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A PROBABILISTIC INTERPRETATION OF A SEQUENCE

RELATED TO NARAYANA POLYNOMIALS

TEWODROS AMDEBERHAN, VICTOR H. MOLL, AND CHRISTOPHE VIGNAT

Abstract. A sequence of coefficients appearing in a recurrence for the Narayana
polynomials is generalized. The coefficients are given a probabilistic interpreta-
tion in terms of beta distributed random variables. The recurrence established
by M. Lasalle is then obtained from a classical convolution identity. Some
arithmetical properties of the generalized coefficients are also established.

1. Introduction

The Narayana polynomials

(1.1) Nr(z) =
r
∑

k=1

N(r, k)zk−1

with the Narayana numbers N(r, k) given by

(1.2) N(r, k) =
1

r

(

r

k − 1

)(

r

k

)

have a large number of combinatorial properties. In a recent paper, M. Lasalle [19]
established the recurrence

(1.3) (z + 1)Nr(z)−Nr+1(z) =
∑

n≥1

(−z)n
(

r − 1

2n− 1

)

AnNr−2n+1(z).

The numbers An satisfies the recurrence

(1.4) (−1)n−1An = Cn +

n−1
∑

j=1

(−1)j
(

2n− 1

2j − 1

)

AjCn−j ,

with A1 = 1 and Cn = 1
n+1

(

2n
n

)

the Catalan number. This recurrence is taken here
as being the definition of An. The first few values are

(1.5) A1 = 1, A2 = 1, A3 = 5, A4 = 56, A5 = 1092, A6 = 32670.

Lasalle [19] shows that {An : n ∈ N} is an increasing sequence of positive
integers. In the process of establishing the positivity of this sequence, he contacted
D. Zeilberger, who suggested the study of the related sequence

(1.6) an =
2An

Cn
,
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with first few values

(1.7) a1 = 2, a2 = 1, a3 = 2, a4 = 8, a5 = 52, a6 = 495, a7 = 6470.

The recurrence (1.4) yields

(1.8) (−1)n−1an = 2 +

n−1
∑

j=1

(−1)j
(

n− 1

j − 1

)(

n+ 1

j + 1

)

aj
n− j + 1

.

This may be expressed in terms of the numbers

(1.9) σn,r :=
2

n

(

n

r − 1

)(

n+ 1

r + 1

)

that appear as entry A108838 in OEIS and count Dyck paths by the number of
long interior inclines. The fact that σn,r is an integer also follows from

(1.10) σn,r =

(

n− 1

r − 1

)(

n+ 1

r

)

−
(

n− 1

r − 2

)(

n+ 1

r + 1

)

.

The relation (1.8) can also be written as

(1.11) an = (−1)n−1



2 +
1

2

n−1
∑

j=1

(−1)jσn,jaj



 .

The original approach by M. Lasalle [19] is to establish the relation

(1.12) (z + 1)Nr(z)−Nr+1(z) =
∑

n≥1

(−z)n
(

r − 1

2n− 1

)

An(r)Nr−2n+1(z)

for some coefficient An(r). The expression

(1.13) Nr(z) =
∑

m≥0

zm(z + 1)r−2m−1

(

r − 1

2m

)

Cm

given in [12], is then employed to show that An(r) is independent of r. This is the
definition of An given in [19]. Lasalle mentions in passing that “J. Novak observed,
as empirical evidence, that the integers (−1)n−1An are precisely the (classical)
cumulants of a standard semicircular random variable”.

The goal of this paper is to revisit Lasalle’s results, provide probabilistic inter-
pretation of the numbers An and to consider Zeilberger’s suggestion.

The probabilistic interpretation of the numbers An starts with the semicircular
distribution

(1.14) f1(x) =

{

2
π

√
1− x2 if − 1 ≤ x ≤ 1

0 otherwise.

Let X be a random variable with distribution f1. Then X∗ = 2X satisfies

(1.15) E [Xr
∗ ] =

{

0 if r is odd

Cm if r is even, with r = 2m,

where Cn = 1
m+1

(

2m
m

)

are the Catalan numbers. The moment generating function

(1.16) ϕ(t) =

∞
∑

n=0

E [Xn]
tn

n!
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is expressed in terms of the modified Bessel function of the first kind Iα(x) and the
cumulant generating function

(1.17) ψ(t) = logϕ(t) =

∞
∑

n=1

κ1(n)
tn

n!

has coefficients κ1(n), known as the cumulants of X . The identity

(1.18) An = (−1)n+1κ1(2n)2
2n,

is established here. Lasalle’s recurrence (1.4) now follows from the convolution
identity

(1.19) κ(n) = E [Xn]−
n−1
∑

j=1

(

n− 1

j − 1

)

κ(j)E
[

Xn−j
]

that holds for any pair of moments and cumulants sequences [24]. The coefficient
an suggested by D. Zeilberger now takes the form

(1.20) an =
2(−1)n+1κ1(2n)

E [X2n
∗ ]

.

In this paper, these notions are extended to the case of random variables dis-
tributed according to the symmetric beta distribution

(1.21) fµ(x) =
1

B(µ+ 1
2 ,

1
2 )

(1− x2)µ−1/2, for |x| ≤ 1, µ > − 1
2

and 0 otherwise. The semi-circular distribution is the particular case µ = 1. Here
B(a, b) is the classical beta function defined by the integral

(1.22) B(a, b) =

∫ 1

0

ta−1(1 − t)b−1 dt, for a, b > 0.

These ideas lead to introduce a generalization of the Narayana polynomials and

these are expressed in terms of the classical Gegenbauer polynomials C
µ+

1
2

n . The
coefficients an are also generalized to a family of numbers {an(µ)} with parameter
µ. The special cases µ = 0 and µ = ± 1

2 are discussed in detail.

Section 2 produces a recurrence for {an} from which the fact that an is incresaing
and positive are established. The recurrence comes from a relation between {an}
and the Bessel function Iα(x). Section 3 gives an expression for {an} in terms of a
determinant of an upper Hessenberg matrix. The standard procedure to evaluate
these determinants gives the original recurrence defining {an}. Section 4 introduces
the probabilistic interpretation of the numbers {an}. The cumulants of the asso-
ciated random variable are expressed in terms of the Bessel zeta function. Section
5 presents the Narayana polynomials as expected values of a simple function of
a semicircular random variable. These polynomials are generalized in Section 6
and they are expressed in terms of Gegenbauer polynomials. The corresponding
extension of {an} are presented in Section 7. The paper concludes with some arith-
metical properties of {an} and its generalization corresponding to the parameter
µ = 0. These are described in Section 8.



4 T. AMDEBERHAN, V. MOLL, AND C. VIGNAT

2. The sequence {an} is positive and increasing

In this section a direct proof of the positivity of the numbers an defined in (1.8)
is provided. Naturally this implies An ≥ 0. The analysis employs the modified

Bessel function of the first kind

(2.1) Iα(z) :=
∞
∑

j=0

1

j! (j + α)!

(z

2

)2j+α

.

Formulas for this function appear in [16].

Lemma 2.1. The numbers an satisfy

(2.2)

∞
∑

j=1

(−1)j−1aj
(j + 1)!

xj−1

(j − 1)!
=

2√
x

I2(2
√
x)

I1(2
√
x)
.

