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THE DEPTH OF A PERMUTATION

T. KYLE PETERSEN AND BRIDGET EILEEN TENNER

Abstract. For the elements of a Coxeter group, we present a statistic called depth, defined
in terms of factorizations of the elements into products of reflections. Depth is bounded above
by length and below by reflection length. In this article, we focus on the case of the symmetric
group, where we show that depth is equal to

∑
i
max{w(i) − i, 0}. We characterize those

permutations for which depth equals length: these are the 321-avoiding permutations (and
hence are enumerated by the Catalan numbers). We also characterize those permutations
for which depth equals reflection length: these are permutations avoiding both 321 and 3412
(also known as boolean permutations, which we can hence also enumerate). In this case, it
also happens that length equals reflection length, leading to a new perspective on a result of
Edelman.

1. Introduction

We begin with discussion of a simple recursive sorting algorithm, called “straight selection
sort” by Knuth [8]. The algorithm finds the largest element in a list that is not in its proper
place, and moves it to its correct position using a single transposition. Having fixed this
element, we repeat the procedure, finding the next-largest element that is not in its proper
place and moving it to its correct position, and so on. For example, the steps in sorting the
permutation w = 2431756 are as follows, where the value being moved is in boldface and each
transposition has been labeled by the pair of positions that it swaps.

2431756
(57)
−−→ 2431657

(56)
−−→ 2431567

(24)
−−→ 2134567

(12)
−−→ 1234567.

From this algorithm we find a minimal length expression for the permutation as a product of
transpositions:

w = (12)(24)(56)(57),

though of course there are usually many other shortest expressions as a product of transpo-
sitions. We can measure the “cost” of this algorithm in terms of the distances between the
positions changed in each transposition, so in the example above, this measure would be

(2− 1) + (4− 2) + (6− 5) + (7− 5) = 6.

In [10], this statistic was called the sorting index. The sorting index was shown [10, Corollary
3] (see also [22]) to have the same distribution over all permutations of n as the inversion
number; that is, it is a Mahonian statistic.

While straight selection sort optimizes the number of transpositions, one may ask whether
we can do better than the sorting index, in terms of cost. Returning to our example of
w = 2431756 we see an alternative route from w to the identity e:

2431756
(56)
−−→ 2431576

(67)
−−→ 2431567

(24)
−−→ 2134567

(12)
−−→ 1234567.
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This sorting of the permutation yields

w = (12)(24)(67)(56),

and
(2− 1) + (4− 2) + (7− 6) + (6− 5) = 5 < 6.

In fact, this value of 5 is the best we can hope to do for this w.
The purpose of this paper is to characterize this sort of minimum sorting measure, which

we call the depth of a permutation, denoted by dp(w). The term “depth” is chosen because
it is natural from the perspective Coxeter groups, as we explain in Section 2.

We will relate depth to the well understood notions of length and reflection length, denoted
ℓ(w) and ℓ′(w), respectively. For permutations, it is well known that the length is the same
as the inversion number, and the reflection length is the size of the permutation minus the
number of cycles. We will show that depth is bounded below by reflection length and above
by length.

Beyond preliminaries, we study depth primarily in the case of the symmetric group. In
particular, we have the following characterization of depth.

Theorem 1.1. Let w ∈ Sn. Then its depth is given by

dp(w) =
∑

w(i)>i

(w(i)− i).

We prove Theorem 1.1 by exhibiting an algorithm, based on straight selection sort, that
achieves a factorization of w having both minimum depth and minimum reflection length.

A position i such that w(i) > i is called an excedance of w, so this measure is the sum of
the sizes of the excedances. It is well known that excedance number and descent number are
equidistributed over Sn. (Their common generating function is the Eulerian polynomial.)
In a similar vein, we find that summing the size of a descent gives a statistic with the same
distribution as depth. That is, define the descent drop of w to be

drops(w) =
∑

w(i)>w(i+1)

(w(i)− w(i+ 1)).

(We note that in [4] Chung, Claesson, Dukes, and Graham study descent numbers in relation
to “maximum drop size,” that is, max{j − w(j)}. Apart from similar terminology, we know
of no deeper connection between this work and that one.) It is generally not true that
dp(w) = drops(w). For example, dp(3241) = 2 + 1 = 3 while drops(w) = 1 + 3 = 4.
Nonetheless, we will prove the following via a bijection of Steingŕımsson [14, Appendix].

Theorem 1.2. For all n, the pairs of statistics (des, drops) and (exc, dp) are equidistributed
over Sn. That is, ∑

w∈Sn

qdrops(w)tdes(w) =
∑

w∈Sn

qdp(w)texc(w).

In particular,
|{w ∈ Sn : dp(w) = k}| = |{w ∈ Sn : drops(w) = k}|.

We are also able to characterize, in terms of pattern avoidance, those permutations for
which the lower and upper bounds for depth are achieved.
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Theorem 1.3. Let w ∈ Sn. Then,

• dp(w) = ℓ(w) if and only if w avoids the pattern 321, and
• ℓ′(w) = dp(w) if and only if w avoids the patterns 321 and 3412.

In particular, there are Catalan-many permutations for which dp(w) = ℓ(w), and odd-indexed-
Fibonacci-many permutations for which ℓ′(w) = dp(w).

Achieving the lower bound here, ℓ′(w) = dp(w), also turns out to imply ℓ′(w) = ℓ(w), as
discussed in Observation 2.3. The permutations for which ℓ′(w) = ℓ(w) were first charac-
terized by Edelman [5, Theorem 3.1]. Here we see Edelman’s “unimodal” permutations in a
slightly different guise, following work of the second author [20, 19], which provides a dictio-
nary for translating between one-line notation of a permutation and reduced decompositions.
The permutations for which dp(w) = ℓ(w) are characterized directly; we also have a bijection
with Dyck paths to help make the characterization more intuitive.

The in-depth discussion of the case of permutations begins in Section 3. In particular,
Theorem 1.1 is proved in Section 3.1 and Theorem 1.2 is proved in Section 3.2. Theorem 1.3
is a summary of Theorems 4.1 and 4.7, proved in Sections 4.1 and 4.2, respectively.

As motivation for comparing the three statistics ℓ′, dp, and ℓ, we compare their values for
elements of S3 and S4 in Table 1.

2. Depth in a Coxeter group

We assume some basic knowledge of Coxeter groups in this section. See Humphreys [7]
for facts about Coxeter groups that are not explained here. The reader interested only in
permutation statistics can safely skip to Section 3.

