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Abstract

Toral introduced so-called cooperative Parrondo games, in which there are
N ≥ 3 players arranged in a circle. At each turn one player is randomly chosen
to play. He plays either game A or game B. Game A results in a win or loss of
one unit based on the toss of a fair coin. Game B results in a win or loss of one
unit based on the toss of a biased coin, with the amount of the bias depending
on whether none, one, or two of the player’s two nearest neighbors have won
their most recent games. Game A is fair, so the games are said to exhibit the
Parrondo effect if game B is losing or fair and the random mixture (1/2)(A+B)
is winning. With the parameter space being the unit cube, we investigate the
region in which the Parrondo effect appears. Explicit formulas can be found
if 3 ≤ N ≤ 6 and exact computations can be carried out if 7 ≤ N ≤ 19, at
least. We provide numerical evidence suggesting that the Parrondo region has
nonzero volume in the limit as N →∞.

Keywords: Parrondo’s paradox, cooperative Parrondo games, Markov chain,
stationary distribution, equivalence class, dihedral group, strong law of large
numbers.

1 Introduction

Toral [1] introduced what he called cooperative Parrondo games, in which there are
N ≥ 3 players labeled from 1 to N and arranged in a circle in clockwise order. At
each turn, one player is chosen at random to play. Call him player i. He plays either
game A or game B, depending on the strategy. In game A he tosses a p-coin (i.e.,
p is the probability of heads). In game B, he tosses a p0-coin if his neighbors i − 1
and i+ 1 are both losers, a p1-coin if i− 1 is a loser and i+ 1 is a winner, a p2-coin
if i − 1 is a winner and i + 1 is a loser, and a p3-coin if i − 1 and i + 1 are both
winners. (Because of the circular arrangement, player 0 is player N and player N + 1
is player 1.) A player’s status as winner or loser depends on the result of his most
recent game. Of course, the player of either game wins one unit with heads and loses
one unit with tails. To initialize game B, we could assume that each player tosses a
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fair coin to establish his status as winner or loser; alternatively, we could specify an
arbitrary initial distribution. But because we are concerned with long-term behavior,
the initial distribution is usually unimportant. Under these assumptions, the model
has an integer parameter N and five probability parameters p, p0, p1, p2, and p3.

Toral used computer simulation to show that, with N = 50, 100, or 200, p = 1/2,
p0 = 1, p1 = p2 = 4/25, and p3 = 7/10, game A is fair, game B is losing, and the
random mixture C := (1/2)(A+B) (toss a fair coin to determine which game to play)
is winning, providing a new example of Parrondo’s paradox (Harmer and Abbott [2],
Abbott [3]). Mihailović and Rajković [4] studied the case N = 3 analytically and
found that the Parrondo effect is not present for Toral’s choice of the probability
parameters but is present for other choices. They also used analytical methods to
examine the cases 4 ≤ N ≤ 12 assuming Toral’s choice of the probability parameters.
Xie et al. [5] studied the case N = 4 analytically but their game A differs from Toral’s,
so their conclusions about the Parrondo effect do not apply here. Our interest is in
the presence of the Parrondo effect for N ≥ 3 and arbitrary choices of the probability
parameters. We are willing to assume that p = 1/2, so that game A is fair, and that
p1 = p2 as others have assumed, so that the bias of the coin tossed in game B depends
only on the number of winners among the two nearest neighbors. We also assume
that the random mixture of game A and game B is the equally weighted one, denoted
above by C. For fixed N ≥ 3, this still leaves three free probability parameters, p0,
p1, and p3, so our parameter space is the unit cube.

For 3 ≤ N ≤ 6, explicit formulas can be derived for µB and µC , the mean profits
per turn to the ensemble of N players always playing game B and always playing game
C, respectively. For 7 ≤ N ≤ 19 (and perhaps slightly larger N), an algorithm can
be developed that generates exact values for µB and µC , once the parameters p0, p1,
and p3 are specified. By analyzing three choices of the parameter vector (p0, p1, p3)
(including Toral’s), we provide numerical evidence, but not a proof, that µB and µC
converge as N →∞ and that the Parrondo effect (i.e., µB ≤ 0 and µC > 0) persists
for all N sufficiently large for a set of parameter vectors having nonzero volume.

Incidentally, there is also the concept of an anti-Parrondo effect (i.e., µB ≥ 0 and
µC < 0), and we show that there is a symmetry between the two concepts, so that the
Parrondo region of the parameter space has the same volume as the anti-Parrondo
region. This should come as no surprise. Indeed, as Harmer and Abbott [2] put it,
“In a practical sense this is like changing the observer’s perspective of the games —
i.e. whether from the player’s or the bank’s point of view.”

In addition to the intrinsic appeal of creating a winning game from two fair or
losing games, Parrondo’s games have physical significance. They were originally de-
vised in 1996 by J. M. R. Parrondo as a pedagogical model of the flashing Brownian
ratchet of Ajdari and Prost [6]. Early work focussed on capital-dependent (Harmer
and Abbott [7]) and history-dependent (Parrondo, Harmer, and Abbott [8]) games
for a single player. Multi-player games were introduced by Toral [1, 9], including not
only the spatially dependent games studied here but also a model in which the role of
the fair game A is played by a forced transfer of one unit of wealth from one randomly
chosen player to another, while game B is the original capital- or history-dependent
one. This redistribution-of-wealth model was studied recently by the present authors
[10]. That model also motivated a model of Xie et al. [5], in which game B is as
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in the spatially dependent Parrondo games as above, while game A amounts to a
forced transfer of one unit of wealth from one randomly chosen player to a randomly
chosen nearest neighbor. Other multi-player models include the synchronous spatial
model of Mihailović and Rajković [11]; a two-dimensional spatial model by the same
authors [12]; a model of Amengual et al. [13] in which win probabilities depend on the
number of winners (see also Arizmendi [14]); and a model of Wang et al. [15] with
dependence on capital parity. As the literature on Parrondo’s paradox approaches
200 papers, perhaps the easiest way to get an overview of the subject is to read the
survey papers [2, 3] cited above.

2 The Markov chain and its reduction

The Markov chain formalized by Mihailović and Rajković [4] keeps track of the status
(loser or winner, 0 or 1) of each of the N ≥ 3 players. Its state space is the product
space

Σ := {x = (x1, x2, . . . , xN ) : xi ∈ {0, 1} for i = 1, . . . , N} = {0, 1}N

with 2N states. With the help of some notation, we can specify the one-step transition
matrix. Let mi(x) := 2xi−1 +xi+1, or, in other words, mi(x) is the integer (0, 1, 2, or
3) whose binary representation is (xi−1 xi+1)2. Of course x0 := xN and xN+1 := x1.
Also, let xi be the element of Σ equal to x except at the ith component. For example,
x1 := (1− x1, x2, x3, . . . , xN ).

