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Abstract

The aim of this work was to investigate a new class of permutations enumerated by Eu-
ler numbers. This class is obtained expanding a constrained subset of André permutations
of the second kind. The constraint is given by the d-alternating property, i.e. alternating
starting with a descent, while expansion is provided by an application of the restriction
operator which has been already used in the literature to define - for example - simsun
permutations.

We focus on left-to-right minima and right-to-left minima statistics. Both of them are
strongly related to the tree-structure of the considered permutations. The connection is
given in terms of min-max paths defined on binary increasing trees.

As a corollary to some of our results, we indicate the presence of a link between our per-
mutations and those called cycle-up-down, recently introduced by Deutsch and Elizalde.

1 Introduction

The aim of this work was to study a new class of permutations counted by Euler numbers.
This class is derived from André permutations of the second kind .

André permutations of the second kind (André permutations) have been introduced in
[8] and extensively studied in the literature especially because of their relations with other
combinatorial structures [9, 11, 15]. For instance the cd -index of the Boolean algebra may
be computed by summing the cd -variation monomials of André permutations [15].

The n-th Euler number en counts André permutations of size n. The first terms are
e0 = 1, e1 = 1, e2 = 1, e3 = 2, e4 = 5, e5 = 16, . . . . Euler numbers give the enumeration
of several other combinatorial structures. In particular they also count rooted binary un-
ordered increasing trees. Indeed in [8] the authors describe a bijection - denoted here by
φ - which maps André permutations to this class of trees and viceversa.

Here we construct a new class of permutations associated with the sequence (en)n. We
do this by expanding a constrained subset of André permutations. The constraint is given
by considering only those permutatons which are d-alternating. This is equivalent to say
that they are φ-associated with strictly-binary increasing trees. The expansion is provided
by an application of the restriction operator. This last tool has been already used in the
literature to define simsun permutations (see [4] and related references).

What we consider in this manuscript is indeed the class of restrictions of d-alternating
André permutations.

In Section 3.1, we provide the enumeration with rispect to the size which is given by
Euler numbers.

In Section 3.2 we find the bivariate generating function which counts the restrictions
according to two parameters, i.e. the size and the number of left-to-right minima. To
achieve this result we make use of a nice correspondence between the set of left-to-right
minima and a particular path, called the min-path, of the associated increasing tree. As a
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Figure 1: The trees in B4.

result, fixing the number of left-to-right minima, we provide a nice combinatorial formula
which completely describes the desired enumeration in terms of Euler numbers.

In Section 3.3, we study the number of right-to-left minima. We give a functional
equation for the associated biivariate generating function. We show how the number of
restrictions of size n+ 1 with 2 right-to-left minima is related to the total number of left-
to-right minima in restrictions of size n. Finally, we study restrictions with a generic - but
fixed - number of right-to-left minima, providing an asymptotic bound for the probability
of a random restriction of given size to have a certain number of right-to-left minima.

Interestingly, as a corollary to some of our results, we observe a connection with the
class of cycle-up-down permutations [5] and this will need to be further investigated.

2 Preliminaries

The set of permutations of size n is denoted by Sn. If π = (π1π2 . . . πn) ∈ Sn the set of its
left-to-right minima is denoted by lrm(π) and its elements are those entries πi such that
if j < i, then πi < πj . We denote by rlm(π) the set of right-to-left minima and we recall
to the reader that πi ∈ rlm(π) if j > i implies πi < πj .

A binary increasing tree is a rooted, un-ordered tree with nodes of outdegree 0, 1 or 2.
Nodes of outdegree 0 are also called the leaves of the tree. Moreover, for such a tree, we
require that each of the n nodes is bijectively labelled by a number in {1, 2, ..., n} in a way
that going from the root to any leaf we always find an increasing sequence of numbers. If
x and y are two nodes, we write x ≺ y when the label of x is less than the label of y. The
set of binary increasing trees is denoted by B while we use the symbol Bn to denote the
subset of B made of those trees with n nodes.

Observe that, according to [8], each tree in B can be drawn in the plane in a unique
way respecting the following two conditions c1) and c2):

c1) if a node has only one child, then this child is drawn on the right of its direct ancestor;

c2) if a node x has two children y and z with y ≺ z, then y is drawn on the left of x
while z on the right.

In Fig. 1 we show those trees belonging to B4 respecting the previous two conditions.

The set of André permutations (of the second kind) A can be defined in several equiv-
alent ways, see for example Section 2 of [11]. Since An is a subset of Sn equinumerous
to Bn, we choose to characterize the mentioned permutations according to the following
injective map φ : Bn → Sn (see [8]):

1) given t ∈ Bn, draw t according to c1) and c2);

2) each leaf collapses into its direct ancestor whose label is then modified receiving on
the left the label of the left child (if any) and on the right the label of its right child.
We obtain in this way a new tree whose nodes are labelled with sequences of numbers;

3) starting from the obtained tree go to step 2).

The algorithm φ ends when the tree t is reduced to a single node whose label is then
a permutation φ(t) of size n.