Proof. The statement is equivalent to

(2.3)
√
xI1(2

√
x)×

∞
∑

j=1

(−1)j−1aj
(j + 1)!

xj−1

(j − 1)!
= 2I2(2

√
x).

This is established by comparing coefficients of xn on both sides and using (1.8). �

Now change x to x2 in Lemma 2.1 to write

(2.4)
∞
∑

j=1

(−1)j−1aj
(j + 1)!

x2j−2

(j − 1)!
=

2

x

I2(2x)

I1(2x)
.

The classical relations

(2.5)
d

dz

(

z−mIm(z)
)

= z−mIm+1(z), and
d

dz

(

zm+1Im+1(z)
)

= zm+1Im(z)

give

(2.6) I ′1(z) = I2(z) +
1

z
I1(z).

Therefore (2.4) may be written as

(2.7)

∞
∑

j=1

(−1)j−1aj
(j + 1)!

x2j−2

(j − 1)!
=

1

x

d

dx
log

(

I1(2x)

2x

)

.

The relations (2.5) also produce

(2.8)
d

dz

(

zm+1Im+1(z)

z−mIm(z)

)

= z2m+1 I
2
m(z)− I2m+1(z)

I2m(z)
.

In particular,

(2.9)
d

dz

(

z2I2(z)

z−1I1(z)

)

= z3 − z3
I22 (z)

I21 (z)
.

Replacing this relation in (2.7) gives the recurrence stated next.

Proposition 2.2. The numbers an satisfy the recurrence

(2.10) 2nan =

n−1
∑

k=1

(

n

k − 1

)(

n

k + 1

)

akan−k, for n ≥ 2,

with initial condition a1 = 1.
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Corollary 2.3. The numbers an are nonnegative.

Proposition 2.4. The numbers an satisfy

(2.11) 4an =

n−1
∑

k=1

(

n− 1

k − 1

)(

n− 1

k

)

akan−k −
n−2
∑

k=2

(

n− 1

k − 2

)(

n− 1

k + 1

)

akan−k.

Proof. This follows from (2.10) and the identity
(

n

k − 1

)(

n

k + 1

)

=
n

2

[(

n− 1

k − 1

)(

n− 1

k

)

−
(

n− 1

k − 2

)(

n− 1

k + 1

)]

.

�

Corollary 2.5. The numbers an are nonnegative integers. Moreover an is even if
n is odd.

Proof. Corollary 2.3 shows an > 0. It remains to show an ∈ Z and to verify the
parity statement. This is achieved by simultaneous induction on n.

Assume first n = 2m + 1 is odd. Then (1.9) shows that 1
2σn,r ∈ Z and (1.11),

written as

(2.12) an = (−1)n−1

[

2 +

n−1
∑

r=1

σn,r
2
ar

]

,

proves that an ∈ Z. Now write (2.10) as

(2.13) 2(2m+ 1)a2m+1 = 2

m
∑

k=1

(

2m+ 1

k − 1

)(

2m+ 1

k + 1

)

aka2m+1−k

and observe that either k or 2m + 1 − k is odd. The induction hypothesis shows
that either ak or a2m+1−k is even. This shows a2m+1 is even.

Now consider the case n = 2m even. If r is odd, then ar is even; if r is even then
r − 1 is odd and 1

2σn,r ∈ Z in view of the identity

(2.14) σn,r =
2

r − 1

(

n− 1

r − 2

)(

n+ 1

r + 1

)

.

The result follows again from (2.12). �

Corollary 2.6. The numbers An are nonnegative integers.

The recurrence in Proposition 2.2 is now employed to prove that {an} is an
increasing sequence. The first few values are 2, 1, 2, 8, 52.

Theorem 2.7. For n ≥ 3, the inequality an > an−1 holds.

Proof. Take the terms k = 1 and k = n− 1 in the sum appearing in the recurrence
in Proposition (2.2) and use an > 0 to obtain

(2.15) an ≥ 1

2n

[(

n

0

)(

n

2

)

a1an−1 +

(

n

n− 2

)(

n

2

)

an−1a1

]

.

Since a1 = 2 the previous inequality yields

(2.16) an ≥ (n− 1)an−1.

Hence, for n ≥ 3, this gives an − an−1 ≥ (n− 2)an−1 > 0. �
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3. An expression in forms of determinants

The recursion relation (1.8) expressed in the form

(3.1)

m
∑

j=1

(−1)j−1

(

m

j − 1

)(

m+ 1

j + 1

)

aj = 2m

is now employed to produce a system of equations for the numbers an by varying

m through 1, 2, 3, · · · , n. The coefficient matrix has determinant (−1)(
n
2
)n! and

Cramér’s rule gives

(3.2)

an =
(−1)n−1

n!
det

















(

1
1−1

)(

1+1
1+1

)

0 0 · · · 0 2
(

2
1−1

)(

2+1
1+1

) (

2
2−1

)(

2+1
2+1

)

0 · · · 0 4
(

3
1−1

)(

3+1
1+1

) (

3
2−1

)(

3+1
2+1

) (

3
3−1

)(

3+1
3+1

)

· · · 0 6

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

(

n
1−1

)(

n+1
1+1

) (

n
2−1

)(

n+1
2+1

) (

n
3−1

)(

n+1
3+1

)

· · ·
(

n
n−2

)(

n+1
n

)

2n

















The power of −1 is eliminated by permuting the columns to produce the matrix

(3.3) Bn =

















2
(

1
1−1

)(

1+1
1+1

)

0 0 0

4
(

2
1−1

)(

2+1
1+1

) (

2
2−1

)(

2+1
2+1

)

0 · · ·
6

(

3
1−1

)(

3+1
1+1

) (

3
2−1

)(

3+1
2+1

)

0 · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
2n

(

n
1−1

)(

n+1
1+1

) (

n
2−1

)(

n+1
2+1

) (

n
3−1

)(

n+1
3+1

)

· · ·
(

n
n−2

)(

n+1
n

)

















.

The representation of an in terms of determinants is given in the next result.

Proposition 3.1. The number an is given by

(3.4) an =
detBn

n!

where Bn is the matrix in (3.3).

Recall that an upper Hessenberg matrix is one of the form

(3.5) Hn =

















β1,1 β1,2 0 0 0 · · · · · · 0 0
β2,1 β2,2 β2,3 0 0 · · · · · · 0 0
β3,1 β3,2 β3,3 β3,4 0 · · · · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
βn,1 βn,2 βn,3 βn,4 · · · · · · · · · βn,n−1 βn,n

















The matrix B is of this form with

(3.6) βi,j =

{

2i if 1 ≤ i ≤ n and j = 1
(

i
j−2

)(

i+1
j

)

if j − 1 ≤ i ≤ n and j > 1.

It turns out that the recurrence (1.8) used to define the numbers an can be
recovered if one employs (3.4).
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Proposition 3.2. Define αn by

(3.7) αn =
detBn

n!

where B is the matrix (3.3). Then {αn} satisfies the recursion

(3.8) (−1)n−1αn = 2 +

n−1
∑

j=1

(−1)j
(

n− 1

j − 1

)(

n+ 1

j + 1

)

αj

n− j + 1

and the initial condition α1 = 1. Therefore αn = an.

