 7366973730943599313275y;
—53860834564699887396x5y5 + 46554904501591527955y,
—286145797904951411547xqy + 5828694139533565127 725y,
+31675092179803827579x3y5) (7.4)

Products of non-extremal perfect matchings are expressed in terms of single vari-
ables as follows

9
QZQ1Q2,T=T17“2,U=U1U2,SZHSm- (7.5)
m=1

The fugacity which counts extremal perfect matchings is t,. The fugacity of the form
yq counts the product of non-extremal perfect matchings g.

The mesonic Hilbert series of Model 5 is found using the Molien integral formula
in (2.9). It is

91 (s Ygs Yrs Y Yss ME®) = (1 + Yyl titalsta + Ygyiyoys tot5ts — yoytyoy? ttststy

—YaUnyays Tittats — Yaury,ys LISEE])
1
1 — y2y2yuys t1t3) (1 — 42392y, tots)(1 — yqys tita) (1 — yry2ys t33)

X ( (7.6)
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The plethystic logarithm of the mesonic Hilbert series is

PL{g1(tas Ygr Yrs Yu> Ysi ME)] = Yarthulis titatsts + ygys tits + yoyiyuys tits
Furyays B8+ Yauryays tatata + Yiysysys tats — yoyryays G5t
—ysysyays titststs — yoytysy? BESEIts — ydytyoyl titstits — yiy unys ttsts
Fyayrysyl BSGG + .. (7.7)

Consider the following fugacity map

1 1
fl = ) f2 = ,
YulYr Yuls
t = y;/Qyi/zyi/Qy;/2tl = y;/2yi/29i/2y;/2t2 ’

ty=t3, ly=ty, (7.8)

where f, and f, are the fugacities for the flavor charges, and ¢; is the fugacity for the
R-charge R; in table Table 19. In terms of the fugacity map above, the plethystic

logarithm becomes
7 mes niinginging roing 7 73 L Loz fo
PL[g1(ta, f1, fo; M5®)] = titatsts + fitits + fotaty + —t5t] + —t5t5ts +
fif fi fi

e~ 1-
— 51515 — folttatsts — f—tlfiféfi +.... (7.9)
1

7,

The above plethystic logarithm exhibits the moduli space generators with their mesonic
charges.

The generators can be presented as points on a Z? with the U(1), x U(1), charges
giving the lattice coordinates. The convex polygon formed by the generators on the
lattice in Table 20 is the dual reflexive polygon of the toric diagram of Model 5.

Generator ‘ Ul)y, ‘ U(l)yg, ‘
Pipa q s 1 0
P1P2P3pa 4T U S 0

pips ¢ r?u s 0 1
papiru? s -1 -1
pipipa gt uts | -1

paps ¢2 18 Ut s -1 1

Table 20. The generators and lattice of generators of the mesonic moduli space of Model 5
in terms of GLSM fields with the corresponding flavor charges.
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Generator ‘ Uy ‘ Uy, ‘

X34 X5 X553 = X17X71 = Xog X2 1 0
X13 X34 X5 X51 = Xos X53 X34 X o = X13X37 X1 = X16Xg2Xo1 = X1 Xe7 X1 = X197 X 72Xy 0 0
= X17X75X51 = Xos X56X62 = Xog XeaXao = XosXer X72 = X7 Xr5 X553 = X5 X56X64

X16X62 X5 X51 = X16X64 X5 X51 = X17 X720 X5 X51 = Xos X53 X357 X7p 0 1
X6 Xe7X75 = X13 X34 X42 X0 -1 -1
X3 X34 X490 Xo5 X51 = X13 X357 X790 Xo1 = X153 X357 X5 X51 = X16X64 X420 X0 -1 0
= X16Xe7X72X01 = X16X67X75X51 = Xos X6 X64Xu2 = Xos X6 Xe7X72

X13X37 X790 X5 X51 = X16X6aX42 X5 X51 = X16 X7 X72 X5 X351 -1 1

Table 21. The generators in terms of bifundamental fields (Model 5).

The Hilbert series and the plethystic logarithm can be re-expressed in terms of just
3 fugacities

- f ts

1 = ~~ )
f1f2 t%t% ygyrys t%t%

Ty = fo 0ty = y2yiyuys tits

Ty = fu 3ts = ygys tita (7.10)

such that

L+ DTy + TRTETy — TV T3Ty — TET3T — TATHTS
(1 -1)(1 - TT3)(1 = T3)(1 — TY15T3)

g1 (11, T, Ts; M5) = (7.11)

and

PL[gi(Ty, Ty, Tg; M) = TVToTs + T + Ty + TPTETE + TVT2 + TETETs — TV T3 Ty
—TYT3Ty — TPTyTs — T 15Ty — Ty Ty Ty + TETs Ty + TPy Ty + T Ty Ty + T Ty Ty
TS — TYTyTs ... . (7.12)

The above mesonic Hilbert series and plethystic logarithm illustrates the conical struc-
ture of the toric Calalbi-Yau 3-fold.
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PdP,,

8 Model 6

8.1 Model 6 Phase a

{01, G2}

Figure 13. The quiver, toric diagram and brane tiling of Model 6a. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

+ X390 X907 X7z + X174 Xu5 X56X61 + X531 X017 X75 X553 + X2 Xoa Xur X6

w

_X76X61X17 - X31X14X47X73 - X32X24X45X53 - X62X27X75X56

(8.1)

The perfect matching matrix is

P1 P2 P3 P4 P5|q1 q2|T1 T2|S1 S2 S3 S4 S5 Se¢ S7 S8 S9

X711 0 0 0/0 01 0|1 01 01O00O0O0O0

X731 1 000|000 1{01 0101000

X561 0 00 0/0O 0|1 0O|]O 1 0OO0OO0OO0T1O0O0

Xoq|1 0 O 0 0/{O 0|0 1|2 OO O0OO0OO0O0O0OT1O0

X400 101 0|0 0|0 O|]O O 1 0O01O0O0O0

X200 1 0 0 0/O 0|0 0|0 OO 110001

X320 01 0 0|1 0f10{000O01O01O01
X710 01 0 0|1 0|0 1|0 OO O0OO0O1O0O0O0

X470 01 0 0|0 1|2 O|O O 1 OO0 O0O0O0O0

X610 01 0 0|{0 1|0 1|0 O0OO0O1O0O0O0T171

X7w/0 001 1|1 0/00{01 0001100

X9710 001 1|0 1|0 0|2 01 0O0O0O0T1O0

X310 0 01 0|0 0[O0 0|0 OOO0OO0OO0OT1T11

Xi4/0 0 00 1|1 0|0 0|2 OO0OO0O1O0O0O0O0

X530 0 00 1|0 1|0 0|{0 1 01O0O0O0O0O0

P:
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The F-term charge matrix Qr = ker (P) is

P1 P2 P3PaP5|q1 G2|T1 T2 |S1 S2 S3 S4 S5 S¢ St S8 S9
oo0101{-1-140 0|0 O O O O O O 00O
1 010O0/0 O|-1=-1/0 0 O O O O O O O
1P 0001/0 0|0 O|-1—-=10 0 O O O O O
01000[{0 1/0 0|0 0 -1-10 0 0 00
@r = 010001 0jO OO O O O —-1-10 00
oo0010;j0 01 0O O -10 0 O0O-100
0o0o010|{0 OO 1{]0 0 0 O 0 -10 -10
ooo001{0 -1y1 0|-1 0 0 0 0 0 —-11 0
0oo0oo0o0O0O[{O0 OJO O}|]1 O O O -10 0-11
The D-term charge matrix is
P1 P2 P3 P4 P5|q1 2|71 T2|S1 S2 S3 S4 S5 Sg S7 S8 S9
0o0o0O0OO0O|00O[O0OOIOO1T-10 00 00
000O0O0O|00O[O0OOIOOOT1-10 0 00
Qp=| 0000 O0|0O0|/0O0O/0OOO0O0O 1 -10 00
000O0OO0OO0O0/0OO/OOOO0OOT1-=100
000O0OO0|0O0|/0OO/OOOO0OOO0OT1T-10
000O0OO0O|00O[OOIOOOO0ODO0OO0OTO0 1T -1

The total charge matrix ; does not exhibit repeated columns. Accordingly, the
global symmetry is U(1)s, x U(1)s, x U(1)g. The mesonic charges on the GLSM fields
corresponding to extremal points in the toric diagram in Figure 13 are found following
the discussion in §2.3. They are presented in Table 22.

U@ [UW), ] UMs | fugacity

J3 -1 0 Ry ~ 0427 || t;
D2 1 0 Ry ~0.298 || 19
D3 0 0 Rs ~ 0.550 || 3
Dy 0 1 Ry ~ 0.298 || t4
s 0 -1 R; ~ 0.427 || t5

Table 22. The GLSM fields corresponding to extremal points of the toric diagram with their
mesonic charges (Model 6a).

Fine-tuning R-charges. The exact R-charges on extremal perfect matchings can be
expressed in terms of a root xy of the following polynomial

0 = 289 — 695z + 3312% + 32° | (8.2)
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where the

Ry
Ry

Rs
Ry

root of interest lies in the range 0 <1 — xy < % The exact R-charges are

=Ty ,

71§7ZT63U7g6U355§?Z7Z6ZE%SZ7§G€T71§§§Z§U§7§6@§§§§(1791039188638478428147683691212722044339352504896‘

1489897938581245099720399561817513883468361262177610—%94656062771165610076127447358392036663718782768402%

+8171632306068776293575876125737079492808889002307428——10662275916980187263135080855654891328467257996456213

722312936155603381509800509872608673629726066365173x8—k47625288680151873547605102674953720401814301943043x8

+1743657358426337720401847407318855394624519781774715——1064023366039130910208225662473447784013785856618918

7576209866897468024485959918181777591355162037881518—k420178930354717433094049925945927510179738217313260
+721282505298136032927398268634974111953118024491x(1)1—4»846916317102495296446954749046668918672055652631(1)2

—288451271776803128298628113870421015330469227921(1)3-—59367151300457881446467046564704302502532263601(1)4

798568203174737761263257326460337456059549812165—7427836112588315949366063712216265071084900166)

(1169229461732080766319602708065371848435839320818952726286766174485578754720869791380548487029993472
+211180778264971290234686689177114661495550847435083609777692608446996489161070763569563200559556608x(
7804591126O354654893884448259742088551904830575685775809252492449742813094597380760696064423664722176%%
+786818688291585142633587697758168067025163952085440766955451321239855515800017115648993745681596825618
+106141241513671632683702211930886948838261238997887507870937755035482441118457244034249675704159795213
71653502269547432808110213130155065398558657253926330204747817424734038646912023554904414840355605600x8
—180340980535568601096626604060239953748177701261401783053858294696123241435654189496117803499865179618
754977636746755908973099216387843389195415570888407666629751989073298347831546662010682387313724096818
+1567205800812219625317948680985038429143438706488862950374641790454745258466005289304610895198165728x§
+143372141123223427893722579570981599815299873016608292988946609826131841127293292913140425912965358418
7613688233093161903664079322747531650516395529165734417290427408319218066807931662878404186231703821z60
71113293590933793106422270537761639133335738086439537494201648209333162655868499870321712814024965074%%1
—1020419186525290186845949207351033765174623331594183158929492041140901966475959568078504284124572231%2
+423971220164725630883036801237262772103566877143219798793826532397912386224511438398003376083572668163
+18075900152636897609329385990016636975510068578112384788279292541656264290142492678676727159881581196(1)4
—64076409612708878884915082831557118415463407072251976303703677310275213068268096657416079746613630165

765515048191365797148208738907166511172835001443254598513046452678884061405276488997002820753820879166

76673543248212741805371881957906917086875901203329952658459597394917113521671659599449171717221560x67
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+9783618126417420629286524671582244856923708960297834037315293570385351437452828996816592454899857168
+3743596998189704676218096923916451542387351120245899948167098322376252076440477648997681642932578x69
—275998133977857656048993198548594390031696954517741623737712596072996328801012600935299966017093180
74760411523248644433687320137571924693637020441000099811485372315498707248959654478002795560792041%1
785609276841164659611375420767097192313538344215051215501287679764566381328323514407504142650419x%2
+17367562182813808407040196634409802339840610442753700821338207976254354309961105906728375495974133
+88154379492755429728522714405011583605725348176229447676608020510448390598908178530381209354751%4
+810859117231117720381035609644014422426938987804828817976536807039578657743651484402841788080r%5
—1920530729096523282105450035700800376217731386109791538123749368072384810836636305353396450401%6
7536547465916963306855684181739332349934774148635831117395010981027151389082337797671568704801%7
74633797214013132583423895629091032185087243889634863057878937498434947801893349846356567080x%8
—125288849075771386136313950769094507337581594854187196969684084483533817892821528939996160189
71502297452596476410349719722105724798487349802028494174267727244065661237915976256430480180
7841889100321404520539211676832304188428l772276495435205984021439684373541279712292000x81

—18079841511425240505298612186248088798565454098873210645653293047869238161800450000182) . (8.2})

Products of non-extremal perfect matchings are expressed in terms of single vari-
ables as follows

9
q:CJ1Q277”:7“17‘2,S=HSm- (8.4)

m=1

Extremal perfect matchings are counted by the fugacity t,. The fugacity y, is assigned
to the product of non-extremal perfect matchings ¢ above.
The refined mesonic Hilbert series of Model 6a is

91 (s Ygr Yy Yss ME®) = (14 ygyrys titatstats — yoyty? Gt5t5tats — yoyly? ttatstat?

—Yg¥rys UISEEL — Ygury] hibat3tils + youryl BGEHE + ygylys Gitstytits)

1
X

(1 — yau2ys 3a13) (1 — yrys 3134) (1 — y2y2ys titits)
y 1

(1 - ygyrys t§t4t§)(1 — Yq¥s t2tit§)
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The plethystic logarithm of the mesonic Hilbert series is

PL[gl (ton Yqs Yr, Ys; gZzes)] = Yq¥s t2t421t§ + YrlYs t%t§t4 + Yq¥YrYs t1t2t3t4t5
FYYLYs Uitats + Yourys tatats + Yoyeys tithts — 2 yoyly? Ge5t3tats
—yaydy? ttatstats + ... . (8.6)

Consider the following fugacity map

1 1

I s
= T 5,9, = 2 = T ,9,9
Y 1334 Yq totits

T titgtats
(8.7)

t = y;/2y7}/2y;/2 tits , o =tots , 13

S

where f; and f, are the flavour charge fugacities, and ¢; is the fugacity for the R-charge
R; in Table 22.

In terms of the fugacity map above, the plethystic logarithm becomes
f3

- - 1 1 -
PL[g1(ta, f1, f2; M) = (f1 + f2) 6115 + t115¢5 + <f— + —) tiat; + ﬁt?
1 2 1J2

1 oy
Et‘ﬁ%téJr... : (8.8)

The above plethystic logarithm exhibits the moduli space generators with the corre-

747472

sponding mesonic charges. They are summarized in Table 23. The generators can be
presented on a charge lattice. The convex polygon formed by the generators in Table 23
is the dual reflexive polygon of the toric diagram of Model 6a.

Generator ‘ U(l)y, ‘ U(l)y, ‘
P2pip3 q 1 0
pipips T s 0 1
P1P2P3PaPs T S 0 0
p3paps ¢° 1 s 0 -1
Pipaps q 1 s -1 0
mpips 40 17 s -1 -1

Table 23. The generators and lattice of generators of the mesonic moduli space of Model 6a
in terms of GLSM fields with the corresponding flavor charges.
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Generator ‘ Uy ‘ Uy, ‘

Xor X6 X6 = X14X45X53X31 1 0
X17X73X31 = X4 Xy5 X56 X62 0 1
X7 X76X61 = Xor X73 X309 = X1y Xyr X73 X351 = X143 X5 X56 X1 0 0
= X17X75 X53X31 = Xog Xys X53X30 = Xy Xyr X7 X2 = Xo7 X75X56 X2

X1aXyr X5 X53 X351 = X4 X7 X76 X1 = Xor X75 X53 X 30 0 -1
Xoa Xyr X5 X56 Xe2 = X17.X75 X56X61 = Xoa Xu7 X73X30 -1 0
X1aXyr X5 X56X61 = Xog X7 X75X53 X 32 -1 -1

Table 24. The generators in terms of bifundamental fields (Model 6a).

