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Abstract

We discuss a relationship between certain one-dimensional quantum spin chains and
anyon chains. In particular we show how the XXZ Heisenberg chain is realised as a D3

(alternately su(2)4) anyon model. We find the difference between the models lie primarily
in the choice of boundary conditions.

1 Introduction

Formulations of many-body systems considered in quantum information theory differ from what
is traditionally used in condensed matter physics. It is important that the different approaches
are compared and that communication between the fields occurs. Here we aim to shed light
on and discuss the relationship between the recently proposed anyon chains from topological
quantum information [12] and their quantum spin chain cousins from condensed matter physics.
Specifically we will provide conditions which when met imply a complete equivalence between
the two different formalisms.

The one-dimensional anyon chains were constructed analogously to spin chains to provide a
stepping stone to the understanding of higher dimensional anyonic models. These models were
successful at demonstrating the presence of topological symmetries [5, 12]. The anyons used to
construct these models typically exhibit non-standard braiding statistics and are not required
to have integer quantum dimension1. The global Hilbert spaces used for the anyon chains rely
on fusion paths [24, 28] and often have no tensor product structure. One fruitful method of
constructing anyonic theories utilises quasi-triangular Hopf algebras [10]. These anyon chains
can also be constructed as the Hamiltonian limits of interaction-round-a-face (IRF) or restricted
solid-on-solid (RSOS) models, albeit not restricted to the ADE classification.

On the other hand there are quantum spin chains which have a well established place
in modern condensed matter physics, providing insight into critical behaviour of correlated
physical systems and describing quasi one-dimensional materials [11]. As we are discussing their
connection to anyon chains we will consider spin chains that have the underlying symmetry of
a quasi-triangular Hopf algebra (e.g. a quantum group) [7, 23]. Consequently, it is natural to
discuss models constructible from the Quantum Inverse Scattering Method (QISM) [19, 31] and
its variants, although all results will have no dependency on integrability.

1Roughly speaking, the quantum dimension is the dimension of the internal Hilbert space of the particle and
determines the probability that fusion leads to annihilation or the creation of other anyons [28].
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An equivalence between spin and anyon chains occurs when the underlying symmetry of
each is that of the same quasi-triangular Hopf algebra. This equivalence has previously ap-
peared as a face-vertex correspondence for integrable two-dimensional lattice models [26, 29].
The correspondence for one-dimensional quantum models will be illustrated by presenting the
nearest-neighbour XXZ Heisenberg chain viewed as a D3 anyon model. We use this model as
it is a well-known and simple model for which we can calculate operators and energy spectra
explicitly. The generalisation to other models with Hopf algebra symmetries is straight-forward.

While the local XXZ Hamiltonian has the complete D3 symmetry, the symmetry of the
global Hamiltonian depends upon the boundary conditions imposed. Thus the correspondence
depends upon the boundary conditions; an aspect of these models not previously discussed.2

We consider open boundaries with free ends [4, 30], periodic boundaries of both spin [8, 25, 36]
and anyon type [12, 33], and braided boundaries [14, 17, 22]. Of these only the open and braided
boundary conditions always have an equivalent description in the spin and anyon pictures.

It is also possible to present the XXZ model using other underlying symmetries, e.g. su(2)4,
D5 or Uq(su(2)), however, using D3 has certain advantages. There are no superfluous anyons,
like the anyons in half-integer subsector of su(2)4 or an additional anyon of quantum dimension
two in D5. The anisotropy parameter is not dependent upon the algebra like Uq(su(2)) where
Jz
J = cosh(ln(q)) (J and Jz are the coupling constants of the model). We also note that the
XXZ Heisenberg chain has appeared in other papers in anyonic form, specifically as the spin-1
su(2)4 chain [13, 34], although not discussed as such.

2 Background

Here we present the background information for the XXZ Heisenberg model, the D3 algebra
and the spin and anyon bases for the models. We also discuss when the operators in each of
the bases are said to have the symmetry of D3.