Proof. For convenience define detH0 = 1. The determinant of a Hessenberg matrix
satisfies the recurrence

(3.9) detHn =

n
∑

r=1

(−1)n−rβn,r detHr−1

n−1
∏

i=r

βi,i+1.

A direct application of (3.9) yields

αn =
1

n!

{

(−1)n−1(2n)(n− 1)! +
n
∑

r=2

(−1)n−r

(

n

r − 2

)(

n+ 1

r

)

detBr−1

n−1
∏

i=r

i

}

= 2(−1)n−1 +
1

n!

n
∑

r=2

(−1)n−r

(

n

r − 2

)(

n+ 1

r

)

αr−1 (n− 1)!

= 2(−1)n−1 +

n
∑

r=2

(−1)n−r 1

n

(

n

r − 2

)(

n+ 1

r

)

αr−1

= 2(−1)n−1 +

n
∑

r=2

(−1)n−r

(

n

r − 2

)(

n+ 1

r

)

αr−1

n− r + 2

= 2(−1)n−1 + (−1)n−1
n
∑

r=1

(−1)j
(

n− 1

j − 1

)(

n+ 1

j + 1

)

αj

n− j + 1
.

This is (3.8). �

Corollary 3.3. The modified Bessel function of the first kind admits a determinant
expression

(3.10) I1(x) = x exp





∞
∑

j=1

(−1)j−1 detBj

(j + 1)! j!2

(x

2

)2j



 .

Proof. This follows by integrating the identity

(3.11)
2I2(2x)

x I1(2x)
=

1

x

d

dx
log

I1(2x)

2x
.

�

4. The probabilistic background: conjugate random variables

This section provides the probabilistic tools required for an interpretation of the
sequence An defined in (1.4). The specific connections are given in Section 5.
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Consider a random variable X with the symmetric beta distribution given in
(1.21). The moments of the symmetric beta distribution, given by

(4.1) E [Xn] =
1

B(µ+ 1
2 ,

1
2 )

∫ 1

−1

xn(1− x2)µ−1/2 dx,

vanish for n odd and for n = 2m they are

(4.2) E
[

X2m
]

=
Γ(µ+ 1)

Γ(µ+ 1 +m)

(2m)!

22mm!
.

Therefore the moment generating function is

(4.3) ϕµ(t) = E
[

etX
]

=

∞
∑

n=0

E [Xn]
tn

n!
= Γ(µ+ 1)

∞
∑

m=0

t2m

22mm! Γ(µ+m+ 1)
.

The next proposition summarizes properties of ϕµ(t). The first one is to recognize
the series in (4.3) from (2.1). The zeros {jµ,k} of the Bessel function of the first
kind

(4.4) Jα(x) =

∞
∑

j=0

(−1)m

m! Γ(m+ α+ 1)

(x

2

)2m+α

appear in the factorization of ϕµ in view of the relation Iµ(z) = e−πiµ/2Jµ(iz).

Proposition 4.1. The moment generating function ϕµ(t) of a random variable
X ∼ fµ is given by

(4.5) ϕµ(t) = Γ(µ+ 1)

(

2

t

)µ

Iµ(t).

Note 4.2. The Catalan numbers Cn appear as the even-order moments of fµ when
µ = 1. More precisely, if X is distributed as f1 (written as X ∼ f1), then

(4.6) E
[

(2X)2n
]

= Cn and E
[

(2X)2n+1
]

= 0.

Note 4.3. The moment generating function of fµ admits the Weierstrass product
representation

(4.7) ϕµ(t) =

∞
∏

k=1

(

1 +
t2

j2µ,k

)

where {jµ,k} are the zeros of the Bessel function of the first kind Jµ.

Definition 4.4. The cumulant generating function is

ψµ(t) = logϕµ(t)

= log

( ∞
∑

n=0

E [Xn]
tn

n!

)

.
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The product representation of ϕµ(t) yields

logϕµ(t) =
∞
∑

k=1

log

(

1 +
t2

j2µ,k

)

=

∞
∑

k=1

∞
∑

n=1

(−1)n−1

n

(

t

jµ,k

)2n

:=

∞
∑

n=1

κµ(n)
tn

n!
.

The series converges for |t| < jµ,1. The first Bessel zero satisfies jµ,1 > 0 for all
µ ≥ 0. It follows that the series has a non-zero radius of convergence.

Note 4.5. The coefficient κµ(n) is the n-th cumulant of X . An expression that
links the moments to the cumulants of X is provided by V. P. Leonov and A. N.
Shiryaev [20]:

(4.8) κµ(n) =
∑

V
(−1)k−1(k − 1)!

k
∏

i=1

E(2X)|Vi|

where the sum is over all partitions V = {V1, · · · , Vk} of the set {1, 2, . . . , n}.
In the case µ = 0 the moments are Catalan numbers or 0, in the case µ = 1 the

moments are central binomial coefficients. Therefore, in both cases, the cumulants
κµ(n) are integers. An expression for the general value of µ involves

(4.9) ζµ(s) =

∞
∑

k=1

1

jsµ,k

the Bessel zeta function, sometimes referred as the Rayleigh function.

The next result gives an expression for the cumulants of a random variable X
with a distribution fµ. The special case µ = 1, described in the next section,
provides the desired probabilistic interpretation of the original sequence An.

Theorem 4.6. Let X ∼ fµ. Then

(4.10) κ(n) =

{

0 if n is odd,

2(−1)n/2+1(n− 1)! ζµ(n) if n is even.

Proof. Rearranging the expansion in Definition 4.4 gives

logϕµ(t) =

∞
∑

k=1

∞
∑

n=1

(−1)n+1

n

(

t

jµ,k

)2n

=

∞
∑

n=1

(−1)n+1

n
t2n

∞
∑

k=1

1

j2nµ,k
.

Now compare powers of t in this expansion with the definition

(4.11) logϕµ(t) =
∞
∑

n=1

κµ(n)
tn

n!

to obtain the result. �
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The next ingredient in the search for an interpretation of the sequence An is the
notion of conjugate random variables. The properties described below appear in
[25]. A complex-valued random variable Z is called a regular random variable (rrv
for short) if E|Z|n <∞ for all n ∈ N and

(4.12) E [h(Z)] = h (E [Z])

for all polynomials h. The class of rrv is closed under compositions with polynomials
(if Z is rrv and P is a polynomial, then P (Z) is rrv) and it is also closed under
addition of independent rrv. The basic definition is stated next.

Definition 4.7. Let X, Y be real random variables, not necessarily independent.
The pair (X,Y ) is called conjugate random variables if Z = X + iY is an rrv. The
random variable X is called self-conjugate if Y has the same distribution as X .

The property of rrv may be expressed in terms of the function

Φ(α, β) := E [exp(iαX + iβY )]

The next theorem gives a condition for Z = X + iY to be an rrv. The random
variables X and Y are not necessarily independent.

Theorem 4.8. Let Z = X+iY be a complex valued random variable with E [Z] = 0
and E [Zn] <∞. Then Z is an rrv if and only if Φ(α, iα) = 1 for all α ∈ C.