Let W be a Coxeter group, with simple reflection set S. The set of all reflections is the set
of conjugates of the simple reflections, denoted T = {wsw−1 : w ∈ W, s ∈ S}. There are two
common measures associated to any element w ∈ W . Its length, ℓ(w), is the minimal number
of simple reflections needed to express w, while its reflection length, ℓ′(w), is the minimal
number of not-necessarily-simple reflections:

ℓ(w) = min{k : w = s1 · · · si, si ∈ S},

ℓ′(w) = min{k : w = t1 · · · tk, ti ∈ T}.

Decompositions of the form w = s1 · · · sℓ(w) with si ∈ S or w = t1 · · · tℓ′(w) with ti ∈ T are
called a reduced decompositions (with respect to S or with respect to T ).

Now let Φ = Π ∪ −Π denote the root system associated to W , and let ∆ = {α1, α2, . . .}
denote the simple roots. Following [3] (see also [16]), the depth of a positive root β ∈ Π,
denoted dp(β), is

dp(β) = min{k : s1 · · · sk(β) ∈ −Π, si ∈ S}.

It is always the case that dp(β) ≥ 1, with dp(β) = 1 if and only if β ∈ ∆ is a simple root.
There is a one-to-one correspondence between reflections and positive roots: the reflection

tβ is the reflection across the hyperplane whose normal vector is β. In particular, tβ(β) = −β.
Now, for any group element w ∈ W , we define its depth to be the minimum sum of depths
in a factorization of w into reflections. That is,

dp(w) = min

{
∑

i

dp(βi) : w = tβ1
· · · tβk

, tβi
∈ T

}
.
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w ∈ S3 = A2 ℓ′(w) dp(w) ℓ(w)
123 0 0 0
213 1 1 1
132 1 1 1
312 2 2 2
231 2 2 2
321 1 2 3

w ∈ G2 ℓ′(w) dp(w) ℓ(w)
e 0 0 0
s1 1 1 1
s2 1 1 1
s1s2 2 2 2
s2s1 2 2 2
s1s2s1 1 2 3
s2s1s2 1 2 3
s1s2s1s2 2 3 4
s2s1s2s1 2 3 4
s1s2s1s2s1 1 3 5
s2s1s2s1s2 1 3 5
s1s2s1s2s1s2 2 4 6

w ∈ S4 ℓ′(w) dp(w) ℓ(w)
1234 0 0 0
2134 1 1 1
1324 1 1 1
1243 1 1 1
2314 2 2 2
2143 2 2 2
3124 2 2 2
1342 2 2 2
1423 2 2 2
3214 1 2 3
1432 1 2 3
2341 3 3 3
2413 3 3 3
3142 3 3 3
4123 3 3 3
3241 2 3 4
2431 2 3 4
4132 2 3 4
4213 2 3 4
3412 2 4 4
4231 1 3 5
4312 3 4 5
3421 3 4 5
4321 2 4 6

Table 1. Reflection length, depth, and length for the elements of the groups
S3 = A2, G2, and S4 = A3. Note that each element w satisfies ℓ′(w) ≤
dp(w) ≤ ℓ(w).

We can see that, by definition,

2 dp(β) = ℓ(tβ) + 1.

It then follows that

dp(tβ) = dp(β) =
ℓ(tβ) + 1

2
,

since if
tβ = tγ1 · · · tγk ,

is any factorization of tβ as a product of reflections, then

2(dp(γ1) + · · ·+ dp(γk)) = ℓ(tγ1) + · · ·+ ℓ(tγk) + k,

≥ ℓ(tβ) + k,

≥ 2 dp(β) + k − 1,

≥ 2 dp(β).
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In fact, this shows that any expression of tβ using more than one reflection forces a factor-
ization of greater depth.

We can now phrase depth simply in terms of the lengths of the reflections in a reflection
factorization of w.

Observation 2.1. The depth of w is given by

dp(w) = min

{
k∑

i=1

dp(ti) : w = t1 · · · tk, ti ∈ T

}
,

=
1

2
min

{
k +

k∑

i=1

ℓ(ti) : w = t1 · · · tk, ti ∈ T

}
.

Since ℓ(ti) ≥ 1 for ti ∈ T , it is clear from this last observation that dp(w) is at least as
great as reflection length. Moreover, if w = s1 · · · sℓ(w) is a reduced factorization in S, then

dp(w) ≤ (ℓ(w) +
∑ℓ(w)

i=1 ℓ(si))/2 = ℓ(w). In summary, we have the following.

Observation 2.2. The depth of an element w satisfies

ℓ′(w) ≤ dp(w) ≤ ℓ(w).

Another easy observation follows from noticing that a factorization of w can never have
fewer than ℓ′(w) terms, and the minimum depth of a term is 1. Thus if depth and reflection
length are equal for w, then the depth of every term is actually equal to 1. In other words, the
factorization consists entirely of simple reflections, and thus length equals reflection length.
Together with Observation 2.2, we have the following.

Observation 2.3. For w ∈ W , we have dp(w) = ℓ′(w) if and only if ℓ(w) = ℓ′(w).

For dihedral groups, depth is straightforward. Let I2(m) denote the dihedral group of order
2m, m ≤ ∞, and let S = {s1, s2} denote the simple reflections.

Proposition 2.4. For an element w ∈ I2(m), we have

dp(w) =

{
ℓ(w)+1

2
if ℓ(w) odd,

ℓ(w)
2

+ 1 if ℓ(w) even.

Hence,

∑

w∈I2(m)

qℓ(w)tdp(w) =





1 + 2qt+ qmt
m

2
+1 + 2(1 + q)t

m

2
−1∑

i=1

q2iti if m is even,

1 + 2qt+ qm−1t
m+1

2 (2 + q) + 2(1 + q)t

m−3

2∑

i=1

q2iti if m is odd,

1 + 2qt ·
1 + qt

1− q2t
if m = ∞.

Proof. Indeed, suppose an element w = s1s2s1 · · · . Then if ℓ(w) = 2d − 1 is odd, we know
w ∈ T , and dp(w) = d. Similarly, we can argue that if ℓ(w) = 2(d−1) is even, then dp(w) = d.
One simply shows that a factorization into two reflections, (s1)(s2s1 · · · s2) gives this depth,
and that a factorization into more than two reflections necessarily increases depth.
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The generating function expressions follow, since there are exactly two elements of each
length, apart from the identity (length zero) and the long element (length m). �

For example, we see the distributions of length and height for I2(3) = A2 and I2(6) = G2

in Table 1.

Remark 2.5 (Depth is additive). Notice that if W is reducible, say W = W1 ×W2, all the
reflections in W1 commute with the reflections in W2. Thus if w = uv with u ∈ W1, v ∈ W2,
then dp(w) = dp(u) + dp(v). Hence, to characterize depth, it suffices to study irreducible
Coxeter groups.