The one-step transition matrix P for this Markov chain depends not only on N
but on four parameters, p0, p1, p2, and p3, which we assume satisfy 0 < pm < 1 for
m = 0, 1, 2, 3. (This rules out Toral’s choice of the probability parameters, at least
for now, but we will return to this point in Section 5. We do not assume that p1 = p2

until Section 6.) It has the form

P (x,xi) :=

{
N−1pmi(x) if xi = 0,

N−1qmi(x) if xi = 1,
i = 1, . . . , N, x ∈ Σ, (1)

and

P (x,x) := N−1

( ∑
i:xi=0

qmi(x) +
∑
i:xi=1

pmi(x)

)
, x ∈ Σ, (2)

where qm := 1 − pm for m = 0, 1, 2, 3 and empty sums are 0. The Markov chain is
irreducible and aperiodic.

The description of the model suggests that its long-term behavior should be in-
variant under rotation (and, if p1 = p2, reflection) of the N players. In order to
maximize the value of N for which exact computations are feasible, we will use this
idea to effectively reduce the size of the state space. Our first result describes how
this is done. We omit the reasonably straightforward proof.

Lemma 1. Let E be a finite set, fix N ≥ 2, let G be a subgroup of the group of
permutations of (1, 2, . . . , N), and let S be a subset of the product space EN := E ×
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· · ·×E with the property that x := (x1, . . . , xN ) ∈ S implies xσ := (xσ(1), . . . , xσ(N)) ∈
S for all σ ∈ G. Let P be the one-step transition matrix for an irreducible Markov
chain in S, and let π be its unique stationary distribution. Assume that P (xσ,yσ) =
P (x,y) for all σ ∈ G and x,y ∈ S. Then π(xσ) = π(x) for all σ ∈ G and x ∈ S.

Let us say that x ∈ S is equivalent to y ∈ S (written x ∼ y) if there exists σ ∈ G
such that y = xσ, and let us denote the equivalence class containing x by [x]. Then,
in addition, P induces a one-step transition matrix P̄ for an irreducible Markov chain
in the quotient set (i.e., the set of equivalence classes) S/∼ defined by the formula

P̄ ([x], [y]) :=
∑

y′:y′∼y
P (x,y′) =

∑
σ∈G:yσ distinct

P (x,yσ),

the second sum extending over only those σ ∈ G for which the various yσ are distinct.
Furthermore, if π̄ is the unique stationary distribution for P̄ , then π is given by
π(x) = π̄([x])/|[x]|, where |[x]| denotes the cardinality of the equivalence class [x].

Remark. The case S = EN is of primary interest, but examples in which S is a proper
subset of EN appear in Section 5.

The lemma applies to our Markov chain if G is the subgroup of cyclic permutations
(or rotations) of (1, 2, . . . , N), that is, the group generated by

(σ(1), σ(2), . . . , σ(N)) := (2, 3, . . . , N, 1). (3)

Indeed, for any cyclic permutation σ,

P (xσ, (x
i)σ) = P (xσ, (xσ)σ

−1(i)) =

{
N−1pmσ−1(i)(xσ) if (xσ)σ−1(i) = 0

N−1qmσ−1(i)(xσ) if (xσ)σ−1(i) = 1

=

{
N−1pmi(x) if xi = 0

N−1qmi(x) if xi = 1

= P (x,xi) (4)

for i = 1, . . . , N and all x ∈ Σ. If p1 = p2, then (4) also applies to the order-reversing
permutation (or reflection) of (1, 2, . . . , N),

(σ(1), σ(2), . . . , σ(N)) := (N,N − 1, . . . , 2, 1); (5)

note that the third equality uses p1 = p2. In this case G is the group generated by
(3) and (5) and is known as the dihedral group of order 2N .

The practical effect of this is that we can reduce the size of the state space (namely,
2N ) to what we will call its effective size, which is simply the number of equivalence
classes. For example, if N = 3, there are eight states and four equivalence classes,
namely

0 = {000}, 1 = {001, 010, 100}, 2 = {011, 101, 110}, 3 = {111}.

Notice that we label equivalence classes by the number of 1s each element has. If
N = 4, there are 16 states and six equivalence classes, namely

0 = {0000},
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1 = {0001, 0010, 0100, 1000},
2 = {0011, 0110, 1001, 1100},

2′ = {0101, 1010},
3 = {0111, 1011, 1101, 1110},
4 = {1111}.

If N = 6, there are 64 states and 14 equivalence classes. A more concise notation in
this case is

[0]1/[1]6/[3]6, [5]6, [9]3/[7]6, [11]6, [13]6, [21]2/[15]6, [23]6, [27]3/[31]6/[63]1.

Here each equivalence class is described by its least element in decimal form. Sub-
scripts indicate equivalence class sizes. Equivalence classes are ordered first by the
number of 1s each element has in binary form (the / symbol separates different num-
bers of 1s), and second by the least element. If in addition p1 = p2, then, using
the order-reversing permutation, equivalence classes [11]6 and [13]6 coalesce and are
replaced by [11]12, so there are only 13 equivalence classes in that case.

The number of equivalence classes with G being the group of cyclic permutations
follows the sequence A000031 in the The On-Line Encyclopedia of Integer Sequences
(http://oeis.org/), described as the number of necklaces with N beads of two
colors when turning over is not allowed. There is an explicit formula in terms of
Euler’s phi-function. If p1 = p2, we can reverse the order of the players, and the
number of equivalence classes with G being the dihedral group follows the sequence
A000029 in the OEIS, described as the number of necklaces with N beads of two
colors when turning over is allowed. Again there is an explicit formula. See Table 1.

Elements of Σ are most naturally ordered by regarding them as the binary repre-
sentations of the integers 0, 1, . . . , 2N−1. Elements of Σ/∼ have two natural orderings,
one of which was described above in connection with the case N = 6. Another ap-
proach, which is computationally simpler (and adopted in the Appendix), is to order
equivalence classes simply by the least element.

To illustrate the one-step transition matrix on the reduced state space, consider
the case N = 3. The 8× 8 one-step transition matrix P is equal to the transpose of
(9) in Mihailović and Rajković [4], whereas

P̄ =
1

3


3q0 3p0 0 0
q0 p0 + q1 + q2 p1 + p2 0
0 q1 + q2 p1 + p2 + q3 p3

0 0 3q3 3p3

 . (6)

Consider also the case N = 4. The 16× 16 one-step transition matrix P is equal to
(12) in Xie et al. [5], whereas

P̄ =
1

4


4q0 4p0 0 0 0 0
q0 1 + q1 + q2 p1 + p2 p0 0 0
0 q1 + q2 2 0 p1 + p2 0
0 2q0 0 2(p0 + q3) 2p3 0
0 0 q1 + q2 q3 1 + p1 + p2 p3

0 0 0 0 4q3 4p3

 , (7)

5
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Table 1: The size and effective size of the state space when there are N players.

number of size of effective size effective size
players state space not assuming assuming
N 2N p1 = p2 p1 = p2

3 8 4 4
4 16 6 6
5 32 8 8
6 64 14 13
7 128 20 18
8 256 36 30
9 512 60 46

10 1024 108 78
11 2048 188 126
12 4096 352 224
13 8192 632 380
14 16384 1182 687
15 32768 2192 1224
16 65536 4116 2250
17 131072 7712 4112
18 262144 14602 7685
19 524288 27596 14310
20 1048576 52488 27012

where rows and columns are labeled by 0, 1, 2, 2′, 3, 4, the two suggested methods
being equivalent.