The algebra
D3 is the group of symmetries on a triangle consisting of a rotation, σ, and flip, τ . The group
has the presentation,

D3 = {σ, τ |σ3 = τ2 = στστ = 1}.
Its group algebra is the linear combination of its elements over the complex numbers. It is also
possible to embed this algebra into a k-fold space by use of the general coproduct,

∆(k)(g) =

k−times︷ ︸︸ ︷
g ⊗ ...⊗ g, g ∈ D3,

extended linearly to the algebra. This algebra is known to form a quasi-triangular Hopf algebra
[7, 23]. As it is cocomutative the universal R-matrix is just the identity operator. The repre-
sentation theory of this algebra is also known, it has three irreps (irreducible representations),
two are one-dimensional,

π±(σ) = 1, π±(τ) = ±1,

and one is two-dimensional,

π2(σ) =

(
e

2iπ
3 0

0 e−
2iπ
3

)
, π2(τ) =

(
0 1
1 0

)
.

2While this correspondence has not been discussed in terms one-dimensional quantum chains, similar obser-
vations relating to the partition function of certain two-dimensional lattice models have been made e.g. [9].
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For each irrep πa we will associate a space (module) Va. The fusion rules are as follows:

V− ⊗ V− ∼= V+, V− ⊗ V2 ∼= V2, and V2 ⊗ V2 ∼= V2 ⊕ V+ ⊕ V−.

The space V+ is the vacuum or trivial space and fusion with it is trivial, i.e. V+ ⊗ Va ∼= Va.
As fusion is associative i.e. (Va ⊗ Vb)⊗ Vc ≡ Va ⊗ (Vb ⊗ Vc), there exists F -moves (generalised
6-j symbols) which relate the two different ways to decompose the 3-fold tensor product space
[24, 33]. The interpretation of these operators can be understood via the diagrammatic inter-
pretation presented later. The F -moves can be explicitly constructed from the representations
above and are found in Appendix B.

To construct an anyonic model we associate with each irreducible D3 module an anyon [10].
The fusion of anyons is governed by the fusion of the respective modules. Similarly the other
properties of the anyons are inherited from the representation theory of the algebra.3

The Bases
The Hilbert space for the spin formalism consists of the tensor product of L sites containing
spin-12 particles, alternately qubits or other 2-state systems, coupled to an auxiliary C4 space,
specifically

[V2 ⊕ V+ ⊕ V−]⊗ V ⊗L2 .

This has a natural basis with 2L+2 vectors, which we shall refer to as the spin basis. We also
note that if we project onto the V+ component of the auxiliary space then we are just left with
L spin-12 sites.4

To form the Hilbert space for the anyon formalism we need to consider fusion paths [24, 28]
and as such we will refer to its basis as the fusion path basis. As this Hilbert space will be
equivalent to the spin formalism we again have an auxiliary space of V2 ⊕ V+ ⊕ V− followed by
 L copies of V2. To form a fusion path, working from left to right, we first fuse an irreducible
subspace in the auxiliary space with V2, choosing which irreducible space we project onto. This
is then fused to another V2, so on and so forth. We record the irreducible subspace of the
auxiliary space and the subsequent irreducible subspaces which appear after fusion,

2 2 2 2 2

a0 a1 a2 a3 aL−1
aL

≡ ((·((Va0 ⊗ V2)a1 ⊗ V2)a2 · ··)aL−1 ⊗ V2)aL

≡ |a0a1a2...aL−1aL〉 .

Here the use of the subscript of the bracket, (··)a, denotes the subspace of the space inside
the bracket isomorphic to Va. These sequences of labels form the basis vectors of the anyon
Hilbert space. Using this formulation we observe these fusion path basis vectors correspond to
a subspace in the spin basis, whose dimensionality is equal to that of dimension of the out-going
anyon.5 We remark that each label ai, as it is produced by fusion, is limited by the preceding

3As the quantum dimension of the anyon equals the dimension of the associated irrep all the anyons will have
integer quantum dimension. This will also be true for other anyonic theories defined via matrix representations
of Hopf algebras.

4For more general models the global Hilbert space will be  L copies of a certain irrep, corresponding to an
anyon, coupled to an auxiliary space which is the direct sum of all irreps, i.e. a reservoir of all anyons.

5While an individual fusion path basis vector will correspond to a subspace in the spin basis, generic vectors
in the anyon Hilbert space will have no such correspondence.
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label. We find that neighbouring pairs must belong to the following set,

aiai+1 ∈ {+2,−2, 2+, 2−, 22}.