This is now reformulated for real and independent random variables.

Theorem 4.9. Let X, Y be independent real valued random variables with finite
moments. Define

ΦX(α) = E
[

eiαX
]

=

∞
∑

n=0

(iα)n

n!
E [Xn] and ΦY (β) = E

[

eiαY
]

=

∞
∑

n=0

(iβ)n

n!
E [Y n] .

Then Z = X + iY is an rrv with mean zero if and only if ΦX(α)ΦY (iα) = 1.

Example 4.10. Let X and Y be independent Gaussian variables with zero mean
and the same variance. Then X and Y are conjugate since

ϕX(t) = exp

(

σ2

2
t2
)

and ϕiY (t) = exp

(

−σ
2

2
t2
)

.

Note 4.11. Suppose Z = X+ iY is a rrv with E [Z] = 0 and z ∈ C. The condition
(4.12) becomes

(4.13) E [h(z +X + iY )] = h(z).

Given a sequence of polynomials {Qn(z)} such that deg(Qn) = n and with
leading coefficient 1, an elementary argument shows that there is a unique sequence
of coefficients αj,n such that the relation

(4.14) Qn+1(z)− zQn(z) =

n
∑

j=0

αj,nQj(z)

holds. This section discusses this recurrence for the sequence of polynomials

(4.15) Pn(z) := E(z +X)n

associated to a random variable X . The polynomial Pn is of degree n and has
leading coefficient 1. It is shown that if the cumulants of odd order vanish, then
the even order cumulants provide the coefficients αj,n for the recurrence (4.14).
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Theorem 4.12. Let X be a random variable with cumulants κ(m). Assume the
odd-order cumulants vanish and that X has a conjugate random variable Y . Define
the polynomials

(4.16) Pn(z) = E [(z +X)n] .

Then Pn satisfies the recurrence

(4.17) Pn+1(z)− zPn(z) =
∑

m≥1

(

n

2m− 1

)

κ(2m)Pn−2m+1(z).

Proof. Let X1, X2 independent copies of X . Then

E [X1 ((X1 + iY1 + z +X2)
n − (z +X2)

n)] =

=

n
∑

j=0

(

n

j

)

E
[

X1(X1 + iY1)
j(z +X2)

n−j
]

− E [X1(z +X2)
n] .

This last expression becomes

n
∑

j=1

(

n

j

)

E
[

X1(X1 + iY1)
j(z +X2)

n−j
]

=
n
∑

j=1

(

n

j

)

E
[

X1(X1 + iY1)
j
]

E
[

(z +X2)
n−j
]

.

On the other hand

E [X1 ((X1 + z +X2 + iY1)
n − (z +X2)

n)] =
n
∑

r=0

(

n

r

)

E
[

X1(X1 + z)n−r
]

E [(X2 + iY1)
r]− E [X1(z +X2)

n] .

The cancellation property (4.28) shows that the only surviving term in the sum is
r = 0, therefore

E [X1 ((X1 + z +X2 + iY1)
n − (z +X2)

n)] =

E [X1(X1 + z)n]− E [X1]E [(z +X2)
n
]

and E [X1] = 0 since κ(1) = 0. This shows the identity

(4.18)

n
∑

j=1

(

n

j

)

E
[

X1(X1 + iY1)
j
]

E
[

(z +X2)
n−j
]

= E [X1(X1 + z)n] .

The cumulants of X satisfy

(4.19) κ(m) = EX(X + iY )m−1, for m ≥ 1,

(see Theorem 3.3 in [13]), therefore in the current situation

(4.20) E
[

X1(X1 + iY1)
j
]

=

{

0 if j is even

κ(2m) if j = 2m+ 1 is odd.

On the other hand

E [X1(X1 + z)n] = E
[

(X1 + z)n+1 − z(X1 + z)n
]

= Pn+1(z)− zPn(z).

Replacing in (4.18) yields the result. �
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Recall that a random variable has a Laplace distribution if its distribution func-
tion is

(4.21) fL(x) =
1
2e

−|x|.

Assume Xµ has a distribution fµ defined in (1.21) and moment generating func-
tion given by (4.7). The next lemma constructs a random variable Yµ conjugate to
Xµ.

Lemma 4.13. Let Yµ,n be a random variable defined by

(4.22) Yµ,n =

n
∑

k=1

Lk

jµ,k

where {Lk : k ∈ N} is a sequence of independent, identically distributed Laplace
random variables. Then lim

n→∞
Yµ,n = Yµ exists and is a random variable with

continuous probability density. Moreover, the moment generating function of iYµ
is

(4.23) E
[

eitYµ
]

=

∞
∏

k=1

(

1 +
t2

j2µ,k

)−1

.

the reciprocal of the moment generating function of fµ given in (4.7).

Proof. The characteristic function of a Laplace random variable iLk/jµ,k is

(4.24) ϕiLk
(t) =

1

1 + t2

j2
µ,k

.

The values

(4.25) E

[

Lk

jµ,k

]

= 0, and E

[

L2
k

j2µ,k

]

=
2

j2µ,k
,

guarantee the convergence of the series

(4.26)
∞
∑

k=1

E

[

Lk

jµ,k

]

and
∞
∑

k=1

E

[

L2
k

j2µ,k

]

.

(The last series evaluates to 1/(2µ + 2)). This ensures the existence of the limit
defining Yµ (see [17] for details). The continuity of the limiting probability density
Yµ is ensured by the fact that at least one term (in fact all) in the defining sum has
a continuous probability density that is of bounded variation. �

Note 4.14. In the case Xµ ∼ fµ is independent of Yµ, then the conjugacy property
states that if h is an analytic function in a neighborhood O of the origin, then

(4.27) E [h(z +Xµ + iYµ)] = h(z), for z ∈ O.
In particular

(4.28) E [(Xµ + iYµ)
n] =

{

1 if n = 0,

0 otherwise.

Note 4.15. In the special case µ = n/2− 1 for n ∈ N, n ≥ 3, the function (4.23)
has been characterized in [11] as the moment generating function of the total time
Tn spent in the sphere Sn−1 by an n-dimensional Brownian motion starting at the
origin.
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5. The Narayana polynomials and the sequence An

The result of Theorem 4.12 is now applied to a random variable X ∼ f1. In this
case the polynomials Pn correspondi, up to a change of variable, to the Narayama
polynomials Nn. The recurrence established by M. Lasalle comes from the results
in Section 4. In particular, this provides an interpretation of the sequence {An} in
terms of cumulants and the Bessel zeta function.

Recall the distribution function f1

(5.1) f1(x) =

{

2
√
1− x2/π, for |x| ≤ 1

0, otherwise.

Lemma 5.1. Let X ∼ f1. The Narayana polynomials appear as the moments

(5.2) Nr(z) = E

[

(

1 + z + 2
√
zX
)r−1

]

,

for r ≥ 1.

Proof. The binomial theorem gives

E
[

(1 + z + 2
√
zX)r−1

]

=

r−1
∑

j=0

(

r − 1

j

)

(z + 1)r−1−jzj/2E
[

(2X)j
]

.