The mesonic Hilbert series and plethystic logarithm can be re-expressed in terms
of just 3 fugacities

fi ts titat3 2 42, 42 273 2,2
I = o, 21 - y2ys Bt3ts 2 = 7 = YgUy s titats , T3 = fo 11t = y,ys 11150,
(8.9)
such that

g1(Th, Ty, T3; M) =
| + TIYTy — TyT2Ty — T2TST, — TRTETE — TOTST? + TOTAT? + TATSTS
(1-=To)(1 = T5)(1 = TWT5)(1 — TYT3T3)(1 — TYTT3)

(8.10)
and

PL{g\(Th, T3, T5; Mg2°)] = T12T2T32 + T3+ TVILT5 + T + T12T22T3 + TlTQ2
—TPTET? — TPT3Ts + ... . (8.11)

The Hilbert series and plethystic logarithm above illustrate the conical structure of the
toric Calabi-Yau 3-fold.
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8.2 Model 6 Phase b

Figure 14. The quiver, toric diagram, and brane tiling of Model 6b. The red arrows in the

quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = + Xy X3 X34 + X7 X720 Xog + X7 XeaXar + X14Xu5 X56X61 + X531 X717 X75 X553

— X7 X753 X56 — X6 X61X17 — XgoXogXes — X3 X34 X5 — X714 Xu7 X790 X053 X351

(8.12)

The perfect matching matrix is

P1 P2 P3 P4 P5|q1 G2|T1 T2|S1 S2 83 S4 S5 Se¢ S7 S8 S9

X¢7/1 1 01 0/{0 01 0|2 00011100

X1 1 00 0/00(0 1|01 1100011

X401 1000|0012 02 1T 0100000

X141 0 0 0 0|]O 0|0 1|0 00O 01T O00O0O0O0

X531 0 00 0/0O 0|2 0O|]O 1 OOO0O1O010

X301 00 0|0 0[O0 O|]O OOO0OO0O0T1O01

X450 1 01 0|0 0|0 0|2 01 1 0O00O0O0O0

X340 01 01|11/01{]00001O0101
X710 001 1|1 00 0|1 00 01TO0O0O0O0

X640 0 O1 1|0 1|0 0|{0O 00011100

X7|0 0 00 1|0 1{00{0 1 01000O00O0

X930 0 O1 0/{0 0|0 0O|]O O 1001010

Xs5/0 0 0 0 1|1 0/00{0 1 0O0O0O0O0T1T1

X%/0 0 1 0 0|1 0/0 100 100O0O0T11

X470 01 0 0|1 0|2 O|2 OO O0OO0OO0O0O0O0

X710 01 0 0|0 1|0 1|0 01 100000

X610 01 0 0|0 1|1 0|]OOOO0OO0O11O00

P=
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The F-term charge matrix Qr = ker (P) is

P1 P2 P3 P4 P5|q1 g2 |T1 T2 |S1 S2 S3 S4 S5 S¢ St S8 S9
1010 0{0 O|-1-10 0 O O O O O O O
1000 1{0 00O 0|0 -10 0 -10 0 0 O
o100 01 0|0 O}]-1 000 0O OO0 0 -1
o100 0}|]0 1j]0 0|0 O O-10 0-10 0
QF_00110—1000010—10—1000
0010 1|-1-1y0 0j0 O OO OO O OO
oo0oo01o0}0 0|1 0|1 00 0O O0O-10 00
0oo0o01-11 0j0 O0|-1 1. 0 0 0O O 0O —-10
oo0oo0o0o0}0 0OjO O0jO 1 1 -10 0 0-10
The D-term charge matrix is

P1 P2 P3 P4 P5|q1 g2|T1 T2|S1 S2 S3 S4 S5 S¢ S7 S8 S9
000O0OO0O|0O0O[OOIl =10 0 0 0 0O0O0
0o0o0O0OO0O|0O0O[OOIO1T =10 0 0 0O0OO

Qp=| 0000 0|0 O0|/0OO0O|[O O 1 -1 0 0 000
000O0OO0O|O0OO[OODOO0 O 1 -10 0W0P0
000O0OO0O|0O0O[OOIOO0OO0OT1-100P90
000O0OO0O|0O0O[OOIOOOO0OO0OT1-100

The global symmetry of Model 6b has the form U(1)y x U(1)s, x U(1)g. The
charges under the global symmetry on the extremal perfect matchings p, are the same
as for Model 6a. They are shown in Table 22.

Product of non-extremal perfect matchings are expressed in terms of single variables
as follows

9
¢=qa, r=rra, s= ] sm- (8.13)

m=1

The fugacity counting extremal perfect matchings p, is t,. The fugacity y, counts the
product of non-extremal perfect matchings q.

The refined mesonic Hilbert series of Model 6b is identical to the mesonic Hilbert
series for Model 6a. The mesonic Hilbert series and the corresponding plethystic loga-
rithm is shown in (8.5) and (8.8) respectively. The mesonic Hilbert series for Model 6a
and 6b are identical and are not complete intersections.

The generators in terms of perfect matchings of Model 6b are shown in Table 23.
The charge lattice of generators forms a reflexive polygon which is the dual of the toric
diagram. The generators in terms of quiver fields of Model 6b are shown in Table 25.
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Generator ‘ UML)y ‘ Ul)y, ‘

Xus X56 X4 = X17 X720 X093 X31 0 1
XerXre = X1aXy2X03X31 = X14 Xy X53X 31 1 0
X1aXur X720 X3 X31 = X14Xus X6 Xe1 = X17X75 X535 X531 = X17X76X61 = X3 X34 Xao 0 0
= XoX6a X2 = XogXe7 Xpo = X34 Xy5 X53 = Xyr X6 Xy = X6 X67 X715

X17 X790 X6 X61 = X17X75X56X61 = Xog Xau Xyr X7p = X Xea X7 X7p = X7 X5 X6 Xea | -1 0
X1aXur Xr5 X53X31 = X14 X490 X6 X61 = X1 Xyr X76Xe61 0 -1
X34 X7 X75 X53 = X1 Xur X7o X6 Xe1 = X14 X7 X75 X56 X1 -1 -1

Table 25. The generators in terms of bifundamental fields (Model 6b).

8.3 Model 6 Phase ¢

@ @@ P1

{ry, 12}

@ P3 {01, 02}

Figure 15. The quiver, toric diagram, and brane tiling of Model 6¢c. The red arrows in the
quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = + X X13X2, + X4 X03 X3, + Xus Xs6 Xy + Xer XroXo6 + X5 X53 X357 + Xar X1 X16 X5,
— X X16Xe, — Xaa XXy — Xus X3 X3, — Xer X5 Xs6 — X1 X13X37 — Xar X2 X3 X5,
(8.14)

The perfect matching matrix is
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0

1

0

0
1

0
1

1
1

1

1

1
1

1
0

1

0
1
0
1

0
0
1
1

1
1
0
1

P1 P2 P3 P4 P5(q1 G271 T2|S1 S2 53 S4 S5 Se¢ St S8 S9 S10 S11 S12

1 1000(00(01|]01T 0O01O010O071

X711 010|00(01{]2 2 010000O0O0 0 O

X4/t 100 0{00l10[1010000O0O0TO0 0 O

Xu1

XL/1 010010112 001000000 0 0

X7»|1 0 00 0|0 0|1 0]OOOO0O11O0O0T1

X561 0 0 0 0j]O 0Oj0 1]0 00100001

Xe7/001 01 1|0 1j00]{2 1 10000O0O0O0 O0 O

X450 101 0|{00|0OO|]0O T OO0O1T 11100 0 O

X4/0 010 1(1 11 0[{1T 010000000 0 0

X930 1. 0 0 0|0 O|]O O|]O O 1 000110 O0

X700 01001 0(120/j0OO0O0OO0111100O0 0 O

X%/0 01 0 0|1 0j01{]00010011O0O0

X310 01 00/01|2 0]O0O1T 001010

X470 01 0 0|{0O 1|0 1|{0 1 OO O0OO0OO0OO0OO0TO0O O O

X200 01 1[10/00[/1T 001000000 0 0

X420 001 1|0 1j00{01 0011001

Xi /0 0 01 0/0 0|0 O|]OOO1O01O010

Xn|0 000 1|1 0|j]0O OO OO0OO0O1O01O0T1

X530 0 00 1|0 1|0 0|0 O 1 0 O0O0O0O01

P =

The F-term charge matrix Qr = ker (P) is

S2 83 S4 S5 Se ST S8 S9 S10 S11 S12

S1

-1 0 0

-1-10 0 0 0 O O O
-10 0 0 0 0 0 O

-10 0 0 0 O

-1 0 0 0

-10 0 0 0 O

-1-10 0 0 0 0 0 O O O

0 000 0 0 O

-1 0 0 1

1

1
0

0
1

-1
-1

-1 0
-10 0 0 0 0O 0O O O

-10 0 0 0 0 O
-10 0 0 0 O

0

0
-1

-1 0 O

-1 0
-1 0 0

1

-1 0 0 0

0 0 O

1

-10 0 0 0 0 0 O

0

0 0

-10 0 0 0 0 O

1

0

0

1 0 0 1

-1 0

T2
0 0

0 0|0

-1 0

1
1

0
0
1
1
0

1
1

—1|-1 1

q2 |71

1
0 0|0 O

010 O

1

-1

P1 P2 P3 P4 P5| 41

1 0010|0
10001

010001
010000

0010O0-10

0001O0|0 O

0001010 O

0001040 0]0

0 00O0T1|-10]|0

0 00O0T1|0

000O0O0O|0 O

000O0O0OO0 OjO O|JO O 0 O

QrF =

The D-term charge matrix is

-10 0 0 00O O O O

1

-10 0 0 00 0 O O

1

1

-10 0 00 O O O

1

-10 00 0 O O

1

-100 0 0 O

P1 P2 P3 P4 P5|q1 q2|T1 T2|S1 S2 S3 S4 S5 S¢ S7 S8 S9 S10 S11 S12

0o0o00©O0O0O0OO0OO0O1~-1000UOTO0OO0OOTO0OTO0OO

00O0O0O0O|OO0I0O0]O0

00O0OO|O0OO0|0O0]O O

0 00O0O0O0O0|OO0|O0 0O O

000O0OO0O0O0|0OO0I0 0 0 O

000O0O0O|O0OO0|OO|O O O O0 O

Qp =
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The global symmetry of Model 6¢ is U(1)g, xU(1)s, x U(1)g. The global symmetry
is the same as for Model 6a and 6b. The charges on the extremal perfect matchings
are shown in Table 22.

Products of non-extremal perfect matchings are chosen to be associated to a single
variable as shown below

12
g=qig2, r=r1r2, s= [ om - (8.15)

m=1

Extremal perfect matchings are counted by the fugacity t,. Products of non-extremal
perfect matchings such as ¢ are counted by fugacities of the form y,.

The refined mesonic Hilbert series of Model 6¢ computed using the Molien integral
formula is identical to the mesonic Hilbert series of Model 6a and 6b in (8.5). Accord-
ingly, the plethystic logarithm are identical as well and hence the mesonic moduli space
is a non-complete intersection.

The moduli space generators in terms of perfect matchings of Model 6¢ are shown
in Table 23. The lattice of generators is a reflexive polygon and is the dual of the toric
diagram. The generators in terms of quiver fields of Model 6¢ are shown in Table 26.

‘ Generator ‘ Ul)y ‘ Ul)y, ‘

X16Xer Xm1 = X3 X3, Xp = X3, X 45 X53 1

X X16Xgy = Xo3 X571 Xm0 = Xus X56X ¢y 0 1
Xir X X16Xgy = Xos X5, Xur Xrp = X13X3, X1 = X153 X7 X1 = Xn X16 X3, = X3 X3, X0o 0

= Xup X0 X4y = XogXerXro = X3, Xus Xos = X3 X7 Xrs = Xus X56Xg, = X6 Xe7X75

XpX06 X3 = X13 X35, Xr X1 = Xn X1 X16 X3y = X3, X407 X75 X 53 0 -1
X3 X3, X = X3 X3, X7 Xrp = Xr X2 Xo6 Xy = Xo6 X4 X5 X5y -1 0
X3 X3 X Xr1 = Xur Xro Xo6 X3, = X3, Xur X5 X553 = X6 Xur X75 X3, -1 -1

Table 26. The generators in terms of bifundamental fields (Model 6¢).
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7]

C3/Z¢ (1,2,3), PdP3,

9 Model 7

{ug, Up, Ug}

{ry, 1, ra}

P3

Figure 16. The quiver, toric diagram, and brane tiling of Model 7.

The superpotential is

+ X120 X06X61 + X3 X34 Xug + Xoa Xug Xgo + X35 X51 X135 + X1 X15 X514 + X6 X62X05

W:

—X12Xo5X51 — X3 X320 X0 — Xoa XugXe2 — X35 X540 Xu3 — X1 X13Xz4 — X56X61X15

(9.1)

The perfect matching matrix is

Flo—~o A 1000000 400 O O
FlWo oo 10000 140000~ - O
g0 o0 000 "0 —~0 00 -0
o 10—~ 000 10000 - O OO
flo—A 00 10 100000 -0 OO
RO o A T O 1 00000 —~0 -0 0O
floocooocoococoo - "0 00O —
floocooocoocor 00+ 00 0O
Sfloocooocor 400 A -0 00O
PFlooococoococoococoo A 0O A — — -
flooocooocooo " 00 A 0O — -
dloocoococoocoo - 10000 - - OO
oo 90— 0 -0 0 0000 0o o
SIHM O 4T 0 10 "0 140 0000000
fooooocoocoocoocoo0o0co0 o A~~~ —
focoocoocoococo "~~~ 400 00O O
m111111000000000000
SRR I
Il
Q,
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The F-term charge matrix Qr = ker (P) is

P1 P2 P3|q1 g2 |T1 T2 T3 |UL Uz U3|S1 S2 S3 S4 S5 S
110(-1—-1{0 0O O0}JO0 O O}j0 O O O 0 O
100{0 Of1T 0 00 O O|]-1—=10 0 0 O
1 00{0 OJO0O 1 00 O OjJO O —-1-10 0
1 00{0 OO O 10 O O|O0O O O 0 —-1-1
@r = 1 00{0 —-1f0 O O}j1 0 Of-1 0 -1 0 0 1
o1r14,0 0j-10 00 O —-10 0 O O 0 O
o0114,0 0|0 -1 0|0 —-10]0 0O O O O O
o0114,0 0|0 O —-1|—1 0 0O]0 O O O O O
oo014,0 0j-1-10)1 0 0}]0 O O O O O
The D-term charge matrix is
P1 P2 P3|q1 q2|7T1 T2 T'3|U1 U2 U3|S1 S2 S3 S4 S5 Sg
0 0O0l0O0/0OO0O0O0O0O0CO0OL =10 0 0 O
~1060O0j0OO0IO0OO0O0O0O0O0O0O 1 -10 0 0
@p = 00O0l00/OO0O0O]O0O0O0OCO0OO0 1 —-10 0
00 0/0 0[]0 0O0j0O0O0O|]0OO0O0OT1T-=-10
000000 O0O0f/O0OO0O0OBO0OO0 OO0 1 —1

The total charge matrix ¢); does not exhibit repeated columns. Accordingly, the
global symmetry is U(1)y, x U(1)s, x U(1)g. The flavour and R-charges on the GLSM
fields corresponding to extremal points in the toric diagram in Figure 16 are found as
shown in Table 27 following the discussion in §2.3.

Uy [ UQ)y, | UQ)R || fugacity
pi|| 1/2 0 2/3 || ta
p2 || -1/6 1/3 2/3 || ta
ps || -1/3 | -1/3 | 2/3 ||t

Table 27. The GLSM fields corresponding to extremal points of the toric diagram with their
mesonic charges (Model 7).

Products of non-extremal perfect matchings are expressed in terms of single vari-
ables as follows

6
4=q1q2 , T =T1T2l3 , U = UUU3 , § = H Sm - (9.2)

m=1

Extremal perfect matchings are counted by the fugacity t,. Products of non-extremal
perfect matchings such as ¢ are counted by fugacities of the form y,.
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The mesonic Hilbert series of Model 7 is

()1 (tow Ygqs Yrs Yus Ys; M?es) —
L+ y3yeyays tits + YaUrYuls trtats + Yoy2yays tols + YaUryays 13t3 + Yoysyays titsts
(1 = yqys t1) (1 — yiyPynys t9)(1 — y2yuys t3)

(9.3)
The plethystic logarithm of the mesonic Hilbert series is
PL[gl (tom yq7 Yrs Yuy Ys; M;nes)] = yqys t% + yqyryuys t1t2t3 + yfyuys tg
FYUryays tots + Yoyryays Tty + Yoyiyays tats — yoyryays tt5ts
FYaUrYus 15— YaUryays titats — Yauryays titats + ... (9.4)
With the following fugacity map
fi =y Py Py Ry B P
_ . ~1/3,5/3,—4/3
fo = yg/?’yr 1/393/3% 1/ 121 / t2/ ts / )
t = by Byl PP (9.5)

where the fugacities fi, fo and t count the mesonic symmetry charges. Under the
fugacity map above, the above plethystic logarithm becomes

. mes\] __ 2 1 3 l 4 é5_6 f_226
PL[g1(t, f1, fo; MT)] = fut +(1+—f1f2>t +( 1+f2)t +f1t t +f1t
—<i+f2)t7+....
1

The plethystic logarithm above exhibits the moduli space generators with their mesonic
charges. They are summarized in Table 28. The mesonic generators can be presented

(9.6)

on a charge lattice. The convex polygon formed by the generators in Table 28 is the
dual reflexive polygon of the toric diagram of Model 7. For the case of Model 7, the
toric diagram is self-dual, and the charge lattice of the generators forms again the toric
diagram of Model 7.
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Generator ‘ U(l)y ‘ U(l)y, ‘

piqs 1 0

Pipaps T U S 0 0

pps A ruts 0 1

pirius -1 -1 ®
papsqrtuts | -1 X

pops ¢ u s | -1 L

pg q3 7,2 U4 B -1 2

Table 28. The generators and lattice of generators of the mesonic moduli space of Model 7
in terms of GLSM fields with the corresponding flavor charges.

‘ Generator ‘ Uy, ‘ U(1)y, ‘
X15X51 = Xog X6 = X34 Xu3 1 0
X12Xo5X51 = X12X06X61 = X13 X34 X1 = X13X35X51 = X15X50 X1 = Xi5X56 X1 0 0
= X4 Xy3 X320 = X4 X Xoa = Xo5X56X62 = Xo6X63X32 = X34 XusXe3 = X35 X54X43
X13 X3 X05X51 = X13X30 X096 X61 = X13X34 X6 X1 = X15 X540 X46X61 = Xos X54 X3 X30 = Xo5 X540 K46 X2 0 1
X125 X024 X41 = X35 X56X63 -1 -1
X120 X0y Xys X1t = X12Xo5 X5a Xy = X190 Xos X6 X61 = X3 X350 X4 Xy = X3 X35 X54 Xy -1
= X13X35X56X61 = X2a X6 X3 X32 = Xo5 X6 X3 X320 = X35 X540 X46Xe3
X120 X05 X540 X416 X61 = X13X30 X024 X6 X1 = X13 X320 X5 X54 X1 -1 1
= X13X30 X5 X56 X61 = X13X35 X504 X6 X1 = Xo5 X540 Xu6X63X32
X3 X350 X05 X54 X6 X1 -1 2

Table 29. The generators in terms of bifundamental fields (Model 7).

With the fugacity map

)

T, = f11/2 +— y;/Q ;/2 t

1/3
T, = 21/6 — y;/2 7{/3 5/33/;/6 t
1
T3 — L 2/3,1/3,1/3 t3 (97)

1/3 ,1/3 =Y, u s
1 2

the mesonic Hilbert series becomes

1+ T1T23 + TV 1515 + T24T3 + T22T32 + T1T25T32
11,15, T35, M%) = 9.8
T T T M) -1~ 51— 13) )

with the plethystic logarithm being

PL[gi(Ty, Ty, Tg; M5*)] = TE + T Ty Ty + T3 + To Ty + T\ T;
Ty Ty — TET TS + Ty — VT3 — TETy Ty + ... (9.9)
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The above Hilbert series and plethystic logarithm illustrate the conical structure of the
toric Calabi-Yau 3-fold.

