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Abstract

In a recent preprint on ArXiv, Bacher introduced a twisted version of the Stern
sequence. His paper contains in particular three conjectures relating the generating
series for the Stern sequence and for the twisted Stern sequence. Soon afterwards
Coons published two papers in Integers: first he proved these conjectures, second he
used his result to obtain a correlation-type identity for the Stern sequence. We recall
here a simple result of Reznick and we state a similar result for the twisted Stern
sequence. We deduce an easy proof of Coons’ identity, and a simple proof of Bacher’s
conjectures. Furthermore we prove identities similar to Coons’ for variations on the
Stern sequence that include Bacher’s sequence.

1. Introduction

The Stern sequence is a sequence of integers s = (s(n))n≥0 that can be defined

inductively by s(0) = 0, s(1) = 1, and for all n ≥ 1, s(2n) = s(n) and s(2n+ 1) =

s(n) + s(n + 1). (Note that these two equalities are actually true for all n ≥ 0.)

This is sequence A002487 in [10]. Its first few terms are

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1 . . .

Several authors studied that sequence, see, e.g., [12, 9] and the references therein.

(Note that some authors call Stern sequence the shifted sequence (s(n+ 1))n≥0.)

Bacher introduced recently in [3] a twisted version of the Stern sequence t =

(tn)n≥0 defined inductively by t(0) = 0, t(1) = 1, and for all n ≥ 1, t(2n) = −t(n),

t(2n+1) = −t(n)−t(n+1). He gave several interesting properties of the sequences s

and t and formulated conjectural relations between the generating series
∑

s(n)Xn,
∑

t(3.2e + n)Xn,
∑

(s(2 + n)− s(1 + n))Xn, and
∑

(t(2 + n) + t(1 + n))Xn.

http://arxiv.org/abs/1202.4171v1
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In the recent paper [5] Coons proved Bacher’s conjectures. He then used in [6]

his results to prove the following identity for the Stern sequence: if e and r are

integers with e ≥ 0, then for every integer n ≥ 0

s(r)s(2n+ 5) + s(2e − r)s(2n+ 3) = s(2e(n+ 2) + r) + s(2e(n+ 1) + r).

We recall here (see Section 3) a result of Reznick in [11], and we deduce an

easy proof of Coons’ identity. We also prove a result similar to Reznick’s result

for the Bacher-Stern sequence which yields a short proof of Bacher’s conjectures

Furthermore we prove identities analogous to Reznick’s and Coons’ identities for

sequences satisfying recurrence relations similar to Stern’s which include Bacher’s

sequence.

2. Three auxiliary results

We start with three propositions. The first one is [11, Corollary 4] for which Reznick

gives a short proof.

Proposition 1. [11] Let e and r be integers with e ≥ 0 and 0 ≤ r ≤ 2e. Then, for

every integer n ≥ 0, we have

s(2en+ r) = s(r)s(n + 1) + s(2e − r)s(n).

The next Proposition is similar to Proposition 1

Proposition 2. Let e and r be integers with e ≥ 0 and 0 ≤ r ≤ 2e. Then, for every

integer n ≥ 1, we have

t(2en+ r) = (−1)e(s(r)t(n + 1) + s(2e − r)t(n)).

Proof. We prove by induction on e ≥ 0 that, for every r ∈ [0, 2e], the identity in

the proposition holds. This is immediate for e = 0 (thus r ∈ {0, 1}). If the result

is true for some e, then, using the definition of t, the induction hypothesis, and the

definition of s,

if 2r ∈ [0, 2e+1], then

t(2e+1n+ 2r) = −t(2en+ r) = (−1)e+1(s(r)t(n + 1) + s(2e − r)t(n))
= (−1)e+1(s(2r)t(n+ 1) + s(2e+1 − 2r)t(n))
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if 2r + 1 ∈ [0, 2e+1], then

t(2e+1n+ 2r + 1) = t(2(2en+ r) + 1) = −t(2en+ r) − t(2en+ r + 1)

=

{

(−1)e+1(s(r)t(n + 1) + s(2e − r)t(n))
+(−1)e+1(s(r + 1)t(n+ 1) + s(2e − r − 1)t(n))

=

{

(−1)e+1(s(r) + s(r + 1))t(n+ 1)
+(−1)e+1(s(2e − r) + s(2e − r − 1))t(n)

= (−1)e+1(s(2r + 1)t(n+ 1) + s(2(2e − r − 1) + 1)
= (−1)e+1(s(2r + 1)t(n+ 1) + s(2e+1 − 2r − 1)t(n).