The result now follows from (4.6) and (1.13). �

In order to apply Theorem 4.12 consider the identities

Nr(z) = E

[

(

1 + z + 2
√
zX
)r−1

]

(5.3)

= (2
√
z)r−1

E

[

(X + z∗)
r−1
]

= (2
√
z)r−1Pr−1(z∗),

with

(5.4) z∗ =
1 + z

2
√
z
.

The recurrence (4.17) applied to the polynomial Pn(z∗) yields

(5.5)
Nn+2(z)

(2
√
z)n+1

− (1 + z)

2
√
z

Nn+1(z)

(2
√
z)n

=
∑

m≥1

(

n

2m− 1

)

κ(2m)
Nn−2m+2(z)

(2
√
z)n−2m+1

that reduces to

(5.6) (1 + z)Nr(z)−Nr+1(z) = −
∑

m≥1

(

r − 1

2m− 1

)

κ(2m)22mzmNr+1−2m(z),

by using r = n+ 1. This recurrence has the form of (1.12).

Theorem 5.2. Let X ∼ f1. Then the coefficients An in Definition 1.3 are given
by

(5.7) An = (−1)n+1κ(2n)22n.

The expression in (4.10) gives the next result.
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Corollary 5.3. Let

(5.8) ζµ(s) =

∞
∑

k=1

1

jsµ,k

be the Bessel zeta function. Then the coefficients An are given by

An = 22n+1(2n− 1)! ζ1(2n).

The scaled coefficients an are now expressed in terms of the Bessel zeta function.

Corollary 5.4. The coefficients an are given by

(5.9) an = 22n+1(n+ 1)!(n− 1)! ζ1(2n).

Note 5.5. This expression for the coefficients and the recurrence

(5.10) (n+ µ)ζµ(2n) =

n−1
∑

r=1

ζµ(2r)ζµ(2n− 2r).

given in [15], provides a new proof of the recurrence in Proposition (2.2).

6. The generalized Narayana polynomials

The Narayama polynomials Nr(z), defined in (1.1), have been expressed as the
moments

(6.1) Nr(z) = E

[

(

1 + z + 2
√
zX
)r−1

]

,

for r ≥ 1. Here X is a random variable with distribution function f1. This suggests
the extension

(6.2) Nµ
n (z) = E

[

(

1 + z + 2
√
zX
)n−1

]

,

with X ∼ fµ. Therefore, Nn = N 1
n .

Note 6.1. The same argument given in (5.6) gives the recurrence

(6.3) (1 + z)Nµ
r (z)−Nµ

r+1(z) = −
∑

m≥1

(

r − 1

2m− 1

)

κ(2m)22mzmNµ
r+1−2m(z),

where κ(2n) are the cumulants of X ∼ fµ. Theorem 5.2 gives an expression for the
generalization of the Lasalle numbers:

(6.4) Aµ
n := (−1)n+1κ(2n)22n

and the corresponding expression in terms of the Bessel zeta function:

(6.5) Aµ
n := 22n+1(2n− 1)!ζµ(2n).

The generalized Narayana polynomials are now expressed in terms of the Gegen-
bauer polynomials Cµ

n (x) defined by the generating function

(6.6)

∞
∑

n=0

Cµ
n (x)t

n = (1− 2xt+ t2)−µ.
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These polynomial admit several hypergeometric representations:

Cµ
n (x) =

(2µ)n
n!

2F1

(

−n, n+ 2µ;µ+ 1
2 ;

1− x

2

)

(6.7)

=
2n(µ)n
n!

(x− 1)n 2F1

(

−n,−n− µ+ 1
2 ;−2n− 2µ+ 1;

2

1− x

)

=
(2µ)n
n!

(

x+ 1

2

)n

2F1

(

−n,−n− µ+ 1
2 ;µ+ 1

2 ;
x− 1

x+ 1

)

.

The connection between Narayana and Gegenbauer polynomials comes from the
expression for Cµ

n (z) given in the next proposition.

Proposition 6.2. The Gegenbauer polynomials are given by

(6.8) Cµ
n (z) =

(2µ)n
n!

E

[(

z +
√

z2 − 1Xµ−1/2

)n]

.

Proof. The Laplace integral representation

(6.9) Cµ
n (cos θ) =

Γ(n+ 2µ)

22µ−1n!Γ2(µ)

∫ π

0

(cos θ + i sin θ cosφ)
n
sin2µ−1 φdφ

appears as Theorem 6.7.4 in [3]. The change of variables z = cos θ and X = cosφ
gives

Cµ
n (z) =

Γ(n+ 2µ)

22µ n!Γ2(µ)

∫ 1

−1

(

z +
√

z2 − 1X
)n

(1−X2)µ−1 dX

=
(2µ)n
n!

E

[(

z +
√

z2 − 1Xµ−1/2

)n]

,

as claimed. Since this is a polynomial identity in z, it can be extended to all
z ∈ C. �

Theorem 6.3. The Gegenbauer polynomial Cµ
n and the generalized polynomial

Nµ
n satisfy the relation

(6.10) Nµ
n+1(z) =

n!

(2µ+ 1)n
(1− z)nC

µ+
1
2

n

(

1 + z

1− z

)

.

Proof. Introduce the variable

(6.11) Z =
1 + z

1− z

so that

(6.12) z =
Z − 1

Z + 1
and

Z√
Z2 − 1

=
1 + z

2
√
z
.

Then

C
µ+

1
2

n

(

1 + z

1− z

)

=
(2µ+ 1)n

n!

(

2
√
z

1− z

)n

E

[(

1 + z

2
√
z

+Xµ

)n]

=
(2µ+ 1)n
n! (1− z)n

E
[(

1 + z + 2
√
zXµ

)n]

=
(2µ+ 1)n
n! (1− z)n

Nµ
n+1(z),

using Z2 − 1 = 4z/(1− z)2. �
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The expression (6.7) now provides hypergeometric expressions for the original
Narayana polynomials

(6.13) Nn+1(z) =
2(1− z)n

(n+ 2)(n+ 1)
C3/2

n

(

1 + z

1− z

)

.

Corollary 6.4. The Narayana polynomials are given by

Nn+1(z) = (1− z)n2F1

(

−n, n+ 3; 2;
z

z − 1

)

(6.14)

=
(2n+ 2)!

(n+ 2)! (n+ 1)!
zn2F1

(

−n,−n− 1;−2n− 2;
z − 1

z

)

= 2F1(−n,−n− 1; 2; z).

This yields the representation as finite sums

Nn+1(z) =

n
∑

k=0

1

k + 1

(

n

k

)(

n+ k + 2

k

)

zk(1− z)n−k(6.15)

=
1

n+ 1

n
∑

k=0

(

n+ 1

k

)(

2n+ 2− k

n− k

)

zn−k(1− z)k

=
1

n+ 1

n
∑

k=0

(

n+ 1

k + 1

)(

n+ 1

k

)

zk.

Note that the first two expressions coincide up to the change of summation
variable k → n− k while the third identity is nothing but (1.1).

Note 6.5. The representation

(6.16) Cµ
n (z) =

(µ)n
n!

(2x)n2F1

(

−n
2
,
1− n

2
; 1− n− µ;

1

x2

)

that appears in as 6.4.12 in [3], gives the expression
(6.17)

Nn+1(z) =
(2n+ 2)!