The set An can be seen as An = {φ(t) ∈ Sn : t ∈ Bn}. Looking at Fig. 1 the
corresponding permutations in A4 are (from left to right) (2314), (1234), (2134), (1324)
and (2413).
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André permutations, as binary increasing trees, are enumerated, with respect to the
size, by the so called Euler numbers (en)n≥0 whose exponential generating function satisfies

∫

E(z)2dz = 2E(z)− z − 2

and therefore is equal to

E(z) = sec(z) + tan(z).

The first terms of the sequence are: 1, 1, 1, 2, 5, 16, 61, 272, 1385, ... and they correspond
to entry A000111 in [14].

Given a permutation π ∈ Sn, a restriction of π is a permutation obtained from π by
considering only the entries 1, 2, ..., k, with 1 ≤ k ≤ n. If σ is a restriction of π, then we
write σ ⊳ π. Restrictions have been used in the literature for example to define simsun
permutations. Here we use restrictions as an expansion operator. Indeed, if X is a class
of permutations, we can define RX = {σ ⊳ π : π ∈ X}. Observe that X ⊆ RX and in
particular, for André pemutations, we have a strict inclusion given that - for example -
(21)⊳ (213) ∈ A and (21) /∈ A. It follows that, in general, the quantity |RA ∩ Sn| can be
greater than en.

It is then of interest to ask for a constraint on A such that, expanding the resulting

subset Ã, gives back for (RÃ∩Sn)n the original enumerative sequence (en)n. That is what
we do with the next definitions.

Given a permutation π = (π1π2 . . . πn), a descent (resp. a ascent) in π is an entry πi

with 1 ≤ i < n such that πi > πi+1 (resp. πi < πi+1). A permutation is d-alternating when
it starts with a descent and it has neither two consecutive descents nor two consecutive
ascents. The subset of An made of those permutations which are d-alternating is denoted
by Ãn and Ã =

⋃

i
Ãi.

If we define a tree in B which does not have nodes of outdegree 1 to be strictly-
binary and we let B̃n be the corresponding subset of Bn, we can observe the following
correspondence

Proposition 1 Let π ∈ An, then π ∈ φ(B̃n) if and only if π ∈ Ãn.

Proof. It is a well known fact that André permutations do not have two consecutive
descents [11]. It is then sufficient to show that, given π ∈ An, π ∈ φ(B̃n) is equivalent to
say that π starts with a descent and that it does not contain two consecutive ascents.

(⇒) To start observe that if π starts with a ascent, then it cannot be φ-associated
with a strictly-binary tree. Furthermore, if π has two consecutive ascents, say π =
(. . . πi πi+1 πi+2 . . . ) with πi < πi+1 < πi+2, let t ∈ Bn such that φ(t) = π. Looking
at πi, πi+1 and πi+2 as nodes of t we must have that πi+1 belongs to the right subtree of
πi and, similarly, πi+2 is a node in the right subtree of πi+1. Furthermore note that πi+1

cannot have a left subtree, otherwise πi+1 would not be next to πi in φ(t). It follows that
πi+1 is a node of outdegree 1 in t, which means t /∈ B̃n.

(⇐) Let us now take π = φ(t) with t having a node x of outdegree 1. Let w be the
first node we encounter in the path from x to the root of t such that x is in the right
subtree of w; such a w must exist otherwise π would start with a rise. Let y be the (right)
child of x. If t′ is the (possibly empty) left subtree of y, then, applying φ, we obtain
π = φ(t) = (. . . w x φ(t′) y . . . ) where, either in w xφ(t′) or in w xy, we find two conscutive
ascents. It follows that π /∈ Ã. �

The previous proposition allows us to switch from d-alternating André permutations
to strictly-binary increasing trees and viceversa.

Let us finally define the object of our work: we consider

RÃ
n = {σ ∈ Sn : ∃ π ∈ Ã with σ ⊳ π} and RÃ =

⋃

i

RÃ
i .

According to the definition the reader can check that RÃ
5 is made of the following 16

permutations
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(32514), (42513), (21435), (32415),

(53241), (32541), (43251), (32154),

(42153), (52143), (43215), (53214),

(54213), (21543), (43521), (54321).

Observe that in general RÃ
n * An. Indeed we have that (326514)⊳ (3265714) ∈ Ã but

(326514) /∈ A6.

In Section 3.2 we will focus on left-to-right minima statistics using the symbol RÃ
n,m

to denote the subset of RÃ
n made of those permutations π with |lrm(π)| = m, while, in

Section 3.3, we will study right-to-left minima using RÃ
n,m to refer to the subset |rlm(π)| =

m.

3 Enumeration of RÃ
n and RÃ

n,m

In this section we provide the enumeration of RÃ
n and RÃ

n,m using the existing correspon-
dance between permutations and binary increasing trees.

3.1 The cardinality of RÃ
n

The two criteria c1) and c2) given in Section 2, which were used to draw each binary
increasing tree in a unique and well defined way, are not the only possible ones. Indeed,
one can consider the criterion c2) plus the dual version of c1). To be more precise, if in a
tree a node has only one child, then this child is drawn on the left of its direct ancestor
and not on the right as it was in c1).