More generally, we can give a fairly explicit formula for P̄ . First, define the
function s : Σ/∼ 7→ {0, 1, . . . , N} by s([x]) := x1 + x2 + · · · + xN ; it counts the
number of 1s in each element of an equivalence class and is clearly well defined. Then

P̄ ([x], [y]) =


N−1

(∑
i:xi=0 qmi(x) +

∑
i:xi=1 pmi(x)

)
if [y] = [x]

N−1
∑
i:xi=1,xi∼y qmi(x) if s([y]) = s([x])− 1

N−1
∑
i:xi=0,xi∼y pmi(x) if s([y]) = s([x]) + 1

0 otherwise

(8)

for all [x], [y] ∈ Σ/∼. The first case in (8) follows because xi 6∼ x for all i. Note
also that, even if s([y]) = s([x]) ± 1, we may have P̄ ([x], [y]) = 0; for example,
P̄ ([001001], [010101]) = 0. We say “fairly explicit” because the evaluation of P̄ still
requires an enumeration of Σ/∼, which can be time consuming.

3 The stationary distribution

The unique stationary distribution π is too complicated to expect explicit formulas
except for 3 ≤ N ≤ 6. For N = 3, we can find the unique stationary distribution for
our eight-state chain by doing the same for a four-state chain. An invariant measure
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for the four-state chain is (ρ0, 3ρ1, 3ρ2, ρ3), where

ρ0 := q0(q1 + q2)q3, ρ1 := p0(q1 + q2)q3, ρ2 := p0(p1 + p2)q3, ρ3 := p0(p1 + p2)p3,

so an invariant measure for the eight-state chain is (ρ0, ρ1, ρ1, ρ2, ρ1, ρ2, ρ2, ρ3). The
stationary distribution follows by dividing each entry by the sum ρ0 + 3ρ1 + 3ρ2 + ρ3.
Incidentally, the N = 3 case is the only case for which the stationary distribution
is reversible (π̄ in general, and π if p1 = p2). A partial explanation is that (6) is
tridiagonal, that is, it corresponds to a birth-and-death chain.

For N = 4 we can find the unique stationary distribution for our 16-state chain
by doing the same for a six-state chain. An invariant measure for the six-state chain
is (ρ0, 4ρ1, 4ρ2, 2ρ2′ , 4ρ3, ρ4), where

ρ0 := q0[2q0q3 + (q1 + q2)2(q0 + p3)]q3,

ρ1 := p0[2q0q3 + (q1 + q2)2(q0 + p3)]q3,

ρ2 := p0[2q0q3 + (p1 + p2)(q1 + q2)(q0 + p3) + (q1 + q2)(p3 − q0)]q3

= p0[2p0p3 + (p1 + p2)(q1 + q2)(q0 + p3) + (p1 + p2)(q0 − p3)]q3,

ρ2′ := p0[2p0q3 + (p1 + p2)2q3 + (q1 + q2)2p0]q3,

ρ3 := p0[2p0p3 + (p1 + p2)2(q0 + p3)]q3,

ρ4 := p0[2p0p3 + (p1 + p2)2(q0 + p3)]p3;

here we have given two formulas for ρ2 so that we can see at a glance that it is
positive. Thus, an invariant measure for the 16-state chain is (ρ0, ρ1, ρ1, ρ2, ρ1, ρ2′ ,
ρ2, ρ3, ρ1, ρ2, ρ2′ , ρ3, ρ2, ρ3, ρ3, ρ4). The stationary distribution follows by dividing
each entry by the sum ρ0 + 4ρ1 + 4ρ2 + 2ρ2′ + 4ρ3 + ρ4.

In a similar way, we have also found formulas for the unique stationary distribution
in the cases N = 5 and N = 6 (assuming p1 = p2 in the latter case), but they are
considerably more complicated and consequently will not be given here. In particular,
we have not shown algebraically, as we have for N = 3 and N = 4, that each term is
positive; for that we must rely on Markov chain theory.

Notice that, when N = 3 or N = 4, the stationary distribution depends on p1 and
p2 only through p1 + p2. This property also holds when N = 5 but fails when N ≥ 6.
When it holds, it implies that there is no loss of generality in assuming p1 = p2. The
reason this property holds when N = 3 or N = 4 is that P̄ in (6) and (7) depends on
p1 and p2 only through p1 + p2. The same is true when N = 5 but not when N = 6
because, for example, P̄ ([001011], [011011]) = (1/6)p1.

4 Strong law of large numbers

Is there a strong law of large numbers (SLLN) and a central limit theorem for the
sequence of profits by the ensemble of N players? More specifically, does Theorem 1
of Ethier and Lee [16] apply in this context? Let us recall the statement of that
theorem.

Consider an irreducible aperiodic Markov chain {Xn}n≥0 with finite state space
Σ0. It evolves according to the one-step transition matrix P = (Pij)i,j∈Σ0

. Let us
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denote its unique stationary distribution by the row vector π = (πi)i∈Σ0 . Let w :
Σ0×Σ0 7→ R be an arbitrary function, which we write as a matrixW = (w(i, j))i,j∈Σ0

and refer to as the payoff matrix. Define the sequences {ξn}n≥1 and {Sn}n≥1 by

ξn := w(Xn−1, Xn), n ≥ 1, (9)

and
Sn := ξ1 + · · ·+ ξn, n ≥ 1. (10)

Let Π denote the square matrix each of whose rows is π, and let Z := (I−(P−Π))−1

denote the fundamental matrix. Denote by Ṗ and P̈ the Hadamard (entrywise)
products P ◦W and P ◦W ◦W (so Ṗij := Pijw(i, j) and P̈ij := Pijw(i, j)2). Let
1 := (1, 1, . . . , 1)T and define

µ := πṖ1 and σ2 := πP̈1− (πṖ1)2 + 2πṖ (Z −Π)Ṗ1. (11)

Theorem 2 (Ethier and Lee [16]). Under the above assumptions, and with the dis-
tribution of X0 arbitrary, limn→∞ n−1E[Sn] = µ,

Sn
n
→ µ a.s.,

limn→∞ n−1Var(Sn) = σ2, and, if σ2 > 0,

Sn − nµ√
nσ2

→d N(0, 1).

If µ = 0 and σ2 > 0, then −∞ = lim infn→∞ Sn < lim supn→∞ Sn =∞ a.s.

Remark. The abbreviation “a.s.” stands for “almost surely,” meaning “with proba-
bility 1.” The symbol →d denotes convergence in distribution. A game is winning if
µ > 0 (hence limSn =∞ a.s.), losing if µ < 0 (hence limSn = −∞ a.s.), and fair if
µ = 0 (hence −∞ = lim inf Sn < lim supSn =∞ a.s., assuming σ2 > 0).

It appears at first glance that the theorem does not apply in the present context
because the payoffs are not completely specified by the one-step transitions of the
Markov chain. Specifically, a transition from a state x to itself results whenever a
loser loses or a winner wins, and the transition probability is given by (2). And
yet (9) and (10) suggest that w(x,x) should be ±1. Does the theorem need to be
generalized so that w(i, j) is not simply the payoff when Xn−1 = i and Xn = j but
rather is the conditional expected payoff given Xn−1 = i and Xn = j? Actually, it
is more convenient to leave the theorem as it is and instead generalize the Markov
chain.