The last result we need is a consequence of Proposition 1.

Proposition 3. Let S(X) =
∑

n≥0 s(N)Xn. Then

S(X) = S(X2e)
∑

0≤r≤2e−1

(s(2e − r)Xr + s(r)Xr−2e).

Proof. This is an easy consequence of Proposition 1 (also recall that s(0) = 0): we

write

S(X) =
∑

n≥0

s(n)Xn =
∑

0≤r≤2e−1

∑

k≥0

s(k.2e + r)Xk.2e+r

=
∑

0≤r≤2e−1

Xr
∑

k≥0

(s(r)s(k + 1) + s(2e − r)s(k))Xk.2e

=
∑

0≤r≤2e−1

(s(r)Xr−2e + s(2e − r)Xr)
∑

k≥0

s(k)Xk.2e

= S(X2e)
∑

0≤r≤2e−1

(s(r)Xr−2e + s(2e − r)Xr).

3. A direct proof of Coons’ identity

Theorem 1 of [6] is a straightforward corollary of Reznick’s result (Proposition 1

above).

Corollary 4. Let e and r be integers with e ≥ 0 and 0 ≤ r ≤ 2e. Then, for every

integer n ≥ 0, we have

s(r)s(2n+ 5) + s(2e − r)s(2n+ 3) = s(2e(n+ 2) + r) + s(2e(n+ 1) + r).

Proof. Let S(e, r, n) = s(2e(n+ 2) + r) + s(2e(n+ 1) + r). Applying Proposition 1

with n replaced by n+ 2 and n+ 1, and the definition of the sequence s yields

S(e, r, n) = s(r)s(n + 3) + s(2e − r)s(n + 2) + s(r)s(n + 2) + s(2e − r)s(n + 1)
= s(r)(s(n + 3) + s(n+ 2)) + s(2e − r)(s(n+ 2) + s(n+ 1))
= s(r)s(2n + 5) + s(2e − r)s(2n+ 3).
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4. A simple proof of Bacher’s conjectures

We can now prove the three conjectures that Bacher proposed in [3] (Conjectures 1.3,

3.2 (i), and 3.2 (ii)) as Theorems 5, 6, and 7 below.

Theorem 5. Let S(X) =
∑

n≥0 s(n)X
n and T (X) =

∑

n≥0 t(n)X
n be the gen-

erating series of s and t. Then, there exists a series U(X) =
∑

n≥0 u(n)X
n with

integral coefficients, such that

∀e ≥ 0,
∑

n≥0

t(3.2e + n)Xn = (−1)eU(X2e)S(X).

Proof. The series U(X) must satisfy in particular
∑

n≥0 t(3 + n)Xn = U(X)S(X).

This relation defines a series U(X) that clearly has integer coefficients (s(1) =

1, and s(0) = 0). Now, using Proposition 2 above, the definition of U(X), and

Proposition 3, we have

∑

n≥0

t(3.2e + n)Xn =
∑

0≤r≤2e−1

∑

k≥0

t(3.2e + k.2e + r)Xk.2e+r

=
∑

0≤r≤2e−1

Xr
∑

k≥0

t(2e(3 + k) + r)Xk.2e

=
∑

0≤r≤2e−1

Xr
∑

k≥0

(−1)e(s(r)t(k + 4) + s(2e − r)t(k + 3))Xk.2e

= (−1)e
∑

0≤r≤2e−1

(s(2e − r)Xr + s(r)Xr−2e)
∑

k≥0

t(3 + k)Xk.2e

= (−1)e
∑

0≤r≤2e−1

(s(2e − r)Xr + s(r)Xr−2e)U(X2e)S(X2e)

= (−1)eS(X)U(X2e).

Theorem 6. Let A(X) =
1

S(X)

∑

n≥0

(s(2 + n)− s(1 + n))Xn. Then

∑

n≥0

(s(2e+1 + n)− s(2e + n))Xn = A(X2e)S(X).