Trees drawn according to c2) and the new condition described above are said to be
left oriented. Given such a tree, we can still apply the procedure φ of Section 2 - without
considering step 1) - to define a permutation which is not, in general, an André one.

In what follows we show that a permutation belongs to RÃ
n if and only if it is the

permutation coming through φ from a left oriented binary increasing tree of size n. As a

corollary we also have that |RÃ
n | = |Bn| = en.

Proposition 2 Given a permutation π ∈ Sn, we have that π is φ-associated with a left

oriented binary increasing tree of size n if and only if π ∈ RÃ
n .

Proof. (⇒) Take the left oriented tree corresponding to π and, to every node with
outdegree 1, add a child with label a number greater than n. Let t be the resulting tree.
Then t ∈ B̃ and π ⊳ φ(t) ∈ Ã.

(⇐) Suppose π ⊳ σ ∈ Ãm, with n ≤ m. Let t ∈ B̃m be the tree associated with σ.
Remove from t all the nodes labelled by a number k > n. The obtained tree is left oriented
and σ comes from t applying steps 2) and 3) of φ. �

Thus we have

Corollary 1 The cardinality of RÃ
n is given by the n-th Euler number en.

3.2 Left-to-right minima and the min-path

In the previous section we have shown that permutations in RÃ correspond to those
permutations coming from left oriented trees when we apply steps 2) and 3) of φ. Now we
want to refine the bijection described in the proof of Proposition 2 to consider also the set
of left-to-right minima of such permutations. To do this we need the following definition.

Given a binary increasing tree t, consider the following path: we start from the root of
t and at each step we move to the child with the least label. In Fig. 2 we show a tree t
where such path, which will be called the min-path of t, is highlighted.

The next proposition states the relation between left-to-right minima of a permutation

in RÃ and the min-path of the corresponding tree in B.
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Figure 3: First levels of the generating tree associated with Θ.

Proposition 3 If π ∈ RÃ, then lrm(π) consists of the labels belonging to the min-path of
φ−1(π).

Proof. First, observe that when a tree is left oriented then its min-path corresponds to the
path going from the root to the leftmost leaf.

If we consider t = φ−1(π), then t is a left oriented binary increasing tree.
If a node x belongs to the min-path of t, then in π the entries which are on the left of

x correspond to the nodes belonging to the left subtree of x. Since t is increasing we have
that x ∈ lrm(π).

If a node x does not belong to the min-path of t, then, going from x to the root of t,
we find a node of outdegree 2 such that x belongs to its right subtree. Let z be the left
child of this node and y the right one. Then z ≺ y � x which implies z ≺ x. Moreover,
applying the procedure φ, the entry z will be placed on the left of x. From this we have
that x /∈ lrm(π). �

As an example consider the binary increasing tree presented in Fig. 2. The associated
permutation is π = (11 7 6 10 9 5 8 2 1 13 4 14 3 12) and then the set lrm(π) = {11, 7, 6, 5, 2, 1}
has the same entries of the min-path.

Based on Propositions 2 and 3 we can obtain the enumeration of RÃ
n,m by counting

the number of binary increasing trees with respect to the size and to the length of the
min-path.

3.2.1 A multivariate generating function for B

We now introduce a recursive construction for binary increasing trees. In particular we
construct each tree belonging to Bn+1 by adding a new node to a tree in Bn. This construc-
tion, denoted by Θ, is then translated into a functional equation. Solving the equation
yelds a multivariate exponential generating function counting binary increasing trees with
respect to size and to the length of the min-path.

Given a tree t ∈ Bn, Θ simply adds the node labelled ’n + 1’ as a child of a node of t
having outdegree less than two. More precisely, if o(t) (resp. p(t)) is the number of nodes
with outdegree 0 (resp. 1) in t, then Θ applied to t produces o(t) + p(t) elements of Bn+1

each time adding the new node labelled n+1 as a child of the nodes counted in o(t)+p(t).
In Fig. 3 the first levels of the generating tree resulting from Θ are shown.
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Note that, if q(t) is the number of nodes with outdegree two in a tree t ∈ Bn, then
o(t) = q(t) + 1 and o(t) + p(t) + q(t) = n. From these relations it follows that p(t) =
n − 2o(t) + 1. The construction Θ can be translated into the succession rule (1) (see [1]
[2])

(o, l, n) → (o, l, n+ 1)o−1 (o, l + 1, n+ 1) (o+ 1, l, n+ 1)n−2o+1. (1)

Note that each tree is represented in (1) by the values of its parameters o, l and n, where l
represents the length of the min-path (i.e. l = |lrm(φ(t))|) while n corresponds to the size.
In particular, given a tree t with parameters o = o(t) and n = n(t), the application of Θ
on t produces o new trees having size n+ 1 and the same value for o and n− 2o+ 1 new
trees having both the size and the number of nodes of outdegree zero augmented by one.
The starting point of the construction is the unique tree of size one which is associated
with the label (1, 1, 1).

