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Abstract

We study particular patterns in planar rooted binary trees. In par-
ticular we will consider those subtrees having the caterpillar property.
The size of the biggest caterpillar subtree becomes then a new param-
eter with respect to which we find several enumerations.

1 Introduction

In this work we want to study particular patterns in planar rooted
binary trees. More precisely we will consider what seems to be a new
statistic on this well known class of trees. We are interested in the size
of the biggest subtree having the caterpillar property.

Caterpillars have already been considered in the case of coales-
cent trees, see for example the interesting work of Rosenberg [4]. In
particular, in a population genetic framework, when trees are used
to represent ancestry relations among individuals, the presence of a
caterpillar subtree often correspond to interesting phenomena such as
natural selection.

The problem of considering subtrees structures is not new, see for
example [1] and [5]. Up to our knowledge Caterpillars have not yet
been considered in the context of planar rooted binary trees. Their
study here can be also considered as an introductory step to further
works concerning the realization of caterpillars in non-planar rooted
binary trees. Indeed we believe possible to extend the main approach
of this paper to the more difficult non-planar case.

After giving some basic definitions, we will provide the enumeration
for the number of planar rooted binary trees of a given size having the
biggest caterpillar subtree of size less than (resp. greater than, equal
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to) a fixed integer k. Furthermore we will provide the expected value
of the size of the biggest caterpillar subtree when trees of size n are
uniformely distributed.

Finally, in Section 5 we will see how caterpillars subtrees correspond
to patterns extracted from 132-avoiding permutations. The result-
ing characterization seems quite interesting and should deserve further
studies.

2 Definitions

Planar rooted binary trees are enumerated with respect to the size,
i.e. number of leaves, by the well known sequence of Catalan num-
bers corresponding to entry A000108 in [6]. The respective generating
function C(x) is the following

C(x) =
1−

√
1− 4x

2
.

The class of planar rooted binary trees will be denoted by T while
Tn will represent the subset of T made of those elements having size
n. In what follows we will use the term tree referring to planar binary
rooted trees.

We define a tree in Tn to be a caterpillar of size n if each node is a
leaf or it has at least one leaf as a direct descendant. See for example
Fig. 1 (a) (b).

Caterpillars can be also characterized by the fact that they are the
most unbalanced trees. As a measure of tree imbalance we take the
following index. Given a tree t and a node i, let tl(i) (resp. tr(i)) be
the left (resp. right) subtree of t determined by i. We define

∆t(i) = |size(tl(i))− size(tr(i))|.

If t ∈ Tn its Colless ’s index (see [3]) is defined as

1

(n− 2)(n− 1)
×

∑

i node of t

∆t(i).

The Colless’s index is considered as a measure of tree imbalance
(see [3]). Its value ranges between 0 and 1, where 0 corresponds to a
completely balanced tree while 1 to an unbalanced one.

From the previous definitions it turns out that a tree of size n > 2
is a caterpillar if and only if its Colless’s index is 1.

If t ∈ Tn we define γ(t) as the size of the biggest caterpillar which
can be seen as a subtree of t. We observe that, if n > 1, then γ(t) is
at least equal to two. In Fig. 2 we have depicted a tree having γ = 5.

2



(b)(a)

Figure 1: (a) caterpillars of size 3; (b) caterpillars of size 4.

Figure 2: A tree having γ parameter equal to 5. The biggest caterpillar is
highlighted.
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3 A recursive construction for the size of

the biggest caterpillar subtree

Let F−
k
(x) be the ordinary generating function which gives the number

of trees having the γ parameter at most equal to k ≥ 2.
It is easy to see that F−

k
satisfies the equation

F−
k

= x+ (F−
k
)2 − 2k−1xk+1. (1)

Indeed a tree t with γ(t) ≤ k has either size one or it is made of two
trees t1 and t2 attached to the root such that γ(t1) ≤ k and γ(t2) ≤ k.
We must exclude the case in which one between t1 and t2 has size 1
and the other one is a caterpillar of size k. Since there are exactly 2k−2

caterpillars of size k the previous formula follows.
From (1) we obtain

F−
k
(x) =

1−
√
1− 4x+ 2k+1xk+1

2
.

Then considering F+
k

= C(x)−F−
k−1(x) one has the number of trees

having γ ≥ k while taking Fk = F−
k
(x) − F−

k−1(x) one can compute
the number of trees of a given size having γ = k. The following table
shows the first coefficients of the Taylor expansion of F−

k
, F+

k
and Fk

when k = 5.

k=5 1 2 3 4 5 6 7 8 9 10

F−
k

1 1 2 5 14 26 100 333 1110 3742
F+
k

0 0 0 0 8 16 48 160 560 1952
Fk 0 0 0 0 8 0 16 64 240 832

Note that the sixth coefficient of Fk is 0. Indeed, as the reader can
easily check, there is no tree of size k+1 having the γ parameter equal
to k.