Our original Markov chain has state space Σ := {0, 1}N and its one-step transition
matrix P is given by (1) and (2). Let π denote its unique stationary distribution.
We augment the state space, letting Σ∗ := Σ × {1, 2, . . . , N} and keeping track not
only of the status of each player as described by x ∈ Σ but also of the label of the
next player to play, say i. The new one-step transition matrix P ∗ has the form

P ∗((x, i), (xi, j)) :=

{
N−1pmi(x) if xi = 0,

N−1qmi(x) if xi = 1,
(x, i) ∈ Σ∗, j = 1, 2, . . . , N,
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and

P ∗((x, i), (x, j)) :=

{
N−1qmi(x) if xi = 0,

N−1pmi(x) if xi = 1,
(x, i) ∈ Σ∗, j = 1, 2, . . . , N,

where qm := 1− pm for m = 0, 1, 2, 3. This remains an irreducible aperiodic Markov
chain, and its unique stationary distribution π∗ is given by π∗(x, i) = N−1π(x).
Further, the payoff matrix now has each nonzero entry equal to ±1, so the theorem
applies.

Therefore, by (11), the mean parameter in the SLLN has the form

µ = π∗Ṗ ∗1 =
∑
x∈Σ

π(x)

N∑
i=1

N−1[pmi(x) − qmi(x)].

Alternatively, this can be rewritten as

µ = πṖ1 = π̄ ˙̄P1, (12)

where 1 is the column vector of 1s of the appropriate dimension and Ṗ and ˙̄P have

new meanings. Specifically, Ṗ is obtained from P , and ˙̄P from P̄ , by replacing each
qm by −qm. This “rule of thumb” requires some caution: It must be applied before
any simplifications are made using qm = 1−pm. For example, the rule applies directly
to (6) but not to (7) because the 1s in the (1, 1) and (3, 3) entries are p0 + q0 and
p3 + q3, respectively, and the 2 in the (2, 2) entry is p1 + q1 + p2 + q2. (Recall that
rows and columns are labeled by 0, 1, 2, 2′, 3, 4.)

The main consequence of Theorem 1 from our perspective is the SLLN it ensures.
Let SAn , SBn , and SCn denote the cumulative profit after n turns to the ensemble of N
players playing game A, B, and C := γA+ (1− γ)B. Then

SAn
n
→ µA = 2p− 1 a.s.,

SBn
n
→ µB a.s.,

SCn
n
→ µC a.s.

Of course, there is also a central limit theorem, but we will not try to evaluate its
variance parameter.

We conclude this section with an application of the SLLN. Let us denote µ of (12)
by µ(p0, p1, p2, p3) to emphasize its dependence on the probability parameters. (We
do not assume that p1 = p2.)

Corollary 3. With qm := 1− pm for m = 0, 1, 2, 3, we have

µ(p0, p1, p2, p3) = −µ(q3, q2, q1, q0).

In particular, if p0 + p3 = 1 and p1 + p2 = 1, then µ(p0, p1, p2, p3) = 0.

Proof. We prove this via a coupling argument. Define the function η : Σ 7→ Σ by
η(x) := (1 − x1, 1 − x2, . . . , 1 − xN ). Let {X(n)} be the Markov chain in Σ with
initial state x and one-step transition matrix P p0,p1,p2,p3 given by (1) and (2), where
the superscripts are merely intended to emphasize the probability parameters. Then
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X ′(n) := η(X(n)) defines a Markov chain {X ′(n)} in Σ with initial state x′ := η(x)
and one-step transition matrix P q3,q2,q1,q0 . The two processes are coupled, using the
same sequence of players and the same sequence of coin tosses.

To help clarify this, let us consider the special case N = 3, in which there are
three players 1, 2, and 3 whose collective status is described by {X(n)} and three
players 1′, 2′, and 3′ whose collective status is described by {X ′(n)}. SupposeX(0) =
x := (0, 1, 0) and X ′(0) = x′ := η(x) = (1, 0, 1). If player 2 is chosen to play (and
determine X(1)), then player 2′ will also be chosen to play (and determine X ′(1)).
Player 2 is required to toss a p0-coin because 0 = (0 0)2 and the first probability
parameter of {X(n)} is p0, and player 2′ is required to toss a q0-coin because 3 = (1 1)2

and the fourth probability parameter of {X ′(n)} is q0. We can use the same coin
toss for both players, except that if player 2 sees heads, then player 2′ sees tails,
and vice versa. So a loss by player 2 (equivalently, a win by player 2′) results in
X(1) = (0, 0, 0) and X ′(1) = (1, 1, 1), whereas a win by player 2 (equivalently, a loss
by player 2′) results in X(1) = x and X ′(1) = x′. The coupling proceeds in this
manner at each turn.

Let Sp0,p1,p2,p3n be the cumulative profit to the ensemble of N players after n
turns, where again the superscripts emphasize the probability parameters. Then, by
the SLLN,

µ(p0, p1, p2, p3) = lim
n→∞

n−1Sp0,p1,p2,p3n

= − lim
n→∞

n−1Sq3,q2,q1,q0n = −µ(q3, q2, q1, q0) a.s.,

where the middle equality holds because each win in the {X(n)} process corresponds
to a loss in the {X ′(n)} process and vice versa.

5 Reducible cases

We have assumed that 0 < pm < 1 for m = 0, 1, 2, 3, which ensures that our Markov
chain is irreducible and aperiodic. Can we weaken this assumption? Let us consider
several cases. We denote by 0 ∈ Σ the state consisting of all 0s, and by 1 ∈ Σ the
state consisting of all 1s.

1. Suppose p0 = 1 and 0 < pm < 1 for m = 1, 2, 3, as Toral [1] originally assumed.
Then state 0 cannot be reached from Σ − {0} and P , with row 0 and column 0
deleted, is a stochastic matrix that is irreducible and aperiodic. Note that Lemma 1
is applicable with S := Σ − {0}. Theorem 1 also applies with Σ0 := S, or we could
take Σ0 := Σ; it does not matter because P will have a unique stationary distribution
π, which necessarily satisfies π(0) = 0. The reason we might prefer Σ0 := Σ is that
any formula obtained assuming 0 < pm < 1 for m = 0, 1, 2, 3 will remain valid after
substituting p0 = 1.

2. Suppose p0 = 0 and 0 < pm < 1 for m = 1, 2, 3. Then state 0 is absorbing,
and absorption eventually occurs with probability 1. Hence SBn − SBn−1 = −1 for all
n sufficiently large, so µB = −1, as noticed by Xie et al. [5].

3. Suppose p3 = 0 and 0 < pm < 1 for m = 0, 1, 2. This is analogous to case 1.
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4. Suppose p3 = 1 and 0 < pm < 1 for m = 0, 1, 2. This is analogous to case 2,
except µB = 1.

5. Suppose p0 = 1, p3 = 0, and 0 < pm < 1 for m = 1, 2. Then states 0 and
1 cannot be reached from Σ − {0,1} and P , with rows 0 and 1 and columns 0 and
1 deleted, is a stochastic matrix. However, it is not irreducible (unless N = 3), so
Lemma 1 does not apply with S := Σ − {0,1}. If N is even, then the two states
0101 · · · 01 and 1010 · · · 10 in which 0s and 1s alternate are absorbing, and from either
state there is a win of one unit with probability 1/2 and a loss of one unit with
probability 1/2. Consequently, µB = 0, regardless of p1 and p2.