Proof. Let Ae(X) =
∑

n≥0

(s(2e+1+n)−s(2e+n))Xn. We write, using Proposition 1

and Proposition 3 (recall that s(2)− s(1) = 0),

Ae(X) =
∑

0≤r≤2e−1

∑

k≥0

(s(2e+1 + k.2e + r)− s(2e + k.2e + r))Xk.2e

=
∑

0≤r≤2e−1

Xr
∑

k≥0

(s(2e(k + 2) + r)− s(2e(k + 1) + r))Xk.2e .
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Thus

Ae(X) =















∑

0≤r≤2e−1

Xr
∑

k≥0

((s(r)s(k + 3) + s(2e − r)s(k + 2))Xk.2e

−
∑

0≤r≤2e−1

Xr(s(r)s(k + 2) + s(2e − r)s(k + 1))Xk.2e

=















∑

0≤r≤2e−1

s(r)Xr
∑

k≥0

(s(k + 3)− s(k + 2))Xk.2e

+
∑

0≤r≤2e−1

s(2e − r)Xr
∑

k≥0

(s(k + 2)− s(k + 1))Xk.2e

=
∑

0≤r≤2e−1

(s(r)Xr−2e + s(2e − r))Xr
∑

k≥0

(s(k + 2)− s(k + 1))Xk.2e

=
S(X)

S(X2e)

∑

k≥0

(s(k + 2)− s(k + 1))Xk.2e = S(X)A(X2e).

Theorem 7. Let B(X) =
1

S(X)

∑

n≥0

(t(2 + n) + t(1 + n))Xn. Then

(−1)e+1
∑

n≥0

(t(2e+1 + n) + t(2e + n))Xn = B(X2e)S(X).

Proof. The proof is the same as the proof of Theorem 6, except that we use Propo-

sitions 2 and 3 instead of Propositions 1 and 3.

5. Similar sequences

Proposition 2 gives an expression of t(2en + r) in terms of t(n) and t(n + 1) with

coefficients in terms of s. One might want to find relations of the same kind but

involving t only. In this section we give such a relation. More generally we prove

such relations for sequences satisfying recurrence relations similar to the recurrences

defining the Stern sequence.

Theorem 8. Let v = (v(n))n≥0 be a sequence of real numbers satisfying

∃n0 ≥ 0, ∃(a, b, c) ∈ R
3, ∀n ≥ n0 v(2n) = av(n) and v(2n+1) = bv(n)+ cv(n+1).

Then, for all integers (e, r) with e ≥ 0 and r ∈ [0, 2e], there exist A = A(e, r) and

B = B(e, r) such that for all n ≥ n0

v(2en+ r) = A(e, r)v(n) +B(e, r)v(n + 1).

Proof. We prove by induction on e that for all r ∈ [0, 2e], there exist A(e, r) and

B(e, r) satisfying the conditions in the theorem. For e = 0, hence r ∈ {0, 1} one gets
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from the definition of v that A(0, 0) = 1, B(0, 0) = 0, A(0, 1) = 0, and B(0, 1) = 1.

Going from e to e + 1 yields A(e + 1, 2r) = aA(e, r), B(e + 1, 2r) = aB(e, r), if

0 ≤ 2r ≤ 2e+1, and A(e + 1, 2r + 1) = bA(e, r) + cA(e, r + 1), B(e + 1, 2r + 1) =

bB(e, r) + cB(e, r + 1), if 0 ≤ 2r + 1 ≤ 2e+1.

Corollary 9. Let v = (v(n))n≥0 be a sequence of real numbers satisfying

∃n0 ≥ 0, ∃(a, b, c) ∈ R
3, ∀n ≥ n0 v(2n) = av(n) and v(2n+1) = bv(n)+ cv(n+1).

Then, for all integers (e, r) with e ≥ 0 and r ∈ [0, 2e], there exist A = A(e, r) and

B = B(e, r) such that for all n ≥ n0

A(e, r)v(2n + 3) +B(e, r)v(2n+ 5) = cv(2e(n+ 2) + r) + bv(2e(n+ 1) + r).

Proof. Apply Theorem 8 with n replaced by n+ 2 and n+ 1 to the left side of the

identity to be proven.