We now have an appropriate fusion path basis.
Diagrammatically we have fused left to right, however we can rearrange fusion adopting the

additional convention of also fusing top to bottom. The reordering of fusion is done by the
aforementioned F -moves. In terms of fusion diagrams we have,

b c

a
d

e =
∑
d′

(F abce )dd′

b c

a d′ e

On the left the anyons a and b are fused with the result fusing to the anyon c, while on the right
the anyons b and c are fused with the result fusing to a. The F -moves must satisfy a pentagon
equation, although in the D3 case this is automatically satisfied as D3 forms a Hopf algebra.

We also want to determine the dimensionality of the anyon Hilbert space. We define the

number N
(ab)
L to be the number of basis vectors with a0 = a and aL = b. The numbers are

determined by the relations

N
(a+)
L = N

(a−)
L = N

(a2)
L−1, N

(ab)
L = N

(ba)
L and N

(a2)
L = N

(a2)
L−1 + 2N

(a+)
L−1 .

We can recognise that these numbers are those appearing the in Jacobsthal sequence (A001045
[1]) which have the form

N
(22)
L =

1

3

(
2L+1 + (−1)L

)
.

Using this we can determine the dimension of the anyon Hilbert space,

Anyon dimension =
∑
a,b

N
(ab)
L = N

(22)
L+2 =

1

3

(
2L+3 + (−1)L

)
.

We can also determine that we indeed have the correct dimension of the spin Hilbert space

Spin dimension =
∑
a,b

N
(ab)
L × dim(Vb) = 2L+2.

Equivalent Operators
The global Hilbert spaces were both constructed using D3 models and therefore they should be
D3 modules themselves. It follows that for an operator to be expressible in both the spin and
anyon bases it must have the underlying symmetry of the D3 algebra. In the spin formalism this
means the operator must commute with the action of the algebra, while in the anyon formalism
we can invoke Schur’s lemma which will constrain the action on the outgoing anyon.6

Suppose we have an operator, O, in the spin basis. It is said to have D3 symmetry if it
commutes with the action of the algebra,

[Π(g),O] = 0 where Π =
(

[π2 ⊕ π+ ⊕ π−]⊗ π⊗L2
)
◦∆(L+1), (1)

6This can be generalised to any quasi-triangular Hopf H with a corresponding anyonic theory. In the spin
formalism the operator must commute with the action of H, which by Schur’s lemma will constrain the operator’s
action on the outgoing anyon in the anyon formalism.
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for all g ∈ D3. This operator will have a counterpart in the anyon fusion path which we will
denote Õ. The D3 symmetry is both sufficient and necessary. As the operator commutes with
the action of the algebra Schur’s lemma requires:

If aL 6= a′L then
〈
a′0a
′
1...a

′
L
∣∣ Õ |a0a1...aL〉 = 0. (2)

Thus for an operator, Õ, in the fusion path basis to have a spin counterpart the last label, aL,
must be invariant under the action of Õ. Similarly, from construction the auxiliary space must
be also invariant under the action of the operator and thus the first label a0 is invariant under
Õ. The fixing of a0 and aL are necessary and sufficient for an operator in the fusion path basis
to have a counterpart in the spin basis.7 This is the same as the operator having hidden quan-
tum group symmetry [32]. Any such operator which acts non-trivially on k neighbouring sites
(in the spin basis) will have an anyon counterpart that acts on k+ 1 labels, e.g. for h ∈ V2⊗V2
we have the equivalence hi(i+1) ↔ h̃(i−1)i(i+1). This correspondence between different operators
is equivalent to Pasquier’s face-vertex mapping [26] which relies on Ocneanu cell calculus [29].

Projection Operators and the Local Hamiltonian
As we are dealing with a model with D3 symmetry we expect that the global Hamiltonian will
just be composed of projection operators. Additionally we only consider models with nearest-
neighbour interactions, so we further restrict ourselves to projection operators on two sites. In
the spin basis we have the two-site projection operator is given by,

P (b) =
dim(Vb)

6

∑
g∈D3

Trace(πb(g
−1)) π2(g)⊗ π2(g).