6. Suppose p0 = 0, p3 = 1, and 0 < pm < 1 for m = 1, 2. Then both 0 and 1 are
absorbing, and absorption occurs with probability 1. The probability of absorption at
1 depends on the initial state (or equivalence class), and can be calculated for small
N ≥ 3. For example, in the case N = 4 with p1 = p2, we can derive formulas for µB
as a function of p1, depending on the equivalence class of the initial state, and the
results are consistent with the simulations of Xie et al. [5]; compare their Fig. II.1 (p.
410). The details are left to the reader.

6 The Parrondo region

If we denote µ of (12) by µ(p0, p1, p2, p3) to emphasize its dependence on the prob-
ability parameters, then the mean profits per turn for game A, game B, and game
C := γA + (1 − γ)B are µA := µ(p, p, p, p) = 2p − 1, µB := µ(p0, p1, p2, p3), and
µC := µ(r0, r1, r2, r3), where rm := γp + (1 − γ)pm for m = 0, 1, 2, 3. The Parrondo
effect is said to be present if µA ≤ 0, µB ≤ 0, and µC > 0. The anti-Parrondo effect
is said to be present if µA ≥ 0, µB ≥ 0, and µC < 0.

In what follows we assume for convenience that p = 1/2 (game A is fair), p1 =
p2 (the bias of the coin tossed in game B depends only on the number of winners
among the two nearest neighbors), and γ = 1/2 (the random mixture of games A
and B is the equally weighted one). In particular, for fixed N ≥ 3, we have three
free probability parameters, p0, p1, and p3, so our parameter space is the unit cube
(0, 1)3 := (0, 1) × (0, 1) × (0, 1). With caution (see Section 5), we can also include
parts of the boundary. Of interest are the regions in the parameter space in which
the Parrondo effect (i.e., µB ≤ 0 and µC > 0) appears and the anti-Parrondo effect
(i.e., µB ≥ 0 and µC < 0) appears; let us refer to them as the Parrondo region and
anti-Parrondo region.

Theorem 4. Fix N ≥ 3 and assume as above that p = 1/2 in game A, p1 = p2

in games B and C, and γ = 1/2 in game C. With qm := 1 − pm for m = 0, 1, 3,
the parameter vector (p0, p1, p3) belongs to the Parrondo region if and only if the
parameter vector (q3, q1, q0) belongs to the anti-Parrondo region. In particular, the
Parrondo region and the anti-Parrondo region have the same volume.

Proof. Let µB and µC denote the means for the parameter vector (p0, p1, p1, p3), and
let µ∗B and µ∗C denote the means for the parameter vector (q3, q1, q1, q0). Then, by
Corollary 1 (and using p1 = p2), µB = µ(p0, p1, p1, p3) = −µ(q3, q1, q1, q0) = −µ∗B
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and µC = µ((1/2 + p0)/2, (1/2 + p1)/2, (1/2 + p1)/2, (1/2 + p3)/2) = −µ((1/2 +
q3)/2, (1/2+q1)/2, (1/2+q1)/2, (1/2+q0)/2) = −µ∗C . Therefore, µB ≤ 0 and µC > 0
if and only if µ∗B ≥ 0 and µ∗C < 0.

For the second conclusion, we define the mapping Λ : (0, 1)3 7→ (0, 1)3 by Λ(p0, p1,
p3) = (1−p3, 1−p1, 1−p0). This one-to-one transformation has Jacobian identically
equal to 1, so it is measure preserving. Since it maps the Parrondo region onto the
anti-Parrondo region, the two regions must have the same volume.

It will therefore suffice to focus our attention in what follows on the Parrondo
region.

6.1 N = 3

Using the stationary distribution derived above and the mean formula (12), together
with the assumption that p1 = p2, we find that

µB =
p1(p0 + q3)− q3

p0p1 + 2p0q3 + q1q3
. (13)

Since p = 1/2 in game A and γ = 1/2 in game C, by (13) with pm replaced by
(1/2 + pm)/2 for m = 0, 1, 3, we have

µC =
2p1(1 + p0 + q3)− q0 − 3q3

1 + 3p0 + 2p0p1 + 4p0q3 + 2p1p3 + 2q1 + 5q3
.

Therefore, the Parrondo region is described by p1(p0 + q3)− q3 ≤ 0 and 2p1(1 + p0 +
q3)− q0 − 3q3 > 0 or, equivalently,

q0 + 3q3

2(1 + p0 + q3)
< p1 ≤

q3

p0 + q3
. (14)

The first inequality is equivalent to (24) in Mihailović and Rajković [4]. There exists
such a p1 if and only if min(p0, q0) < p3 < max(p0, q0). In particular, the area of the
region in the (p0, p3) unit square for which there exists a p1 satisfying (14) is equal
to 1/2.

With the parameter space being the (p0, p3, p1) unit cube, the Parrondo region is
the union of two connected components. See Figure 1. Two straightforward iterated
integrals yield its exact volume, (9 ln 9− 8 ln 8− 3)/8 ≈ 0.0174361.

Toral’s [1] games were inspired by the one-player history-dependent games intro-
duced by Parrondo, Harmer, and Abbott [8]; in their game B, the player tosses a
p0-coin, a p1-coin, a p2-coin, or a p3-coin if his two previous results are loss-loss, loss-
win, win-loss, or win-win, respectively, with the second result being the more recent
one. There is an interesting relationship between Toral’s three-player game B and
the one-player history-dependent game B.

For i = 1, 2, 3, let Pi denote the 8× 8 one-step transition matrix for the Markov
chain in Σ with N = 3 corresponding to player i being chosen to play at each turn
(as usual, the coin tossed depends on the status of the nearest neighbors). Then
the one-step transition matrix P for Toral’s game B with N = 3 can be defined as

12



Figure 1: When N = 3 (upper left), N = 4 (upper right), N = 5 (lower left), or
N = 6 (lower right), the green (or light) surface is the surface µB = 0, and the
red (or dark) surface is the surface µC = 0, both in the (p0, p3, p1) unit cube. The
Parrondo region is the region on or below the green surface and above the red surface,
while the anti-Parrondo region is the region on or above the green surface and below
the red surface. (Assumptions: p = 1/2 in game A, p1 = p2 in games B and C, and
γ = 1/2 in game C.)
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P := (1/3)(P1 + P2 + P3). It can be shown that the stationary distribution of P
coincides with the stationary distribution of P1P2P3 when p1 = p2. The one-step
transition matrix P1P2P3 corresponds to the game in which the three players 1, 2,
and 3 toss coins in the order named, and this game can be coupled with the one-
player history-dependent game, using the same sequence of coin tosses, because the
two most recent players are also the two nearest neighbors.

The result is that the mean profit µB in (13) is the same as the mean profit per
turn for the one-player history-dependent Parrondo game B, assuming p1 = p2. This
then implies that the Parrondo regions are also the same, that is, the Parrondo region
for the one-player history-dependent games is given by (14).