10 Model 8: SPP/Z, (0,1,1,1), PdPs,

10.1 Model 8 Phase a

{01, G2}

{ri, 120 O Q

Pr
Pa

Ps

Figure 17. The quiver, toric diagram, and brane tiling of Model 8a.

The superpotential is

W = +X56X62X05 + X5 X53X36 + X13 X34 X5 X51 + Xo1 X16 X624 X2
—X56X6aXa5 — XosX51X16 — X13X36X62X01 — Xos X3 X34 X42  (10.1)

The perfect matching matrix is

P1 P2 P3 Pa|q1 G2|T1 T2|S1 S2 S3 S4 S5 S6
X1 00 O/ 0O O|O 1 1 00O
X401 0 0 O|1 OJ]O OO O O O 1 1
Xg21 O 0 0|0 1]0 O|1 O O O 0 1
X531 0 0 0|0 1|0 OO O 1 1 0 O
X360 1 0 O|1 01 0|0 1 0 0 0 O
Xo5/0 1 0 O|1 0OJ0 1]0 O O O 1 O

P=] X501 0 0|0 1|1 0|0 00 10O
Xes|O 1 0 0|0 1{0 11 O O O O O
X560 0 1 1|0 0|1 0|0 1 1 1 0O
X650 O 1 1|10 0O(0 1j1 00 0 1 1
X340 O 1 0/0 OO O]1T 1 0 0 0 O
X21/0 01 0|0 O[O O|]O OO 1 1O
X420 0 0 1/0 Oj1 O}|]0O O O O 0 1
X130 0 0 1|0 0|0 1{0 O 1 0 0O O
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The F-term charge matrix Qr = ker (P) is

P1P2P3Pajq1 G2|7T1 T2|S1 S2 S3 S4 S5 Sg
1100|-1-1{0 0|0 O O O O O
1000|100 1|11 -10 00
Qp=]10100|-10|-10|-11 0 0 01
01010 0|-1-1/0 0 O O 0 O
0o010j1 0|j]O OO0 —-10 0 -10
0oo010j0 1{]0 O0f-10 0 —-10 0
The D-term charge matrix is

D1 P2 P3 P4|q1 G2|T1 T2|S1 S2 83 S4 S5 Sg

0O 00 0f0OO0jOO|]T =10 0 0 O

1 00O0O0|0O0|jOO0|0 1 =10 0O

@p = 000 O0j00|jOO|]O O 1T —-=10 0

0O 00 0lOO0jOO]J]O O O 1 =10

0 00 O0j0OO0|jOO0O|]O O O O0 1 —1

The total charge matrix ); does not have repeated columns. Accordingly, the
global symmetry is U(1)s, x U(1)s, x U(1)g. The mesonic charges on the GLSM fields
corresponding to extremal points in the toric diagram in Figure 17 are presented in
Table 30. The charges have been found using the constraints discussed in §2.3.

’ H U(l)y, ‘ U(l)y, ‘ U(1)r H fugacity ‘
pr|| 1 0 Ry =1/V3 |t
P2 || -1/2 1/2 Ri=1/V3 ||t
D3 -1 0 Ry=1—-1/V3 || t3

pall 1/2 | -1/2 | Ry=1-1/V3 | t4

Table 30. The GLSM fields corresponding to extremal points of the toric diagram with their
mesonic charges (Model 8a). The R-charges are obtained using a-maximization.

Products of non-extremal perfect matchings are labelled in terms of single variables
as follows

6
¢=qa, r=mrry, s= ] sm- (10.2)

m=1

The fugacity which counts extremal perfect matchings p, is t,. A product of non-
extremal perfect matchings such as ¢ above is associated to the fugacity of the form

Yq-
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The mesonic Hilbert series of Model 8a is calculated using the Molien integral
formula in (2.9). It is

91(tas Ygs Yrs Ys; MES®) = (14 Y2y2ys titsts + ygusys titalsts — yoylys t1t5tsts
FYaUys tatsts — yoyty? itatsts — yiytys G5t — yayryl tH55E5)
1
X 2 242 2 2,3 442 242 (10'3)
(1 — yayrys 1183)(1 — yaus tits) (1 — yaylys t5t3) (1 — yrys 1511)

The plethystic logarithm of the mesonic Hilbert series is

PL[g1(tas Ygs Yr Ys; MBS = Yayrys T3 + ygys Tits + Y2y2ys titsts + ygyrys titatsts

FYZYRYs tath — yoyty? titstaty — yauity? G + ygytys ttsth — 2 yiyly? titstst]
... (10.4)
Consider the following fugacity map
1/2 1/2
tit tot ~ -
fi = 1—31/2 o= 2—41/2 1 = y;/2yi/2y;/2 t}/zt;m iy = t§/2ti/2 . (10.5)
Yr Tty Ys tatg

where the fugacities f; and f, count flavour charges, and the fugacities ¢; and ¢, count
R-charges R; and Ry in Table 30 respectively. Under the fugacity map above, the
plethystic logarithm becomes

b
h

1 §
—f0 4 il = 20 (10.6)

The above plethystic logarithm exhibits the moduli space generators with their corre-

PL[gl(fa, fi, f2 g}fs)] = f1f2£% + flt?fz + f2£11£2 + ﬁtg + ﬁ% - f1f2£(15£§

sponding mesonic charges. They are summarized in Table 31. The generators can be
presented on a charge lattice. The convex polygon formed by the generators in Table 31
is the dual reflexive polygon of the toric diagram of Model 8a. For the case of Model
8a, the toric diagram is self-dual, and the charge lattice of the generators forms again
the toric diagram of Model 8a.
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Generator ‘ U(l)y, ‘ U(l)y, ‘

.
p%pg qs 1 0 . b
pipir s -1 -1
P1P2p3P4 4 T S 0 ®
pivs ¢° v s 1 1

2 2 2 -1 0
Pap3py q T s
pwpspa g’ rts |0 1
papt ¢ 1° s -1 1

Table 31. The generators and lattice of generators of the mesonic moduli space of Model 8a
in terms of GLSM fields with the corresponding flavor charges.

‘ Generator ‘ Uy ‘ Ul)y, ‘
X16Xe62X01 = X34 X45X53 1 0
X56Xe5 = X13X34 X490 X01 -1 -1
X16X65X51 = Xo5X56X62 = X36X65X53 = Xu5X56X64 0 0
= X13X36X62X01 = X153 X34 X5 X51 = X6 X6 X2 X1 = X5 X53 X34 X o
X16X62X05X51 = X16X64Xu5X51 = Xos X53X36X62 = X36X64Xu5X53 1 1
X13X36X65X51 = Xos X6 XeaXao = X13X36 X614 X142 X01 = X13 X34 X0 X5 X551 -1 0
X153 X356 X620 X05X51 = X13X36 X654 Xu5X51 = X16 X6 Xa2 X5 X51 = X5 X53 X 36 X64X a0 0 1
X13X36X64 X 42 X095 X51 -1 1

Table 32. The generators in terms of bifundamental fields (Model 8a).

The mesonic Hilbert series and the plethystic logarithm can be re-expressed in
terms of just 3 fugacities

to (7} . -
= Ty = fifo 1} = Yluys 65, Ts = f1 ity = yys tits |

Tl = = )
f12f2 tzll ygys t?tQ

(10.7)
such that

g1 (11, T, Ty; M) =
1+ T1T22 + TVT5T5 — T1T22T3 + T12T22T3 — T12T23T3 — T12T22T32 — T13T24T32
(1 =T)(1 = T3)(1 = TPT3) (1 — TPTLT3)

(10.8)
and
PL[gi(Ty, Ty, Tg; Mge$)] = Ty + T3 + Ty T3 + TV Ty s + TPTy — VT3 Ts — T2T)y
+T2T2Ty — 2T 3Ty + ... . (10.9)
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The above Hilbert series and plethystic logarithm in terms of just three fugacities with
positive powers illustrate the conical structure of the toric Calabi-Yau 3-fold.

10.2 Model 8 Phase b

©O

{0, G2}

{ri, 120 O Q

Pr
Pa

<0 .

Figure 18. The quiver, toric diagram, and brane tiling of Model 8b. The red arrows in the
quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X31 X12Xo3 + X56X62Xo5 + X6aXaXo6 + X61X15X a3 X36 + X34 X5 X725
— X531 X15 X2 — X36X62Xo3 — X56X64Xa5 — X1 X120 X6 — Xo5 X355 X34 X0
(10.10)

The perfect matching matrix is
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HNNooo-r o000 4000 OO
Floocoocoococoo - 40 O OO0 O
Flooo—~oco o0 40 0 -0 OO
g " 4T 00 4T 0000000 OO0
FtO O 1000000 OO D
floooo oo -0 0 0O - OO
HFIO A 4 4 000000000 O -
oo oo -0 0000 C — O —
dVoococoo 00000 0 O
Soo—~o0oocoocoococoo A -0 O —
oo o oo 00 A 00— - OO0
Joocooocoo 0000000~ A~ o
foo~ocococooco A --—0 00O
¥ VT o000~ 100000000
m1111100000000000
28812 3893 83-B% 323388
S R o e e

Il

A

The F-term charge matrix Qr = ker (P) is

82 83 S84 S5 S6 St

-1 0 0

51

-1-10

0

-1 0 0 -1

0

1

-1 -1
-1
-1

0 0 O

0

0
-1

|

1 0 0

-1

0 0 -10

1

1

T2

1

-1 010

0

-1

-1 010

-1

0

—1{—-1 0

-1 0
1 -1

-1 0 0
1

-1 0 0 0

1

q2

0{0 0j0 O O 0 O

1
1
1
1

0
0

010

P1 P2 P3 P4| q1

11110 O

1100|-1-1y0 0|0 O O O O O O

0110{0 O

0010

0001

0001

0001

Qr

The D-term charge matrix is

P1 P2 P3 P4|q1 2|71 T2|S1 S2 S3 S4 S5 Sg St
o o0o0®O0O/00/00O0{]O1T-10 0 00
000 0|0 OlOO0|O0OO0 1

000 O0|0O0lOO0|0OO0O0 O
0O0O0O0Ol0 000000 O O

0 0O0O0|0OO0|O0OO0]|OO0 O

Qp = [
The total charge matrix ); does not have repeated columns.
global symmetry is U(1)y, x U(1)s, x U(1)g. The flavour and R-charges on the GLSM

fields corresponding to extremal points in the toric diagram are the same as in Model

Accordingly, the

8a, and are given in Table 30.
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Products of non-extremal perfect matchings are expressed as

7
¢=q, r=rry, s= ] sm- (10.11)

m=1

The extremal perfect matchings are counted by ¢,. Products of non-extremal perfect
matchings such as ¢ are associated to a fugacity of the form y,.

The mesonic Hilbert series and the plethystic logarithm are identical to the ones
for Model 8a and are given in (10.3) and (10.6) respectively. As a result, the mesonic
moduli spaces for Models 8a and 8b are the same.

The generators of the mesonic moduli space in terms of all perfect matchings of
Model 8b are shown in Table 31. In terms of Model 8b quiver fields, the generators
are shown in Table 33. From the plethystic logarithm in (10.6) one observes that the
mesonic moduli space is not a complete intersection.

‘ Generator ‘ Ul)y, ‘ U(l)y, ‘
Xo6Xg2 = X15 X33 X31 = X3y Xus X1 1 0
X5 X56X61 = Xo3 X34 X2 -1 -1
X5 X2 X356 X61 = Xo5 X5 X5aXgp = X192 X03 X1 = X12 X6 X1 = X15 X2, X5 0 0
= X3 X356 X2 = Xo5 X5 X2 = Xo6X6aXao = X3a Xus X2 = Xy5 X5 X4
X195 X5 X213 X351 = Xos X3 X356 X620 = X36X64Xu5.X 15 1 1
X152 X203 X36X61 = X12X05X56 X1 = X15X55 X 36 X1 -1
= X3 X536 X064 X2 = Xo5 X2 X354 X0 = Xo5 X56X64 X2
X192 X05 X33 X356 X1 = X5 X33 X356 X64Xa2 = X120 X5 X2, X351 = Xos X2, X356 X2 = X6 X6 Xus X 0 1
X190 X05 X2, X356 X1 = Xo5 X23 X356 X4 X2 -1 1

Table 33. The generators in terms of bifundamental fields (Model 8b).
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11 Model 9: PdPy,

11.1 Model 9 Phase a

Ps

Figure 19. The quiver, toric diagram, and brane tiling of Model 9a.

The superpotential is

W = +X19X96X61 + Xos X53 X0 + X2 Xo1 Xig + X3 X34 X46X65X51
—X13X32X01 — Xos X51 X192 — Xu X1 X14 — Xo6Xe5X53 X34 X020 (11.1)

The perfect matching matrix is

P1 P2 P3 P4 P5|q1 G2|S1 S2 S3 S4 S5 Sg
X1 0 0 O Of1 0|12 0 0 0 0O
X511 0 00 00 1]/]0 1 0 00O
X300 1.0 0 0|1 00O 1 0O0O0
Xp0 1 00 00 1]0 0 01 00
X460 01 0 00 0|2 0 01 00O
X530 01 0 00 0|0 1T 1 0 0O

P=] Xi4/1 00101 0{001O010
X321 001 0|0 1/00O0T1T1O0
Xo5(O 1 0 O 1|1 0|1 0 0 0 01
X61/O 1 00 1(0 1|01 00 O01
X120 01 1 00 0j]0O O 1T 1 10O
X510 01T 0 1|0 0|1 1 0001
Xe5/0 00O 1 0j0O O|O O O O O 1
X340 0 0 O 1/0 0|0 O OO0 1O

The F-term charge matrix Qr = ker (P) is
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81 82 83 S4 S5 Se
-1-10 0 0 0 0 O
0 00 0 0 0 —-1-1
0O 0|-1-10 0 -1 0
1 0j-10 -1 0 0 O
0 1/0 -10-10 0

e~
iy
=
N
i}
w
=
iy
=
ot
>~Q
fiy
K
V)

SO O = O =
SO OO O =
—_ == OO
O OO = O
OO R R+~ O

The D-term charge matrix is

D1 P2 P3 P4 D5
0 0 0

S1 S92 S3 S4 S5 Sg
1 -10 0 0 O
01 -10 0 O
001 -10 O
0
0

Q
firy
Q
\V]

@p

0 0 1 -10
0 0 0 1 -1

o O O O O

0
0
0
0
0

o O O O
o O O O
o O O O
o O O O O
o O O O O

The total charge matrix does not exhibit repeated columns. Accordingly, the global
symmetry is U(1)y, x U(1), x U(1)g. Following the discussion in §2.3, the mesonic
charges on extremal perfect matchings are found. They are shown in Table 34.

’ H U)s ‘ U(l)y, ‘ U)r H fugacity ‘
p| -2/5 | 1/2 [Ri=2(=2+V5) |t
po || -1/5 | -1/2 | Ry =2(-2+V5) | t2

ps | 2/5 0 |[Ri=2(-2+V5) |t
| 1/5 0 Ro=7-3V5 | t4
s 0 0 Ry=7-3V5 | ts

Table 34. The GLSM fields corresponding to extremal points of the toric diagram with their
mesonic charges (Model 9a). The R-charges are obtained using a-maximization.

Products of non-extremal perfect matchings are expressed as

6
¢=qq, s= ][] sm. (11.2)

m=1

Extremal perfect matchings are counted by ¢,. Products of non-extremal perfect match-
ings such as ¢ are counted by a fugacity of the form y,.
The mesonic Hilbert series of Model 9a is found using the Molien integral formula
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n (2.3). It is

mes) _

91(ta, Yg, Ys;
P(ta)
(1 — 2y, t3tat3) (1 — yays t3tst3) (1 — ys t3tats) (1 — y2ys t1t5t3) (1 — yoys t3tst?)
(11.3)

The numerator is given by the polynomial

P(to) = 1+ y2ys Git5tats + ygys titatstats — yoy? titststits — yoy? titat3tits
—yay? Bt — Y2yl BEISIE — Yyl Gtotstaty — Y2yl titotitat
Fy Y Ttat3tits + yays LS + vy, 1ttty (11.4)

The plethystic logarithm of the mesonic Hilbert series is

PL[g1(ta; Yg, Ys; MG)] = ys t3tats + Ygys trtatstats + Ygys titsts + Ygys tatsts
—I—yqys Ht5tats + Yoy titsts + yoys thtat] — 2 Yoyl G552 — yoy? titat5tits
—yays titststats + ... (11.5)

Consider the following fugacity map

i1t ~ -
f o yq 2/3y1/3t 2/3 2/3 4/3 f _ “1tg t _ y;/gy;/g t1/3t1/3t1/3 f; t1/2t1/2

)

(11.6)

where the fugacities f; and f, count flavour charges, and the fugacities ¢; and ¢, count
the R-charges R; and R, in Table 34 respectively. Under the fugacity map above, the
plethystic logarithm becomes

1 1 1 -
PLIn s o S M) = 88+ (14 ot £ ) BB+ (4 50+ 2 ) i

—(2+f2+%)t~?t~§+... : (11.7)

This plethystic logarithm exhibits the moduli space generators with their mesonic
charges. They are summarized in Table 35. The generators can be presented on a
charge lattice. The convex polygon formed by the generators in Table 35 is the dual
reflexive polygon of the toric diagram of Model 9a. For the case of Model 9a, the
toric diagram is self-dual, and the charge lattice of the generators forms again the toric
diagram of Model 9a.
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Generator ‘ Ul)y, ‘ U(l)y, ‘

P3Paps S 1 0

Pipspi q s 0 1

P1P2P3PaPs 4 S 0 0 ®
2 2 0 _1

DaP3Ps g S

pipepi ¢* s -1 1

PIPspaps ¢* s -1 0

PIDDE ¢° s -1 -1

Table 35. The generators and lattice of generators of the mesonic moduli space of Model 9a
in terms of GLSM fields with the corresponding flavor charges.