Remark 2.6 (Depth versus height). Recall that every root is a linear combination of simple
roots,

∑
i ciαi, and the height of a root is

∑
i ci. Thus, one can then assign a minimum

“height” to any reflection factorization just as we have assigned a depth.
Whenever Φ is a finite crystallographic root system, depth and height agree for short roots.

If Φ is a root system of type An, all the roots are the same length, and so the depth of a root
is the same as its height. Thus, we could just as easily have called the permutation statistic
we study in Sections 3 and 4 the “height” of a permutation.

However, if Φ has both long and short roots, depth and height need not agree, and it is our
feeling that depth is the better behaved of the two statistics. In fact, it need not even be the
case that the height of a reflection t be the same as the height of its corresponding positive
root! (The reflection s1s2s1 in G2 corresponds to a root of height 4, for example.) Moreover,
depth makes sense for all root systems, not only crystallographic ones. Observation 2.1 shows
depth is independent of the choice of root system; that is, it depends only on the group.

We now turn our focus to the case of the symmetric group Sn; that is, the Coxeter group
of type An−1.

3. The depth statistic

For a positive integer n, let [n] = {1, 2, . . . , n}, and let Sn be the symmetric group on [n];
that is, the set {w : [n] → [n]} of all bijections from [n] to itself. This group is a Coxeter
group of type An−1. The set of simple reflections in Sn is denoted by Sn = {s1, . . . , sn−1},
where si = (i i+ 1) ∈ Sn is the adjacent transposition interchanging i and i+ 1, and fixing
all other elements.

The reflections in Sn are the transpositions. We denote the set of all transpositions by

Tn = {tij : 1 ≤ i < j ≤ n},

where tij = (i j) ∈ Sn is the permutation interchanging i and j, and fixing all other elements.
To avoid confusion with the subscripts, we will occasionally write ti,j for tij . Notably, si =
ti,i+1. It is easily checked that the depth of a transposition is

dp(tij) = |i− j|.

We will freely write elements of w ∈ Sn as permutations in one-line notation, permutations
in cycle notation, words on the set Sn, or words on the set Tn. For example,

2431756 = (124)(3)(576) = s1s2s3s2s6s5 = t12t24t67t56.

It is well known that length is equal to the number of inversions of w. Let inv(w) denote
the number of pairs i < j such that w(i) > w(j). For example, we see that inv(2431756) = 6.
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Also well known is that reflection length is equal to n− c(w), where c(w) denotes the number
of cycles of w. With w = (124)(3)(576) as above, we see that 7 − c(w) = 4. It is interesting
that length is easily computed from the one-line notation of a permutation, whereas reflection
length is easily computed from cycle notation. It would be very interesting if there was a
notation for permutations in which both length and reflection length are easily seen.

3.1. An algorithm and a characterization of depth. We begin our discussion of depth
of a permutation by reconsidering straight selection sort applied to w = 3715246. We have:

3715246
(67)· ↓ ·(27)

3615247
(46)· ↓ ·(26)

3415267
(25)· ↓ ·(45)

3412567
(24)· ↓ ·(24)

3214567
(13)· ↓ ·(13)

1234567

In each line, we have written on the left the transposition (w(i) i) for the highlighted letter
i (the largest number not yet in its proper place), while on the right we have (w−1(i) i).
The difference is only whether we consider the action of left multiplication, which swaps the
specified digits, or right multiplication, which swaps the digits in the specified positions.

We see that we could associate many different factorizations of w to the straight selection
sort algorithm. For the sorting index of [10], we use right multiplication at each step to obtain
a reduced reflection decomposition for w. This gives w = t13t24t45t26t27, and

dp(w) ≤ (3− 1) + (4− 2) + (5− 4) + (6− 2) + (7− 2) = 14.

On the other hand, we can see equally well that t13t24t46t67 · w · t45 = e, and so w =
t67t46t24t13t45. This factorization shows

dp(w) ≤ (7− 6) + (6− 4) + (4− 2) + (3− 1) + (5− 4) = 8.

In fact, by choosing the transposition of least depth in each step of the straight selection
sort, we achieve a minimal depth factorization. We make the procedure precise with the
algorithm SHALLOW-DECOMP below.

Algorithm SHALLOW-DECOMP.

The input of the algorithm is a permutation w ∈ Sn. The output is a pair of
reduced decompositions u = u(w), and v = v(w), such that w = uv.
(1) If n = 1, then u := e, v := e.
(2) If w(n) = n, then let w′ := w(1) · · ·w(n− 1) and u := u(w′), v := v(w′).
(3) If w(n) < n then w′ := tw(n),n · w and:

(a) if w(n) ≤ w−1(n) then u := u(w′), v := v(w′) · tw−1(n),n,
(b) if w(n) > w−1(n) then u := tw(n),n · u(w

′), v := v(w′).
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With the example of w = 3715246 as above, we can trace through the algorithm to find

u = t67t46t24t13 and v = t45.

We now prove the following, which establishes Theorem 1.1.

Theorem 3.1. For w ∈ Sn, the output of SHALLOW-DECOMP gives a reduced expression
w = uv of minimal reflection length and minimal depth. Moreover, this depth is equal to

dp(w) =
∑

w(i)>i

(w(i)− i).

Proof. The fact that uv = w is obvious by construction. That the factorization has ℓ′(w)
terms follows from the fact that straight selection sort achieves minimal reflection length: a
transposition can only change the number of cycles by ±1, and the algorithm uses steps that
each increase the number of fixed points, and hence, cycles.

To see that the algorithm achieves the minimal depth, we proceed by induction on n. When
n = 1, this is obviously true, and the given formula for depth works.

Now suppose n > 1 and let

d(w) =
∑

w(i)>i

(w(i)− i).

Suppose dp(w′) = d(w′) for all w′ ∈ Sn−1. Let w ∈ Sn. If w(n) = n, then we can view w as
lying in Sn−1, and so dp(w) = d(w).

Now let j = w−1(n) < n. We will first show dp(w) ≤ d(w). As in step (2) of SHALLOW-

DECOMP, we let w′ = tw(n),n · w. There are two cases to consider, given in steps (3a) and
(3b). In the first case, from (3a), we suppose that w(n) ≤ j, in which case w′(j) = w(n) is
not an excedance of w′, so

d(w) =
∑

w(i)>i

(w(i)− i),

= (n− j) +
∑

i 6=j:w(i)>i

(w(i)− i),

= (n− j) +
∑

w′(i)>i

(w′(i)− i),

= (n− j) + d(w′),

= (n− j) + dp(w′).