By construction this local operator commutes with the action of the algebra and has a corre-
sponding operator in the fusion path basis. We can diagrammatically determine the projection
operators in the following way [12],

P̃
(b)
i−1,i,i+1

{ 2 2

ai−1 ai ai+1

}
=

∑
b′

(F
ai−122
ai+1 )aib′ δ

b′
b

{ 2 2

ai−1
b′

ai+1

}

=
∑
a′i

[(
F
ai−122
ai+1

)a′i
b

]∗ (
F
ai−122
ai+1

)ai
b

{ 2 2

ai−1 a′i ai+1

}
,

provided the F -moves are unitary. Alternatively we can write this as [13, 34]

P̃
(b)
i−1,i,i+1 =

∑
ai−1,ai,a′i,ai+1

[(
F
ai−122
ai+1

)a′i
b

]∗ (
F
ai−122
ai+1

)ai
b

∣∣..ai−1a′iai+1..
〉
〈..ai−1aiai+1..| .

As expected this 2-site operator acts upon 3 labels in the fusion path basis and leaves the first
and last anyon invariant under its action.

The original isotropic or XXX Heisenberg local Hamiltonian was defined as the exchange
interaction on neighbouring sites. This was generalised to allow the strength of the interac-
tion for spins in the z-direction to differ to those in the x-,y-direction resulting in the XXZ

7As stated previously this has a natural generalisation to other models with a Hopf algebra symmetry. Con-
dition (1) is unchanged while Condition (2) requires that the out-going anyon only remains of the same type.
This modification is necessary when multiple copies of the same anyon can appear after the fusion of two anyons.
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Hamiltonian below,

h =
J

2
(σx ⊗ σx + σy ⊗ σy) +

Jz
2

(σz ⊗ σz) +

(
Jz
2
− J

)
I ⊗ I, (3)

=


Jz − J 0 0 0

0 −J J 0
0 J −J 0
0 0 0 Jz − J


= −2JP (−) + (Jz − J)P (2),

where σj are the usual Pauli matrices. This local Hamiltonian commutes with the action of D3

as it is expressible in terms of projection operators. Furthermore we can use the natural anyon
analogues of the projection operators to determine its equivalent operator in the fusion path
basis,

h̃ = −2JP̃ (−) + (Jz − J) P̃ (2).

This is equivalent to the known local Hamiltonian for the ‘spin-1’ su(2)4 model, up to a gauge
transformation, mapping the anyons (+, 2,−) to (0, 1, 2) [13, 34]. The anyons 0, 1 and 2 of
su(2)4 are the analogues of the spin-0, -1 and -2 particles of su(2).

Other two-site D3 invariant operators can be mapped between the two formalisms by,

o = c+P
(+) + c−P

(−) + c2P
(2) ⇔ õ = c+P̃

(+) + c−P̃
(−) + c2P̃

(2), (4)

where ck ∈ C.

3 Quantum chains

To illustrate how the boundary conditions of a quantum chain affects the global symmetry we
provide an account of a variety of models. For the spin chains we use models constructible
via the QISM and its variants as these are commonly associated with quasi-triangular Hopf
algebras. Open spin chains with free ends are seen to be in correspondence with open anyon
chains while closed models of either type are more complicated as the global symmetry can
be broken. We find that among the closed models braided models have a clear correspondence
between the spin and anyonic formulations. It is then shown that while the periodic XXZ spin
chain has an anyon counterpart, generic periodic spin chains do not. Likewise we show that
generic periodic anyon chains have no spin chain counterparts, this includes D3 anyons.

Open Chains
The simplest (and somewhat trivial) example of a direct equivalence between chains is the
open chain with free ends (non-interacting boundary fields) case. Whatever symmetry is con-
tained by the local Hamiltonian is inherited by the global Hamiltonian (using the condition of
coassociativity). The spin and anyon versions are of a very similar form,

H =

L−1∑
i=1

hi(i+1) ⇔ H̃ =

L−1∑
i=1

h̃(i−1)i(i+1). (5)

These provide models with identical energy spectra. This chain does not have a quantum
group symmetry [20, 27], however, its invariance under the action of D3 will guarantee special

6



degeneracies in the spin basis. To match up the degeneracies of each of the energies the spin
dimension of each vector in the fusion path basis must be considered.8 Here we can see that
the open XXZ chain is equivalent to the open D3 chain or the ‘spin-1’ su(2)4 chain restricted
to the integer sector.

The introduction of non-trivial boundary fields will break the D3 in either basis removing
the correspondence between the two formalisms.