Generator ‘ Ul)y ‘ U@)y, ‘
X12X21 = X34X46X65X53 1 0
X120 X6 Xe65X51 = X14Xu6X65X51 = XogXe5X53X32 0 1
X13X34X46 X5 X51 = Xog X5 X53 X34 X2 = X190 X5 X510 = X192 X6 Xe1 0 0

= X13X32X21 = X14X42X21 = X14X46X61 = X25X53X32

X13X34X42X21 = X13X34X46X61 = X25X53X34X42 0 -1
X13X32X26X65X51 = X14X42X26X65X51 -1 1
X13X34X42X26X65X51 = X13X32X25X51 = X13X32X26X61 = X14X42X25X51 = X14X42X26X61 -1

X13X34X42X25X51 = X13X34X42X26X61 -1 -1

Table 36. The generators in terms of bifundamental fields (Model 9a).

The mesonic Hilbert series and the plethystic logarithm can be re-expressed in

terms of 3 fugacities
14
1= 513 12= ysys oty , Ty = YqVs titats (11.8)
YaYs tily

such that

g (Th, Ty, Ty; Mgy*) =
(1+ T3 + TV Tys — TT5 Ty — TVTo Ty — TETSTs — TPToTy — TPTy Ty — TP Ty Ty

1
T3TET2 + T3T3T3 + TATOT3
T LT ) X - 1)1 - 9191 - L)1 - TPTET)
(11.9)
and
PL[gi(Ty, Ty, Tg; Mge®)] = TiT3 + ThToTs + Ts + TPToTs + ThT2 + TETS + T
—TRTET? — IO TE — TPT3T2 + ... . (11.10)
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The above Hilbert series and plethystic logarithm illustrate the conical structure of the
toric Calabi-Yau 3-fold.

11.2 Model 9 Phase b

OX0,

Figure 20. The quiver, toric diagram, and brane tiling of Model 9b. The red arrows in the
quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X5: X53X30 + X6 X62 X5 + X13X34 X5 X51 + Xo1 X16X64 X a2
—X13X30 X1 — X6 X64Xus — X16X62X55X51 — Xz X53 X34 Xy (11.11)

The perfect matching matrix is

0 |p1 P2 P3 P4 P5|q1 q2|S1 S2 S3 S4 S5 S¢ ST
X321 001 0|1 0|01 01 01O
X215 1 0010(01{1 00O0OO0O0OO
X511 0 00 0[1 0Oj]OOOOO0OO0OT1
Xgs|1 0 OO 0|]O 1|O O 1 OO 1O
X560 1 0 O 1|1 0|01 0 0 101
X225 010010 1{1 00 0O0O00O0

P=| X»/0 1 0001 0/00O0T1O0O0TO0
X310 1.0 0 0|0 1]0 01T 0100
X450 01 1 0{0 O 0 01 00O
X210 001 0 1/0 0(1 0 0 0 O0O0OT1
Xg2/0 001 0 0|0 OO O 1T 1 01O
Xs3/0 01 0 0|0 0|0 O 1 0101
X0 001 0[/00|j]0O1TO0O0OT1TO00O0
X340 0 0O 1/]0 0O 1 000 1O
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The F-term charge matrix Qr = ker (P) is

P1 P2 P3 P4 Ps|q1 G2|S1 S2 S3 S4 S5 Se¢ S7
11000|-1-110 0 0 0O O 0 O
0o0o011{0 0|-1—-10 0 O O O
Qr = 1000T1|-1 0|-=10 0 1 0 -10
100010 —1{0 0 1 0 0 —-1-1
01110;j0 0|]-10 0-1-10 0
001001 0|0 O0OO0O-10 0 -1

The D-term charge matrix is

P1 P2 P3 P4 P5|q1 2|51 S2 83 S4 S5 S¢ St
000O0O0O|0Ol =10 0 0O0O0

. 000O0OO0(0O0|/O1T =10 0O00O0
@ = 000O0OO00O0|]OO 1T —-10 00
000O0OO0O|0OO[OO O 1T -100
000O0O0O|00O|]OOO0OO0OO0T1-1

The total charge matrix ); does not have repeated columns. Accordingly, the
global symmetry group for the Model 9b theory is U(1)y, x U(1)s, x U(1)g. The
flavour and R-charges on the extremal perfect matchings p, are the same as for Model
9a, and are summarised in Table 34. They are found following the discussion in §2.3.

Products of non-extremal perfect matchings are expressed as

7
=02, s = H Sm - (11.12)

m=1

The fugacity counting extremal perfect matchings p, is t,. The fugacity y, counts the
product of non-extremal perfect matchings g above.

The mesonic Hilbert series for Model 9b is identical to the one for Model 9a. The
mesonic Hilbert series is shown in (11.3). The corresponding plethystic logarithm in
(11.7) indicates that the mesonic moduli space is not a complete intersection. As a
summary, both Model 9a and 9b mesonic moduli spaces are identical.

The generators of the mesonic moduli space in terms of the perfect matching fields
of Model 9b are presented in Table 35. The charge lattice of mesonic generators forms
a convex polygon which is another reflexive polygon precisely being the dual of the
toric diagram. The generators of the mesonic moduli space in terms of quiver fields of
Model 9b are shown in Table 37.
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Generator ‘ Uy, ‘ U1), ‘
X6 X2 Xo1 = X34 X5 X553 1
X215X53X32 = X16X62X215X51 = X16X64Xu5X51 0 1
X3 X3 X0 = X215X56X62 = X225X53X32 = Xu5 X56X64 0
= X3 X34 Xus X551 = X16X64 X420 X91 = X16X62X225X51 = X215X53X34X42

X2 X56X62 = X13X34 X402 X01 = X3 X353 X3, X0 0 -1
X13X32X3: X51 = X16 X624 X4 X35 X51 -1 1
X153 X350 X5 X51 = X5 X6 X6aXa2 = X13 X34 X o X35 X1 = X16X61 X420 X55 X51 -1

X2 X56 X614 X9 = X13 X34 X 4o X5 X5 -1 -1

Table 37. The generators in terms of bifundamental fields (Model 9b).

11.3 Model 9 Phase c

©O

Figure 21. The quiver, toric diagram, and brane tiling of Model 9c. The red arrows in the
quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = + X051 X16 X5y + Xoa X3 Xy + X X53 X139 + X51 X13 X35 + X54 X6 X gy Xos
—X13X30X01 — XosXus Xgy — Xos X53 X0 — X54X43X35 — X16X52X 95 X51
(11.13)

The perfect matching matrix is
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The F-term charge matrix Qr = ker (P) is
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Qr

The D-term charge matrix is

-1 0 0 0
1 -10 0

-10 0 0 O

1

000O0O0OO0OO0OO0O0O0OOTUO0OO0T1-1

P1 P2 P3 P4 P5|q1 42|51 S2 S3 S4 S5 Se ST S8
0O00O0OO0/00/0O1T-10 0 0O0UPO0
0 00O O0O0[0OO0IO0O0 1

0 00O O0O0]0O0I0OO0O0

0 00 O0O0]O0OO0OlOO0O0 O

Qp = {
The total charge matrix ); does not have repeated columns.

Accordingly, the

global symmetry of Model 9c is the same as for Model 9a and 9b above and takes the

form U(1)s, x U(1)s, x U(1)g. The mesonic charges on the extremal perfect matchings

are summarised in Table 34.

The following products of non-extremal perfect matchings are assigned single vari-
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ables

8
(=qq , s= H Sm - (11.14)

m=1

The extremal perfect matchings are counted by the fugacity t,. Products of non-
extremal perfect matchings such as ¢ above are associated to fugacities of the form
Yq-

The mesonic Hilbert series is identical to the mesonic Hilbert series of Model 9a
and 9b. The mesonic Hilbert series is given in (11.3) with the corresponding plethystic
logarithm in (11.7). The mesonic Hilbert series of Models 9a, 9b and 9c are identical
and are not complete intersections.

The generators of the mesonic moduli space in terms of Model 9¢ GLSM fields
are shown in Table 35. The mesonic charges of the generators correspond to lattice
coordinates of points which form a reflexive polygon being the dual of the toric diagram.
The generators in terms of quiver fields of Model 9c¢ are shown in Table 38.

‘ Generator ‘ Uy ‘ ULy, ‘
X5 X553 = X16X g Xo1 = XoaXas X 1 0
Xl()'X(}QXleXSl = X24X43X§2 = X215X53X§2 0 1
meéngQ;,XsL = X215X54X46Xé2 = X13X§2X21 = X13X35X51 = 0 0
X16X86Xo1 = XoaXu3 X3 = XoaXusX§o = Xas Xsa X = X35 X3 Xy = X5 X5aXus
X§5X54X4GX&2 = X13X§2X21 = X225X53X322 0 —1
X13X312X215X51 = X16X522X215X51 = X215X54X43X312 -1 1
X3 X5 X35 X51 = X13 X X535 X51 = X16 Xo X35X51 = X3 X5a X3 Xy = X5 X5a X6 Xgp = X5 X5 Xaz X | -1 0
X3 X5 X535 X51 = X35 X5aXug X35 = X35 X654 Xa6 X5, -1 -1

Table 38. The generators in terms of bifundamental fields (Model 9c).
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12 Model 10: dP3

12.1 Model 10 Phase a

Py Pe

Ps

@) Ps

Figure 22. The quiver, toric diagram, and brane tiling of Model 10a.

The superpotential is

W = +X13X30 X091 + X56X64Xu5 + X3 X35 X50X06X61X14
— X3 X35 X56 X61 — X14Xus X50X01 — Xos XeaX43X30

The perfect matching matrix is

P1 P2 P3 P4 P5 P6|S1 52 S3 S4 S5 S
X501 0 001 0100010
X301 0000 1|1 000O0°T1
Xs56/0 110 00{01 1000
X21/0 101 00j0101O00O0
X320 01 01 0j0OO0O1O0T1O0

P=| Xes/0 001 0 1|0 00101
X961 0 OO O OJ0O1O0O0O0OO0
X430 10 0001 0O0O0O0O0
X140 01 0 0 0|OOO0OO0OO0OT1
X350 001 0 00O OO0OO0OT1O0
X610 0001 0O|OO0OO0OT1TO0OO0
X520 00O O 1/0010O0O0

The F-term charge matrix Qpr = ker (P) is
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11000O0|-1-10 0 0 O
QrP=]1000110/0 0 0 -1-10
010011}|-10 -1-10 0
0010010 0 -10 0 -1

The D-term charge matrix is

P1 P2 P3 P4 P5 P6|S1 S2 83 S4 S5 Se
00000O0O0|[L—-10 00 0
~foooo0oo0o0jo1-10 0 0
@=1000000l001-10 0
00000O0|[0O0 O 1 —-10
00000O0|0O0 OO0 1 —1

The total charge matrix ); does not exhibit repeated columns. Accordingly, the
global symmetry is U(1)s, x U(1)s, x U(1)g. The mesonic charges on the GLSM fields
corresponding to extremal points in the toric diagram in Figure 22 are found following
the discussion in §2.3. They are presented in Table 39.

’ H Uy ‘ U(l)yg, ‘ U(1)r H fugacity

D1 -1 0 1/3 t
Do -1 1 1/3 to
D3 1 0 1/3 t3
|l 1 1] 13 ||t
ps |l 0 0 1/3 || 45
pe |l 0O 0 1/3 | t6

Table 39. The GLSM fields corresponding to extremal points of the toric diagram with their
mesonic charges (Model 10a).

The product of all internal perfect matchings is labelled as follows

s=]] sm - (12.2)

The fugacity counting extremal perfect matchings is t,. The product of internal perfect
matchings is associated to the fugacity ys.
The refined mesonic Hilbert series of Model 10a is found using the Molien integral
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formula in (2.9). It is

P(ta)
— s B3t5tats) (1 — ys titat3t3) (1 — ys titstite)
1
X
(1 — s titst3te) (1 — ys titatitd) (1 — ys titatst})

mes

91 (ta; ys; Mios ) = 1

(12.3)

The numerator is given by the polynomial

P(ta) = 14y, titatstatsts — y3 titatstitsts — yi G5t5tatste — y3 titstititsty
—2 Y3 ity ttitsts — ys titatstatsts + yl ittatitsts + ] BTyt
—ys titatstitsts — Yo titatstitsts + yl tttitsts + 2 y7 S5ttt
+yl GBS + y2 BRBHE + yl QGG — u; Hittstitts
—y5 B (12.4)
The plethystic logarithm of the mesonic Hilbert series is

PL{g1(ta, ys; MTED)] = ys titatstalste + ys titstats + ys tlatite + ys titalils + ys titatst?
+ys ttatsta + ys tatatats — 3 Y2 ttatatatate — y2 titotstytats — y2 titststitsts
—y; ttatstitsts — ys ti5t3tatits — i titatstitsts — yl Lt + ...

(12.5)
Under the following fugacity map
tot tst
PR R YL/ t1/6t1/6t1/6ti/6t1/6té/6 ’ (12.6)
tits tate

where f1, fo and t are the mesonic charge fugacities, the mesonic Hilbert series and the
plethystic logarithm are expressed as

1 1 1
a1(t, f1, fa; M) = <1+t6_ <2+f—+f1+—+—+f2+f1f2> 2
12

J:
+(2+; +f1+; i +f2+f1f2> ¢ — 24—1530) x
1
(12.7)
(1= £6) (1= fit9) (1= £19) (1= 7519) (1= L) (1 = f11at)
and
mes _ 1 1 1
PL[g1(t, f1, f2; M57)] = (1 o + i+ 7 + fot " +f1f2>t6 (3+ 7 + i+ f2
1 1 1
+f2+?+f1f2>t12+2(2+ﬁ+f1+E‘f‘fz f1f2+f1f2>t18 .o (128)
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The above plethystic logarithm exhibits both the moduli space generators and the cor-
responding mesonic charges. They are summarized in Table 23. The generators can be
presented on a charge lattice. The convex polygon formed by the generators in Table 23
is the dual reflexive polygon of the toric diagram of Model 10a.

Generator ‘ Ul)g ‘ U(l)y, ‘
P3D3PaDs S 1 1
PLP2p3DE S 0 1
P3PsPiPe S 1 0
D1P2D3PaP5P6 S 0 0
Pipspips -1 0
PLD2D3DG S 0 -1
Pipapspg S -1 -1

Figure 23. The generators and lattice of generators of the mesonic moduli space of Model
10a in terms of GLSM fields with the corresponding flavor charges.

‘ Generator ‘ U(1)y, ‘ U1y, ‘
X14X43X32X21 = X14X43X35X56X61 1 1
X14X45X56 K61 = X14X43X30 X6 X1 0 1
X35 X56 X 64 Xa3 = X14 X3 X35 X50 X1 1 0
X14 X3 X35 X520 X6 X1 = X13X30X01 = Xys X6 X6a = X13 X35 X56 X1 = X140 Xu5 X520 X01 = X6 X4 X3 X3 0 0
X13X32X26X61 = X14X45X52X26X()'1 _1 0
X13X35X52X01 = XoX64 X413 X35 X502 0 -1
KXo X64X45X50 = X13X35 X50 X026 X1 -1 -1

Figure 24. The generators in terms of bifundamental fields (Model 10a).
Under the following fugacity map
t6 0, . o toty t3ts
T =—— =ys tilatsty , To=fr=—— , T3 = fo = —, (12.9)
fifo tits tals

the mesonic Hilbert series and the plethystic logarithm can be rewritten as

g1(T0, T, Ty; MT5) = (1 + TV T — (2T7T5T5 + TP Ty + TRTS Ty + T3 Ty
T2y Ty + THT2TS + TET3TS) + (QT3TETS 4+ TRTETS + TPTyTs + TYTET?
+TPTTS + TYTS Ty + TYT, T3 ) — T Ty — TY TS TY) X
1
(1-TNT5)(1 -TT3T5)(1 — ThTo)(1 — Th) (1 — TV T35) (1 — ThI5T3)

(12.10)
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and
PL{g1(t, fr, foy Mie )] = TV T Ts + Th'Ts + T1T22T3 +10T5 + T1T2T32 + 1 + T1T22T32
—(BTETITS + TPy Ty + TETS Ty + TeTyTs + TeToTy + TR Ts + TETS Ty
FATPTITY + TITETS + TPy Ty + TPT3TE + TYTSTy + TPTETS + THT, Ty + . ..
(12.11)

such that the powers of the fugacities are all positive indicating the cone structure of
the variety.

12.2 Model 10 Phase b

Figure 25. The quiver, toric diagram and brane tiling of Model 10b. The red arrows in the
quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X31 X15X53 + XapX93X34 + X56X64Xf5 + X52X26X61X14Xi5
— X4 X6 Xoa — X53 X34 X5 — X56X61X15 — X1a X5 X50X03 X3 (12.12)

The perfect matching matrix is
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The F-term charge matrix Qr = ker (P) is

P1 P2 P3 P4 P5 Pe|S1 S2 S3 S4 S5 S¢ S7
11000 O0f-10 0 0 —-10 0

. 1 010-10{0 00 -1-10 1
@r=1 10010 -1-101 0 0 -1 0
00011 0j0 OO0 OO0 -1-1
0oo00O0O0OTO0O}]1T 1 -1-10 00

The D-term charge matrix is

P1 P2 P3 P4 P5 P6|S1 S2 S3 S4 S5 Sg S7
000O0OOO0O|0O1L-10 0 00

B 0O00O0OO0I0O01-10 00

@p = 000O0OOO0O|0OO0O O 1T -10 0
0O00O0O0OO0O0O0O O0O O 1 -10

00 0O0O0OO0|0O0O OO0 O0 1 -1

The total charge matrix ¢); does not exhibit repeated columns. Accordingly, the
global symmetry of Model 10b is identical to the one for Model 10a, U(1), x U(1)y, X
U(1)g. The flavour and R-charges on the extremal perfect matchings are found follow-
ing the discussion in §2.3. They are identical to Model 10a, and are shown in Table 39.

The product of all internal perfect matchings is given by the variable

7
s = H Sm - (12.13)
m=1

The fugacity for extremal perfect matchings p, is t, and the fugacity for the above
product of internal perfect matchings is ys.
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The mesonic Hilbert series of Model 10a and 10b are identical. They are called
phases of the same toric moduli space. The Hilbert series is found in (12.4) with the
plethystic logarithm in (12.8). The moduli space is not a complete intersection.