We get that d(w) is the sum of the depths in the factorization

w = u(w′) · v(w′) · tjn,

and so dp(w) ≤ d(w).
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For the next case, from (3b) of the algorithm, we suppose that w(n) = w′(j) > j. This
time,

d(w) =
∑

w(i)>i

(w(i)− i),

= (n− j) +
∑

i 6=j:w(i)>i

(w(i)− i),

= (n− j) +
∑

i 6=j:w′(i)>i

(w′(i)− i),

= (n− j) + d(w′)− (w(n)− j),

= (n− w(n)) + d(w′),

= (n− w(n)) + dp(w′).

Again we conclude that d(w) is the sum of the depths in the factorization

w = tw(n),n · u(w
′) · v(w′),

yielding dp(w) ≤ d(w).
Thus, we see that d(w) is an upper bound for depth in all cases. On the other hand, we

know d(w) ≤ dp(w), because, at the very least, all of the excedances w(i) in a permutation
are w(i) − i places away from their initial positions. Combining the inequalities we have
dp(w) = d(w), as desired. �

We include here for reference Table 2, which contains the distribution of depths for n ≤ 8.
This array can be found as entry A062869 of [13].

k = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n = 1 1
2 1 1
3 1 2 3
4 1 3 7 9 4
5 1 4 12 24 35 24 20
6 1 5 18 46 93 137 148 136 100 36

7 1 6 25 76 187 366 591 744 884 832 716 360 252
8 1 7 33 115 327 765 1523 2553 3696 4852 5708 5892 5452 4212 2844 1764 576

Table 2. The number of permutations w ∈ Sn with depth dp(w) = k.

Given the formula for depth in Theorem 3.1, we can prove the following.

Proposition 3.2. For all w ∈ Sn, we have dp(w) ≤ ⌊n2/4⌋, and this bound is sharp.

Further, we can say precisely how many permutations achieve this upper bound.

Proposition 3.3. The number of permutations in Sn achieving maximal depth is

|{w ∈ Sn : dp(w) = ⌊n2/4⌋}| =

{
(k!)2 if n = 2k,

n(k!)2 if n = 2k + 1.
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We remark that both these propositions can be found in the remarks (and links therein) for
entry A062870 of [13]. In particular, Alekseyev has a webpage [1] with a proof of Proposition
3.3.

To prove the propositions, it will be helpful to have the following lemma.

Lemma 3.4. Let w ∈ Sn, and suppose i < j and w(i) < w(j). Then,

dp(w · tij) =

{
dp(w) if j ≤ w(i) or w(j) < i,

dp(w) + min{w(j), j} −max{w(i), i} otherwise.

In particular, dp(w · tij) ≥ dp(w) for all such w, i, and j.

Proof. Each of these cases is straightforward to verify. We will do the first few. The remaining
cases follow similar lines of reasoning.

Let w′ denote wtij.
(Case: w(i) < w(j) < i < j.) If w(i) < w(j) < i < j, then, in both w and w′, neither
w(i) nor w(j) are excedances. Since these are the only positions in which w and w′ differ,
they have exactly the same excedance set, and so dp(w) = dp(w′) by the characterization of
depth given in Theorem 3.1.
(Case: i < j ≤ w(i) < w(j).) Now suppose that i < j ≤ w(i) < w(j). Then

dp(w) =
∑

w(k)>k

(w(k)− k)

= · · ·+ (w(i)− i) + · · ·+ (w(j)− j) + · · ·

= · · ·+ (w(j)− i) + · · ·+ (w(i)− j) + · · ·

= · · ·+ (w′(i)− i) + · · ·+ (w′(j)− j) + · · ·

=
∑

w′(k)>k

(w′(k)− k) = dp(w′),

as desired.
(Case: i ≤ w(i) < w(j) < j.) If i ≤ w(i) < w(j) < j, then we get

dp(w) =
∑

w(k)>k

(w(k)− k)

= (w(i)− i) +
∑

k 6=i:w(k)>k

(w(k)− k)

= w(i)− w(j) + (w(j)− i) +
∑

k 6=i:w(k)>k

(w(k)− k)

= w(i)− w(j) + (w′(i)− i) +
∑

k 6=i:w′(k)>k

(w′(k)− k)

= w(i)− w(j) +
∑

w′(k)>k

(w′(k)− k) = w(i)− w(j) + dp(w′),

as desired.
The remaining cases are similar. �
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With the lemma in hand, we now prove Proposition 3.2.

Proof of Proposition 3.2. Observe that the longest permutation, w0 = n(n−1) · · · 21, achieves
the claimed upper bound of ⌊n2/4⌋. Indeed, if n is even, then

dp(w0) = (n− 1) + ((n− 1)− 2) + · · · = (n− 1) + (n− 3) + · · ·+ 5 + 3 + 1

=
(n
2

)2

.

If n is odd, then

dp(w0) = (n− 1) + ((n− 1)− 2) + · · · = (n− 1) + (n− 3) + · · ·+ 4 + 2

=

(
n+ 1

2

)(
n + 1

2
− 1

)
=

n2 − 1

4
.

Now, we claim that dp(w0) ≥ dp(w) for any w ∈ Sn.
First suppose w0 = wtij . Then since w0 is totally decreasing, it must be that i < j and

w(i) < w(j). Thus dp(w0) ≥ dp(w) by Lemma 3.4.
In general, we can proceed from any permutation w to w0 by transpositions of this type.

To see this, define A(w) = {tij : i < j, w(i) < w(j)}. Then |A(w0)| = 0, and it is the only
permutation with this property. Generally, if t ∈ A(w), then

A(wt) ⊆ (A(w) \ {t}).

In particular, |A(wt)| < |A(w)|. So by some choice of transpositions tij with i < j and
w(i) < w(j), we can move from any w to w0. Lemma 3.4 shows that this cannot decrease
depth. So there exists a sequence of transpositions t1, . . . , tr such that

|A(w)| > |A(wt1)| > · · · > |A(wt1 · · · tr)| = |A(w0)| = 0,

and
dp(w0) = dp(wt1 · · · tr) ≥ · · · ≥ dp(wt1) ≥ dp(w).

This completes the proof. �

Now we will prove Propostion 3.3, characterizing the permutations with maximal depth.

Proof of Proposition 3.3. To begin, suppose n = 2k is even. We will show that the permuta-
tions for which dp(w) = k2 are precisely those permutations for which

{w(1), w(2), . . . , w(k)} = {k + 1, k + 2, . . . , n},

or, equivalently,
{w(k + 1), w(k + 2), . . . , w(n)} = {1, 2, . . . , k}.

Denote this set by Sk,k. Obviously there are (k!)2 permutations in this set, since the first k
elements can be permuted independently of the final k elements.