Remark 10. The quantities A(e, r) and B(e, r) can of course be computed in terms

of e, r and of certain values of v. For example if the sequence v is not trivial, there

exist two integers x0 and y0 with x0, y0 ≥ n0 such that

∣

∣

∣

∣

v(x0) v(x0 + 1)
v(y0) v(y0 + 1)

∣

∣

∣

∣

6= 0.

Then
v(2ex0 + r) = A(e, r)v(x0) +B(e, r)v(x0 + 1)
v(2ey0 + r) = A(e, r)v(y0) +B(e, r)v(y0 + 1)

yields

A(e, r) = (v(y0)v(x0+1)−v(x0)v(y0+1))−1(v(x0+1)v(2ey0+r)−v(y0+1)v(2ex0+r))

and

B(e, r) = (v(x0)v(y0 +1)− v(y0)v(x0 +1))−1(v(x0)v(2
ey0 + r)− v(y0)v(2

ex0 + r)).

6. Examples

6.1. The Stern sequence again

One can apply Theorem 8 to the Stern sequence, for which n0 = 0, a = b = c = 1.

The values of A and B can be obtained by taking n = 0 and n = 1 in the relation

s(2en + r) = A(e, r)s(n) + B(e, r)s(n + 1), yielding B(e, r) = s(r) and A(e, r) =

s(2en+ r)− s(r). To obtain the result of Proposition 1 and Corollary 4 this way, it

remains to prove that for all e ≥ 0 and r ∈ [0, 2e] one has s(2e+r)−s(r) = s(2e−r).

This last equality can be proven by induction on e, but this is also Corollary 3.1 in

[7] (see also [3, Theorem 1.2] where the author adds that this identity “is probably

well-known to the experts”)
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6.2. The case of Bacher’s twisted Stern sequence

The definition of Bacher’s twisted Stern sequence t = (t(n))n≥0 recalled in the

Introduction shows that t satisfies the hypotheses of Theorem 8 with a = b = c =

−1, and n0 = 1. Note that the first few terms of t are:

0, 1,−1, 0, 1, 1, 0,−1,−1,−2,−1,−1, 0, 1, 1, 2, . . .

Applying Theorem 8 and Corollary 9 we get the following results.

Theorem 11. Let e and r be integers with e ≥ 0 and 0 ≤ r ≤ 2e. Then, for every

integer n ≥ 1, we have

t(2en+ r) = −t(2e+1 + r)t(n) − t(3.2e − r)t(n+ 1).

Proof. From Theorem 8 we have the existence of A′ and B′ such that t(2en +

r) = A′(e, r)t(n) + B′(e, r)t(n + 1) for n ≥ 1. Taking n = 2 and using that

t(2) = −1 and t(3) = 0, we get A′(e, r) = −t(2e+1 + r). Now taking n = 1

yields t(2e + r) = A′(e, r) − B′(e, r). Hence B′(e, r) = A′(e, r) − t(2e + r), i.e.,

B′(e, r) = −t(2e+1 + r) − t(2e + r). An immediate induction on e shows that for

r ∈ [0, 2e] one has t(2e+1 + r) + t(2e + r) = t(3.2e − r). Hence the result

Corollary 12. Let e and r be integers with e ≥ 0 and 0 ≤ r ≤ 2e. Then, for every

integer n ≥ 0, we have

t(2e+1 + r)t(2n+ 3) + t(3.2e − r)t(2n+ 5) = t(2e(n+ 2) + r) + t(2e(n+ 1) + r).

6.3. Other variations on Stern’s sequence

Let the three sequences (z1(n))n≥0, (z2(n))n≥0, and (z3(n))n≥0 defined by (using

the notation of [10]): for all n ≥ 0, z1(n) = A005590(n), and for all n ≥ 1,

z2(n) = A177219(n), and z3(n) = A049347(n) with z2(0) = z3(0) = 0. These

sequences satisfy respectively

(z1(0), z1(1)) = (0, 1), and ∀n ≥ 1, z1(2n) = z1(n), z1(2n+1) = −z1(n)+z1(n+1),

(z2(0), z1(1)) = (0, 1), and ∀n ≥ 1, z2(2n) = −z2(n), z2(2n+1) = −z2(n)+z2(n+1),

(z3(0), z3(1)) = (0, 1), and ∀n ≥ 1, z3(2n) = −z3(n), z3(2n+1) = z3(n)+z3(n+1).