(n+ 1)! (n+ 2)!

(

1 + z

2

)n

2F1

(

−n
2
,
1− n

2
;−n− 1

2
;

(

1− z

1 + z

)2
)

equal to the finite sum representation

(6.18) Nn+1(z) =
1

2n−1(n+ 2)

⌊n/2⌋
∑

k=0

(−1)k
(

n

k

)(

2n+ 1− 2k

n− 2k

)

(1−z)2k(1+z)n−2k.

Note 6.6. The polynomials Sn(z) = zN 1
n(z) satisfy the symmetry identity

(6.19) Sn(z) = zn+1Sn(z
−1).

These polynomials were expressed in [21] as

(6.20) Sn(z) = (z − 1)n+1

∫ z/(z−1)

0

Pn(2x− 1) dx

where Pn(x) = C
1/2
n (x) are the Legendre polynomials. An equivalent formulation

is provided next.
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Theorem 6.7. The polynomials Sn(z) are given by

Sn(z) =
1

2n+1

⌊n/2⌋
∑

k=0

(−1)k

n+ 1− k

(

2n− 2k

n− k

)(

n+ 1− k

k

)

(z − 1)2k(z + 1)n+1−2k.

Proof. The integration rule

(6.21)

∫

Cµ
n (x) dx =

1

2(µ− 1)
Cµ−1

n+1 (x)

implies

(6.22)

∫ z/(z−1)

0

C1/2
n (2x− 1) dx = −1

2
C

−1/2
n+1

(

z + 1

z − 1

)

,

since the generating function

(6.23)

∞
∑

n=0

tnC−1/2
n (z) = (1 − 2zt+ t2)1/2

gives C
−1/2
n+1 (−1) = 0 for n > 1. Then (6.20) yields

(6.24) Sn(z) = −1

2
(z − 1)n+1C

−1/2
n+1

(

z + 1

z − 1

)

.

A classical formula for the Gegenbauer polynomials states

(6.25) Cµ
n (z) =

⌊n/2⌋
∑

k=0

(−1)k

k!

(µ)n−k

(n− 2k)!
(2z)n−2k

and the identity
(

−1

2

)

k

= − 1

22k−1

(2k − 2)!

(k − 1)!

produce

(6.26) C−1/2
n (z) =

1

2n−1

⌊n/2⌋
∑

k=0

(−1)k+1

n− k

(

2n− 2k − 2

n− k − 1

)(

n− k

k

)

zn−2k.

The result now follows from (6.24). �

7. The generalization of the numbers an

The terms forming the original suggestion of Zeilberger

(7.1) an =
2An

Cn

have been given a probabilistic interpretation: let X be a random variable with
a symmetric beta distribution function with parameter µ = 1 given explicitly in
(5.1). The numerator An is

(7.2) An = (−1)n+1κ(2n)22n

where κ(2n) is the even-order cumulant of the scaled random variable X∗ = 2X .
The denominator Cn is interpreted as the even-order moment of X∗:

(7.3) Cn = E
[

X2n
∗
]

.

These notions are used now to define an extension of the coefficients an.
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Definition 7.1. Let X be a random variable with vanishing odd cumulants. The
numbers an(µ) are defined by

(7.4) an(µ) =
2(−1)n+1κ(2n)

E [X2n
∗ ]

In the special case X∗ = 2X with X ∼ fµ, these numbers are computed using the
cumulants

(7.5) κµ(2n) = (−1)n+122n+1(2n− 1)!ζµ(2n)

and the even order moments

(7.6) E
[

X2n
∗
]

=
(2n)!

n!

1

(µ+ 1)n

to produce

(7.7) an(µ) = 22n+1 (n− 1)! (µ+ 1)n ζµ(2n).

The value

(7.8) ζµ(2) =
1

4(µ+ 1)

yields the initial condition a1(µ) = 2.

The recurrence (5.10) now provides the next result. Recall that when x is not
necessarily a positive integer, the binomial coefficient is given by

(7.9)

(

x

k

)

=
Γ(x+ 1)

Γ(x− k + 1) k!
.

Proposition 7.2. The coefficients an(µ) satisfy the recurrence

(7.10) an(µ) =
1

2
(

n+µ−1
n−1

)

n−1
∑

k=1

(

n+ µ− 1

n− k − 1

)(

n+ µ− 1

k − 1

)

ak(µ)an−k(µ),

with initial condition a1(µ) = 2.

Proof. Start with the convolution identity for Bessel zeta functions (5.10) and re-
place each zeta function by its expression in terms of an(µ) from (7.7), which gives

(n+ µ)
an(µ)

22n+1(n− 1)!(µ+ 1)n
=

n−1
∑

k=1

ak(µ)

22k+1(k − 1)!(µ+ 1)k

an−k(µ)

22n−2k+1(n− k − 1)!(µ+ 1)n−k

and after simplification

an(µ) =
1

2(n+ µ)

n−1
∑

k=1

(n− 1)!

(k − 1)!(n− k − 1)!

(µ+ 1)n
(µ+ 1)k(µ+ 1)n−k

ak(µ)an−k(µ).

The resut now follows by elementary algebra. �

Note 7.3. In the case µ = 1, the recurrence (7.10) becomes (2.10) and the coeffi-
cients an(1) are the original numbers an.
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Note 7.4. The recurrence (7.10) can be written as

an(µ) =
1

2

n−1
∑

k=1

Γ(n)Γ(µ+ 1)Γ(n+ µ)

Γ(µ+ k + 1)Γ(n+ µ− k + 1)Γ(n− k)Γ(k)
ak(µ)an−k(µ).

Theorem 7.5. The coefficients an(µ) are positive and increasing for n ≥ ⌊µ+3
2 ⌋.

Proof. The positivity is clear from (7.7). Now take the terms corresponding to
k = 1 and k = n− 1 in (7.10) to obtain

(7.11) an(µ) ≥
n− 1

µ+ 1
a1(µ)an−1(µ) =

2(n− 1)

µ+ 1
an−1(µ).

This yields

(7.12) an(µ)− an−1(µ) ≥
2n− 3− µ

µ+ 1
an−1(µ)

and the result follows. �

Some other special cases are considered next.

The case µ = 0. In this situation the distribution is the arcsine distribution given
by

(7.13) f0(x) =

{

1
π

1√
1−x2

, for |x| ≤ 1

0, otherwise.

By the recurrence on the ζ0 function, the coefficients

(7.14) an(0) = 22n(n− 1)!n! ζ0(2n)

satisfy the recurrence

(7.15) an(0) =
1

2

n−1
∑

k=1

(

n− 1

k

)(

n− 1

k − 1

)

ak(0)an−k(0)

with a1(0) = 2. Now define as Lasalle bn = 1
2an(0) and then (7.15) becomes

bn =
n−1
∑

k=1

(

n− 1

k

)(

n− 1

k − 1

)

bkbn−k,(7.16)

b1 = 1.

In particular bn is a positive integer.

The following comments are obtained by an analysis similar to that for an.