Suppose w ∈ Sk,k. If i, j ∈ {1, 2, . . . , k} or if i, j ∈ {k + 1, k + 2, . . . , n}, then wtij ∈ Sk,k

as well. Moreover, from Lemma 3.4, we see that

dp(wtij) = dp(w).

To see that these depths are equal to k2 = ⌊n2/4⌋, we note that, just as in the proof of
Proposition 3.2, a succession of such transpositions can be used to obtain the decreasing
permutation w0 ∈ Sk,k, whose depth was already established as dp(w0) = n2/4.
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Finally, we observe that if w /∈ Sk,k, then there are indices i and j, with i ≤ k < j, such that
w(i) ≤ k < w(j). Using Lemma 3.4 and Proposition 3.2 we have dp(w) < dp(wtij) ≤ dp(w0).

The case when n is odd proceeds analogously, except that we will define n = 2k+1 different
sets Si;k,k, one for each choice i ∈ [n] of the the middle value, w(k + 1), of the permutation.

If i ≤ k + 1, then Si;k,k is the set of permutations for which

{w(1), . . . , w(k)} = {k + 2, . . . , n},

or, equivalently,

{w(k + 2), . . . , w(n)} = {1, . . . , k + 1} − {i}.

If i > k + 1, then Si;k,k is the set of permutations for which

{w(1), . . . , w(k)} = {k + 1, . . . , n} − {i},

or, equivalently,

{w(k + 2), . . . , w(n)} = {1, . . . , k}.

Although w0 /∈ Si;k,k if i 6= k + 1, it is not hard to see that each Si;k,k is closed under depth-
preserving transpositions that do not involve i, and each Si;k,k contains a “nearly decreasing”
element w whose non-middle entries are mapped as

w : (1, 2, . . . , k̂ + 1, . . . , n) 7→ (n, n− 1, . . . , î, . . . , 1).

Moreover, this w has depth
n2 − 1

4
if i ≤ k + 1 and depth

n2 − 1

4
− 1(i− (k + 1)) + (i− (k + 1)) =

n2 − 1

4

if i > k+1. There are (k!)2 permutations in each Si;k,k, and so a total of n(k!)2 permutations
w ∈ S2k+1 with dp(w) = ⌊n2/4⌋.

If w /∈ Si;k,k for any i, it follows that there are i < k+1 < j such that w(i) < k+1 < w(j),
and so again using Lemma 3.4 and Proposition 3.2 we have dp(w) < dp(wtij) ≤ dp(w0).

This completes the proof. �

3.2. Depth is equidistributed with descent drop. We will now prove Theorem 1.2.
Recall that des(w) = |{i : w(i) > w(i+1)}| and exc(w) = |{i : w(i) > i}|. In the introduction
we defined the descent drop of w to be

drops(w) =
∑

w(i)>w(i+1)

(w(i)− w(i+ 1)),

and Theorem 1.1 shows that

dp(w) =
∑

w(i)>i

(w(i)− i).

Theorem 1.2 claims the following:

(1)
∑

w∈Sn

qdrops(w)tdes(w) =
∑

w∈Sn

qdp(w)texc(w).
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The proof of equation (1) follows from a bijection that carries descents to excendances, due
to Steingŕımsson [14, Appendix]. (Note that this is related to the “transformation fondamen-
tale” of Foata and Schützenberger [6].) We follow the description of the bijection given in
Theorem 51 of [14].

Given w ∈ Sn, we form v ∈ Sn with the following process. For each j ∈ [n]:

• if w(j) > w(k) for some k > j, then

v(w(j + 1)) = w(j),

• otherwise, let i < j be maximal such that w(i) < w(j) (with w(0) = 0), and declare

v(w(i+ 1)) = w(j).

We now let φ : Sn → Sn be given by φ(w) = v.
For example, let w = 7213645. In working from left to right in w: we put w(1) = 7 in

position w(2) = 2 of v because it 7 greater than something to its right in w; we put w(2) = 2
in position w(3) = 1 of v because 2 is greater than something to its right in w; we put
w(3) = 1 in position w(1) = 7 of v since it is not greater than something to its right in w
and w(0) = 0 is the rightmost number less than w(3), and so on. Continuing, we ultimately
achieve v = 2736541.

w 7 2 1 3 6 4 5
v v(1) v(2) v(3) v(4) v(5) v(6) v(7)

7
2 7
2 7 1
2 7 3 1
2 7 3 6 1
2 7 3 6 4 1
2 7 3 6 5 4 1

That the map φ is well-defined and injective (hence bijective) follows from close inspection
of its definition, and we will omit proof of this fact. See [15, Section 4.1].

More important from our perspective is the following lemma that follows by construction
of φ.

Lemma 3.5 ([14], Section 4.1). Let w ∈ Sn and v = φ(w). Then w(i) > w(i+1) is a descent
of w if and only if w(i) = v(w(i+ 1)) is an excedance of v. In particular, des(w) = exc(v).

Notice that in the example above, w = 7 2 1 3 6 4 5 has descent pairs 7 > 2, 2 > 1, and
6 > 5, so that drops(w) = 5 + 1 + 1 = 7. On the other hand, v = 2 7 3 6 5 4 1 has excedances
2 (in position 1), 7 (in position 2), and 6 (in position 5), so dp(v) = 1 + 5 + 1 = 7.

From Lemma 3.5 we can now prove Theorem 1.2.



14 T. K. PETERSEN AND B. E. TENNER

Proof of Theorem 1.2. It suffices to show that φ carries descents to excedances, and descent
drops to depth. Lemma 3.5 states that des(w) = exc(φ(w)), and moreover, with v = φ(w),

drops(w) =
∑

w(i)>w(i+1)

(w(i)− w(i+ 1))

=
∑

w(i)>w(i+1)

(v(w(i+ 1))− w(i+ 1))

=
∑

v(k)>k

(v(k)− k)

= dp(v) = dp(φ(w)),

as desired. �

4. Coincidences of depth, length, and reflection length

From Observation 2.2, we have that reflection length gives a lower bound for depth, while
length gives an upper bound for depth. In this section and the next, we will establish Theorem
1.3, in which we characterize, in terms of pattern avoidance, those permutations for which
dp(w) = ℓ(w) and those for which dp(w) = ℓ′(w).

First, recall the notion of pattern avoidance. Let w ∈ Sn and p ∈ Sk, where n ≥ k. We say
that w contains a p-pattern if there exist indices {i1 < · · · < ik} such that w(i1) · · ·w(ik) is in
the same relative order as p(1) · · ·p(k). Otherwise, we say that w avoids p, or is p-avoiding.
For example, the permutation 3241576 contains the pattern 1234 (in positions {1, 3, 5, 6}, for
example), and avoids the pattern 4321.