We conclude this section observing that none of the sequences cor-
responding to F−

k
, F+

k
and Fk seems to be present in [6].

3.1 Asymptotic growth of trees with no pitchforks

The function Fk(x) is analytic except when x is a solution of the equa-
tion 1− 4x+2k+1xk+1 = 0. By Pringsheim’s theorem (see [2]) we can
assume, for our purposes, that the dominant singularity of Fk(x) cor-
responds to the positive real solution of 1− 4x+ 2k+1xk+1 = 0 which
is closer to the origin. Let ρk be this solution. We observe that, when
k increases, ρk approaches 1/4. In order to prove this claim we remark
that, for k ≥ 2, we have
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1

4
< ρk <

2

5
. (2)

Indeed this can be shown by considering the polynomial

y = 1− 4x+ 2k+1xk+1

which satisfies y(1/4) > 0 and y(2/5) < 0. Furthermore y is also
decreasing between 0 and 1/4 as it can be seen by solving the equation
y′(x) = 0 which gives x = k

√

4/(2k+1(k + 1)) > 1/4. We now proceed
by bootstrapping (see [2]). Writing the defining equation for ρk as

x =
1

4
(1 + 2k+1xk+1)

and making use of (2) yields next

1

4

(

1 +
1

2k+1

)

< ρk <
1

4

(

1 +

(

4

5

)k+1
)

which is sufficient to prove that ρk → 1/4.
A further iteration of the previous inequality shows that

ρk <
1
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1 + 2k+1

(

1

4

(

1 +

(

4

5

)k+1
))k+1





which, considering that (4/5)k+1 ∼ 0, gives

ρk <
1

4

(

1 +
1

2k+1
+ (k + 1)

(

2

5

)k+1
)

.

Thus

ρk − 1

4
− 1

2k+3
<

1

4
(k + 1)

(

2

5

)k+1

∼ 1

10
k

(

2

5

)k

,

which means

ρk =
1

4
+

1

2k+3
+O

(

k

(

2

5

)k
)

.

In the following table we show the first approximated values of ρk.

ρ2 0.3090169
ρ3 0.2718445
ρ4 0.2593950
ρ5 0.2543301
ρ6 0.2520691
ρ7 0.2510085
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For a given constant a we can always write

1− 4x+2k+1xk+1 = (a− x)(4− 2k+1
k
∑

i=0

aixk−i) + 1− 4a+2k+1ak+1,

then, substituting the solution ρk to a we have

1− 4x+ 2k+1xk+1 = (ρk − x)(4 − 2k+1
k
∑

i=0

ρikx
k−i).

Defining

B(x) = 4− 2k+1
k
∑

i=0

ρikx
k−i

and by standard asymptotic calculations (see [2]) we have

[xn]F−
k

∼ 1

4

√

B(ρk)ρk
πn3

(

1

ρk

)n

(3)

=
1

4

√

4ρk − (k + 1)2k+1ρk+1
k

πn3

(

1

ρk

)n

,

where n → ∞.
We can apply the result in (3) to provide the asymptotic behaviour

of trees with no caterpillar of size 3. Caterpillars with three leaves are
also called pitchforks in [4].

Proposition 1 The number of pitchfork-free trees of size n is given
by [xn]F−

2 and it satisfies asymptotically the following relation:

1
4

√

4R−24R3

πn3

(

1
R

)n

[xn]F−
2

∼ 1,

where R = 1
4 (
√
5− 1) = 0.3090169.

When n = 100 the ratio between [x100]F−
2 and its approximation

is 0.9933.

4 The average size of the biggest caterpil-

lar subtree

In this section we want to determine En(γ) which denotes the average
value of the parameter γ(t) when t ∈ Tn.
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As showed in Section 3, when k > 0, F−
k
(x) gives the number of

trees having γ at most k. Indeed, also in the case k = 1, we have
F−
1 = (1 −

√
1− 4x+ 4x2)/2 = x. Where x represents the unique

caterpillar of size 1.