The generators of the mesonic moduli space in terms of the perfect matchings of
Model 10b are shown in Table 23. The generators in terms of quiver fields of Model 10b
are shown in Table 24. The charge lattice of generators is the dual reflexive polygon of
the toric diagram of Model 10b.

‘ Generator ‘ U(l)y, ‘ U(l)y, ‘
X15X52X23X31 = X225X34X4[5X52 = X2(;Xl\'4Xi5X52

X15X52X26X61 = X23X34X35X52 = X2GXG4X425X52

X X56X64 = X14 X5 X50 X035 X1

X4 X X352 X3 X531 = X14 X5 X52Xo6 Xe1 = X15X55 X531 = X15X56X61 = Xos X531 Xao = XoeXea X2 = X34 X5 X553 = X5 X56 X4
Xy XE X3 = X1a X3 X50X26Xe1

X14X~12X23X31 - X14X415X53X31 - XlélxiSXSGXﬁl

X1 Xa2 X6 X1 = X1 XE X553 X1 = X14 X3 X56X61

S O ==

Lol o~ o

moh o

Table 40. The generators in terms of bifundamental fields (Model 10b).

12.3 Model 10 Phase ¢

P Pe

o ®

@ P3

Figure 26. The quiver, toric diagram, and brane tiling of Model 10c. The red arrows in the
quiver indicate all possible connections between blocks of nodes.

The superpotential is

W = +X41X13X§4 + X42X23X§4 + Xi5X52X26Xg4 + X51X16Xé4X§5
—X41X16Xg4 — X42X26Xé4 — XZ5X52X23X§4 — X51X13X§4Xi5 (1214)

The perfect matching matrix is
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The F-term charge matrix Qr = ker (P) is

Qr =

P1 P2 P3 P4 P5 Pe|S1 S2 S3 S4 S5 S S7 S8
X1 000 1T 1/001T 01100
X§4 100010j01O0O0O0O0O0T1
X§4 10000100 O0O0O0O0OT1T1
X511 0000 0[0OOO0OT1TO0OT1O0O0
Xn1/0111 0000110100
Xé4 01 100O0/000O0O0O0T11
X§4 01 010O0/010O0O0O0O0T1
X501 00O O 0[0OOOO0OT1T1O0O0
Xig) 001010|j001O0O0O0O0TO0
Xo3/0 01 0001 OO1TOO0OT1TO0
XZ5 0001O0T1|0010O0O0O0TO0
Xwl0O 0O 01 001 10100O0O0O0
Xi/0 000101 1001O0O0O0
X130 000011 OOO0OT1TO0T1TO0
P1 P2 P3 P4 P5 Pe |S1 S2 S3 S4 S5 S¢ St S8
11000 00 O 0O O 0 -10 -1
10010 -110-10 0 1 —-10 0
00100100 -10 0 0-10
00011 0(0-1-10 0 0 00
0000O0OCO0O|1 =120 0 0 0 -11
0o00O0OO0OO|1 OO0 -1-11 00

The D-term charge matrix is
P1 P2 P3 P4 P5 Pé

@p

The global symmetry for Model 10c is identical to the global symmetries of Model
10a and Model 10b, U(1)s, x U(1)s, x U(1)g. The mesonic charges on the extremal

[an

53 S84 S5 S6¢ St S8

0

o O O O

0

o O O O

0

o O O O

0

o O O O

0

o O O O

O O O O O

O O O O O

O O O O o

1-10 0 0 O

0

o O O

1
0
0
0

-1 0 0 0
1 =10 0
0 1 -10
0 0 1 -1

perfect matchings with non-zero R-charge are shown in Table 39.

The product of all internal perfect matchings is expressed as

8
s= T sm .

The fugacity t, counts extremal perfect matchings and the fugacity y, counts the above

product of internal perfect matchings.

1
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The mesonic Hilbert series is identical to the Hilbert series for Models 10a and 10b
in (12.3).

The moduli space generators in terms of all perfect matchings of Model 10c are
shown in Table 23, with the corresponding lattice of generators being the dual reflexive
polygon of the toric diagram. The generators in terms of quiver fields of Model 10c are
shown in Table 41.

Generator ‘ Uy ‘ UML)y, ‘
X16 X Xar = Xog X1 X1 Xop = Xog XL, X1 X 1 1
X3 X1, X4 = Xos X1, X2 Xsp = Xos XL, X2 Xso 0 1
X16XE X1 X51 = Xop X2, X1 Xso 1 0
X3 X3, X1 = X16X5,Xu1 = X3 X3, X0 = Xo6 Xy Xao 0 0

= X13X3, X5 X1 = X16 X5y Xi5 X1 = Xoa X5, X 55 X0 = X6 X5, X5 Xso

X13X3, XEX51 = Xoo X3 XF X0 -1 0
Xos X2, Xso = X3 X2, XL X1 = X16X2, X1 Xs) 0 1
X26X34X42 = X13X§4XZ5X51 = X16X34XZ5X51 _1 _1

Table 41. The generators in terms of bifundamental fields (Model 10c).

12.4 Model 10 Phase d

P P4

09

@ P3

Figure 27. The quiver, toric diagram, and brane tiling of Model 10d. The red arrows in the
quiver indicate all possible connections between blocks of nodes.
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The superpotential is

1
34

Xog

1
42

3
41 +
2 1
- X42X26

2 1
31 1+ X16 Xy
X6

Xi3

3 1
42 + 41

2
64
2

22 + XQG
| — X3 X3, X5 — Xog

2
54

+ X5 X

2
41
3
4

1
54
2

W =+X:X

1
64

64

1
41

3
42

— X5 X2, X

2
42

34

X

54

—X15X

(12.16)

The perfect matching matrix is

floocor o ~0co~—~0co0cococoo
m000011010001010001
Flooo 1 ocococococoo 40 A0 - - — O
Plooooocoocoocoocooco0o O = = — = —
NV 1T coco -0+ - 00000 o0 OO
Voo O AT 00 0000 O A OO
oo oocoo oo -0 -0 00O —
Jglooco o~ 0000 -+ -0 00 -~ O
Flooo A o000 00 10 40 0O OO
fMlooocoo—~ oo 0000 A — 0O -
RO o000 O T 00000 O O o —
o+ o010 000 410000~ O
o4 400 100000 -0 00— O
oo ocococoo -0 00 -0 O
grHooocooo " 000~ -0 00O
fococoocoococoo " 4000000
m111111000000000000
SEEELLECC L L ELEE

P =

The F-term charge matrix Qp = ker (P) is

S¢ S7 S8 S9 S10 S11

0

-1
-10 1-10 0

1

-1 0 0 O

-1
0

-10 0 -1

1

-10 0 0 O

100 0 0 0-1-10
010 00 O0-1-10

1

-1

-10 0 0 0 0 O

Pe |S1 S2 S3 S4 S5

b1 P2 P3 P4 Ps

110-1-1 00 0 0 O0O0 O O01O0

-1/0 0 0 0 O
=110 0 0 0 O

0
0

1
1

010-10

100
100

1/0 0 01 -10 0O0O0 O

110 0 0 0 O

01 0-10

110-10 0 0 O

001 0 O

000O0 O0O O0]1 O

000 0 0 O0jO0 1

000 0 0 O0jO0 1

Qr

The D-term charge matrix is
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P1 P2 P3 P4 Ps P6|S1 S2 83 S4 S5 S¢ ST S8 S9 S10 S11
0000O0O0OG0O0O0O0O1-10 00 00

|1 00O0O0OO0OOOO0OOOOT1-10 0 00
@p = 0o0o000O0O0OO0OO0O0OO0OO0OCT1-10 00
0o0o000O0O/0OOO0O0OO0OO0OTO0OCT1T-100
000O0O0OOO0O0O0O0O0O0O0OO0OOTOOT1T-=-10

The symmetry U(1)s, x U(1)s, x U(1)g of Model 10d is identical to Models 10a to
10c discussed above. The symmetry charges on the extremal perfect matchings with
non-zero R-charges are shown in Table 39.

The product of all internal perfect matchings is

s=]] sm - (12.17)

The fugacity ys counts the above product of internal perfect matchings whereas the
fugacity t, counts the external perfect matchings p,.

The mesonic Hilbert series of Model 10d is identical to Models 10a, 10b and 10c.
This indicates that the mesonic moduli spaces are identical, and given the corresponding
plethystic logarithm in (12.8), the mesonic moduli spaces are not complete intersections.

The moduli space generators in terms of all perfect matchings of Model 10d are
shown in Table 23 with the corresponding charge lattice of generators forming a reflexive
polygon which is the dual polygon of the toric diagram. The generators in terms of
quiver fields of Model 10d are shown in Table 28.

‘ Generator ‘ Uy ‘ UL, ‘
X13X§4X§’1 = X31X16Xg4 = X412X25X514 = XiQX%ng; 1 1
X3 Xy Xi) = X3 X15X3, = XHXos X3y = XHXo6 X5, 0 1
X3 Xy X5 = X5 X16X8 = Xoa X3 Xy = Xp Xos X3, 1 0
X3 X3, X5 = X3 X5 X4 = X5 X15X5 = X3 X1 X3, = X X6 XGy = X3 X Xgy = Xos X3, Xio 0 0
= X23X§4X422 = X32X25X§4 = X32X25X514 = XiQX%‘Xéz; = X32X26X6?4
X13X314Xi1 = Xi1X15X514 = X23X314X32 = XZQX%Xézx -1 0
X5 X1 X2 = X5 X16X4 = Xos X35, Xy = X Xos X3, 0 -1
X Xis X2 = Xii Xi6Xgy = Xoa Xy Xy = X Xo6 X4y -1 -1

Figure 28. The generators in terms of bifundamental fields (Model 10d).
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13 Model 11: PdP,

e Py

{01, O} (

e e P2 Ps3

Figure 29. The quiver, toric diagram, and brane tiling of Model 11.

The superpotential is

W = + X901 X14Xyo + X53X32X225 + X§1X12X215 + X13X34X45X511
—X13X32X91 — X14X45X521 — X511X12X225 - X53X34X42X215 (13.1)

The perfect matching matrix is

P1 P2 P3 P4|q1 2|81 S2 S3 S4 S5
Xyl 0 O 0|1 01 O 0 1 0
X321 0 0 0|0 1j1 0 0 O 1
X215 10001 0(01O0O0O0
X225 01101 0j01O0O0O0
X§1 10 0 0|0 1{0 01 00O

p_ X521 011 0(01|]001O00O0
X300 1.0 0|1 0{]0 OO0 1O
X420 1 0 0O 110 0 0 0 1
X291/0 01 1|0 0[O0 1 1 0O
X120 0 O 1|0 01 0011
X340 0O 1 0|0 O]|1T 0 0 0O
X450 0 O 1/0 O]0O 1 0 0 1
X530 0 0 1/0 OO O 1 1 0

The F-term charge matrix Qr = ker (P) is

p1 P2 D3 p4‘Q1 %‘51 52 53 54 Sp
110 0(-1-1j0 0 0 0 0

Qp=]111 0 1|-1 00 0 -1 0 -1
01-10|-1 01 1 0 0 -1
00011 0|0-10 —-10
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The D-term charge matrix is

s
iy
3
V]
3
w
bS]
N
Q
firy
Q
DN

Va)
-

V2
[N~}

0
w

V2l
N

V2l
ot

Qp =

o O O O
o O O O
o O O O
o O O O
o O O O
S O O O
S O O =

The total charge matrix ); does not exhibit repeated columns. Accordingly, the
global symmetry is U(1)s, x U(1)s, x U(1)g. The flavour and R-charges on the GLSM
fields corresponding to extremal points in the toric diagram in Figure 29 are found
following the discussion in §2.3. They are presented in Table 42.

’ H Uy ‘ U(l)y, ‘ U)g H fugacity
p | -1/ | -1/3 | R ~0622 | t,
poll <14 | 0 | Ry~0502 | t
psll 0 2/3 | Ry~ 0.306 |
pol 12 | -1/3 | R~ 0570 |t

Table 42. The GLSM fields corresponding to extremal points of the toric diagram with their
mesonic charges (Model 11).

Fine-tuning R-charges. The exact R-charges are expressed in terms of the root x( in
the range 0 <1 —12p < % of the polynomial

27 — 421 — 682% + 422° + 92* = 0, (13.2)
where

1
Ry =1+ —— (=63 + 250z — 42227 — 384x§ + 261a + 54y

144
1

By =1+ (—189 + 281w + 257z — 177z — 36xy)
1

Ry =1+ 52 (333 — 13519 — 294 + 1450z — 3275 — 99z7)

Products of non-extremal perfect matchings are assigned the following variables

5

¢=qg2, 5= ] sm - (13.4)

m=1

The fugacities y, and y, count respectively the above products of internal perfect match-
ings. The fugacity ¢, counts all other extremal perfect matchings p,.
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The mesonic Hilbert series of Model 11 is found using the Molien integral formula
n (2.9). It is

91(as Yoo Yss MIY®) = (14 ygys tilatsts + yoys Gt + ylys t1t5ts — y2yo 115155
—yqys t3totat? — y;’yﬁ 3512ty — ygyg ittty — ygy;j titatats + ygys totats)

1
X (13.5)
(1 = 2y, t9t2) (1 — g2y, t5t3) (1 — ygys t3ta) (1 — ys tst])

The plethystic logarithm of the mesonic Hilbert series is

PL{g1(ta, yq, Ysi m“)] = YqUs Uits + ys tsts + y7ys tits + yqys tybatsty + yﬁys tit5ts
242 342 2 4,3 2.2 43 2 3 4 2 2
+... . (13.6)

Consider the following fugacity map

fr=u il o=
=y Myl b=y e B = My s G =y e b, (137)

where the fugacities f; and f, count flavour charges, and the fugacity ¢; counts the
R-charge R; in Table 42.
Under the fugacity map above, the plethystic logarithm becomes

1 - IS
PLlgi(ta, f1, fo; MT)] = fzt4 + fitst + —tity + titatsty + 5252153

f! flf ' fi
- - - 1 on -~
+ fotatats + %tlfgi?,, + %tgfg - Eﬁtztﬁ 3 t4£§t3t4 205t t + .

(13.8)

The plethsytic logarithm above exhibits the moduli space generators with the corre-
sponding mesonic charges. They are summarized in Table 43. The generators can be
presented on a charge lattice. The convex polygon formed by the generators in Table 43
is the dual reflexive polygon of the toric diagram of Model 11.
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Generator ‘ U, ‘ U(1)y, ‘

pgpf1 S 1 0

Pipaq s 0 -1

P1P2p3pP4 4 S 0 0

P3D3Ps q S 0 1

p:fpg q2 S -1 -1 )
Pipsps ¢° s -1

pipsps 4° s -1 1

Papi ¢° s -1

Table 43. The generators and lattice of generators of the mesonic moduli space of Model 11
in terms of GLSM fields with the corresponding flavor charges.

Generator ‘ Ul)y, ‘ U)y, ‘
X12Xo1 = X34 X5 X53 1 0
X195 X35 X5) = X1 Xus X3y = X X35 X5 0 -1
X13X34X45X§1 = X34X215X53X42 = X12X215X521 = X12X225X5}1 0 0

= X1 X13X30 = Xo1 X1uXap = X1u X5 X2, = X32. X3, X5

X0 X3, X2) = Xo1 X135 X34 Xuo = X153 X34 Xus X3 = X34 X3, X535 X0 0 1
X5 X5 X13 X0 = X35 X351 X14 X -1 -1
X215X511X13X34X42 = X215X521X13X32 = X225X511X13X32 = X215X521X14X42 = X225X;1X14X42 -1

X3 X2 X13X30 = X35 X2 X1 Xup = X35 X2 X13 X34 Xyo = X35 X)) X135 X34 Xy -1 1
X3, X2 X13X34 X0 -1

Table 44. The generators in terms of bifundamental fields (Model 11).

The mesonic Hilbert series and the plethystic logarithm can be re-expressed in
terms of just 3 fugacities

T

fo t: t 1 - .
:fQIF ;*2 :y t21t2 ) T2:££%4 YqUs t§t47 T3:f1 t35421:ys t3t4217 (139)
1 t1by s 4

such that

g (Th, Ty, Ty; MTT) =

(1 + T + TPTs Ty + TET3 Ty — TeTsTy — TV T3 Ty — TPTs Ty — TETS Ty
1
(1-NT3)(1 - TIT3TS)(1 - To)(1 — Ty)

~TITT + TPTyTy) x
(13.10)
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and

PL[g\(Ty, Ty, T5; MT®)) = To + Ty + TVT5 + TV Ty + TL 15T + TE TR TS
TS + TYTETS — TRTETy — TVT3 Ty + 2121373 + ... . (13.11)

The powers of the fugacities in the Hilbert series and plethystic logarithm above are
all positive. This illustrates the conical structure of the toric Calabi-Yau 3-fold.

14 Model 12: dP,

14.1 Model 12 Phase a

Figure 30. The quiver, toric diagram, and brane tiling of Model 12a.

The superpotential is

W = +X21X14Xi2 + X225X53X32 + X422X215X51X13X34
~X13X30X01 — X14 X5 X5 X1 — X5 X53 X34 Xy (14.1)

The perfect matching matrix is
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D1 P2 P3 P4 P5|S1 S2 83 S4 S5

X141 00 0 0|1 0001
X340 1 0 0 0|1 0 0 0 O
X215 100 0 0j]0 1000
X225 01 0O0T1T{01 000
p_ XjQ 0010 1{001O00O0
N XZQ 0001O0[001O0O0
X321 01 0 0|1 01 00
X210 1 01 001 010
X510 001 0 0O OO0 1O
X530 001 00O O 01 1
X130 00O 1|00 O0O01

The F-term charge matrix Qr = ker (P) is

P1 P2 P3 P4 P5|S1 S2 83 S4 S5
1100 0(-1-10 00
0011 0|0 0 -1-10
010 -1-1-10 1 01

Qr =

The D-term charge matrix is

s
=
s
I\
s

3 P4 P5|S1 S2 83 S4 S5
1-10 0 0
1 -1 0 0
1 -1 0
0 1 -1

Qp =

o O O O
o O O O
o O O O

0
0 0
0 0

The total charge matrix ); does not exhibit repeated columns. Accordingly, the
global symmetry is U(1)y, x U(1)y, x U(1)g. The mesonic charges on the extremal
perfect matchings are found following the discussion in §2.3. They are presented in
Table 45.

