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Abstract

The Boubaker polynomials are investigated in this paper. Using Riordan matrices

analysis, a sequence of relations outlining the relations with Chebyshev and Fermat

polynomials have been obtained. The obtained expressions are a meaningful supply

to recent applied physics studies using the Boubaker polynomials expansion scheme

(BPES).
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1 Introduction

Polynomial expansion methods are extensively used in many mathematical and engineer

fields to yield meaningful results for both numerical and analytical analysis [1, 3, 6, 7, 8,

11, 12, 19]. Among the most frequently used polynomials, the Boubaker polynomials are

one of the interesting tools which were associated to several applied physics problems as

well as the related polynomials such as the Boubaker-Turki polynomials [4, 22, 23, 24, 25,

26, 27, 28, 29], the 4 − q Boubaker polynomials [20] and the Boubaker-Zhao polynomials

[21]. For example, for some resolution purposes, a function f (r) is expressed as an

1E-mail: mmbb11112000@yahoo.fr
2E-mail: godyalin@163.com
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infinite nonlinear expansion of Boubaker-Zhao polynomials

f (r) = lim
N→+∞

[
1

2N

N

∑
n=1

ζn B̂4n

(
r

αn

R

)]
, (1.1)

where αn are the minimal positive roots of the Boubaker 4n-order polynomials B̂4n, R is

a maximum radial range and ζn are coefficients to be determined using the expression

of f (r). Since the Boubaker 4n-order polynomials have the particular properties: for any

n,





B̂4n(r) | r=0 = −2
∂B̂4n(r)

∂r = 0
∂2B̂4n(r)

∂r2 = 4n(n − 1)

(1.2)

The related the system (1.3) is induced:




f (0) = limN→+∞

[
1

2N ∑
N
n=1 ζn B̂4n

(
r αn

R

)]
| r=0 = − 1

N ∑
N
n=1 ζn

f (R) = limN→+∞

[
1

2N ∑
N
n=1 ζn B̂4n

(
r αn

R

)]
| r=R = 0

∂ f (r)
∂r | r=0 = limN→+∞

[
1

2N ∑
N
n=1 ζn

∂(B̂4n(r αn
R ))

∂r

]
| r=0 = 0

(1.3)

2 The Boubaker polynomials

The first monomial definition of the Boubaker polynomials [2, 4, 5, 9] appeared in a

physical study that yielded an analytical solution to heat equation inside a physical

model [10, 18]. This monomial definitions is traduced by (2.1):

Definition 2.1. A monomial definition of the Boubaker polynomials is:

Bn(X)
def
=

ξ(n)

∑
p=0

[
n − 4p

n − p

(
p

n − p

)]
(−1)pXn−2p, (2.1)

where ξ(n) = ⌊n
2 ⌋

def
= 2n+(−1)n−1

4 (The symbol ⌊∗⌋ designates the floor function). Their

coefficients could be defined through a recursive formula (2.2):





Bn(X) = ∑
ξ(n)
j=0

[
bn,jX

n−2j
]

,

bn,0 = 1,

bn,1 = −(n − 4),

bn,j+1 =
(n−2j)(n−2j−1)
(j+1)(n−j−1) · n−4j−4

n−4j · bn,j,

bn,ξ(n) =

{
(−1)

n
2 · 2 if n even

(−1)
n+1

2 · (n − 2) if n odd

(2.2)
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Definition 2.2. A recursive relation which yields the Boubaker polynomials is:





Bm(X) = XBm−1(X)− Bm−2(X), for m > 2,

B2(X) = X2 + 2,

B1(X) = X,

B0(X) = 1.

(2.3)

3 Riordan matrices of the Boubaker polynomials

In this section, we will present Riordan matrices analysis of the Boubaker polynomials.

The notations and the results of [13, 14, 15, 16] will be used extensively. We start with

the following relation (demonstrated on page 25 in [16]):

Bn(x) = Un

(x

2

)
+ 3Un−2

(x

2

)
, for n > 2 (3.1)

then:

B2m(x) = U2m

(x

2

)
+ 3U2m−2

(x

2

)

= 2
m

∑
k=0

T̃2k

(x

2

)
+ 6

m−1

∑
k=0

T̃2k

(x

2

)
(3.2)

= 8
m−1

∑
k=0

T̃2k

(x

2

)
+ 2T̃2m

(x

2

)
= 4 + 8

m−1

∑
k=0

T2k

(x

2

)
+ 2T2m

(x

2

)
. (3.3)

In a similar way:

B2m+1(x) = 8
m−1

∑
k=0

T̃2k+1

(x

2

)
+ 2T̃2m+1

(x

2

)
= 8

m−1

∑
k=0

T2k+1

(x

2

)
+ 2T2m+1

(x

2

)
(3.4)

= 8
m−1

∑
k=0

T̃2k

(x

2

)
+ 2T̃2m+1

(x

2

)
(3.5)

so:

B2m(2 cos t) = 4 + 8
m−1

∑
k=1

T2k(cos t) + 2T2m(cos t)

= 4 + 8
m−1

∑
k=1

cos(2kt) + 2 cos(2mt) (3.6)

B2m+1(2 cos t) = 8
m−1

∑
k=1

cos((2k + 1)t) + 2 cos((2m + 1)t). (3.7)
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Now, consider another new polynomial class defined by:

Bn(2 cos t) =
Bn(2 cos t)− 2Tn(cos t)

4
, n > 1 (3.8)

or:




Bn(x) =
Bn(x)−2Tn( x

2)
4

x = 2 cos t
(3.9)

So using Eq. (3.8) and Eq. (3.9) we get:

B2m(x) =
B2m(x)− 2T2m

(
x
2

)

4
= 1 + 2

m−1

∑
k=0

T2k

(x

2

)
, (3.10)

B2m+1(x) =
B2m+1(x)− 2T2m+1

(
x
2

)

4
= 2

m−1

∑
k=0

T2k

(x

2

)
. (3.11)

In order to obtain a generating function and to make a polynomial sequence (i. e. the

degree is the subindex) we consider

B̃n(x) = Bn−2(x).