Furthermore consider f
(n)
k

= [xn]F−
k
(x) and analogously we denote

by C(n) = [xn]C(x) the n-th catalan number. Then we can express
the desired average value as follows:

En(γ) =
1f

(n)
1 +

∑

k≥1(k + 1)(f
(n)
k+1 − f

(n)
k

)

C(n)

=
−f

(n)
1 − ...− f

(n)
n−1 + nf

(n)
n +

∑

k≥n
(k + 1)(f

(n)
k+1 − f

(n)
k

)

C(n)

=
−f

(n)
1 − ...− f

(n)
n−1 + nC(n) +

∑

k≥n
(C(n) − f

(n)
k

)

C(n)

=

∑n−1
k=1 (C

(n) − f
(n)
k

) + C(n) +
∑

k≥n
(C(n) − f

(n)
k

)

C(n)

=
C(n) +

∑

k≥1(C
(n) − f

(n)
k

)

C(n)

= 1 +

∑

k≥1(C
(n) − f

(n)
k

)

C(n)

In the previous calculation we have used the fact that for k ≥ n we

always have f
(n)
k

= C(n).
It is sufficient now to find the n-th term of the function

U(x) =
∑

k≥1

(C(x) − F−
k
(x)) =

√
1− 4x

2

∑

k≥1





√

1 +
2k+1xk+1

1− 4x
− 1



 .

In what follows we want to find a function Ũ which estimates U
near the dominant singularity 1/4. According to [2], the n-th term of
the Taylor expansion of Ũ will provide an approximation of [xn]U(x).

Let us fix x near 1/4 and let us consider the threshold function

k0 = log2
1

|1− 4x| .

Then, supposing k ≥ k0, we have that
√

1 +
2k+1xk+1

1− 4x
∼
√

1 +
1

2k+1(1− 4x)
∼ 1 +

1

2k+2(1− 4x)
,

while if we suppose k < k0 we will use the approximation
√

1 +
2k+1xk+1

1− 4x
∼
√

1 +
1

2k+1(1− 4x)
∼
√

1

2k+1(1− 4x)
.
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For the fixed x near 1/4 we estimate U(x) as follows:

U(x) ∼
√
1− 4x

2
√
1− 4x

k0−1
∑

k≥1

√

1

2k+1
−

√
1− 4x

2

k0−1
∑

k≥1

1

+

√
1− 4x

2(1− 4x)

∑

k≥k0

1

2k+2

=
1

2
√
2

k0−1
∑

k≥1

√

1

2k
−

√
1− 4x

2
(k0 − 1) +

1

8
√
1− 4x

∑

k≥k0

1

2k

=
1

2
√
2

−
√
2 + 21−

k0
2

−2 +
√
2

−
√
1− 4x

2

(

log2

(

1

|1− 4x|

)

− 1

)

+
21−k0

8
√
1− 4x

=
1

2
+

1

2
√
2
+
√
1− 4x

(

− 1√
2
+ log2(

√
1− 4x) +

1

4

)

.

Using the previous calculation we have the following result.

Proposition 2 Let us denote

Ũ(x) =
1

2
+

1

2
√
2
+
√
1− 4x

(

− 1√
2
+ log2(

√
1− 4x) +

1

4

)

,

then

En(γ) ∼
[xn]Ũ(x)

C(n)
.

As a test one can consider the following table where, for several
values of n, we compare the true En(γ) with the approximation given
by Proposition 2.

n 10 20 50 100 200 500 1000
En(γ) 4.535 5.120 6.202 7.107 8.052 9.334 10.318
[xn]Ũ(x)

C(n) 4.032 5.109 6.47 7.490 8.498 9.824 10.825

We can go a step further in our approximation considering the
following statement.

Corollary 1 When n → ∞ we have

log2(n)

En(γ)
∼ 1.

8



Proof. We use the result of Proposition 2 and the well known asymp-
totic behaviour of Catalan numbers:

C(n) ∼ 4n−1

√
πn3

.

Furthermore, by standard technique (see again [2]), we also calcu-
late the behaviour of

√
1− 4x log2(

√
1− 4x) ∼ 4n−1 log2(n)√

πn3

and

−
√
1− 4x ∼ 4n

2
√
πn3

.

Finally we have

En(γ) ∼
(

1√
2
× 4n

2
√
πn3

− 1

4
× 4n

2
√
πn3

+
4n−1 log2(n)√

πn3

)

×
√
πn3

4n−1

∼ log2(n).

�

For n = 1000 in the previous table we have En(γ) = 10.318 while
log2(n) = 9.96578 which is quite close to the true value.