Note 7.6. The recurrence
n
∑

j=1

(−1)j−1

(

n

j

)(

n− 1

j − 1

)

bj = 1

gives the generating function

∞
∑

j=1

(−1)j−1bj
j!

x2j−2

(j − 1)!
=

I1(2x)

x I0(2x)
=

1

2x

d

dx
log I0(2x).
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Note 7.7. The sequence bn admits a determinant representation bn = det(Mn),
where

(7.17) Mn =

















1
(

1
1

)(

1−1
1−1

)

0 0 · · · 0

1
(

2
1

)(

2−1
1−1

) (

2
2

)(

2−1
2−1

)

0 · · · 0

1
(

3
1

)(

3−1
1−1

) (

3
2

)(

3−1
2−1

) (

3
3

)(

3−1
3−1

)

· · · 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
1

(

n
1

)(

n−1
1−1

) (

n
2

)(

n−1
2−1

) (

n
3

)(

n−1
3−1

)

· · ·
(

n
n−1

)(

n−1
n−2

)

















Note 7.8. The identity I2(x) = I0(x) − 2
xI1(x) is expressed as

(7.18)
I1(2x)

xI0(2x)

[

1 +
1

2
x2

2I2(2x)

xI1(2x)

]

= 1

provides the relation

(7.19) bn =
1

2

n−1
∑

j=1

(

n− 1

j

)(

n

j − 1

)

bjan−j .

The case µ = 1
2 . In this situation the distribution is the uniform distribution on

[−1, 1] with even moments

(7.20) EX2n
∗ =

22n

2n+ 1

and vanishing odd moments. The sequence of cumulants is

(7.21) κ1/2(2n) = 2(−1)n+1(2n− 1)! ζ1/2(2n)

where the Bessel zeta function is

(7.22) ζ1/2(2n) =

∞
∑

k=1

1

π2n k2n
=

1

π2n
ζ(2n) =

22n−1

(2n)!
|B2n|,

where Bn are the Bernoulli numbers. This follows from the identity

(7.23) J1/2(x) =

√

2

πx
sinx.

This yields

(7.24) κ1/2(2n) = 22n
B2n

2n
and κ1/2(2n+ 1) = 0,

with κ1/2(0) = 0. These are the coefficients of un/n! in the cumulant moment
generating function

(7.25) logϕ1/2(u) = log
sinhu

u
=

1

6
u2 − 1

180
u4 +

1

2835
u6 + · · · .

Finally, the corresponding sequence

(7.26) an
(

1
2

)

=
2(−1)n+1κ(2n)

E [X2n
∗ ]

is given by

(7.27) an
(

1
2

)

= 22n
2n+ 1

n
|B2n|.
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The first few terms are

(7.28) a1
(

1
2

)

= 2, a2
(

1
2

)

=
4

3
, a3

(

1
2

)

=
32

9
, a4

(

1
2

)

=
96

5
, a5

(

1
2

)

=
512

3
,

as expected, this is an increasing sequence for n ≥ 3. The convolution identity
(5.10) for Bessel zeta functions gives the well-known quadratic relation for the
Bernoulli numbers

(7.29)

n−1
∑

k=1

(

2n

2k

)

B2kB2n−2k = −(2n+ 1)B2n, for n > 1.

Moreover, the moment-cumulants relation (1.19) gives, replacing n by 2n and after
simplification, the other well-known identity

(7.30)
n
∑

j=1

(

2n+ 1

2j

)

22jB2j = 2n, for n ≥ 1.

Note 7.9. The generating function of the sequence an
(

1
2

)

is given by

I3/2(x)

xI1/2(x)
=
x tanhx− 1

x2
=

∞
∑

j=1

(−1)j−12aj
(

1
2

)

(2j + 1)(2j − 1)!
x2j−2.

The limiting case µ = − 1
2 has the probability distribution

(7.31) f−1/2(x) =
1

2
δ(x− 1) +

1

2
δ(x+ 1)

(the discrete Rademacher distribution). For a Rademacher random variable X , the
odd moments of X∗ = 2X vanish while the even order moments are

(7.32) E
[

X2n
∗
]

= 22n.

Therefore

(7.33) κ−1/2(2n) = (−1)n+122n+1(2n− 1)! ζ−1/2(2n).

The identity

(7.34) J−1/2(x) =

√

2

πx
cosx

shows that jk,−1/2 = (2k − 1)π/2 and therefore

(7.35) ζ−1/2(2n) =

∞
∑

k=1

22n

π2n(2k − 1)2n
=

22n − 1

π2n
ζ(2n).

The expression for κ−1/2(2n) may be simplified by the relation

(7.36) En = − 2

n+ 1
(2n+1 − 1)Bn+1

between the Euler numbers En and the Bernoulli numbers. It follows that

(7.37) κ−1/2(2n) = −24n−1E2n−1.

The corresponding sequence an
(

− 1
2

)

is now given by

(7.38) an
(

− 1
2

)

= (−1)n22nE2n−1

and its first few values are

a1
(

− 1
2

)

= 2, a2
(

− 1
2

)

= 4, a3
(

− 1
2

)

= 32, a4
(

− 1
2

)

= 544, a5
(

− 1
2

)

= 15872,
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Note 7.10. The generating function of the sequence an
(

− 1
2

)

is given by

I1/2(x)

xI−1/2(x)
=

tanhx

x
=

∞
∑

j=1

(−1)j−12aj
(

− 1
2

)

(2j − 1)!
x2j−2.

Note 7.11. The convolution identity (5.10) yields the well-known quadratic recur-
rence relation

(7.39)

n−1
∑

k=1

(

2n− 2

2k − 1

)

E2k−1E2n−2k−1 = 2E2n−1, for n > 1,

and the moment-cumulant relation (1.19) gives the other well-known identity

(7.40)

n
∑

k=1

(

2n− 1

2k − 1

)

22k−1E2k−1 = 1, for n ≥ 1.

8. Some arithmetic properties of the sequences an and bn

Given a sequence of integers {xn} it is often interesting to examine its arithmetic
properties. For instance, given a prime p, this is measured by the p-adic valuation
νp(xn), defined as the largest power of p that divides xn. Examples of this process
appear in [2] for the Stirling numbers and in [1, 22] for a sequence of coefficients
arising from a definite integral.

The statements described below give information about νp(an). These results
will be presented in a future publication. M. Lasalle [19] established the next
theorem by showing that An and Cn have the same parity. The fact that the
Catalan numbers are odd if and only if n = 2r − 1 for some r ≥ 2 provides the
proof. This result appears in [14, 18].

Theorem 8.1. The integer an is odd if and only if n = 2(2m − 1).

The previous statement may be expressed in terms of the sequence of binary
digits of n.

Experimental Fact 8.2. Let B(n) be the binary digits of n and denote x̄ a
sequence of a arbitrary length consisting of the repetitions of the symbol x. The
following statements hold (experimentally)

1) ν2(an) = 0 if and only if B(n) = {1̄, 0}.
2) ν2(an) = 1 if and only if B(n) = {1̄} or {1, 0̄}.
3) ν2(an) = 2 if and only if B(n) = {1, 0, 1̄, 0}.

The experimental findings for the prime p = 3 are described next.

Experimental Fact 8.3. Suppose n is not of the form 3m − 1. Then

(8.1) ν3(a3n−2) = ν3(a3n−1) = ν3(a3n).