’ H Ul)y, ‘ U(l)y, ‘ U(1)r H fugacity
p|| 1/2 0 | Ri=4(-21+5V33) |
po | -1/2 0 Ry =2(19-3V33) | ts
ps 0 1/2 | Ro=2(19-3V33) | t5
pall O 1/2 | Ry :%( 21+5v/33) || ta
ps| 0O 0 Ry=3(-5++33) |t

Table 45. The GLSM fields corresponding to extremal points of the toric diagram with their
mesonic charges (Model 12a). The R-charges are obtained using a-maximization [69].
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The product of all internal perfect matchings is

s=]] sm - (14.2)

The above product is counted by the fugacity ys. The extremal perfect matchings p,
are counted by t,.

The mesonic Hilbert series of Model 12a is calculated using the Molien integral
formula in (2.9). It is

. mes P(ta>
91(ta; ys; Mi5,) = 1— 0 2 1_ N1 — v 221 — v 2201 — v, £20283)
( Ys titata)( Ys titat?)( Ys 1it5ts)( Ys t5tits)( ys t5t513)
(14.3)

where the numerator is the polynomial

P(ta) = 14 ys tabalstats — 2 Btattils — y3 1l5tstits + ys tilal3l: + yo ttstal}
—ya titatitaty — 2 Y2 GRS — y2 W3ttty + yd QLS + yd G5
—ys Httstats — y2 WG + yl GHEGE + ) titatstits (14.4)
The mesonic moduli space of Model 12a is not a complete intersection. The plethystic
logarithm of the mesonic Hilbert series is

PL[G1(ta, ys; MU = ys titsts + ys titat] + ys titatstals + ys titats + ys tatits
+ys totstats + ys titatats + ys totsts — y? titatstits — y2 titatstits — 3 y° titstatits
—y? ottt — y? titststhE + ... (14.5)

Consider the following fugacity map

tot? - . - totstat
f1=tsts, f2:—z4 , tlzy;M ti/Q ; t2:y;/4 t1/2’ t3 = 2i45; (14.6)
1 1

where f; and f, are flavour charge fugacities, and #; is the fugacity for R-charge R; in
Table 45. Under the fugacity map above, the above plethystic logarithm becomes

PLip(ha o MU = (i + ) B+ (14224 2) i,
1 1\ - 1 . ~ i
+(E+E) t1i§f§,+mt§t~§—(f1+fg)ﬁf§t3— (3—%—%) titats + ...

(14.7)
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The above plethystic logarithm with its refinement exhibits all the moduli space gen-
erators with their mesonic charges. They are summarized in Table 46. The generators
can be presented on a charge lattice. The convex polygon formed by the generators in
Table 46 is the dual reflexive polygon of the toric diagram of Model 12a.

Generator U(l)h U(l)fz

Pipspa s 1 0

p1papi S 0 1

Pip3ps 1 -1

P1p2pP3pP4ps S 0

P3pips 5 -1 1

PLD2D3D3 S 0 -1

P3P3PapE S -1 0 . ©
pip3pi s -1 -1

Table 46. The generators and lattice of generators of the mesonic moduli space of Model
12a in terms of GLSM fields with the corresponding flavor charges.

‘ Generator ‘ U1y ‘ ULy, ‘
X35 X53Xs0 = X1a X} X3 X51

X141 X3 Xo1 = X35 X3 X34 X,

X13 X350 X 05 X51 = X1 X, X3, X1

X135 X34 X3 X035 X1 = X1u X3 X5 X1 = X35 X535 X54 Xy = X135 X539 X01 = X14 X Xo1 = X3 X535 X5
X3 X5 XH X0 = X5 X53X50 X5,

X3 X5 X35 X0, X51 = X13 X530 X5 X1 = X1u X}, X3, X5y

X135 X34 X35 X3 X1 = X13Xsu X {p Xoy = X35 X553 X34 X,

X13X34X412X225X51

_ = O O = O =
Lo RO LR~ O

Table 47. The generators in terms of bifundamental fields (Model 12a).

The mesonic Hilbert series and the plethystic logarithm can be re-expressed in
terms of just 3 fugacities

- t3 s
fife 5411 Ys t%ti 7

T Ty = f1 B3ty =y, t3tsty , Ty = fo ity = ys tatat? | (14.8)
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such that

91(T1>T27T3§ 717525) =
(1+TWTTs — TT5Ts — Ty Ty + TET3Ts + TP Ty Ty — TPTs Ty — 2T T3 Ty
~TPLTE + T TS + TP T - LTS - T T3 + T TS + TV T, T)
1
1—-T5)(1 = T5)(1 - TV T3)(1 — TVI3)(1 — TPT3T)

T
(14.9)

and

PL[g\(Ty, To, Ts; M) = To + T3 + TV Iy T3 + T Ty + T Ty + TP Ty Ty + TET5 T
+TPTTy — VT Ty — TV T Ty — TETS Ty — 3T Ty — TETs Ty — T T Ty
+.o.. . (14.10)

The above Hilbert series and plethystic logarithm illustrate the conical structure of the
toric Calabi-Yau 3-fold.
14.2 Model 12 Phase b

P1

® O)

Ps3

@@ @ Ps P2

Figure 31. The quiver, toric diagram, and brane tiling of Model 12b. The red arrows in the

quiver indicate all possible connections between blocks of nodes.
The superpotential is

W = +X15X5X5 + Xo1 X1aXgp + Xos X35 Xo3 + X13X50 X5 X5y
XXX — X5 X X3 — Xau X o Xo3 — Xo, X135 X35 X2, . (14.11)
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The perfect matching matrix is

P1 P2 P3 P4 P5|S1 S2 S3 S4 S5 Sg
X211 101 001 00O0O0D0O0
XEQ 1000001 1O0O00O0
X221 0110 1|1 00O0O0O0
X§’1 010101 0O0O0O0O0
Xo31 0 O 1 0|1 00O O0O01

p_ XiQ 01 001|001 10O00O0
X512 0010 1|01 0100
X522 0001O0|01O0T1O0O0
X511 0 00 0(0O01O0T1T1
X350 1 00 0|00 1T 01O
X3uO0O 01 0 0|]OOO0O1T 1O
X140 0 01 00 0O 1 11
X130 000 1/000O0O0T1

The F-term charge matrix Qp = ker (P) is

P1 P2 P3 P4 Ps ‘ S1 82 83 S4 S5 Se
1100 0-10-10 020
0011 0|-10 0 -10 0
0110 -1-10 0 0 —-11
000000 1-1-1120

Qr =

The D-term charge matrix is

P1 P2 P3 P4 P5|S1 S2 S3 S4 S5 Se
000O0OO0OjL =100 0 O
Qp = 00O0O0O0j0 O 1-10 0
000O0O0O|0 OO0 1 -10
000O0O0O|0 0O O0O0 1 -1

The total charge matrix ); does not have repeated columns. Accordingly, the
global symmetry is U(1)s, x U(1)s, x U(1)g. The charge assignment on the extremal
perfect matchings with non-zero R-charge is the the same as for Model 12a in Table 45.

The product of all internal perfect matchings is expressed as

6

s=]] sm - (14.12)

m=1

The product is counted by the fugacity ys;. The remaining extremal perfect matchings
Po are counted by the fugacity t,.

The mesonic Hilbert series and the plethystic logarithm of the Hilbert series is
the same as for Model 12a. They are shown respectively in (14.3), (14.5) and (14.7).
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Accordingly, the mesonic moduli spaces of Model 12a and 12b are toric duals.

The moduli space generators in terms of perfect matching variables of Model 12b
are shown in Table 46 with their corresponding mesonic charges. The generators in
terms of quiver fields are shown in Table 48.

‘ Generator ‘ Uy ‘ Uy, ‘
X1 X3 X0 = Xis X505, = X Xaa XD 1 0
X1 X3HX3) = XisX5HX5 = X3 Xa5 X3 0 1
X1 X5 X0 = X3 Xou X X3y 1 -1
XISX:janzX;[ = X13X34X:52XS| = Xl-'iX;}zX;l = X14X32X‘?1 = XISX,;)ZQX; = X]SX{izXS] = X23X:54X12 = X2:5X35X5[2 0 0
XuXp X3 = X3 Xas X5, X5, -1 !
X15X:}2X221 = X13X34X.%2X211 = X1:3X35X§2X211 = X13X34X§2X% 0 -1
X1uXhX5 = XisXos X5 X5 = X1aXou Xp X5y = X1 X5 X5 X5, -1 0
X3 X Xip X3, = X13 X35 X5, X5, -1 -1

Table 48. The generators in terms of bifundamental fields (Model 12b).

15 Model 13: C3/Z4’(1,172), Y2’2

{01, G2}

Figure 32. The quiver, toric diagram, and brane tiling Model 13.

The superpotential is

W - +X12X24Xi1 + X31X122X223 + XZlX13X§4 + X§4X42X213

The perfect matching matrix is

- 102 —



P1 P2 P3|q1 2|51 S2 S3 S4
X§4 1 0 0({1 01 0 0 O
X§4 01011 0|1 0O00O0
X410 0|1 0/0 1 00
Xll2 01 01 0j0 100
X213 10 0{0 1(0 0O 1 O

P = X223 0100 1|0 010
th 1 0 0{0 1]0 0 0 1
Xfl 01 0(0 1]0 0 01
XogO O 1]0 Of1 0O 1 O
X310 0 1]0 01 0 0 1
X130 0 1/0 0j0 1 10
X420 0O 110 010 1 0 1

The F-term charge matrix Qr = ker (P) is

P1 P2 P3‘ q1 Q2 ‘ S1 S2 S3 S4
1 10(-1-1{0 0 0 O
0011 0|-1-10 O
0010 1]0 0 —-1-1

Qr =

The D-term charge matrix is

251 s2 83 s
-1 0 0
1 -1 0
0 1 -1

2]73‘

3
3
W
S

1 1

Qp =

o O O
o O O

0
0
0

o O O
o O O

1
0
0

The GLSM fields p; and p, are equally charged under the F-term and D-term
constraints. This is shown by the corresponding columns in the total charge matrix
Q; which are identical. Accordingly, the global symmetry is enhanced from U(1)? to
SU(2), x U(1)y x U(1)g with U(1)g being the R-symmetry. The mesonic charges on
the GLSM fields corresponding to extremal points in the toric diagram in Figure 32
are found following the discussion in §2.3. They are presented in Table 49.

- U@, | SU@). | UQ)g || fugacity
p1 || -1/4 1/2 2/3 ||t
pe || -1/4 | -1/2 2/3 || ta
ps || 1/2 0 2/3 || t3

Table 49. The GLSM fields corresponding to extremal points of the toric diagram with their
mesonic charges (Model 13).
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Products of non-extremal perfect matchings are expressed as follows

4
=0, 5= ] sm. (15.2)
m=1

The fugacities counting the above products are respectively y, and y,. The fugacity
which counts extremal perfect matchings is ¢,.

The mesonic Hilbert series of Model 13 is computed using the Molien integral
formula in (2.9). It is

mes) _

g (tOU yq7 Z/m
L+ y2ys tita + yoys 1315 + Y2ys tits 4 ygys tits + Ygus titals + ygus tits + yoys ttsts
(1 =92y, t1)(1 — y2ys t3) (1 — ys 13)

(15.3)

The mesonic moduli space of Model 13 is not a complete intersection. The plethystic
logarithm of the mesonic Hilbert series is

PL[gl( ) yqu Ys; mes)] = Ys tg + yqys t1t2t3 + yqys t2t3 + yqys tgt?) + ?JZ?JS téll
—i—yqyS 3ty + yqys 245 + yqys tts + yqys ty — 2 yqys ot + ... . (15.4)

Consider the following fugacity map

_ ty
f= " 2/3y;/3t 2/3t2 2/3t;1/3 - t2 +— y1/3y;/3 Z51/:31%/:*>t§/z), , (15.5)

where the fugacities f, x and ¢ are mesonic charge fugacities. x is the charge fugacity
for the enhanced symmetry SU(2),. Using the redefinition of this fugacity to & = \/z
and the fugacities f and ¢, one can rewrite the expansion of the Hilbert series in terms
of characters of irreducible representations of SU(2) as follows

(t Z f; Mmes ZZ fnt2n+3m_|_ [4(7’L+ 1)+2m]£f—(n+1)t4(n+1)+3m>

m=0 n=0

(15.6)

The corresponding plethystic logarithm is

PL[ga(t, &, f; MT5)] = ft* + [2]at” + [4]s 5 —(1+[4]5c)t6—([2]z+[4]5c)%t7

1
f
~(U4 )+ (2 + )7+ (1220 + 204+ 6l2) 100+ .

(15.7)
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In terms of the mesonic charge fugacities f, x and ¢, the above plethystic logarithm
exhibits the moduli space generators and their mesonic charges. They are summarized
in Table 50. The flavour charges of generators are integers using f and x. They can
be presented on a charge lattice. The convex polygon formed by the generators is the
dual reflexive polygon of the toric diagram.

As indicated in (15.7), the generators fall into irreducible representation of SU(2)
with the characters

1 1 I 1\1
2 3 4 _ 2 52 3 ~4 52 4
Jt©+[2]5t +[4]57t = ft +(:z: +1+—j2>t +(x + +1+—i2+—£4) ?t
(15.8)

The above three terms correspond to the three columns of points in the lattice of gen-
erators in Table 50. The generators in terms of quiver fields are shown in Table 51.

Generator ‘ U(l)s ‘ SU(2), ‘

p3 s 1 0

Pips q s 0 1

Ppip2ps 4 S 0 0

P3ps q s 0 -1 .
P s -1 2

pips ¢* s -1 1

pivs ¢° s -1

pips ¢ s -1 -1

P ¢ s -1 -2

Table 50. The generators and lattice of generators of the mesonic moduli space of Model 13
in terms of GLSM fields with the corresponding flavor charges.

‘ Generator ‘ U(l)y ‘ SU(2), ‘
X3 X3 = Xoa Xyo 1 0
X1y X33 X0 = X1 Xoa Xy = X13 X3, Xi = X5y X3y X 0 1
X112X213X31 = X1]2X24X11 = X?2X223X31 = X122X24X31 = X13X§4X}1 = X13X§4X11 = X213X§4X42 = X223X§4X42 0 0
X X5Xa = XpXoaXGy = X13 X3, X1 = X5, X3, X 0 -1
X122X213X§4Xi1 1 2
X112X213X314Xi1 = X122X§3X314X51 = X32X21:3X§4Xi1 = X%2X5:3X§4Xi1 1 -1
X112X213X§4X21 = X112X%3X§4Xil = X112X223X§4X11 = X122X213X§4X§1 = X122X§3X§4X31 = X122X§3X§4X4}1 1 0
X112X213X§4X31 = X112X§3X314X51 = X112X223X§4Xi1 = X%2X§:3X§4Xfl 1 -1
X112X§3X§4Xfl 1 -2

Table 51. The generators in terms of bifundamental fields (Model 13).
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With the fugacity map

Ty = [ = gy | Ty = Y gy T = U g
(15.9)

the mesonic Hilbert series takes the form

o1 (T3 Ty, Ty sy = LE 0T+ TETE + TVT9 + T + 5T + 13T + TV
1\+t1, £2, 43, 13 (1_T14)(1_T24><1 _T32) )

(15.10)

with the plethystic logarithm becoming

PL[g1(Ty, Ty, Ts; M) = Ty + ThTo Ty + T3 + TsTs + T + TPy + TPTy
VT3 + Ty — 2THTTE + ... . (15.11)

The above Hilbert series and plethystic logarithm is written in terms of just three fugac-

ities with positive powers. This illustrates the conical structure of the toric Calabi-Yau
3-fold.

16 Model 14: dP;

Pa

Figure 33. The quiver, toric diagram, and brane tiling of Model 14.
The superpotential is

W = +X211X14Xi2 + X§1X123X32 + X22X221X113X34
— X5 X532 X5 — X1 X5 X5 — X5, X735 X34 X ), (16.1)
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The perfect matching matrix is

P1 P2 P3 P4|S1 S2 S3 S4
X221 1 00 0|1 00O
X321 0 0 0|0 1 0 1
Xg’l 01101 0O0O0
X211 01011 0O0O0

P = Xi2 001 0f01O0O0
XZQ 000 1(01O00
Xll3 0010j0010O0
X123 0 00 1|001O0
X141 0 0 0|0 0 1 1
X340 1 0 0/0 O 0 1

The F-term charge matrix Qr = ker (P) is
P1 P2 P3 P4‘ S1_ S2 83 54
QrF = 1 100|-10 0 -1
1 011|{-1-1-120

The D-term charge matrix is

P1 P2 P3 P4|S1 S2 S3 S4
looo0oo[1-10 o0
@=10000/0 1 -1 0
000000 1 —1

The total charge matrix ); does not have repeated columns. Accordingly, the
global symmetry is U(1)y, x U(1)s, x U(1)g. The flavour and R-charges on the GLSM
fields corresponding to extremal points in the toric diagram in Figure 33 are found
following the discussion in §2.3. They are presented in Table 52.

- vy Uy, | U(1)r | fugacity
D1 1 0 R =+13-3 t
Ds 1 1 Ry = (5v/13 —17)/3 || t,
D3 -1 -1 Ry =4(4—V13)/3 || t3
P4 -1 0 Ry =4(4 —V13)/3 || t4

Table 52. The GLSM fields corresponding to extremal points of the toric diagram with their
mesonic charges (Model 14). The R-charges are obtained using a-maximization [69].

The product of all internal perfect matchings is

4
s=]] sm - (16.2)
m=1
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The fugacity counting the above product is ys. The fugacity which counts the remaining
extremal perfect matchings p,, is t,.