6.2 N = 4

Again we have an explicit formula for µB (algebraically equivalent to that of Xie
et al. [5]), from which we can derive a similar formula for µC . Specifically, µB =
µ(p0, p1, p1, p3), where

µ(p0, p1, p1, p3) :=
f0(p0, p3) + 4(1 + p0)(q0 + p3)q3p1 − 2(q0 + p3)(q0 − p3)p2

1

g0(p0, p1, p3)

with f0(p0, p3) := −(3− 2p3− 3p2
0 + 2p0p3− p2

3 + 2p2
0p3− 2p0p

2
3) and g0(p0, p1, p3) :=

(3 + 6p0 − 2p3 − 3p2
0 − 2p0p3 − p2

3 + 12p2
0p3 − 4p0p

2
3 − 8p2

0p
2
3) − 4(q0 + p3 + 2p2

0 +
2p0p3)q3p1+2(1+4p0−p2

0−2p0p3−p2
3)p2

1, and µC = µ((1/2+p0)/2, (1/2+p1)/2, (1/2+
p1)/2, (1/2 + p3)/2). The condition for the Parrondo effect amounts to two quadratic
inequalities in p1 with polynomial coefficients in p0 and p3. Solving these inequalities
and assuming 0 < pm < 1 for m = 0, 1, 3, we find that the Parrondo region is
described by p0 + p3 < 1,

p1 ≤
(1 + p0)q3 −

√
(1 + p0)2q2

3 + (q0 − p3)f(p0, p3)

q0 − p3

if (1 + p0)2q2
3 + (q0 − p3)f(p0, p3) ≥ 0, where f(p0, p3) := [p0(3p0 − 2p3 − 2p0p3 +

2p2
3)− (3 + p3)q3]/[2(q0 + p3)], and

p1 >
g(p0, p3)−

√
g(p0, p3)2 + 4(q0 − p3)h(p0, p3)

4(q0 − p3)
,

where g(p0, p3) := 13+8p0−8p3−4p0p3 and h(p0, p3) := (−48+14p0 +30p3 +13p2
0−

8p0p3 + 3p2
3 − 4p2

0p3 + 4p0p
2
3)/(1 + q0 + p3). We note that p1 > 1/2 in the Parrondo

region. See Figure 1. The region is connected, and a numerical integration yields
0.0293350 as its approximate volume.

6.3 N = 5, 6

When N = 5 or N = 6, we have explicit, albeit very complicated, formulas for µB
from which we can derive similar formulas for µC ; in the case N = 6, our formula
assumes that p1 = p2 for simplicity. It would be impractical and uninformative to
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state those formulas here. Instead, see Figure 1, which shows that the Parrondo
regions in the two cases are surprisingly similar. In both cases they appear to be the
union of three connected components.

There is a subtle technical issue here. We can solve the quadratic inequalities in
the N = 4 case, but the quartic and octic inequalities in the N = 5 and N = 6 cases
are less tractable. We expect that µB < 0 below the surface µB = 0 and µC > 0
above the surface µC = 0, but we do not have a proof.

6.4 7 ≤ N ≤ 19

When N ≥ 7, we no longer have explicit formulas for µB but we can in principle
compute it exactly for arbitrary values of the probability parameters by enumerating
the state space Σ/∼ (i.e., the set of all equivalence classes) and calculating the one-

step transition matrix P̄ and the related column vector ˙̄P1 as functions of pm and
qm (as if pm and qm were unrelated) for m = 0, 1, 2, 3. We then specify the desired
numerical values of the probability parameters pm (and set qm := 1−pm) and evaluate
the unique stationary distribution π̄. Finally, we use the rightmost expression in (12)

for µB . The advantage of this approach is that, once P̄ and ˙̄P1 are found, we
can apply (12) for arbitrary choices of the probability parameters without the time-
consuming re-enumeration of the equivalence classes.

Computations were done on a MacBook Air with 2 GB of RAM using Mathematica
8. The Mathematica program we used is displayed in the Appendix for N = 10; it is
also available at http://www.math.utah.edu/~ethier/program.txt or http://yu.
ac.kr/~leejy/program.txt. For N ≥ 17, we needed more memory. Computations
were done on an IBM System x3850 X5 with 1 TB of RAM using a Linux version of
Mathematica 8. The runtime for the case N = 20 was estimated at over seven weeks,
so we stopped with N = 19.

6.5 Comparison

Table 2 summarizes our estimates of the volume of the Parrondo region. For 3 ≤
N ≤ 13 we used two methods for estimating this volume. The first, which might be
called the Riemann sum approximation, consists of evaluating µB and µC at each of
the points (2i + 1, 2j + 1, 2k + 1)/200 for i, j, k = 0, 1, . . . , 99, and determining the
proportion of such points at which the Parrondo effect is present. (This is just the
Riemann sum for the indicator function of the Parrondo region.) The second method
is by simulation. Our simulation estimate is also based on 106 points but they are
chosen randomly from the uniform distribution over the unit cube. The Riemann
sum approximation has the advantage of being repeatable, whereas the simulation
estimate allows estimation of the error in the approximation.

The volume of the Parrondo region appears to be getting smaller as N increases.
We expect that it will converge to a nonzero limit, based not on Table 2 but on Tables
3 and 4 as we now explain.

Mihailović and Rajković [4] studied the presence of the Parrondo effect in the case
of Toral’s choice of the probability parameters, namely p = 1/2, p0 = 1, p1 = p2 =
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Figure 2: When N = 7 (left) or N = 8 (right), the Parrondo region is sketched by
plotting points that belong to it. Two million points were tested for each figure,
one million equally spaced points and one million randomly chosen points. Because
this figure lacks the three-dimensionality of Figure 1, we use color (or shading) as a
partial substitute. The point at (p0, p3, p1) is colored using the Mathematica function
Hue[p1]. As h varies from 0 to 1, the color corresponding to Hue[h] runs through red,
yellow, green, cyan, blue, magenta, and back to red again. See the color scale on the
right. (Assumptions: See the caption to Figure 1.)

4/25, and p3 = 7/10 (actually, they took p = 0.499). They obtained estimates of
µB and µC using exact computations for N = 3, unspecified analytic methods for
4 ≤ N ≤ 12, and simulation for N > 12. Table 3 confirms their findings using exact
computations of µB and µC . For example, µB = −599823882743/31695346763173
when N = 6, which we round to six significant digits in Table 3. Notice that µC
seems to have stabilized to six significant digits by N = 11, so it appears that all
of the variation in µC in the upper graph of Figure 2 of [4] is due to experimental
error. However, µB is more oscillatory. It seems to have stabilized to three significant
digits by N = 19, so it appears that most of the variation in µB in the lower graph
of the same figure is due to experimental error. This explains why we have not used
simulation to estimate µB and µC for N ≥ 20.

Table 4 analyzes two other cases, a second point on the boundary of the unit cube
and a point in the interior. In both cases µB seems to have stabilized more quickly
than in the case of Toral’s choice of the probability parameters.