Now consider the exponential generating function

F (x, y, z) =
∑

t∈B

xo(t)yl(t)zn(t)

n(t) !
,

rule (1) can be then translated as follows

F (x, y, z) = xyz

+
∑

xoylzn∈B

(o− 1)xoylzn+1

n+ 1 !

+
∑

xoylzn∈B

xoyl+1zn+1

n+ 1 !

+
∑

xoylzn∈B

(n− 2o+ 1)(xo+1ylzn+1)

n+ 1 !

= xyz

+x(1− 2x)
∑

xoylzn∈B

oxo−1ylzn+1

n+ 1 !

+(y − 1)
∑

xoylzn∈B

xoylzn+1

n+ 1 !

+xz F (x, y, z).

We obtain that

F (x, y, z)(1− xz)− xyz = x(1− 2x)
∑

xoylzn∈B

oxo−1ylzn+1

n+ 1 !

+(y − 1)
∑

xoylzn∈B

xoylzn+1

n+ 1 !
,

and differentiating both sides with respect to the variable z we have

(1− x− y)F (x, y, z)− xy = x(1− 2x)
∂F

∂x
(x, y, z) + (xz − 1)

∂F

∂z
(x, y, z).

The boundary condition to the previous first order partial differential equation can be
given as

F (x, y, 0) = 0.

One can find the desired solution applying the method of characteristics (see [12]) or
using some computer algebra tools (like Mathematica or Maple). In the latter case, after

6



the substitution x = 1 into the solution F (x, y, z) and performing some manipulations,
one finds that, when n ≥ 2 and 2 ≤ l ≤ n,

|RÃ
n,l| = [yl−1]

[(
∂n−1 F̃

∂zn−1

)

z=0

]

,

with

F̃ (y, z) =

(
1

1− sin(z)

)y

.

In other words, we have the following result

Proposition 4 The (shifted) exponential generating function counting the permutations

in RÃ with respect to the size and number of left-to-right minima is given by

F̃ (y, z) =

(
1

1− sin(z)

)y

=
∑

t∈B

yl(t)−1zn(t)−1

(n(t)− 1) !
.

Considering F̃ (1, z) provides the (shifted) exponential generating function for Euler
numbers.

The first terms of |RÃ
n,l| are thus given by the following table.

n/l 2 3 4 5 6 7 8 9 10

2 1 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0
4 1 3 1 0 0 0 0 0 0
5 2 7 6 1 0 0 0 0 0
6 5 20 25 10 1 0 0 0 0
7 16 70 105 65 15 1 0 0 0
8 61 287 490 385 140 21 1 0 0
9 272 1356 2548 2345 1120 266 28 1 0
10 1385 7248 14698 15204 8715 2772 462 36 1

Note that Euler numbers are the entries of the first column. Furthermore observe that,
looking at the table column by column, one has

(
∂l F̃

∂yl

)

y=0

= [− ln (1− sin(z))]l

and then

1

l!
[− ln (1− sin(z))]l =

∑

t∈B, l(t)=l+1

zn(t)−1

(n(t)− 1) !
.

Given that
∫
E(z)dz = − ln (1− sin(z)) , as a corollary we have

Proposition 5 For every fixed l ≥ 1

1

l!




∑

n≥1

en−1

n!
zn





l

=
∑

n≥l

|RÃ
n+1,l+1|

n!
zn, (2)

where
e0 = 1, e1 = 1, e2 = 1, e3 = 2, e4 = 5, e5 = 16, e6 = 61, ...

are Euler numbers.

We conclude this section recalling that in Chapter 7 of [13] the author studies a family
of polynomials corresponding to the rows of the previous table. He also shows a criterion
according to which each row defines a partition of the set of up-down permutations of
a given size. Furthermore, in [5] the authors prove that the rows of the previous table
also provide the enumeration of the so called cycle-up-down permutations with respect to
the size and to the number of cycles. It is then natural to ask for a bijection between the

permutations inRÃ
n+1 and the cycle-up-down ones of size n enlightening the correspondence

between left-to-right minima and cycles.
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3.3 Right-to-left minima and the max-path

In the previous section we have enumerated the permutations in RÃ with respect to the
size and to the number of left-to-right minima. We have also seen how the last parameter
corresponds to the length of a particuar path in the associated class of trees.

It is interesting to observe that a similar correspondence holds also between the number
of right-to-left minima and the length of another particular path defined for trees in B.
If t ∈ B, the max-path of t is made of those nodes visited according to the following
procedure. Start from the root of t and, at each step (until possible), if the current node
has outdegree two move to the child having the biggest label. It is important to remark
that the max-path does not represent a dual version of the previously defined min-path.
Indeed, according to the procedure for the max-case, we visit a new node only if the current
one has outdegree two.

Looking at the tree presented in Fig. 2, its max-path is composed by the nodes in
{1, 3, 12} which also corresponds to the set of right-to-left minima rlm(π), where π =
(11 7 6 10 9 5 8 2 1 13 4 14 3 12).

More in general we can state the following

Proposition 6 If π ∈ RÃ, then rlm(π) consists of the labels belonging to the max-path
of φ−1(π).