4.1. When depth equals length. We now present a characterization of those permutations
for which dp(w) = ℓ(w).

Theorem 4.1. For any w, dp(w) = ℓ(w) if and only if w avoids 321.

Corollary 4.2. The number of w ∈ Sn for which dp(w) = ℓ(w) is given by the Catalan
number Catn = 1

n+1

(
2n
n

)
.

Recall that a permutation w is called fully commutative if every reduced expression w =
s1 · · · sℓ(w) for w (with simple reflections) can be obtained from any other by swapping two
letters: sisj = sjsi. In [2, Theorem 2.1] it was shown that w is fully commutative if and only
if w avoids 321. (See [17] for generalizations.) Thus, we obtain another characterization of
when length equals depth.

Corollary 4.3. A permutation w ∈ Sn has dp(w) = ℓ(w) if and only if w is fully commuta-
tive.

We will prove Theorem 4.1 by exhibiting a bijection between {w : dp(w) = ℓ(w)} and
Dyck paths. More specifically, we will demonstrate that the fibers of a certain map from
Sn to Dyck paths of length 2n have unique minimal length representatives, and that these
representatives are the 321-avoiding permutations.

Let Dyckn denote the set of Dyck paths of length 2n; that is, those lattice paths from (0, 0)
to (n, n) that take steps North and East, and never pass below the line y = x.



THE DEPTH OF A PERMUTATION 15

2

•

3

•

1

7

•

•

• 6

8

•

•

4

5

Figure 1. An example of the map from Sn to Dyckn.

Let lr-max(w) denote the set of left-right maxima of w, written as pairs (i, w(i)); that is,

lr-max(w) = {(i, w(i)) : w(j) < w(i) for all j < i}.

From w we can then form a Dyck path by putting the outer corners of the path at coordinates
(i−1, w(i)) for each left-right maximum. This is easiest to understand with an example. Let
w = 23176845. We will draw w as a collection of non-attacking rooks on a chessboard, where
the value w(i) is placed in the box appearing in the ith column from the left and the w(i)th
row from the bottom. We circle the left-right maxima, then draw the Dyck path with these
positions as outer corners. Let P : Sn → Dyckn denote this function. We see P (23176845)
in Figure 1.

It will be useful to have the following lemma.

Lemma 4.4. Fix w ∈ Sn. If w(i)− i > 0, then

|{j : i < j and w(i) > w(j)}| ≥ w(i)− i,

with equality if and only if (i, w(i)) is a left-right maximum. In particular,

|{(i, j) : i < j, w(i) > w(j), and (i, w(i)) ∈ lr-max(w)}| =
∑

(i,w(i))∈lr-max(w)

(w(i)− i)

≤ dp(w)

≤ ℓ(w).

Proof. Every left-right maximum (i, w(i)) is the greater value in w(i) − i inversions, since
there are only n − w(i) numbers greater than w(i) and each of these must be placed among
the n− i positions {i+ 1, i+ 2, . . . , n}. So there are n− i− (n−w(i)) = w(i)− i numbers j
such that i < j and w(i) > w(j).

If (i, w(i)) is not a left-right maximum, then there are strictly fewer than n−w(i) numbers
greater than w(i), to be placed among the n − i positions to its right. Thus, the number of
positions j such that i < j and w(i) > w(j) is:

n− i− |{numbers larger than w(i) to the right of w(i)}| > n− i− (n− w(i)) = w(i)− i.
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Figure 2. The minimal length element w′.

�

We have highlighted with bullet points the spaces below left-right maxima and on or above
the main diagonal. Note that each bullet point can be identified with an inversion pair in
which the left-right maximum above the bullet point is the greater value in the pair, and the
value connected to the bullet point by a dashed line is the smaller value in the pair.

Let p ∈ Dyckn be a Dyck path, and let P−1(p) denote its preimage under P , that is,

P−1(p) = {w ∈ Sn : P (w) = p}.

Theorem 4.5. For any Dyck path p, the following statements are true of P−1(p).

(a) There is a unique element w′ ∈ P−1(p) of minimal length such that dp(w′) = ℓ(w′).
(b) For any other element w′ 6= w ∈ P−1(p), dp(w) < ℓ(w).

Proof. For part (a), we simply observe that if the elements that are not left-right maxima
are arranged in increasing order, then the only inversions have the left-right maxima as the
larger elements in the inversion pairs. Letting w′ denote this permutation, we have

{(i, j) : i < j, w′(i) > w′(j)} = {(i, j) : i < j, w′(i) > w′(j), and (i, w′(i)) ∈ lr-max(w′)}.

That is, the inequalities in Lemma 4.4 are equalities. For example the path in Figure 1 has
w′ = 23174856, where {1, 4, 5, 6} have been inserted into 23 7 8 in increasing order. See
Figure 2.

For part (b), there are two cases to consider for w ∈ P−1(p).
If w and w′ have the same excedance set, then dp(w) = dp(w′). If w 6= w′, the elements

that are not left-right maxima cannot be increasing in w, and thus there must be an inversion
among those numbers, giving ℓ(w) > ℓ(w′) = dp(w′) = dp(w).

If w has excedances apart from the left-right maxima, then we rely on Lemma 4.4 again,
which says that if w(i) − i = k > 0 and (i, w(i)) is not a left-right maximum, then w(i) is
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the greater value in more than k inversions, and so

dp(w) =
∑

w(i)>i

(w(i)− i)

<
∑

w(i)>i

|{j : i < j, w(i) > w(j)}|

≤ inv(w) = ℓ(w),

as desired. �

Proposition 4.6. The minimal length fiber representatives, w′, are precisely the 321-avoiding
permutations.

Proof. Let w′ be the minimal length representative of P−1(p). By definition, any left-right
maximum can only play the role of ‘3’ in the pattern 321. Thus, the other two elements in the
pattern must be elements that are not left-right maxima. But by construction, the subword
of these elements is strictly increasing, so it avoids the pattern 21.

On the other hand, it is straightforward to check that if u and v are two distinct permu-
tations that avoid 321, then lr-max(u) 6= lr-max(v), and so they correspond to distinct Dyck
paths: P (u) 6= P (v). �

We have now proved Theorem 4.1. Note that the class of permutations defined in Theo-
rem 4.1 is entry P0002 of [18], enumerated by sequence A000108 of [13].

4.2. When reflection length, depth, and length coincide. If we are given a permutation
w such that length equals reflection length, then Observation 2.2 clearly implies that the depth
of w has the same value. On the other hand, if we know only that depth equals reflection
length, then Observation 2.3 claims that length equals reflection length and again all three
are equal:

ℓ′(w) = dp(w) = ℓ(w).