7 Conclusions

We considered the spatially dependent Parrondo games of Toral [1], which assume
N ≥ 3 players arranged in a circle, and in which the win probability for a player
depends on the status of the player’s two nearest neighbors. There are three games,
game A without spatial dependence, game B with spatial dependence, and the ran-
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Table 2: Estimated volume of the Parrondo region. The integrated volume is obtained
by integration or numerical integration and is rounded to six significant digits. For
the Riemann sum approximation, the unit cube is divided into (100)3 cubes of equal
size, then the estimate is the proportion of cubes for which the Parrondo effect is
present at the center point. The simulation estimate p̂ is also based on n = 106

points but here they are randomly chosen. The standard error is the square root of
p̂(1− p̂)/n. (Assumptions: See the caption to Figure 1.)

N integrated Riemann sum simulation standard
volume approximation estimate error of

to volume of volume simulation

3 0.0174361 0.017314 0.017336 0.0001305
4 0.0293350 0.029199 0.029227 0.0001684
5 0.011275 0.011521 0.0001067
6 0.010751 0.011090 0.0001047
7 0.008327 0.008671 0.0000927
8 0.007781 0.008028 0.0000892
9 0.007060 0.007372 0.0000855

10 0.006776 0.006952 0.0000831
11 0.006491 0.006791 0.0000821
12 0.006356 0.006622 0.0000811
13 0.006227 0.006492 0.0000803

Table 3: Analysis of the Parrondo effect for Toral’s choice of the probability parame-
ters. Ellipses are intended to suggest that exact numbers have been truncated at six
digits. The last two columns are rounded to six significant digits. (Assumptions: See
the caption to Figure 1.)

N Parrondo p1-interval µB µC
when (p0, p3) = (1, 7/10) at (p0, p1, p3) = (1, 4/25, 7/10)

3 (0.195651 · · · , 0.230769 · · · ] −0.0909091 −0.0183774
4 — empty — 0.0799608 0.0171357
5 (0.150762 · · · , 0.162596 · · · ] −0.00219465 0.00405176
6 (0.149365 · · · , 0.178102 · · · ] −0.0189247 0.00463310
7 (0.148884 · · · , 0.155594 · · · ] 0.00350598 0.00482261
8 (0.148968 · · · , 0.159157 · · · ] 0.000698188 0.00479021
9 (0.148967 · · · , 0.162158 · · · ] −0.00189233 0.00479036

10 (0.148966 · · · , 0.160394 · · · ] −0.000332809 0.00479099
11 (0.148966 · · · , 0.160550 · · · ] −0.000466527 0.00479089
12 (0.148966 · · · , 0.160793 · · · ] −0.000676916 0.00479089
13 (0.148966 · · · , 0.160662 · · · ] −0.000562901 0.00479089
14 (0.148966 · · · , 0.160669 · · · ] −0.000569340 0.00479089
15 (0.148966 · · · , 0.160689 · · · ] −0.000586184 0.00479089
16 (0.148966 · · · , 0.160680 · · · ] −0.000578161 0.00479089
17 (0.148966 · · · , 0.160680 · · · ] −0.000578345 0.00479089
18 (0.148966 · · · , 0.160681 · · · ] −0.000579652 0.00479089
19 (0.148966 · · · , 0.160681 · · · ] −0.000579095 0.00479089
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Table 4: Analysis of the Parrondo effect for a second point on the boundary of the
unit cube and for a point in the interior. (Assumptions: See the caption to Figure 1.)

N Parrondo p1-interval µB µC
when (p0, p3) = (7/10, 0) at (p0, p1, p3) = (7/10, 17/25, 0)

3 — empty — 0.0710383 0.0297791
4 (0.672790 · · · , 0.807540 · · · ] −0.0425713 0.00241457
5 (0.657367 · · · , 0.675341 · · · ] 0.00257895 0.00818232
6 (0.659797 · · · , 0.699307 · · · ] −0.0102930 0.00721881
7 (0.659410 · · · , 0.694010 · · · ] −0.00722622 0.00736816
8 (0.659472 · · · , 0.695419 · · · ] −0.00808338 0.00734464
9 (0.659462 · · · , 0.695052 · · · ] −0.00784318 0.00734835

10 (0.659463 · · · , 0.695147 · · · ] −0.00790952 0.00734776
11 (0.659463 · · · , 0.695122 · · · ] −0.00789119 0.00734786
12 (0.659463 · · · , 0.695129 · · · ] −0.00789624 0.00734784
13 (0.659463 · · · , 0.695127 · · · ] −0.00789485 0.00734784
14 (0.659463 · · · , 0.695128 · · · ] −0.00789523 0.00734784
15 (0.659463 · · · , 0.695127 · · · ] −0.00789513 0.00734784
16 (0.659463 · · · , 0.695127 · · · ] −0.00789516 0.00734784
17 (0.659463 · · · , 0.695127 · · · ] −0.00789515 0.00734784
18 (0.659463 · · · , 0.695127 · · · ] −0.00789515 0.00734784
19 (0.659463 · · · , 0.695127 · · · ] −0.00789515 0.00734784

N Parrondo p1-interval µB µC
when (p0, p3) = (1/10, 3/4) at (p0, p1, p3) = (1/10, 3/5, 3/4)

3 (0.611111 · · · , 0.714285 · · · ] −0.190476 −0.00671141
4 (0.584416 · · · , 0.640975 · · · ] −0.0858189 0.0108365
5 (0.580262 · · · , 0.616548 · · · ] −0.0389980 0.0141217
6 (0.579542 · · · , 0.607387 · · · ] −0.0183165 0.0147166
7 (0.579415 · · · , 0.603644 · · · ] −0.00924232 0.0148223
8 (0.579393 · · · , 0.602063 · · · ] −0.00528548 0.0148408
9 (0.579390 · · · , 0.601387 · · · ] −0.00356984 0.0148441

10 (0.579389 · · · , 0.601097 · · · ] −0.00282963 0.0148446
11 (0.579389 · · · , 0.600973 · · · ] −0.00251155 0.0148447
12 (0.579389 · · · , 0.600920 · · · ] −0.00237531 0.0148447
13 (0.579389 · · · , 0.600897 · · · ] −0.00231709 0.0148448
14 (0.579389 · · · , 0.600887 · · · ] −0.00229226 0.0148448
15 (0.579389 · · · , 0.600883 · · · ] −0.00228169 0.0148448
16 (0.579389 · · · , 0.600881 · · · ] −0.00227719 0.0148448
17 (0.579389 · · · , 0.600881 · · · ] −0.00227528 0.0148448
18 (0.579389 · · · , 0.600880 · · · ] −0.00227446 0.0148448
19 (0.579389 · · · , 0.600880 · · · ] −0.00227412 0.0148448
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domly mixed game C := (1/2)(A + B). The model is described by a parameterized
Markov chain with 2N states. To maximize the value of N for which exact computa-
tions are feasible, we regarded states as equivalent if they are equal after a rotation
and/or reflection of the players. This allowed us to compute the mean profits per turn,
µB and µC , to the ensemble of N players for 3 ≤ N ≤ 19 and several choices of the
parameter vector (p0, p1, p3), including Toral’s choice. The results provide numerical
evidence, but not a proof, that µB and µC converge as N →∞ and that the Parrondo
effect (i.e., µB ≤ 0 and µC > 0) persists for all N sufficiently large for a set of pa-
rameter vectors having nonzero volume. This suggests that the spatially-dependent
version of Parrondo’s paradox is a robust phenomenon that remains present in the
thermodynamic limit.