Proof. Observe that, when a the tree t = φ−1(π) is drawn according to its left orientation,
the max-path of t is made of those nodes we can visit starting from the root and performing
only right steps. Then, if πi belongs to the max-path and j > i, πj must be a descendant
of πi in t and then πi < πj . Viceversa, if πi does not belong to the max-path of t, going
from the root of t to πi we have to perform at least one left step. Corresponding to this
left step we find an entry of π which has a smaller value than πi and it is placed on its
right. Then πi cannot be a right-to-left minima of π. �

As a first step, one can proceed in the enumeration of right-to-left minima using the
same generating-tree approach of the previous section. In this case, given a tree t, we
denote by r(t) the cardinality of its max-path, by o(t) (resp. n(t)) the number of leaves
(resp. the size) while d(t) is defined as d(t) = n(t) − 2o(t) + 1 (i.e. the number of nodes
of outdegree 1). Furthermore we say that a tree is in the class A if the last node of its
max-path has outdegree 1, while we say that it is in the class B otherwise. The recursive
construction Θ defined in Section 3.2.1 gives, in this case, the following set of rules

(o, r, n)B,d≥0 → (o, r, n+ 1)o−1
B,d+1 (o, r, n+ 1)A,d+1 (o+ 1, r, n+ 1)dB,d−1

(o, r, n)A,d>0 → (o, r, n+ 1)oA,d+1 (o+ 1, r + 1, n+ 1)B,d−1 (o+ 1, r, n+ 1)d−1
A,d−1

where the construction starts with the tree made of one node whose label is then
(1, 1, 1)B,0. Note that we can increase the value of the parameter r only starting from a
tree in the class A.

It seems natural at this point to consider

G = G(x,w, v, z) =
∑

t∈B

xo(t)wr(t)vd(t)zn(t)

as the sum

G =
∑

k≥0

(GA,k(x,w, v, z) +GB,k(x,w, v, z)),

where GA,k (resp. GB,k) is the ordinary generating function counting those trees in
the class A (resp. B) having d = k.

The functional equations look then as follows

8



GA,0 = 0,

GA,k =
−xz

v
GA,k+1 + xz

∂GA,k+1

∂v
+ xvz

∂GA,k−1

∂x
+ vzGB,k−1,

GB,0 = xwz +
xwz

v
GA,1 + xz

∂GB,1

∂v
,

GB,k =
xwz

v
GA,k+1 + xz

∂GB,k+1

∂v
+ xvz

∂GB,k−1

∂x
− vzGB,k−1 (with k > 0).

Then, considering that GB,0 does not depend on v, we can write

GA =
∑

k≥0

GA,k

=
−xz

v
GA + xz

∂GA

∂v
+ xvz

∂GA

∂x
+ vzGB and

GB =
∑

k≥0

GB,k

= xwz +
xwz

v
GA + xz

∂GB

∂v
+ xvz

∂GB

∂x
− vzGB .

We are not able to solve the system of equations for GA and GB but we can still
use it, as a recursive algorithm, to find the number of trees belonging to Bn having the
cardinality of the max-path equal to r. Based on Proposition 6 this value is the number

of permutations in RÃ
n having a fixed number r of right-to-left minima.

Recursion: Let us define G
(n)
A as the polynomial

G
(n)
A =

∑

t∈Bn∩A

xo(t)wr(t)vd(t)zn

and analogously consider

G
(n)
B =

∑

t∈Bn∩B

xo(t)wr(t)vd(t)zn.

We are interested in the polynomial G(n) = G
(n)
A +G

(n)
B .

The starting point of the procedure is given by G
(1)
A = 0 and G

(1)
B = xwz. By induction,

given G
(n)
A and G

(n)
B , we can compute

G
(n+1)
A =

−xz

v
G

(n)
A + xz

∂G
(n)
A

∂v
+ xvz

∂G
(n)
A

∂x
+ vzG

(n)
B and

G
(n+1)
B =

xwz

v
G

(n)
A + xz

∂G
(n)
B

∂v
+ xvz

∂G
(n)
B

∂x
− vzG

(n)
B .

Using the previously defined procedure we have computed the entries of the following

table showing, for all (n, r) ∈ {1, ..., 10}2, the number of permutations in RÃ
n having r

right-to-left minima.

n/r 1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 2 3 0 0 0 0 0 0 0 0
5 5 10 1 0 0 0 0 0 0 0
6 16 38 7 0 0 0 0 0 0 0
7 61 165 45 1 0 0 0 0 0 0
8 272 812 288 13 0 0 0 0 0 0
9 1385 4478 1936 136 1 0 0 0 0 0
10 7936 27408 13836 1320 21 0 0 0 0 0

9



t2

t1

2

1

k

Figure 4: Decomposition of a tree with max-path of length two.