5 Caterpillars in permutations Av(132)

In Section 2 we have introduced caterpillars as objects related to planar
rooted binary trees. We know that also the class of permutations
avoiding the pattern 132 is enumerated by catalan numbers. Indeed
one can bijectively map the set Tn+1 onto the set Avn(132), where the
last symbol classicaly denotes the class of permutations of size n which
are avoiding 132. In particular, in what follows, we will use a bijection
φ : Tn+1 → Avn(132) which works as described below.

Take t ∈ Tn+1 and visit it according to the pre-order traversal
labelling each node of outdegree two in decreasing order starting with
the label n for the root. After this first step one has a tree labelled
with integers at its nodes of outdegree two. Each leaf now collapses to
its direct ancestor which takes a new label receiving on the left (resp.
right) the label of its left (resp. right) child. We go on collapsing
leaves until we achieve a tree made of one node which is labelled with
a permutation of size n. See Fig. 3 for an instance of this mapping.

Through φ we can see how caterpillars can be interpreted inside
permutations without the pattern 132. In order to do this we need the
following definition.
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Figure 3: The mapping φ.

Let π = π1π2 . . . πn be a permutation. For a given entry πi we
define rπ(πi) as the set made of those entries πk such that:

1) πk ≤ πi;

2) all the entries in π which are between πk and πi are less than or
equal to πi.

If π = π1π2 . . . πn is a permutation, then we define r̃π(πi) as the
permutation one obtains extracting from π the elements belonging to
rπ(πi) respecting the order. The set of permutations (r̃π(πi))i=1...n

will then be denoted by r̃π .
As an example one can consider the permutation π which is de-

picted in Fig. 4. In this case r̃π is made of

r̃π(4) = (1),

r̃π(5) = (45312),

r̃π(3) = (312),

r̃π(1) = (1),

r̃π(2) = (12),

r̃π(6) = (453126),

r̃π(8) = (45312687),

r̃π(7) = (1).

Next proposition describes how caterpillars are realized inside per-
mutations avoiding the pattern 132. It is interesting to see that the
presence of such particular subtrees is connected to the property of
avoiding the pattern 231.

Proposition 3 If t ∈ Tn+1 and φ(t) = π = π1π2 . . . πn, then the
following hold:

i) caterpillars subtrees of t correspond through φ to those permuta-
tions in r̃π avoiding the pattern 231;

ii) γ(t)− 1 corresponds to the size of the biggest permutation in

Av(231) ∩ r̃π .

10



π = 

Figure 4: The permutation π = (45312687).

Proof. Label t according to the procedure φ. If a node is labelled with
m consider the subtree tm whose root is m. The nodes belonging to
tm form the subsequence of π made of the elements of rπ(m). So we
find the pattern 231 in r̃π(m) if and only if we can find a node in tm
having two descendants which are not leaves of t. It is now sufficient
to observe that tm is a caterpillar if and only if it does not contain
such a node. Summarizing, for every node m of t, tm is a caterpillar
subtree of size k + 1 if and only if r̃π(m) ∈ Avk(231). �

Using the results of Proposition 3, from the previous sections we
can derive some properties of the permutations in r̃π when π avoids
the pattern 132. These are stated in the next two corollaries.

Corollary 2 The number of permutations π ∈ Av(132) such that all
elements in r̃π whose size is greater than one contain the pattern 231
is given by

F−
2 (x)

x
− 1 =

1− 2x−
√
1− 4x+ 8x3

2x
.

The first terms of the sequence are:

1, 0, 1, 2, 6, 16, 45, 126, 358, 1024, 2954, 8580, 25084, 73760, 218045.

Remark: given π = π1...π2 we say that πi is a valley when πi−1

and πi−1 (if they exist) are greater than πi. Analogously πi is said to be
a peak if both πi−1 and πi+1 exist and πi−1 < π > πi+1. In this sense,
the permutations π considered in Corollary 2 can be characterized,
among those in Av(132), by the fact that each entry πi is either a valley
or it is such that r̃π(πi) contains at least one peak. We also observe
that sequence A025266 of [6] provides the same list of numbers of the
previous corollary as those integers enumerating Motzkin paths with
some constraints.

Finally we state the following result which can be deduced from
Corollary 1.
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Corollary 3 If π ∈ Av(132) has size n, the expected size of the biggest
permutation in Av(231) ∩ r̃π is asymptotic to log2(n).

6 Further works

In the present paper we have focused our attention on the presence of
caterpillars subtrees in planar rooted binary trees. As a second step
we would like to investigate the case of non-planar rooted binary trees.
We think that the approach we have used here could be refined in order
to solve the non-planar case enumeration.

Furthermore, we think that the realization of r̃π for a given per-
mutation π corresponds to an interesting combinatorial object which
should deserve further studies.
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