Define wj = 3j − 1. Suppose n lies in the interval wj + 1 ≤ n ≤ wj+1 − 1. Then

(8.2) ν3(a3n+2) = j − ν3(n+ 1).

If n = wj , then ν3(a3n) = 0.
Now assume that n = 3m − 1. Then

(8.3) ν3(a3n) = ν3(a3n−1)− 1 = ν3(a3n−2)− 1 = m.
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Experimental Fact 8.4. The last observation deals with the sequence {an(µ)}.
Consider it now as defined by the recurrence (7.10). The initial condition a1(µ) = 2,
motivated by the origin of the sequence, in general does not provide integer entries.
For example, if µ = 2, the sequence is

{

2,
2

3
,
8

9
,
7

3
,
88

9
,
1594

27
,
1448

3

}

,

and for µ = 3
{

2,
1

2
,
1

2
,
39

40
, 3,

263

20
,
309

4

}

.

Observe that the denominators of the sequence for µ = 2 are always powers of 3,
but for µ = 3 the arithmetic nature of the denominators is harder to predict. On
the other hand if in the case µ = 3 the initial condition is replaced by a1(3) = 4,
then the resulting sequence has denominators that are powers of 5. This motivates
the next definition.

Definition 8.5. Let xn be a sequence of rational numbers and p be a prime. The
sequence is called p-integral if the denominator of xn is a power of p.

Therefore if a1(3) = 4, then the sequence an(3) is 5-integral. The same phenom-
ena appeas for other values of µ, the data is summarized in the next table.

µ 2 3 4 5 6 7 8
a1(µ) 2 4 10 12 84 264 990
p 3 5 7 7 11 11 13

Note 8.6. The sequence {2, 4, 10, 12, 84, 264, 990} does not appear in Sloane’s
sequences list OEIS.

This suggests the next conjecture.

Conjecture 8.7. Let µ ∈ N. Then there exists an initial condition a1(µ) and a
prime p such that the sequence an(µ) is p-integral.

Some elementary arithmetical properties of an are discussed next. A classical
result of E. Lucas states that a prime p divides the binomial coefficient

(

a
b

)

if and
only if at least one of the base p digits of b is greater than the corresponding digit
of a.

Proposition 8.8. Assume n is odd. Then an is even.

Proof. Let n = 2m+ 1. The recurrence (2.10) gives

2(2m+ 1)a2m+1 =

2m
∑

k=1

(

2m+ 1

k − 1

)(

2m+ 1

k + 1

)

aka2m+1−k

= 2

m
∑

k=1

(

2m+ 1

k − 1

)(

2m+ 1

k + 1

)

aka2m+1−k.

For k in the range 1 ≤ k ≤ m, one of the indices k or 2m + 1 − k is odd. The
induction argument shows that for each such k, either ak or a2m+1−k is an even
integer. This completes the argument. �

Lemma 8.9. Assume n = 2m − 1. Then 1
2an is an odd integer.
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Proof. Proposition 8.8 shows that 1
2an is an integer. The relation (1.8) may be

written as

(8.4) (−1)n−1an = 2 +
1

n

n−1
∑

j=1

(−1)j
(

n

j − 1

)(

n+ 1

j + 1

)

aj .

This implies

(8.5) n
[

(−1)n−1 1
2an − 1

]

=
1

2

n−1
∑

j=1

(−1)j
(

n

j − 1

)(

n+ 1

j + 1

)

aj .

Observe that if j is odd, then aj is even and
(

n+1
j+1

)

is also even. Therefore the

corresponding term in the sum is divisible by 4. If j is even, then Lucas’s theorem
shows that 4 divides

(

n+1
j+1

)

. It follows that the right hand side is an even number.

This implies that 1
2an is odd, as claimed. �

The next statement, which provides the easier part of Theorem 8.1, describes
the indices that produce odd values of an.

Theorem 8.10. If n = 2(2m − 1), then an is odd.

Proof. Isolate the term j = n/2 in the identity (8.4) to produce

[(−1)nan + 2] (2m − 1) =

(

2m+1 − 2

2m − 2

)(

2m+1 − 1

2m

)

1
2an/2

+
1

2

∑

j 6=n/2

(−1)j
(

n

j − 1

)(

n+ 1

j + 1

)

aj .

Lemma 8.9 shows that 1
2an/2 is odd and the binomial coefficients on the first term

of the right-hand side are also odd by Lucas’ theorem. Each term of the sum is
even because aj is even if j is odd and for j even

(

n
j−1

)

is even. Therefore the entire

right-hand side is even which forces an to be odd. �

The final result discussed here deals with the parity of the sequence bn. The
main tool is the recurrence

(8.6) bn =

n−1
∑

k=1

(

n− 1

k

)(

n− 1

k − 1

)

bkbn−k

with b1 = 1. Observe that the binomial coefficients appearing in this recurrence
are related to the Narayana numbers N(n, k) (1.2) by

(8.7)

(

n− 1

k

)(

n− 1

k − 1

)

= (n− 1)N(n− 1, k − 1).

Arithmetic properties of the Narayana numbers have been discussed by M. Bona
and B. Sagan [5]. It is established that if n = 2m − 1 then N(n, k) is odd for
0 ≤ k ≤ n− 1; while if n = 2m then N(n, k) is even for 1 ≤ k ≤ n− 2.

The next theorem is the analog of M. Lasalle’s result for the sequence bn.

Theorem 8.11. The coefficient bn is an odd integer if and only if n = 2m, for
some m ≥ 0.
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Proof. The first few terms b1 = 1, b2 = 1, b3 = 4 support the base case of an
inductive proof.

If n is odd, then

(8.8) bn = (n− 1)

n−1
∑

k=1

N(n− 1, k − 1)bkbn−k

shows that bn is even.

Consider now the case n = 2m. Then Lucas’ theorem shows that
(

2m−1
k

)(

2m−1
k−1

)

is
odd for all k. The inductive step states that bk is even if k 6= 2r. In the case k = 2r,
then bn−k is odd if and only if k = 2m−1, in which case all the terms in (8.8) are

even with the single expection
(

2m−1
2m−1

)(

2m−1
2m−1−1

)

b22m−1 . This shows that bn is odd.

Finally, if n = 2j is even with j 6= 2r, then

(8.9) bn =

(

2j − 1

j

)(

2j − 1

j − 1

)

b2j + 2

j−1
∑

k=1

(

n− 1

k

)(

n− 1

k − 1

)

bkbn−k.

Now simply observe that j 6= 2r, therefore bj is even by induction. It follows that
bn itself is even.

This completes the proof. �

9. One final question

Sequences of combinatorial origin often turn out to be unimodal or logconcave.
Recall that a sequence {xj : 1 ≤ j ≤ n} is called unimodal if there is an index m∗
such that x1 ≤ x2 ≤ · · · ≤ xm∗

and xm∗+1 ≥ xm∗+2 ≥ · · · ≥ xn. The sequence
is called logconcave if xn+1xn−1 ≥ x2n. An elementary argument shows that a
logconcave sequence is always unimodal. The reader will find in [4, 6, 7, 8, 9, 10,
23, 26] a variety of examples of these type of sequences.

Conjecture 9.1. The sequences {an} and {bn} are logconcave.
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