In the first column we find (shifted) Euler numbers. It is also interesting to observe
that the entries in the second column

1, 3, 10, 38, 165, 812, 4478, 27408, 184529, 1356256, 10809786, 92892928...

belong to sequence A186367 of [14]. This sequence counts the number of cycles in all
cycle-up-down permutations of size n (see also [5]) and, furthermore, it is strongly related

to the total number of left-to-right minima in the permutations of RÃ having fixed size.
Indeed, we will prove that the exponential generating function associated with the non-zero
entries of the column r = 2 of the table above is given by

(
∂F̃

∂y

)

y=1

=
− ln(1− sin(z))

1− sin(z)
,

where F̃ is the same of Proposition 4.
In order to prove the correspondence, we observe that each tree in B having max-path

of length exactly two can be decomposed as shown in Fig. 4.
In particular, note that tree t1 must contain at least one node (labelled with 2) while

tree t2 could be empty. The class of trees consisting of a (possibly empty) tree appended
to a node - denoted by k in Fig. 4 - is counted by the exponential generating function

ft2(z) =
∑

m>0

ẽmzm

m!
=

∫

E(z) = − ln(1− sin(z)) (with ẽm = em−1)

while

ft1(z) =
∑

n>0

enz
n

n!
= E(z)− 1

counts those trees having at least one node. Appending t1 of size n and t2 of size m − 1
as shown in Fig. 4 we can build exactly

(

n+m− 1

m

)

=
(n+m− 1)!

m!(n− 1)!

different trees. Indeed we have to merge the total order given by k and the nodes of t2 into
the order of t1 placing k after 2. It follows that, in the previous table, the entries n ≥ 1
of the column r = 2 correspond to the coefficients of the following exponential generating
function

g2(z) =
∑

n>0

∑

m>0

enẽmzn+m+1

(n+m+ 1)!

(n+m− 1)!

(m!)(n− 1)!

=
∑

n>0

∑

m>0

enẽmzn+m+1

(n+m)(n+m+ 1)(m!)(n− 1)!
.

Finally observe that

10



2

1

k1

k2

k3

k4

= +

2

1

k1

k2

k3

k4

2

1

k1

k2

k3

k4

Figure 5: Tree-decomposition for a fixed number of right-to-left minima. The max-path is made
of the nodes 1, k1, k2, k3, k4.

g′′2 = ft2 · f ′
t1

= ln

(
1

1− sin(z)

)

·

(
1

1− sin(z)

)

=

(
∂F̃

∂y

)

y=1

.

Given the above calculations, we obtain the following result

Proposition 7 The following equality holds for all n ≥ 2:

|RÃ
n+1,2| =

∑

l≥2

(l − 1) · |{π ∈ RÃ
n : |lrm(π)| = l}|

= (n− 1)! · [zn−1]

(
− ln(1− sin(z))

1− sin(z)

)

from which we have the next corollary

Corollary 2 For n ≥ 2:

|RÃ
n+1,2|+ |RÃ

n | =
∑

l≥2

l · |{π ∈ RÃ
n : |lrm(π)| = l}| (3)

Observe that, starting from (3) and dividing by |RÃ
n |, one obtains that the expected

number of left-to-right minima in a random permutation ofRÃ
n is given by 1+|RÃ

n+1,2|/|R
Ã
n |.

3.3.1 Fixing the number of right-to-left minima

Given what we have shown above, it is interesting to investigate more in details what

happens when we fix the number of right-to-left minima in RÃ
n . Let

gr(z) =
∑

n

|RÃ
n,r |

n!
· zn.

Looking at the associated tree-decomposition, the situation looks as shown in Fig. 5.
A tree with max-path of length r is obtained by appending to the same root a tree of
max-path r − 1 and a generic tree of size greater than zero. We must put the root of
the last tree above the root of the first one. Furthermore, recall that we can distinguish
among two possible trees of max-path size r depending on the out-degree of the last node
belonging to the max-path. If this has out-degree one, then we say that the tree belongs to
the class Ar otherwise it is in Br. We denote by gAr (z) and gBr (z) the associated generating
function and obviously gr(z) = gAr (z) + gBr (z).

If r > 0, one has

gAr =
∑

t1∈B

∑

t2∈Ar

zn1+n2+1

(n1 + n2 + 1)!
·

(

n1 + n2 − 1

n1 − 1

)

and similarly for gBr .

11



It follows that we can write two independent recursions for gAr (z) and gBr (z), namely

(gAr )
′′ = gAr−1 · (E(z)− 1)′ , with gA0 = 1

and
(gBr )′′ = gBr−1 · (E(z)− 1)′ , with gB1 = z.

Applying the first one to compute gA1 gives gA1 =
∫
E(z) − 1 dz = − ln(1 − sin(z)) − z

and then we obtain a recursion for (gr)
′′ = (gAr + gBr )′′ when r > 1. Indeed we have the

following result which shows the link between two contiguous generating functions in the
family (gr)r.

Proposition 8 For r > 1, the family of generating functions (gr)r satisfies

gr(z) =

∫ ∫

gr−1(z) ·E
′(z)dz (4)

being E′(z) =
(

1
1−sin(z)

)

and g1(z) =
∫
E(z)dz = − ln(1− sin(z)).