Braided Chains
Closed boundary conditions are more complicated due to the interaction between the first and
last sites. One type of closed model which can be realised equivalently in both the spin and
anyon bases are braided models [14, 17, 22]. These are guaranteed to have the full symmetry
of the underlying algebra. In the case of the D3 chain, a braided model in the spin formalism
requires the existence of an invertible operator b ∈ V2 ⊗ V2 satisfying:9

1. It is invertible and expressible in terms of projection operators of π2 ⊗ π2, i.e. commutes
with the action of the algebra on the 2-fold tensor product space,

2. It satisfies the braid equation, b12b23b12 = b23b12b23,

3. It braids the local Hamiltonian, h12b23b12 = b23b12h23 and b12b23h12 = h23b12b23.

Once such an operator is found we can define a global braiding operator and global Hamiltonian,

B = b12b23....b(L−1)L and H = B−1h12B +

L−1∑
i=1

hi(i+1).

It follows that the global braiding operator and global Hamiltonian must commute with the
action of the algebra.10 The global braiding operator plays the role of a generalised translation
operator, satisfying,

Bhi(i+1)B−1 = h(i+1)(i+2) and [B,H] = 0,

for 1 ≤ i ≤ L − 2. The additional term in this model, although it acts globally, is viewed as
a local interaction as it commutes with all local Hamiltonians not acting on either site 1 or
L. Thus compared to the open chain the additional term only gives a finite correction to the
energy. As the global Hamiltonian commutes with the action of the algebra this model has a
natural anyonic counterpart. The anyonic counterpart is obtained by interchanging the local
spin and anyon operators i.e. using relation (4) to obtain h↔ h̃ and b↔ b̃ yielding,

B̃ = b̃012b̃123....b̃(L−2)(L−1)L and H̃ = B̃−1h̃012B̃ +

L−1∑
i=1

h̃(i−1)i(i+1).

For the XXZ chain we find many different operators satisfying conditions 2 and 3, however, only
one also satisfies condition 1. This operator corresponds to the representation of the universal

8To assist the reader we have included the spectrum of the  L = 4 open chain in the appendix.
9These conditions have been adapted from [14, 17, 22] to construct a model with D3 symmetry, that is also

invariant under the action of the global braiding operator, B, but not necessarily integrable. It should be noted
that we also require h and b to commute but for the D3 case this is ensured by conditions 1.

10As was the case with the open chain the proof of this relies on each local operator, bi(i+1) and hi(i+1),
commuting with the Hopf algebra due to its coassociativity. This is discussed in [14, 17, 22].
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R-matrix of D3 and gives rise to the periodic spin chain, which we discuss in the next section.
The other operators, satisfying conditions 2 and 3 but not condition 1, may correspond to
different anyonic theories.

The Periodic XXZ Spin Chain
The periodic XXZ chain can be realised in the fusion path basis as it is also a braided model.
This occurs because the permutation operator is also expressible in terms of projection operators
and is consequently a suitable braiding operator, explicitly this is,

Π = P (+) − P (−) + P (2) where Π(v ⊗ w) = w ⊗ v.

This allows the use of the braided model formalism to consider periodic XXZ spin chain in the
fusion path basis.

We remark that it is in general not possible to represent periodic spin chains in the fusion
path basis as periodicity can break the underlying symmetry. The breaking of this underly-
ing symmetry is related to the (lack of) cocomutativity of the quasi-triangular Hopf algebra
in question. However, irrespective of whether the symmetry is broken certain bulk properties
including energy per site and the central charge are consistent with the open chain [2, 6].

The Periodic D3 Anyon Chain
Now we consider the periodic D3 anyon chain starting from the view point of an open chain.
Using the L sites with the additional auxiliary space, we have the global Hamiltonian given by
Equation (5). We then impose periodicity in the basis by requiring that the incoming anyon is
equal to the out-going anyon, i.e. a0 = aL, however the model itself is not yet translationally
invariant. We are only considering an invariant subspace of the full Hilbert space and now
have that the auxiliary space is coupled to the rest. We can calculate both the anyon and spin
dimensions

Anyon dimension =
∑
a

N
(aa)
L = 2L + (−1)L,

Spin dimension =
∑
a

N
(aa)
L dim(Va) =

1

3

[
5 · 2L + 4 · (−1)L

]
.