This is the main conclusion, but there are several other noteworthy conclusions.
We have shown that the sequence of profits to the ensemble of N players obeys the
strong law of large numbers. This is important in defining what is meant by a winning,
losing, and fair game. For 3 ≤ N ≤ 6 explicit formulas for µB and µC are available, so
with the help of computer graphics, we have demonstrated that one can visualize the
Parrondo region, the region in the three-dimensional parameter space in which the
Parrondo effect appears. There is also an anti-Parrondo region, and we have shown
that it is symmetric with the Parrondo region, as might be expected. Finally, we have
pointed out a close relationship between the spatially dependent Parrondo games in
the case of N = 3 players and the one-player history-dependent Parrondo games.

We have restricted our attention to the one-dimensional version of the model, but
our methods may have applicability to the two-dimensional version, already investi-
gated by Mihailović and Rajković [12] using computer simulation. There are also, of
course, several problems for mathematicians, including a proof that µB and µC ac-
tually do converge as N →∞. We have partial results in this direction, which relate
the Markov chain model to an interacting particle system, or spin system (Liggett
[17], Chapter 3). Spin systems are continuous-time Markov processes in the infinite-
product space {0, 1}S , where S is a countable set such as the d-dimensional integer
lattice. Some of the best-known spin systems (e.g., the stochastic Ising model) were
motivated by physics. It is interesting that two mathematical models (Parrondo
games and spin systems), with rather different physical motivations, should come
together in this way.
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n � 10; a � Cycles���1, 2, 3, 4, 5, 6, 7, 8, 9, 10���; �� cyclic permutation ��
b � Cycles���1, 10�, �2, 9�, �3, 8�, �4, 7�, �5, 6���; �� order�reversing permutation ��
group � PermutationGroup��a, b��; �� dihedral group ��
sigma � IntegerDigits�Range�0, 2^n � 1�, 2, n� ;
Do�permuted�i� � Permute�sigma��i��, group�, �i, 1, 2^n��;�� orbit of ith element of Sigma under G, with duplication ��
Do�digit�x_� :� FromDigits�permuted�i���x��, 2�; list�i� � Table�digit�x�, �x, 1, 2 n��, �i, 1, 2^n��;�� set of orbit elements in decimal form, with duplication ��
class�1� � �0�; �� the first equivalence class �� num � 1;
For�j � 2, j � 2^�n � 1�, j��,
For�test � 1; k � 1, k � j � 1, k��, If�Sort�list�k�� �� Sort�list�j��, test � 0� �;
If�test � 1, num � num � 1; class�num� � DeleteDuplicates�Sort�list�j�����;�� generates list of equivalence classes ��

num � num � 1; �� number of equivalence classes ��
class�num� � �2^n � 1�; �� the last equivalence class ��
For�i � 1, i � num, i��, state�i� � IntegerDigits�class�i�, 2, n��;�� the binary states belonging to equivalence class i ��
For�i � 1, i � num, i��,
ones�i� � �sum � 0; For�k � 1, k � n, k��, If�state�i���1, k�� � 1, sum �� 1��; sum��;�� number of ones in each element of equivalence class i ��

diff�x_, y_� :� �sum � 0; For�k � 1, k � n, k��, sum �� Abs�x��k�� � y��k����; sum�;�� the Hamming distance between states x and y ��
p�0� � p0; p�1� � p1; p�2� � p2; p�3� � p3; q�0� � q0; q�1� � q1; q�2� � q2; q�3� � q3;
Pbar � ConstantArray�0, �num, num��;
For�i � 1, i � num, i��, For�j � 1, j � num, j��,�� evaluates Pbar based on equation �8� ��If�i � j, For�k � 1, k � n, k��,

If�state�i���1, k�� � 1, If�k � 1, Pbar��i, i�� �� p�2 state�i���1, n�� � state�i���1, 2����n ,
If�k � n, Pbar��i, i�� �� p�2 state�i���1, n � 1�� � state�i���1, 1����n,
Pbar��i, i�� �� p�2 state�i���1, k � 1�� � state�i���1, k � 1����n��,

If�k � 1, Pbar��i, i�� �� q�2 state�i���1, n�� � state�i���1, 2����n ,
If�k � n, Pbar��i, i�� �� q�2 state�i���1, n � 1�� � state�i���1, 1����n,
Pbar��i, i�� �� q�2 state�i���1, k � 1�� � state�i���1, k � 1����n����,

If�ones�j� � ones�i� � 1, For�m � 1, m � Length�class�j��, m��,
If�diff�state�j���m��, state�i���1��� � 1, For�k � 1, k � n, k��, If�state�j���m, k�� � state�i���1, k��, If�k � 1, Pbar��i, j�� �� p�2 state�i���1, n�� � state�i���1,

2����n , If�k � n, Pbar��i, j�� �� p�2 state�i���1, n � 1�� � state�i���1, 1����n,
Pbar��i, j�� �� p�2 state�i���1, k � 1�� � state�i���1, k � 1����n������,

If�ones�j� � ones�i� � 1, For�m � 1, m � Length�class�j��, m��,
If�diff�state�j���m��, state�i���1��� � 1, For�k � 1, k � n, k��, If�state�j���m, k�� � state�i���1, k��, If�k � 1, Pbar��i, j�� �� q�2 state�i���1, n�� � state�i���1,

2����n , If�k � n, Pbar��i, j�� �� q�2 state�i���1, n � 1�� � state�i���1, 1����n,
Pbar��i, j�� �� q�2 state�i���1, k � 1�� � state�i���1, k � 1����n�����������;

Pbardot � ConstantArray�0, �num, num��;�� Insert here the 18�line For statement that follows "Pbar�ConstantArray�0,�num,num��;",
but with two changes: replace "Pbar" by "Pbardot" and "�� q" by "�� q" throughout. ��
one � ConstantArray�1, �num, 1��; Pbardotone � Pbardot.one;
p0 � 1; p1 � 4�25; p2 � p1; p3 � 7�10; q0 � 1 � p0; q1 � 1 � p1; q2 � 1 � p2; q3 � 1 � p3;
pibar � Array�x, �num��; sol � Solve��pibar � pibar.Pbar, pibar.one � 1�, pibar�;
muB � pibar.Pbardotone �. sol
p0 � �1�2 � 1��2; p1 � �1�2 � 4�25��2; p2 � p1; p3 � �1�2 � 7�10��2;
q0 � 1 � p0; q1 � 1 � p1; q2 � 1 � p2; q3 � 1 � p3; pibar � Array�x, �num��;
sol � Solve��pibar � pibar.Pbar, pibar.one � 1�, pibar�; muC � pibar.Pbardotone �. sol

Figure 3: The Mathematica program used to enumerate the equivalence classes, com-

pute P̄ and ˙̄P1, solve for the stationary distribution π̄, and evaluate µB and µC .
Here N = 10 and p1 = p2. But N can be changed by modifying the first three
instructions, and the assumption p1 = p2 can be dropped by eliminating b in line 3
and changing 2n to n in line 7.
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