The mesonic Hilbert series of Model 14 is found using the Molien integral formula
n (2.9). It is

P(ta)
(1 —Ys t%ti%)( —Ys tztg)( —Ys t%tél)(l —Ys t%ti) 7

91(tas ys; MY) = (16.3)

where the numerator is given by the polynomial

P(to) = 14y, tital? 4y, titatsty — y2 totataty + y, tataty — y° t3tatst
Fys titat] — Y2 tatsth +y, tatsth — y2 G505 — y? tiotsth — yP IS
(16.4)

The plethystic logarithm of the mesonic Hilbert series is

PL[g1(ta, ys; MT®)] = ys tita + ys tits + ys itatats + y, titat] + ys tatat3
s totty + s tats + ys tatst] + ys tots — y2 titotsts — y2 titataty + ... . (16.5)

Consider the following fugacity map

B t
=" = t—‘* Cho=ylP =y Pty 1=t (16.6)
3

where the fugacities f; and f, count flavour charges, and the fugacity #; count the
R-charge R; in Table 52. Accordingly, the plethystic logarithm becomes

[gl( a>f17f2> mes)] (fl ; )PtS + (1 + f2 + %) 511?22%
+(;1+f%2+%+§j>f§£§—(fl §>£3t2£3+ . (16.7)

The first positive terms in the above plethystic logarithm correspond to moduli space
generators with the corresponding flavour charge counted by the fugacities f; and f.
The generators and the corresponding mesonic charges are shown in Table 53. The
generators can be presented on a charge lattice. The convex polygon formed by the
generators in Table 53 is the dual reflexive polygon of the toric diagram of Model 14.
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Generator ‘ Ul)y, ‘ U(l)y, ‘

p%pg S 1 -1
Pip2ap3 s 0 -1
paDs s -1 -1
p%p4 s 1 0
D1P2P3pa S 0 °
PD3Pa S -1 0
P1p2p421 S 0 1
p3psp3 s -1 1
papi s -1 2

Table 53. The generators and lattice of generators of the mesonic moduli space of Model 14
in terms of GLSM fields with the corresponding flavor charges. The lattice of generators is
the toric diagram of Model 3.

‘ Generator ‘ Uy | UML)y, ‘
Xis X X3y = X1 Xip X5, 1 -1
X113X34Xi2X221 = X113X32X§1 = X14Xi2X§1 0 -1
X113X34X12X§1 -1 -1
X123X32X221 = X14X22X221 1 0
Xi3 X34 X3 X5 = X5 X4 X p X5 = X3 X2 X5y = X3 X0 X5, = X1 Xjp X5 = X1 X3 X5, 0
X113X34X412X211 = X113X34X32X§1 = X123X34Xi2X§1 -1 0
X123X34X22X221 = X123X32X2]1 = X14X22X2]1 1
X113X34X52X211 = Xf3X34Xi2X211 = X123X34X22X31 -1 1
X123X34X52X211 -1 2

Table 54. The generators in terms of bifundamental fields (Model 14).

The mesonic Hilbert series and the plethystic logarithm can be re-expressed in
terms of just 3 fugacities

t. t
2 2 U2 ngﬁ

OB oy td f2

T ty = ys tity , Ty = f1 Gtz =y, Bty , (16.8)

such that

g1 (T, Ty, Ts; MTY) =
(1+ T\T2 + TV ToTs — TVTETy + T2T2Ty — TPTETs + VT2 — Ty ToT2 + T2 T
1
(1—=T)(1 = TPT3)(1 — Ts)(1 — T7T3)
(16.9)

~THITE — TPTo T3 — TPTHTS) x
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and

PL{gy(Ty, Ty, Ts; MY = Ty + Ty + TV Ts + ThT3 + VT3 + TPT5Ts + TET3
TP TS + TS — TV Ty — TYTyTs + ... . (16.10)

The above Hilbert series and plethystic logarithm illustrate the conical structure of the
toric Calabi-Yau 3-fold.

17 Model 15: C/Z, (1,1,1,1), Ty

17.1 Model 15 Phase a

P4 ® O | O L O
3 2 3 2 3

O, ® O o> ¢ & o
4 1 4 1 4
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p2 p1 3 2 3 2 3

4
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o L O @
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Figure 34. The quiver, toric diagram, and brane tiling of Model 15a.

The superpotential is

W = + X1y Xog X5, Xy + XPp X5 X5, Xy — Xip Xop X3, Xy — X35 X9 X5, Xy

(17.1)
The perfect matching matrix is

P1 P2 P3 P4|S1 S2 83 S4

XL1T 000[1000
X%4|0 1001000
XL/t 0000100
P=|Xx2(0 1000100
X0 01 0[00 10
X2%[0 00 1[0 0 10
X410 01 0[0 00 1
X2/0 00 1[0 00 1
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The F-term charge matrix Qr = ker (P) is
P1 P2 P3 p4‘81 S2 83 S4
Qr=|T1T 10 0]-1-1 0 o0
00110 0 —-1-1

The D-term charge matrix is

D1 P2 P3 p4‘51 S2 S3 S4
1 -10 0
01 —-10
0 0 1 —1

The pairs of GLSM fields {p;,p2} and {ps,ps} have the same charge under the
F-term and D-term constraints. This is shown by the identical columns in the total
charge matrix @Q;. Accordingly, the global symmetry is enhanced from U(1)? x U(1)g
to SU(1)z, X SU(2)z, x U(1)g. The mesonic charges on the GLSM fields corresponding
to extremal points in the toric diagram in Figure 34 are found following the discussion
in §2.3. They are presented in Table 55.

’ H SU(2), ‘ SU(2)a, ‘ U(1)r H fugacity

p | 172 0 1/2 t
P || -1/2 0 1/2 ts
3 0 1/2 1/2 ts
1 0 “1/2 1/2 t

Table 55. The GLSM fields corresponding to extremal points of the toric diagram with their
mesonic charges (Model 15a).

The product of all internal perfect matchings labelled by

= 1] sm- (17.2)

The above product is counted by the fugacity y,. All remaining extremal perfect
matchings p, are counted by the fugacity .

The mesonic Hilbert series of Model 15a is calculated using the Molien integral
formula in (2.9). It is

mes) _ P(ta)

t
g tomys; a - ) 173
1 ) = T Bl = 801 —p B =y 8 17
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where the numerator is given by the polynomial

P(ty) = 14y, titat; + ys titats + ys titatsts + ys tatsts — y> Git5tats
+ys titat] — it B0t — yY S5 — y2 ntytit] — yl titst] — ) 165658
(17.4)

The plethystic logarithm of the mesonic Hilbert series is

PL{g1(ta, ys; MTED)] = yo 115 + ys trtall + ys 1515 + ys titsts + Ys titatsla + ys tytsts
Hys TG+ s titat] + s UG — Y7 Gty — y3 Eitatits — 2 Y7 Bt — y tityt3t
—y? S — 2 2 327 — 4 o2 B — 2 yP titstats — y? tatats — y2 ttytst]
—2 92 Btotsts — y? titststs — y? ety + ... . (17.5)
From the infinite plethystic logarithm one concludes that the moduli space is not a

complete intersection.
Consider the following fugacity map

t t
~2 B _B 4 y1/4 t}/4t§/4t§/4ti/4

17.6
o t=y , (17.6)

where x1, x5 and t are mesonic charge fugacities. In terms of z; and 5 both the Hilbert
series and the plethystic logarithm can be expressed in terms of characters of irreducible
representations of SU(2) x SU(2). The Taylor expansion of the Hilbert series takes the
form

gi(t, By, By M) = 203203, 5, £ (17.7)
n=0

The plethystic logarithm in terms of characters of irreducible representations of SU(2) x
SU(2) is

PL{gy(t, 21, &2 MTED)] = [25 205, 20t" — (14 [45 00,5, + [25 2051 20 + 05 4], )8
(125005, 2, + 4500z, 35 + (05 2z, 2 + 2025 205,20 + 145 25,50 + (0542, 5 + [254]5,.2,)
(4[2 0]9ﬂ1 T2 [4 0]9ﬂ1 T2 [67 0]51,52 + 4[07 2]501,562 + 5[2; 2]5317532 + 4[4; 2]571,572 + [67 2]571,572
+[07 ]Ihxz + 4[2 4]361 ig T [4; 4]561,562 + [O; 6]561,562 + [2; 6]i1,i2)t16 +o (178)

In terms of the fugacities x; and x5 the above plethystic logarithm exhibits the moduli
space generators with their mesonic charges, where the flavour charges as powers of
r1 and x5 take integer values. They are summarized in Table 56. The generators can
be presented on a charge lattice. The generators form a convex polygon on the charge
lattice which is the dual of the toric diagram of Model 15a.
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As indicated in (17.8), the generators fall into an irreducible representation of

SU(2) x SU(2) with the character

1 1
[2; 2], 5,t" = (:2;1 +1+ P) (x§ +1+ ﬁ) : (17.9)

1 2

The generators in terms of quiver fields are shown in Table 57.

Generator | SU(2),, | SU(2).,

pip3 s 1 1 O

s , X @; @ O
P33 s -1 1

Pipspa S 1 0 O O O
P1P2P3P4 S 0

P3D3Pa S -1 0

pivi s 1 -1 [ O O
PLpap; S 0 -1

p3p3 s -1 1

Table 56. The generators and lattice of generators of the mesonic moduli space of Model
15a in terms of GLSM fields with the corresponding flavor charges.

Generator ‘ SU(2), ‘ SU(2)., ‘
X1p X3 X5, X0 1 1
X112X213X§4Xi1 - X122X213X?}4Xi1 0 1
X X3 X5, X4 -1 1
X112X213X§4X21 = X112X223X§4Xi1 1 0
X112X213X§4X21 = X112X223X§4Xi1 = X122X213X§4X421 = X122X223X§4Xi1 0
X122X213X§4X21 = X122X223X§4Xi1 -1 0
XipX33X5, X5 1 -1
X112X223X§4X21 = X122X223X?}4X31 0 -1
X X5 X5, X5 -1 -1

Table 57. The generators in terms of bifundamental fields (Model 15a).

By introducing the fugacity map

t4 2,2 tl t3
:y5t2t4,TQZI1:t—,T3:ZL‘2:—, (1710)

T, =
T122 2 7
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the mesonic Hilbert series can be expressed as

g1 (T1, T, Ty MTE?) = (1 + TV T3 + TVTs + VTS T + TV + TV T T
—(TPT3T3 + TYT5 + TYTS T + TP T T + TET5T3) — TYTRTS) x
1
1-T)(1-1T3(1-11T3)(1 - T T313)

(17.11)

The corresponding plethystic logarithm has the form

PL[gi(Ty, Ty, Tg; M) = VT3 T3 + Ty T Ty + ThTy + ThT3Ts + Ty T Ts + Th T
+0 Ty + Ty + Ty =TTy — TP TS + ... . (17.12)

The above Hilbert series and plethystic logarithm are in terms of three fugacities which
carry only positive powers. This illustrates the conical structure of the toric Calabi-Yau
3-fold.

17.2 Model 15 Phase b

o
v@ .
©

Figure 35. The quiver, toric diagram, and brane tiling of Model 15b. The red arrows in the
quiver indicate all possible connections between blocks of nodes.

Pa

The superpotential is

W= X5, X1y Xip + X5 X7 X + Xoa X5y Xy + X5 X5, X0,
=X X0y Xy — X5 X0y Xy — Xpp Xy X — X5 X5, X, (1T.13)

The perfect matching matrix is
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D1 P2 P3 P4|S1 S2 83 S4 S5
XZQ 1 01 0j0 0100
X;Z’2 01 10j001O00O0
XH51 00 1(00 100
Xi2 010 1{0 0100
X211 1 00 0|1 0010

P = X221 01 00j1 00T1O0
X§4 1 0 00j01O0T10O0
X§4 01 00(01O0T1PO0
X223 0010j10O0O0T1
X213 000 1|1 0O0O01
X114 0010j0100O01
X124 000 1j01001

The F-term charge matrix Qp = ker (P) is

P1 P2 P3 p4‘31 S2 83 S4 S5

|11 o000 -1-10
@e=10011000-10 -1
0000110 —1-1

The D-term charge matrix is
D1 P2 P3 P4|S1 S2 S3 S4 Ss
~looo0oofo1-10 0
@=1 000000 1 -10
0000/00O0 1 —1

The total charge matrix @); exhibits two pairs of identical columns. Accordingly,
the global symmetry is enhanced to SU(2),, x SU(2),, X U(1)g. The mesonic charges
on extremal perfect matchings are found following the discussion in §2.3. They are
identical to the ones for Model 15a and are presented in Table 55.

The product of all internal perfect matchings is expressed as

s=]] sm - (17.14)

The fugacity which counts the above product is y,. The fugacity which counts the
remaining extremal perfect matchings p,, is t,.

The mesonic Hilbert series for Model 15b is found using the Molien integral formula
in (2.9). The mesonic Hilbert series of Model 15b is identical to the one for Model 15a
in (17.3).

- 115 —



The moduli space generators in terms of perfect matchings of Model 15b are shown
in Table 56. In terms of quiver fields of Model 15b, they are presented in Table 58.
The lattice of generators is a reflexive polygon and the dual of the toric diagram.

‘ Generator SU(2)y, | SU(2)s, ‘
quX{sz‘;l = X%:;X:§4X122 ) 1 1
X114X232X211 = X114X52X221 = X223X:%4X.fz = X223X:§4X.fz 0 1
X1 XHX5 = X5X3, X, -1 1
X114X22X211 = X¥4X22X211 = X213X:§4X32 = X§3X§4X22 1 0
X11/1X412X‘;1 = X114X§12X221 = X124X'?2X§1 = X12w1X32X§1 = X§3X§4X422 = X§3X321er2 = X§3X31,1Xf2 = X§3X32/1X/%2 0 0
X114Xi2X§1 = Xi{tXZQX‘.ZZl = X‘213X§4X32 = X§3X§4Xi2 -1 0
X124X442X211 = X"zl3X§4X;2 ) 1 -1
Xf4X412X211 = Xf4X_foXfl = X‘213X§4X:1i2 = X‘213X§4Xiz 0 -1
X124Xi2X221 = X3:5X§4Xi2 -1 -1

Table 58. The generators in terms of bifundamental fields (Model 15b).

18 Model 16: C*/Z3 (1,1,1), dPy

2
g P1

Figure 36. The quiver, toric diagram, and brane tiling of Model 16.

The superpotential is

W = + X1, X5 X5 + X1 X35 X5 + X7, X5, X5
—X 15 X5: X3y — X X5 X5, — X7, X5 X5 (18.1)

The perfect matching matrix is
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P1 P2 P3|S51 52 83
X510 0[1 00
X210 0/0 1 0
XLlI1 0 0[0 01
p_ X0 1 01 0 0
X301 0/0 10
X201 0]/0 0 1
X200 0 1/1 0 0
x40 0 1]0 10
X300 0 1]0 0 1

The F-term charge matrix Qr = ker (P) is
Op = P1P2P3‘81 S2 83
r 11 1|-1-1-1

The D-term charge matrix is
P1 P2 p3‘81 S2 83
Qp = 0001 =10
00 00 1 -1

One observes that the GLSM fields corresponding to the extremal points of the
toric diagram in Figure 36 are equally charged under the F- and D-term constraints.
This is shown by three identical columns of the total charge matrix ;. This leads to the
enhancement of the global symmetry from U(1)* to SU(3) (4.4, X U(1)r. Accordingly,
the mesonic charges on the GLSM fields corresponding to extremal points in the toric
diagram in Figure 36 can be found following the discussion in §2.3. They are presented
in Table 59.

’ H SU(3) (21,22) ‘ U)g H fugacity ‘

p || (-1/3, -1/3) 2/3 t
pe || (+2/3, -1/3) 2/3 to
ps || (-1/3, +2/3)| 2/3 ts

Table 59. The GLSM fields corresponding to extremal points of the toric diagram with their
mesonic charges (Model 16).

The product of all internal perfect matchings expressed as

s=]]sm- (18.2)
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The above product is counted by the fugacity y,. The remaining extremal perfect
matchings p, are counted by t,.

The mesonic Hilbert series of Model 16 is calculated using the Molien integral
formula in (2.9). It is

G1(ta, ys; M) =
14y, t3tg + ys 1t + ys 33 + ys tatats + ys tats + ys tit2 + ys tot2 + y2 13242

(1—ys t3)(1 —ys t3)(1 — ys £3)

(18.3)
The plethystic logarithm of the mesonic Hilbert series is
PL[g1(tas yss MIE™)] = ys 6]+ ys tita +ys ity + s 13 + s 1ts + ys tatats +ys B3l
+ys ity ys oty sty — 0 ity — yl 88 — gty — yl fitats — 2 57 13t
=2y tityts — i tityts — g tits — 2 ] #itats — 3yl 5ty — 2y tatoty — yg oty
—ys tits — 2] tibaty — 2y titgty — yg toty — L £ty — yg titoty — g Bty +

(18.4)
Consider the following fugacity map
t t
=, 2 e (18.5)
1 1

where x1, x9 and t count the mesonic charges. The fugacities x; and xy with their
powers being integers count integer flavour charges. With a further redefinition of
fugacities,

1/3

1 - xl/

13 173 ° 2= 373
Ty Lo )

(18.6)

T, =

the Hilbert series and plethystic logarithm can be expressed in terms of characters of
irreducible representations of SU(3). The expansion of the Hilbert series takes the form

gl<t,.f1,lf'2; ;rées) = [Sn, 0]@1,52) t3n . (187)

n=0
The plethystic logarithm is
PL[gl<t7 T1, To; Tl%esﬂ = [37 0](531,952)t3 - [27 2](951,562)t6 + ([17 1](:E1,:E2) + [17 4](551,532)
+[27 2](501,562) + [47 1](@1’52))159 - (2[07 3](531,532) + 2[1> 1](571,532) + 2[17 4](501,562)
+2[27 2] (Z1,22) + [27 5](561,562) + 2[3’ O](ihiz) + 2[37 3](31,5?2) + 2[47 1](531,532)
+05,2) Gz )t + - (18.8)
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In terms of fugacities x; and x5 the above plethystic logarithm exhibits the moduli space
generators with their integer flavour charges and R-charges. They are summarized in
Table 60. The generators can be presented on a charge lattice. The lattice of generators
is the dual polygon of the toric diagram. As indicated in (18.8), the generators fall into
an irreduciable representation of SU(3) with the character being

~2 =~ ~3 = ~
- . T T T T T 1 1
13,0](,.00)° = (x?+x1x2+~—l+~—2+1+~—§+~—;+~—§+ — +~—3)t3 :

(18.9)

The generators of the mesonic moduli space in terms of quiver fields of Model 16 are
shown in Table 61.