It is this family of permutations that we study in this section.
The question of when ℓ′(w) = ℓ(w) has been studied before. Edelman [5] studied the ques-

tion of the joint distribution of the number of cycles, n − ℓ′(w), together with the inversion
number, ℓ(w). In particular, [5, Theorem 3.1] characterizes those w for which ℓ′(w) = ℓ(w).
These are what Edelman calls “unimodal” permutations; that is, permutations in which the
cycles are disjoint intervals and each cycle is unimodal. Here, we give a different characteri-
zation, in the language of pattern avoidance.

Theorem 4.7. The length and the reflection length of a permutation w agree if and only if
w is 321- and 3412-avoiding.

In the context of [19], and the subsequent papers [11, 12] by Ragnarsson and the second
author, such permutations were called boolean.

The proof of Theorem 4.7 relies heavily on the main result of [20], where the second author
provided a dictionary for translating between the one-line notation of a permutation and its
reduced decompositions. The second author extended this work in [19].
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Before proceeding, we recall that simple reflections obey the following Coxeter relations.

s2i = 1 for all i
sisj = sjsi for all i, j with |i− j| > 1

sisi+1si = si+1sisi+1 for all i

It was shown, independently, by Matsumoto [9] and Tits [21] that any reduced decomposition
of w can be obtained from any other by applying a sequence of these Coxeter relations. Thus,
the set of letters appearing in any reduced decomposition of a permutation is fixed by the
permutation, regardless of which reduced decomposition is examined. For a permutation
w ∈ Sn, let supp(w) ⊆ Sn be the set of letters appearing in reduced decompositions of w.
We call this set the support of w.

We will need the following lemmas.

Lemma 4.8 (see [20]). (a) If w contains a 321-pattern, then there exists a reduced de-
composition of w of the form

α sksk+1sk β,

where α and β are products of simple reflections.
(b) If w contains a 3412-pattern, then there exists a reduced decomposition of w of the

form
α sksk−1sk+1sk β,

where α and β are products of simple reflections.

Lemma 4.9 ([19], Theorem 4.3). A permutation w avoids both 321 and 3412 if and only if
each of its reduced decompositions contains no repeated letters; that is, if and only if ℓ(w) =
| supp(w)|.

Proof of Theorem 4.7. Suppose that w contains a 321-pattern. Then, by Lemma 4.8(a), there
is a decomposition of w having the form

α tk,k+2 β.

This decomposition uses ℓ(w)− 2 reflections, and thus ℓ′(w) ≤ ℓ(w)− 2 < ℓ(w).
Suppose that w contains a 3412-pattern. Then, by Lemma 4.8(b), there is a decomposition

of w having the form
α tk−1,k+1 tk,k+2 β.

This decomposition uses ℓ(w)− 2 reflections, and thus ℓ′(w) ≤ ℓ(w)− 2 < ℓ(w).
The result is easy to check for permutations of length 0 and 1. We assume, inductively,

that the result holds for all permutations of length less than ℓ. Now suppose that ℓ(w) = ℓ,
and that w is a minimal-length counterexample to the theorem; that is, w avoids 321 and
3412, and ℓ′(w) = r < ℓ. To be concrete, let

w = t1 · · · tr

be a representation of w as a product of reflections. Consider w′ = wtr, and say that tr
is the reflection tij . We necessarily have that ℓ(w′) < ℓ(w). It follows, then, that w′ < w
in the Bruhat order. This means that some reduced decomposition of w′ is a substring of a
reduced decomposition of w. Lemma 4.9 implies that the reduced decompositions of w had no
repeated letters. Thus it follows from the same lemma that the reduced decompositions of w′
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have no repeated letters, and so w′ is both 321- and 3412-avoiding. Therefore ℓ(w′) = ℓ′(w′),
by the inductive hypothesis. We know, furthermore, that ℓ′(w′) ≤ ℓ′(w)−1, because t1 · · · tr−1

is a way to write w′ as the product of r − 1 transpositions.
Consider the two values ℓ(w) and ℓ(w′). To understand their relationship, we must ask how

the collection of inversions in w have been changed. Because both w and w′ are 321-avoiding,
there are no inversions of the form {i, x} or {x, j} with x ∈ (i, j) in either of the permutations.
Thus we can make a bijective correspondence between the inversions of w and the inversions
of w′, with a single exception, as given in the following table.

Inversion in w Inversion in w′ conditions
{a, b} {a, b} {a, b} ∩ {i, j} = ∅
{h, i} {h, j} h < i
{h, j} {h, i} h < i
{i, h} {j, h} h > j
{j, h} {i, h} h > j
{i, j} − −

Thus, since length is the inversion number of a permutation, we have that ℓ(w′) = ℓ(w)−1,
which yields the following string of inequalities:

ℓ(w′) = ℓ(w)− 1 ≥ ℓ′(w) > ℓ′(w′) = ℓ(w′).

This is a contradiction. Thus the hypothesis that ℓ(w) > ℓ′(w) must be false, and so ℓ(w) =
ℓ′(w). �

It is worth noting that we can also give an alternative proof to Theorem 4.7. This alternative
proof uses the following lemma.

Lemma 4.10. If a permutation is both 321- and 3412-avoiding, then each cycle in its standard
cycle notation consists of consecutive integers.

Proof. The product of two cycles in which one consists of the integers [a, b] and the other
consists of the integers [b, c] is a cycle consisting of the integers [a, c]. By Lemma 4.9, a
permutation avoiding 321 and 3412 has reduced decompositions with no repeated letters. If
each sk in such a reduced decomposition is written as the cycle (k k + 1), then we see that

• every cycle in the resulting product consists of consecutive integers, and
• each letter appears in at most two cycles.

The first sentence of this proof guarantees that these two properties are maintained as we
start to combine cycles by multiplication when they are not disjoint. The process halts when
no such multiplication is possible, meaning that no letter appears in more than one cycle. �

With Lemma 4.10 in hand, the proof of Theorem 4.7 only requires showing that the boolean
Coxeter elements in Sn (321- and 3412-avoiding permutations consisting of a single n-cycle)
have length n− 1. This is easily done by induction on n.

The class of permutations defined in Theorem 4.7 is entry P0006 of [18], enumerated
by sequence A001519 of [13], and enumerated by length in sequence A105306 of the same
database. These enumerations were calculated by the second author in [19], in the context
of boolean permutations.
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Corollary 4.11 ([19]). Fix a positive integer n. Then we have the following enumerative
results, where {F0, F1, . . .} are the Fibonacci numbers.

|{w ∈ Sn : ℓ′(w) = dp(w) = ℓ(w)}| = F2n−1

|{w ∈ Sn : ℓ′(w) = dp(w) = ℓ(w) = k} =
k∑

i=1

(
n− i

k + 1− i

)(
k − 1

i− 1

)

As mentioned earlier, Theorem 4.7 recovers a result of Edelman, although his result was
phrased slightly differently. It follows that the class of permutations defined in [5] coincides
with the set of permutations avoiding the patterns 321 and 3412.