Observe that as a corollary, if we define g = g(w, z) =
∑

r≥1 w
rgr(z), one has the

following equation

g =wg1 +
∑

r≥2

wrgr = wg1 +
∑

r≥2

wr

(∫ ∫

E′gr−1

)

= wg1 +





∫ ∫

wE′
∑

r≥2

wr−1gr−1





=wg1 + w

(∫ ∫

E′g

)

= w

(∫

E

)

+ w

(∫ ∫

E′g

)

which gives
∂2g

∂z2
= wE′ + wE′g.

Considering now g̃ = g + 1 we have - as expected - the following result

Corollary 3 The bivariate generating function g̃(w, z) = 1 +
∑

r≥1 w
rgr(z) satisfies the

differential equation
∂2g̃

∂z2
= wE′(z) · g̃, (5)

where E′(z) =
(

1
1−sin(z)

)

.

Unfortunately equation (5) does not give an explicit solution for g̃. Still, as we will
see later, it can be used to explore the structure of the solution in a neighbourhood of the
singularity z = π/2.

Let us now focus on the exact computation of gr. To do that one can apply the result
of Proposition 8 together with the fact that E = E(z) satisfies

∫
E2 = 2E − z − 2. Here

we compute explicitly the generating function gr for the first values of r, say r = 1, 2, 3.
Indeed, if we define

∫ (i)

H =

i−times
︷ ︸︸ ︷∫ ∫

. . .

∫

H(z)dz,

for r = 1, 2 we have

g1 =

∫

E

g2 =

(
∫ (2) (∫

E

)

E′

)

=

(∫ (

E

∫

E

))

−

∫ (2)

E2

=
1

2
·

(∫

E

)2

−

∫

(2E − z − 2)

=
1

2
·

(∫

E

)2

− 2

(∫

E

)

+
z2

2
+ 2z,

12



while, for r = 3, we obtain:

g3 =

(
∫ (2) (

∫
E)2

2
E′

)

− 2

(
∫ (2) (∫

E

)

E′

)

+

(
∫ (2) (z2

2
+ 2z

)

E′

)

=

(∫

E
(
∫
E)2

2

)

−

(
∫ (2)

E2

(∫

E

))

− 2

[(∫

E

(∫

E

))

−

∫ (2)

E2

]

+

(
z2

2
+ 2z

)(∫

E

)

+ (−2z − 4)

(
∫ (2)

E

)

+ 3

(
∫ (3)

E

)

=
1

6
·

(∫

E

)3

−

[(∫

(2E − z − 2)

(∫

E

))

−

(
∫ (2)

(2E − z − 2)E

)]

− 2

[

1

2
·

(∫

E

)2

−

∫

(2E − z − 2)

]

+

(
z2

2
+ 2z

)(∫

E

)

+ (−2z − 4)

(
∫ (2)

E

)

+ 3

(
∫ (3)

E

)

=
1

6

(∫

E

)3

− 2

(∫

E

)2

+

(

8 + 2z +
z2

2

)(∫

E

)

− 2z2 − 8z

+ (−2z − 4)

(
∫ (2)

E

)

+ 4

(
∫ (3)

E

)

.

For values of r greater than 3 the exact computation of gr becomes more difficult. In
this cases we can still use the results of Proposition 8 to obtain asymptotic estimates of
the coefficients [zn]gr(z). Using standard methods of analytic combinatorics (see [7]) it
is sufficient to know an approximation of the function gr near its dominant singularity to
describe the behaviour of ([zn]gr(z))n. In this case, the main idea is to iteratively recover
an approximation for gr+1 by integration of an approximation for (gr ·E

′). By using this
approach, we provide, for a given value of r, an estimate of the probability for a random

permutation π ∈ RÃ
n to have |rlm(π)| = r. To illustrate the idea we start, as a firs step,

considering just rough estimates.
Near the dominant singularity z = π/2 we have

E′(z) =
1

1− sin(z)
=

2
(
π
2
− z
)2 +O (1) (6)

and, for every A > 0,

g1 =

∫

E(z)dz = ln

(
1

1− sin(z)

)

= −2 ln
(π

2
− z
)

+O (1) = O

((π

2
− z
)−A

)

. (7)

Then, as a first approximation, one has

(g1 · E
′)(z) = O

((π

2
− z
)−2−A

)

,

which gives by Proposition 8 and Th. VI.9 of [7]

g2(z) = O

((π

2
− z
)−A

)

.

We remark that, by the mentioned theorem, we can obtain a singular approximation of g2
by integrating, according to classical rules, the singular expansion of (g1 ·E

′).
Iterating the procedure one has that, independently on r, for every A > 0

gr(z) = O

((π

2
− z
)−A

)

. (8)
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Applying Th. VI.3 of [7] to (8) gives that, when n is large, for every A > 0

|RÃ
n,r |

n!
= [zn]gr(z) = O

((
2

π

)n

· nA−1

)

. (9)