At this stage we have that aL is still invariant under the action of the Hamiltonian and subse-
quently there still exists a corresponding model in the spin basis.

To obtain the periodic anyon models as presented in [12], which are translationally invariant,
we need to include the term h̃(L−1)L1 yielding the global Hamiltonian

H̃ = h̃( L−1) L1 + h̃ L12 +
L−1∑
i=2

h̃(i−1)i(i+1).

Once this term is included we no longer have that the out-going (now also incoming) anyon is
unchanged by the Hamiltonian implying that the D3 symmetry is lost and this model has no
spin model counterpart.1112

11Alternatively we could have considered a L+ 1 site model and required a0 = aL and a1 = aL+1. This would
not have demonstrated as clearly how the D3 invariance is lost.

12We remark that while from the perspective of this article the D3 symmetry has been lost there are other
notions of D3 symmetry which can be applied e.g. when the periodic anyon chain is viewed as living on a torus
then eigenstates are classified by an associated flux, labelled by a D3 anyon, through the torus, rather than by
an out-going anyon [5, 12, 13].
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The periodic anyon boundary condition for this model has yet to be studied in substantial
detail. It follows that the ground-state energy density must be the same as the periodic spin
case. Also, the central charge will match the periodic and open spin chains. It is of interest then
to compare the low-lying excitations of the XXZ chain [3, 16] with their anyon counterparts.
While [34] has already constructed the same model there is no discussion of its correspondence
to the spin-1/2 XXZ model.

4 Discussion

A correspondence between quantum spin and anyon chains exists when there is the under-
lying symmetry of a quasi-triangular Hopf algebra present. The symmetry inherited by the
global Hamiltonian from the local Hamiltonian will depend upon the choice of boundary con-
ditions. Open and braided models have a natural correspondence between the spin and anyon
formalisms. On the other hand periodic models generally do not in either formalism. In the
spin language the symmetry is present if the global Hamiltonian commutes with the action of
the algebra, while in the anyon language we require that the incoming and out-going anyons to
be invariant under the action of the global Hamiltonian.
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A Basic concepts of an anyonic system

Anyons are particles that are generalisations of bosons and fermions. The first generalisation
proposed the existence of anyons in continuous two-dimensional space and was characterised
by new braiding relations. Specifically, the interchange of two indistinguishable particles was
allowed to result in an arbitrary phase shift, eiθ, of the wave function of the particles in contrast
to the restricted phases θ = 0, π associated with bosons and fermions [21, 35]. These braiding
relations were extended to also include unitary transformations on a degenerate subspace of
many particle wave function generated by the permutation of particles. Different definitions
were also put forth which described anyons in any number of spatial dimensions, such as al-
ternate exclusion principles [15]. In this article we are concerned with algebraic descriptions of
anyonic systems given by finite monoidal categories equipped with braiding rules. These are
useful for describing low-dimensional anyonic lattice models [18, 33].

An anyonic system will consist of a set of anyon types {xi}Ki=1 which are closed under fusion
of particles,

xi ⊗ xj =

K⊕
k=1

nki,jxk
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where the nki,j are non-negative integers and satisfy an associativity condition. In the case
of the D3 anyonic theory the anyon types are {2,+,−} and the fusion rules are the same as
fusion rules for tensor product decomposition. Each anyon, xi, will have an associated quantum
dimension, di ∈ R, which satisfy

didj =

K∑
k=1

nki,jdk

The anyonic systems considered here also require braiding rules which define the interchange
of anyons and are given by a mapping,

R : xi ⊗ xj → xj ⊗ xi.

This mapping defines the braiding statistics of the anyons. For further details an introduction
to the subject can be found in [33] and references therein.