Note that he last sequence (z3(n))n≥0 is the 3-periodic sequence with period (0, 1,−1)

(hint: prove by induction on n that for all j ≤ n one has (z3(3j), z3(3j + 1), z(3j +

2)) = (0, 1,−1)). Also note that all relations zi(2n) = ±zi(n) and zi(2n + 1) =

±zi(n) + zi(n+ 1), i = 1, 2, 3, are actually valid for n ≥ 0.

We know from Theorem 8 that, for all e ≥ 0 and r ∈ [0, 2e], there exist Ai(e, r)

and Bi(e, r) such that for all n ≥ 0 we have

zi(2
en+ r) = Ai(e, r)zi(n) +Bi(e, r)zi(n+ 1).
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Taking n = 0 yields Bi(e, r) = zi(r) (for i = 1, 2, 3). Taking n = 2, and using that

z1(2) = 1, z3(2) = −1, and z1(3) = z3(3) = 0, we get A1(e, r) = z1(2
e+1 + r) and

A3(e, r) = −z3(2
e+1+ r). Now taking n = 1 yields A2(e, r) = z2(2

e+ r)−z2(r). An

immediate induction on e proves that, for r ∈ [0, 2e], one has z2(2
e + r) − z2(r) =

−z2(5.2
e + r). Hence we can state the following theorem.

Theorem 13. Let (z1(n))n≥0, (z2(n))n≥0, (z3(n))n≥0 be the sequences defined

above. Let e ≥ 0 and r ∈ [0, 2e]. Then, for all n ≥ 0 we have

z1(2
en+ r) = z1(2

e+1 + r)z1(n) + z1(r)z1(n+ 1)
z2(2

en+ r) = −z2(5.2
en+ r)z2(n) + z2(r)z2(n+ 1)

z3(2
en+ r) = −z3(2

e+1 + r)z1(n) + z3(r)z3(n+ 1)

and

z1(2
e+1 + r)z1(2n+ 5) + z1(r)z1(2n+ 3) = −z1(2

e(n+ 2) + r) + z1(2
e(n+ 1) + r)

−z2(5.2
e + r)z2(2n+ 5) + z2(r)z2(2n+ 3) = −z2(2

e(n+ 2) + r) + z2(2
e(n+ 1) + r)

−z3(2
e+1 + r)z3(2n+ 5) + z3(r)z3(2n+ 3) = z3(2

e(n+ 2) + r) + z3(2
e(n+ 1) + r).

6.4. Block-complexity of the Thue-Morse sequence

Other sequences satisfy the hypotheses of Theorem 8, e.g., sequence A145865 in

[10]. An example that we would like to mention is the sequence (y(n))n≥0 =

(A005942(n + 1))n≥0 with the notation of [10]. The sequence (A005942(n))n≥0

is the (block-)complexity of the Thue-Morse sequence (the Thue-Morse sequence is

the fixed point beginning with 0 of the morphism 0 → 01, 1 → 10, see, e.g., [2]; its

block-complexity is the number of distinct factors (blocks) of each length occurring

in that sequence). It satisfies A005942(2n) = A005942(n) + A005942(n+ 1), and

A005942(2n + 1) = 2A005942(n + 1) if n ≥ 2 (see [4, 8]). Hence the sequence

(y(n))n≥0 satisfies the hypotheses of Theorem 8 with n0 = 2, a = 2, b = c = 1.

Note that y(0) = 2 and y(1) = 4.

Remark 14. The sequence (A006165(n))n≥0 satisfies the same recurrence proper-

ties as the sequence (y(n))n≥0 above, but is equal to 1 for n = 1 and n = 2. As

indicated in [10] this sequence is related to the Josephus problem.

7. Final remarks

For sequences (z(n))n≥0 satisfying the hypotheses of Theorem 8, any subsequence

of the form (z(2en + r))n≥0 with e ≥ 0 and r ∈ [0, 2e] is a linear expression in

(z(n))n≥0 and (z(n+1))n≥0 for n ≥ n0 with coefficients depending on r and e only:

this proves the 2-regularity of these sequences (see [1]).



9

Also note that, as visible in the proof of Theorem 8 above, several other relations

can be found between the terms of sequences satisfying the hypotheses of that

theorem.
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