A more precise analysis can be now carried out, using exactly the same procedure, to

provide a refinement of (9) showing the dependance of |RÃ
n,r| on the parameter r. One

can indeed iteratively consider more terms in the estimates for gr and (gr · E′) and then
use a more general version of Th. VI.9 of [7]. Indeed, according to Th. 7 of [6] and to
the related references, in order to obtain a singular approximation of gr+1 we are allowed
to classically integrate the singular expansions of (gr · E′) even when this is of the form
(π/2 − z)−α · (− ln (π/2− z))β, where α 6= 1 and β is a positive integer. Furthermore,
this applies also to error terms with the same structure, i.e., the corresponding O-transfer
holds true. This property is in our case very useful because, for example, one can exactly
compute integrals of the form

∫ (2)
[
ln
(
π
2
− z
)]r

(
π
2
− z
)2 = −

[
ln
(
π
2
− z
)]r+1

r + 1
+ · · · ,

where the remaining term is O
(
−
[
ln
(
π
2
− z
)]r)

for z near π/2.
Based on this one finds that for z → π/2

gr(z) =
2r

r!

[

− ln
(π

2
− z
)]r

+O

([

− ln
(π

2
− z
)]r−1

)

(10)

which gives, by Th. VI.4 of [7], that for n → ∞

[zn]gr(z) =
2r

r!
· [zn]

[ [

− ln
(π

2
− z
)]r

]

+ [zn]

[

O

([

− ln
(π

2
− z
)]r−1

)]

.

By Th. VI.2 of [7] (see special cases) one has that there is a constant c1,r > 0 such that

[zn]

[ [

− ln
(π

2
− z
)]r

]

∼ c1,r

(
2

π

)n

· n−1 [ln(n)]r−1 (n → ∞)

while, using Th. VI.3 of [7], one finds that there is c2,r > 0 such that

[zn]

[

O

([

− ln
(π

2
− z
)]r−1

)]

≤ c2,r

(
2

π

)n

· n−1 [ln(n)]r−1 (n → ∞).

All together this gives

2r

r!
· c1,r ≤

[zn]gr(z)
(
2
π

)n
· n−1 [ln(n)]r−1 ≤ c1,r + c2,r . (11)

which says that the ratio

|RÃ
n,r |

n! ·
(
2
π

)n
· n−1 [ln(n)]r−1

is bounded from both sides.
In conclusion we remark that, even if the recursion of Proposition 8 requires a double

integration, we can still efficiently use it to compute the singular expansions at z = π/2 of
the functions gr. Indeed, near the mentioned singularity, we are allowed to use standard
integration and the integrals involved are explicitely solvable.

Comparing the value of |RÃ
n,r|/n! as described in (11) with the probability for a random

permutation of size n to be in RÃ
n , i.e. 4

π
·
(
2
π

)n
, we obtain the following result

Proposition 9 For n large, the probability for a random permutation in RÃ
n to have r

right-to-left minima satisfies

cr ≤

P

(

|rlm(π)| = r

∣
∣
∣
∣
π ∈ RÃ

n

)

n−1 [ln(n)]r−1 ≤ Cr,

where cr and Cr are two positive constants.
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Figure 6: Plot of P

(

|rlm(π)| = 2

∣

∣

∣

∣

π ∈ RÃ
n

)

/(n−1 ln(n)).

In Fig. 6 we show for n large the behaviour of |RÃ
n,2|/|R

Ã
n | divided by n−1 ln(n).

Structural properties of g̃ near the singularity. To conclude our asymptotic
analysis we go back to equation (5) to describe a structural property of the solution g̃.
Indeed, treating w as a constant, we can apply Th. VII.9 of [7] finding that near the regular
singular point z = π/2 the desired solution g̃ can be expressed as

g̃ = aw ·
(π

2
− z
) 1+

√

1+8w

2

Aw

(

z −
π

2

)

+ bw ·
(π

2
− z
) 1−

√

1+8w

2

Bw

(

z −
π

2

)

,

where w could appear in aw, Aw(z), bw, Bw(z) and the functions Aw(z), Bw(z) are analytic
at z = 0.

It is interesting to note that, taking aw = 0 and bw = Bw = 1, one obtains

g̃α =
(π

2
− z
) 1−

√

1+8w

2

whose expansion at w = 0 looks as

g̃α =1− 2w ln(π/2− z) + w2 (4 ln(π/2− z) + 2 [ln(π/2− z)]2
)

+ w3

(

−16 ln(π/2− z)− 8 [ln(π/2− z)]2 −
4

3
[ln(π/2− z)]3

)

+ · · · .

Based on (7), this reflects well enough the asymptotic behaviour of the expressions for
g1, g2 and g3 which have been previously computed. More in general, we can consider
([wr]g̃α)(z) as an approximation of the desired gr(z) near the singularity z = π/2. This
can be justified recalling what is shown in (10) and observing that g̃α satisfies

∂2g̃α
∂z2

= w ·
2

(π/2− z)2
· g̃α

which is obtained by substituting in (5), i.e. the defining equation for g̃, the term E′(z) by
2/(π/2− z)2, the latter being the main part of the singular approximation (6). Therefore,
as for gr(z), we have that in a neighbourhood of z = π/2

([wr]g̃α)(z) =
2r

r!

[

− ln
(π

2
− z
)]r

+O

([

− ln
(π

2
− z
)]r−1

)

.
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