B F -moves and projection operators

We have calculated the F -moves though explicitly decomposing the space Va⊗Vb⊗Vc in the two
different manners mentioned previously and by then looking at the transformations between
them. The F -moves which deal with only one-dimensional irreps:

(F abca×b×c)
x
y = δa×bx δb×cy

where a, b, c ∈ {+,−}. The F -moves with precisely one 2-particle present

(F ab22 )xy = δa×bx δ2y (F a2c2 )xy = δ2xδ
2
y (F 2bc

2 )xy = δ2xδ
b×c
y

where a, b, c ∈ {+,−}. The F -moves with precisely two 2-particles present and one +-particle

(F+22
+ )xy = δ2xδ

+
y (F 2+2

+ )xy = δ2xδ
2
y (F 22+

+ )xy = δ+x δ
2
y

(F+22
− )xy = δ2xδ

−
y (F 2+2

− )xy = δ2xδ
2
y (F 22+

− )xy = δ−x δ
2
y

(F+22
2 )xy = δ2xδ

2
y (F 2+2

2 )xy = δ2xδ
2
y (F 22+

2 )xy = δ2xδ
2
y

Here are the F -moves with precisely two 2-particles present and one −-particle

(F−22+ )xy = δ2xδ
−
y (F 2−2

+ )xy = −δ2xδ2y (F 22−
+ )xy = −δ−x δ2y

(F−22− )xy = δ2xδ
+
y (F 2−2

− )xy = −δ2xδ2y (F 22−
− )xy = −δ+x δ2y

(F−222 )xy = −δ2xδ2y (F 2−2
2 )xy = δ2xδ

2
y (F 22−

2 )xy = −δ2xδ2y

Here are the other F -moves with all 2-particles:

(F 222
+ )xy = δ2xδ

2
y (F 222

− )xy = −δ2xδ2y

and

(F 222
2 )xy =

1

2
(δ+x δ

+
y − δ+x δ−y + δ−x δ

+
y − δ−x δ−y ) +

1√
2

(δ+x δ
2
y − δ−x δ2y + δ2xδ

+
y + δ2xδ

−
y )
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The projection operators are:

P̃
(+)
(i−1)i(i+1) = n+i−1n

+
i+1 + n−i−1n

−
i+1 +

1

4
n2i−1

 1 1
√

2

1 1
√

2√
2
√

2 2


i

n2i+1,

P̃
(−)
(i−1)i(i+1) = n+i−1n

−
i+1 + n−i−1n

+
i+1 +

1

4
n2i−1

 1 1 −
√

2

1 1 −
√

2

−
√

2 −
√

2 2


i

n2i+1,

P̃
(2)
(i−1)i(i+1) = n+i−1n

2
i+1 + n2i−1n

+
i+1 + n−i−1n

2
i+1 + n2i−1n

−
i+1 +

1

2
n2i−1

 1 −1 0
−1 1 0
0 0 0


i

n2i+1.

We have adopted the notation that nai projects onto anyon a at the ith label, i.e. nai =
|..ai..〉 〈..ai..|, and the vector (x, y, z)Ti corresponds to x |..+i ..〉+ y |..−i ..〉+ z |..2i..〉.

C Energies for the open chain with free ends

There is an equivalence between the spin and anyon formalism for the open chains with free
ends. Here we have provided a concrete example to demonstrate this. For the open XXZ chain
with four sites we set the coupling parameters to J = 1 and Jz = cosh(2iπ3 ). Furthermore, we
restrict our auxiliary space to V+, implying a spin dimension of 24 = 16 and anyon dimension

of
∑

aN
(+a)
3 = 11. Numerically we find the energies and multiplicities presented in Table 1.

Table 1: The spectrum of the  L = 4 open chain, restricted to the V+ component of the auxiliary
space, with J = 1 and Jz = cosh(2iπ3 ). Spin Mult. and Anyon Mult. refer respectively to the
multiplicity of the energy occurring in the spin and anyon formalisms. The symmetry sector
is defined as the outgoing anyon or the subspace appearing in the decomposition of π+ ⊗ π⊗42

which the eigenstate belongs to.

Symmetry sector Energy Spin Mult. Anyon Mult.

π+ −3.9050 1 1
1.8924 1 1
5.3781 1 1

π− −3.1196 1 1
1.1218 1 1
5.3632 1 1

π2 −0.0665 2 1
1.8290 2 1
5.4320 2 1
5.5365 2 1
9.3655 2 1

We see that the eigenspectra of the two formalisms are the same and that the multiplicity in
the spin formulation is simply the product of the dimension of irrep of the symmetry sector
and the anyon multiplicity. Projection onto the πa symmetry sector in spin picture is achieved

by applying the global projection operator dim(Va)
6

∑
g∈D3

Trace(πa(g
−1))Π(g).
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