Generator | SU(3) (z1,20) ‘

p? S ('1’ '1)

p%pQ S (07 '1)

plp% § (17 _1)

p% S (2v _1)

Pips (-1, 0)

D1p2ps3 S (0, 0) ®
P3ps (1, 0)

pips s (-1, 1) ®

p2pi2’, S (07 1)

pg S ('1’ 2)

Table 60. The generators and lattice of generators of the mesonic moduli space of Model 16
in terms of GLSM fields with the corresponding flavor charges.
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Generator ‘ SU<3)(w1 ) ‘

Xy X35 X5 (-1, -1)
X112X213X§1 = X132X213X§’1 = X%QXQQBX??I (07 '1)
X112X213X§1 = X112X223X§1 = X?2X223X§1 (17 ‘1)
X1y X3X5 2, -1
X122X213X§1 = X132X213X§1 = Xf2X§3X??1 (‘L 0)
X112X213X§1 = X112X§3X§1 = X122X213X§1 = X122X223X§1 = X132X223X?}1 = Xf2X§3X§1 (07 0)
X112X223X§1 = X112X33X§)1 = X122X223X§1 (L 0)
X122X213X311 = X122X§3X321 = X%2X§3X§1 (‘17 1)
X112X§3X311 = X122X223X§1 = X122X§)3X§’1 (O, 1)
X7y X33 X5 (-1, 2

Table 61. The generators in terms of bifundamental fields (Model 16).

With the fugacity map

2/3

_1/3 ot R A
L= g =u'h. =g =uh, Ti= " =y, (1810)
xl CL‘2 $2 $1

the mesonic Hilbert series becomes

g1 (11, Ty, T3; MTE*) =
L4+ TP, + TVT5 + 17T + TV Ts + 1515 + Th T35 4 ToT5 + TP 1513
(1=TP)(1 - T13)(1 - T%) ’
(18.11)

with the plethystic logarithm becoming

PL[gy\(Ty, To, T5; M) = T7 + T Ty + TVT5 + T3 + T7Ts + TV Ts + T5Ts + Th T
T2+ T — Ty — TPT) — Ty — TY T3 — 2 TP Ty — 2 TETS Ty
~NTyTs — T\Ty — 2 TPToTy — 3 TET5Ty — 2 VT3 Ty — Ty Ty — TPTy
—2 TPTyT3 — 2 TVTETS — T3T3 — TPTy — TV To Ty — T2Ty + ... . (18.12)

The above Hilbert series and plethystic logarithm are in terms of three fugacities with
positive powers. This illustrates the conical structure of the toric Calabi-Yau 3-fold.
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19 Seiberg Duality Trees
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Figure 37. Toric Diagrams of toric (Seiberg) dual phases of quiver gauge theories with
brane tilings. The label (G|n, : n;|ny) is used, where G, n,, n; and n,, are the number of U(n)
gauge groups, GLSM fields with non-zero R-charge, internal toric points and superpotential
terms respectively.
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The above sections have identified all 30 supersymmetric gauge theories with brane
tilings corresponding to the 16 reflexive polygons. 8 reflexive polygons are associated
to multiple quiver gauge theories as summarized in Figure 37. These are called phases
of the corresponding toric variety. For a given toric variety, the phases are so called toric
(Seiberg) dual and are related under toric (Seiberg) duality as discussed in appendix
§B.1. Multiple toric duality actions on various U(n) gauge groups corresponding to
4-sided faces in the brane tiling create closed orbits among the phases.

In Figure 38 to Figure 45, a summary of the orbits presented as duality trees is
shown, where nodes represent the brane tiling of the phase, and arrows are labelled
with the index of the gauge group on which one acts under toric (Seiberg) duality to
obtain the phase at the head of the arrow.

2,4,5,6

(8|4 : 12[12)
(8|4 : 14/14)

2,5

Figure 38. The duality tree for Li31/Zy with orbifold action (0,1,1,1) [Model 3].
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(8lzT : 7I8)

1,3,5,7

%@

3,7

Figure 39. The duality tree for C/Zs x Zg with orbifold action (0,1,1,0)(1,0,0,1) [Model

4).
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©
2
o
)

4,5

A

1,2

Figure 40. The duality tree for PdP,, [Model 6].

(0T]2 : %19)

1,4

Figure 41. The duality tree for SPP/Zy with orbifold action (0,1,1,1) [Model 8].
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102 6\ /476\
\

e
R
XA
A/

Vo

(6]5 : 7|8)

Figure 42. The duality tree for PdP3) [Model 9].

1,2,3,4,5,6

12

Figure 43. The duality tree for dP3 [Model 10].
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) 12b

(4]4 : 5/8)

Figure 44. The duality tree for dPy [Model 12].

Figure 45. The duality tree for C/Zy with orbifold action (1,1,1,1) or the cone over Fj
[Model 15].
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20 Specular Duality and Conclusions

The work above uses the 16 reflexive polygons in Figure 1 as toric diagrams of Calabi-
Yau moduli spaces of 3 + 1 dimensional ' = 1 supersymmetric gauge theories. These
quiver gauge theories are represented by brane tilings. A natural question to ask from
this setup is to identify all brane tilings corresponding to the 16 reflexive polygons. Mo-
tivated by this line of thought, the following comprehensive results have been presented
in this paper:

e There are exactly 30 brane tilings encoding supersymmetric quiver gauge theories
whose mesonic moduli spaces are represented by reflexive polygons. All gauge
theories are related by a cascade of Higgs mechanisms. In addition, toric (Seiberg)
duality maps multiple gauge theories to the same reflexive polygon.

e The generating function of mesonic gauge invariant operators known as the mesonic
Hilbert series is computed using the Molien integral formula for each of the 30
quiver theories. Fugacities of the Hilbert series are related both to perfect match-
ings and hence points in the toric diagram as well as charges under the global
symmetry of the gauge theory. Hilbert series of toric dual phases have been shown
to be identical.

e The generators of the mesonic moduli space of all 30 quiver gauge theories have
been found both in terms of chiral fields of the gauge theory as well as the perfect
matchings of the brane tiling.

e The mesonic charges on the moduli space generators have been found such that
they form for each generator a point on Z2. The convex hull of all such points
is a reflexive polygon. For all 30 quiver gauge theories, these reflexive polygons
known as lattice of generators are exactly the polar duals to the toric diagrams.

The above observations made by classifying all brane tilings corresponding to reflex-
ive polygons lead to a comprehensive overview of a special set of quiver gauge theories.
This overview is the precursor to a discovery of a new duality of quiver gauge theories.
This specular duality is best observed in the context of toric diagrams with points
labelled by perfect matchings of the brane tiling. Recall that extremal perfect match-
ings correspond to the corner points coloured black in the toric diagrams in Figure 2,
whereas internal perfect matchings are points lying strictly within the perimeter of the
polygon. External perfect matchings are all points on the perimeter of the polygon in-
cluding the extremal ones. All except extremal perfect matchings correspond to GLSM
fields with zero R-charge.
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The new duality we propose exchanges the internal perfect matchings with the
external perfect matchings. For the set of brane tilings corresponding to reflexive
polygons, the duality map is unique by forming duality pairs between models as follows

11
2<4d , 3a <> 4c, 3b<> 3b, 4a <> 4a , 4b < 4b
5 <> 6¢, 6a <> 6a , 6b <> 6
74 10d , 8a <> 10c, 8b <> 9c, 9a <> 100, 9b <+ 9b , 10a < 10a
11 <> 12b, 12a < 12a
134> 15b, 14 <» 14 , 15a < 15a
16 <» 16 . (20.1)

For instance, the dual pair 13 <+ 150 in Figure 46 is exact under the indicated swap
between external and internal perfect matchings.
Si > Di

P1,2,3 > S1,2.3
P4

— S
13 91,2 77 54,5 15b
{q1> g2}
D2 P1
Di > 85
P2 $1,2,3 > D1,2,3 p3
S4.5 — 41,2

Figure 46. Specular duality between Model 13 (C3/Z4(1,1,2)) and Model 15b (Fy, phase
b). The exchange of internal and external perfect matchings map between the two models.

Accordingly, specular duality maps between brane tilings whose corresponding
quiver gauge theories have different mesonic moduli spaces. In [87], it is illustrated
how specular duality maps not the mesonic moduli spaces but the master spaces
(65, 68, 75, 76, 80, 81] of the dual pairs in (20.1). The master space is the com-
plete moduli space including both the mesonic and baryonic branches. It is shown that
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the master spaces of the dual pairs in (20.1) are identical under a translation of fields
given by the mapping of perfect matchings of the corresponding brane tilings. Further
study of this duality is of great interest and some interpretations are reported in [87].
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A The theory for C*/Z, x Zs (1,0,3)(0,1,3)

Figure 47. The quiver, toric diagram, and brane tiling of the abelian orbifold of the form
C3/Z4 x Z4 with orbifold action (1,0,3)(0,1, 3).
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The quiver, toric diagram and brane tiling of C*/Z, x Z4 (1,0,3)(0,1,3) theory are
shown in Figure 47 with the superpotential® having the form

W =+Xrg Xgo Xo7+ X129 Xo7 X712+ Xi314 X1a12 Xi213 + Xog X313 Xi32
+Xg5 X53 X3s+ Xo10 X10s Xgo+ X415 X159 Xo14a + X34 Xg14 X1a3
+Xs56 Xoa Xas+ Xio11 X115 X510+ X516 X1610 X1015 + Xa1 X115 X154
+Xe7 X71 Xi6+ Xi112 X126 Xe11 + X1613 X1311 X1116 + X12 Xo16 X161
—X78 Xgog Xo7— X129 Xo1a X1a12 — X1314 X143 X313 — Xo3 X35 Xgo
—Xs5 X510 X108 — Xo10 X1015 X159 — X1a15 X154 Xa1a — X34 Xu5 X553
—Xs56 Xe11 X115 — X1011 X1116 X1610 — Xi1516 X161 X115 — Xa1 X16 X614
—Xo7 X712 X126 — X1112 X1213 X1z 11 — X613 X132 Xo16 — X12 Xo7 X7

(A1)

B Review: Seiberg Duality, Integrating out Mass Terms, and
the Higgs Mechanism

B.1 Seiberg Duality

Two 3 + 1 dimensional worldvolume theories are called toric (Seiberg) dual if in
the UV they have different Lagrangians with a different field content and superpoten-
tial, but flow to the same universality class in the IR. The mesonic moduli spaces of
toric (Seiberg) dual theories are toric Calabi-Yau 3-folds which are identical. The cor-
responding toric diagrams are GL(2,7Z) equivalent, however multiplicities of internal
toric points and hence GLSM fields with zero R-charge can differ.

The relationship between two toric (Seiberg) dual theories is best illustrated with
an example using brane tilings. Dualizing on a given gauge group U(n) has a natural
interpretation in the brane tiling picture. Let us consider the Hirzebruch Fy model.
The corresponding gauge theory has a superpotential of the form

Ws = X4 X X8 XD + XAXEXEXE - XEXEXBXD - XLXBXEXS,

A B C D

(B.1)

8Note: The superpotential features an overall trace which is not explicitly written down in the
following discussion.

- 130 —



51= {X1147X1247 X214-,X§4}

L 1 2 !

s1={Xi4 Xis} 5o ={X34, X35, X31, X5, }

) 1| §2 = {X213=X223} | 5 I 2 5 I 3 53 = {X§13X§11X§27X§2}

pa = {X31, Xop} S3 = {X§1=X§1} 1 = {Xa1, Xou, Xay, X} s1= { Xz, X5, Xy, XTu}

S4 = XA}QvXZ2} S5 = Xig,ng,ng,ng}
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p3 = {Xia: X33 p1 = {Xiy, Xa3} p3 = { X4, X320, Xi5, X1z} p1 = {Xis, X359, Xi3, Xis}
1 2 1 1 1 4
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Figure 48. The toric (Seiberg) duality action on the brane tiling of the zeroth Hirzebruch
surface Fy model with corresponding toric diagrams. The points in the toric diagram cor-
respond to GLSM fields which are presented as perfect matchings or sets of bifundamental
fields in the brane tiling picture.

whose corresponding brane tiling and toric diagram are shown in the first column of
Figure 48. The terms are labelled A to D and the corresponding brane tiling nodes
are indicated in Figure 48. By dualizing on the gauge group U(ny), the superpotential
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becomes

War = X4XEXh + XXBX — X2XEXD - XLXAXE,
A B c D
+ X1 X5 X5 + XP X0 X5 — X1, X3 X3, — XD X0X5 (B.2)
L | L | L | L |
E 7 G H

and the corresponding new brane tiling and quiver are shown in the second column
of Figure 48. One observes that under toric (Seiberg) duality, the number of gauge
groups G remains constant, the number of bifundamental fields £ and the number of
superpotential terms both increase each by 4.

The change in the number of bifundamental fields and superpotential terms corre-
sponds to the change in the number of GLSM fields corresponding to internal points of
the corresponding toric diagram. The area of the toric diagram corresponding to the
number of gauge groups GG remains constant. The two toric diagrams and brane tilings
in Figure 48 with the corresponding superpotentials given in (B.1) and (B.2) are called
phases of the Fj model.

The duality action often leads to superpotentials with quadratic mass terms. Quadratic
mass terms relate to massive fields which become non-dynamical in the IR. The removal
of quadratic mass terms and the corresponding deformation of the brane tiling are dis-
cussed in the following section.

B.2 Integrating out mass terms

Quadratic terms in the superpotential relate to massive fields which are non-dynamical
in the IR [42]. We are interested in the IR regime of the quiver gauge theories above,
and therefore need to integrate out the quadratic terms in the superpotential.

2 2
1 o 4 > 1 4

3 3

Figure 49. The removal of quadratic mass terms in the superpotential corresponds to the
removal of 2-valent vertices in the brane tiling.

- 132 —



The procedure of integrating out quadratic mass terms in the superpotential has
a natural interpretation in the brane tiling context as illustrated in Figure 49. Let us
consider the superpotential corresponding to the case shown in Figure 49,

Wr =+ X351 X12Xo3 + X320 X904 Xy3 — X3 Xz +... (B.3)

where the quadratic mass term and matter fields involved have been underlined. The
removal of the quadratic mass term in (B.3) leads to the new superpotential of the
form

WII — ...+X31X12X24X43+... . (B4)

One observes that the process of integrating out mass terms preserves the toric condi-
tion discussed in section §2.2.

B.3 Higgs Mechanism

The Higgs Mechanism has a natural interpretation in the brane tiling picture. By
giving a non-zero vacuum expectation value (VEV) to a gauge field in gauge theory I,
and integrating out resulting quadratic mass terms in the superpotential as explained
above, one obtains a new theory II whose mesonic moduli space is a different toric
Calabi-Yau 3-fold to the one of theory I. Giving a VEV to a bifundamental field X,
results in the removal of the corresponding edge in the brane tiling picture. This results
in an effective merger between two adjacent faces, analogous of combining two gauge
groups U(n); and U(n); into one.

Let us consider the example of the C?/Z, x Z, orbifold theory with orbifold action
(0,1,1)(1,0,1). The corresponding brane tiling and toric diagram is shown in Figure
50, and the superpotential is

Wi = Xy X3 X34 + X1 X14Xu3 + Xog X1 X9 + X3 X350 X9
—Xyo X1 X4 — X351 X190 X03 — Xoa X3 Xzp — X3 X34 X4y . (B.5)

By giving the bifundamental field X4 a VEV, such that (X14) = 1, the superpotential
becomes,

Wit = X9 X093 X34 + X351 Xu3 + Xou X1 X129 + X3 X32X9;
— X9 Xo1 — X1 X190 X0z — Xou X3 X9 — X3 X34 Xy1 (B.6)

which in turn, by integrating out the above underlined quadratic mass terms, becomes

W]I = X13X32X23X31 + X12X21X11 - X12X23X32X21 - X13X31X11 . (B7)
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s5 = {X12, X14, X32, X34}
56 = {le,X41,X23iX43}
p1 = {X14, Xo3, X32, X1}
s1 = {X13, X14, Xo3, Xo4} 55 = {X32, X11}
so = {X31, Xu1, X2, Xyo} s1 = {Xa3, X11}

‘ p2 = {X13, Xo1}
@

‘(247 X317 X42}

s3 = {Xo1, Xoa, X31, X34} s3 = {X12, X13}
54 = {X12, X42, X13, Xy3}- 54 = {Xo1,Xa1}
ps = {X12, Xo1, X34, Xu3} ps = {X12, X531}

SPP (}

1
3@
1 D
3e

Figure 50. By giving a non-zero vacuum expectation value to the bifundamental field X4
of the C3/Zy x Zs orbifold theory, one obtains the Suspended Pinch Point theory (SPP).
The bifundamental field Xq4 is represented by a red edge in the brane tiling. By setting
(X14) = 1, one obtains quadratic mass terms represented by red nodes in the second brane
tiling, which are integrated out to give the third SPP tiling. The nodes of the corresponding
toric diagrams are labelled with perfect matching variables and the corresponding sets of
bifundamental fields. The Higgsing procedure corresponds to a blow down from C3?/Zy x Zs
to the cone over the Suspended Pinch Point.

- 134 —



Theory II with the above superpotential and brane tiling shown in Figure 50 cor-
responds to the suspended pinch point (SPP) theory. Thus one has, by giving a VEV
to a field in theory I, blown down a toric point in C?/Zy X Z to give the SPP model.
Figure 50 shows the perfect matchings and their field content for each toric point of
the toric diagrams of C3/Zy x Zy and SPP.

The claim is that the combination of toric duality procedures, integrating out mass
terms, and higgs mechanisms on the C3/Z4 x Z, orbifold theory with orbifold action
(1,0,3)(0, 1, 3) results in all possible quiver gauge theories whose mesonic moduli space
is toric Calabi-Yau and has a toric diagram which is a reflexive polygon on Z2.
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