Corollary 4.12. Unimodal permutations are exactly those permutations which avoid the pat-
terns 321 and 3412.

Proof. In [5, Theorem 3.1], it was shown that a permutation w satisfies ℓ(w) = ℓ′(w) if and
only if w is unimodal. It follows from Theorem 4.7, then, that unimodal permutations are
precisely those that avoid 321 and 3412. �

It is also possible to see the equivalence between unimodal permutations and permutations
that avoid 321 and 3412 using Lemma 4.10.

Consider a permutation w ∈ Sn. We now have the following equivalent statements.

• ℓ(w) = ℓ′(w)
• all paths from e to w in the Bruhat graph have ℓ(w) = ℓ′(w) edges
• w avoids 321 and 3412
• |supp(w)| = ℓ(w) = ℓ(w′)
• the reduced decompositions of w contain no repeated letters

We can now explore when, provided that ℓ(w) = ℓ′(w), all of the edges along all of these
paths from e to w in the Bruhat graph are weighted by 1. (And thus produce a path whose
edge weights add up to depth.) That is, we can consider when all of these edges represent
simple reflections s ∈ Sn, not elements of Tn \ Sn.

Definition 4.13. Suppose that a permutation w has the property that if sk ∈ supp(w) then
sk±1 6∈ supp(w). Then we will say that w is free.

Note that all of the letters in a reduced decomposition of a free permutation w are distinct,
and they all commute with each other. Thus w has 2ℓ(w) reduced decompositions. The
following lemma follows from the main result in [20].

Lemma 4.14 (See [20]). A permutation w is free if and only if it avoids 231, 312, and 321.

Corollary 4.15. The number of free permutations in Sn is the Fibonacci number Fn+1.

Proof. The free permutations in Sn can be partitioned into two sets, determined by whether
or not sn−1 appears in their supports. Those for which sn−1 does not appear are in bijective
correspondence with free permutations inSn−1. Those w for which sn−1 ∈ supp(w) must have
sn−2 6∈ supp(w), meaning that they are in bijective correspondence with free permutations in
Sn−2. Thus

|{w ∈ Sn : w is free}| = |{w ∈ Sn−1 : w is free}|+ |{w ∈ Sn−2 : w is free}|.
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Observing that |{w ∈ S1 : w is free}| = 1 and |{w ∈ S2 : w is free}| = 2 completes the
proof. �

It is also possible to prove Corollary 4.15 by noting, using Lemma 4.14, that the only
allowable positions for n in a free permutation w are w(n− 1) and w(n).

Corollary 4.16. Suppose that w ∈ Sn satisfies the property ℓ(w) = ℓ′(w). Then w is free
(that is, w avoids 231, 312, and 321) if and only if every decomposition w = t1 · · · tℓ(w) with
ti ∈ Tn actually satisfies ti ∈ Sn.

Proof. It follows from Theorem 4.7 and Lemma 4.9 that any reduced decomposition of w
consists of all distinct letters.

Suppose that w is not free. Without loss of generality, we can assume that w has a reduced
decomposition of the form

α sk β sk+1 γ,

where α, β, and γ are products of simple reflections. It is possible to use Coxeter relations
to move the letters of β in order to yield a reduced decomposition of w having the form
α′sksk+1γ

′ : any letter sj ∈ β with j < k moves past sk+1 to the right, and any letter sj with
j > k + 1 moves past sk to the left. But then we see the following equivalence

α′ sksk+1 γ′ = α′ tk,k+2sk γ′,

giving an undesirable decomposition of w into ℓ reflections.
Now suppose that w is free. Then, for k > 1 the only k-cycles in the standard cycle form

of w must be 2-cycles of the form (i, i+1). In a decomposition of w into reflections t1t2 · · · tℓ,
where ℓ = ℓ′(w), each successive permutation w, wtℓ, wtℓtℓ−1, . . . must have smaller length
then the preceding permutation. However, the only inversions in the permutation are of the
form {i, i+ 1}, and so each tj must be a simple reflection. �

Example 4.17. Consider the permutation 231 ∈ S3. By Lemma 4.14, we know that 231 is
not free. It is easy to compute ℓ(231) = ℓ′(231) = 2, and we see that

231 = s1s2 = t13s1.

The class of permutations described in Corollary 4.16 is entry P0026 of [18], enumerated
by sequence A000045 of [13].

5. Open questions and further remarks

There are many possible directions for the future study of depth. For permutations, we have
characterized depth combinatorially (Theorem 1.1), and shown that another statistic, descent
drop, has the same distribution. We know the uniform upper bound for these statistics is
⌊n2/4⌋, and we know how many permutations achieve this bound (Proposition 3.3). There
are obviously n elements of depth 1 (the simple reflections) and it is also not difficult to see
that (for n ≥ 3):

|{w ∈ Sn : dp(w) = 2}| =

(
n− 1

2

)
+ 2(n− 2) =

(n + 3)(n− 2)

2
.

In terms of reduced decompositions, these are all elements of the form:

• sisj, with 1 ≤ i < j ≤ n− 1,
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Bn k = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n = 1 1 1
2 1 2 3 2
3 1 3 7 12 16 8 1
4 1 4 12 28 53 70 89 54 60 12 1
5 1 5 18 51 118 215 347 456 594 558 505 466 325 164 16 1

Table 3. Depth distribution for Bn, that is, |{w ∈ Bn : dp(w) = k}|.

• si+1si, with 1 ≤ i ≤ n− 2,
• sisi+1si, with 1 ≤ i ≤ n− 2.

But what of the other values for depth?

Question 5.1. How many permutations in Sn have depth (or descent drop) k? What is
|{w ∈ Sn : dp(w) = k}|? (or |{w ∈ Sn : drops(w) = k}|?)

Another direction for generalization is to study depth more closely in other Coxeter groups.
It would be nice to find useful characterizations of depth analogous to the “sum of sizes of
excedances” characterization we have given for permutations. Surely such a model exists in
type Bn.

Question 5.2. What is the analogue of Theorem 1.1 for signed permutations in type Bn?

We have the distributions of depth in Bn for n ≤ 5 in Table 3. It certainly appears that
dp(w) is bounded above by

(
n+1
2

)
, although we have no proof of this.
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