So, symbolically:




B̃0(x)

B̃1(x)

B̃2(x)

B̃3(x)

B̃4(x)

B̃5(x)

M




=




2 0 0 0 0 0 0

0 2 0 0 0 0 0

2 0 2 0 0 0 0

0 2 0 2 0 0 0

2 0 2 0 2 0 0

0 2 0 2 0 2 0

M M M M M M O







T̃0(x)

T̃1(x)

T̃2(x)

T̃3(x)

T̃4(x)

T̃5(x)

M




(3.12)

We can write this in terms of Riordan matrices in the next way:

∑
n>0

B̃n(t) = T

(
2

1 − x2

∣∣1
)

T

(
1 − x2

4

∣∣1 + x2

2

)
T(2|2)

(
1

1 − tx

)
. (3.13)

or:

∑
n>0

B̃n(t)x
n = T(1|1 + x2)

(
1

1 − tx

)
. (3.14)
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In fact we have the Riordan matrix:

T(1|1 + x2) (3.15)

which is:



1 0 0 0 0 0 0

0 1 0 0 0 0 0

−1 0 1 0 0 0 0

0 −2 0 1 0 0 0

1 0 −3 0 1 0 0

0 3 0 −4 0 1 0

M M M M M M O




(3.16)

Hence, the few first B̃n(x) are:




B̃0(x) = 1

B̃1(x) = x

B̃2(x) = x2 − 1

B̃3(x) = x3 − 2x

B̃4(x) = x4 − 3x2 + 1

B̃5(x) = x5 − 4x3 + 3x

(3.17)

with the recurrence (3.18).

B̃n(x) = xB̃n−1(x)− B̃n−2(x), n > 2. (3.18)

Note that this recurrence is the same as that for the Boubaker polynomials but with

different initial conditions. In fact the relation between both families of polynomials is

given by

T(1 + 3x2|1 + x2) = T(1 + 3x2|1)T(1|1 + x2). (3.19)

Then, finally:

Bn(x) = xB̃n−1(x) + 3B̃n−2(x), n > 2. (3.20)

4 Fermat-linked expressions

Using inversion of Riordan matrices we can get B̃n(x) each as combinations of Boubaker

polynomials.
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Remark 4.1. Comparing the recurrence (3.20) with the one of the Chebyshev polynomials

of the second kind, we can obtain an explicit expression of the new polynomials defined

by (3.8-3.9)

Bn(x) =
sin((n + 1)t)

sin t
, x = 2 cos t, n = 0, 1, 2, . . . . (4.1)

In another word, the new polynomial is the scaled Chebyshev polynomial Un(x) of the

second kind, since the relation between the two polynomials is related as:

Bn(2x) = Un(x), n = 0, 1, 2, . . . . (4.2)

Remark 4.2. By using (4.1) or (4.2), we can obtain some other relations. In fact Fermat

polynomials are obtained by setting p(x) = 3x and q(x) = −2 in the Lucas polynomial

sequence, defined by (4.3).

Fn(x) = p(x)Fn−1(x) + q(x)Fn−2(x). (4.3)

As A. Luzon and M. A. Moron [13, 14, 15, 16] demonstrated, through the associated

Riordan matrix:



1
3

0 1

0 0 3

0 −2 0 9

0 0 −12 0 27

0 4 0 −54 0 81

0 0 36 0 −216 0 243

0 −8 0 216 0 −810 0 729
...

...
...

...
...

...
...

... . . .




(4.4)

that 



F1(x) = 1

F2(x) = 3x

F3(x) = 9x2 − 2

F4(x) = 27x3 − 12x

· · · · · · · · ·

(4.5)

and

Fx(x) =
(√

2
)n

Un

(
3x

2
√

2

)
(4.6)
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Theorem 4.3. Let (R,+, o) be a commutative ring, (D,+, o) be an integral domain such that

D is a subring of R whose zero is 0D and whose unity is 1D, X ∈ R be transcendental over D,

D[X] be the ring of polynomials forms in X over D, and finally denote Boubaker polynomials and

Fermat polynomials as Bn(x) and Fn(x) ,respectively, as polynomials contained in D[X], then:

Bn(x) =
1

(
√

2)n
Fn

(
2
√

2x

3

)
+

1

(
√

2)n−2
Fn−2

(
2
√

2x

3

)
; n = 0, 1, 2, . . . (4.7)

Proof. Riordan matrices for Boubaker polynomials and Fermat polynomials (see [13, 14,

15, 16]) are respectively:

+∞

∑
n=0

Bn(x)t
n = (1 + 3x2|1 + x2)

(
1

1 − xt

)
,

+∞

∑
n=0

Fn(x)t
n =

(
1
3
|1 + x2

3

)
. (4.8)

Let’s expand the inverse Riordan arrays:

T(1 + 3x2|1 + x2) = T(1 + 3x2|1)T
(

1
2
|1 + x2

2

)
T(2|2), (4.9)

which gives

T(1 + 3x2|1 + x2) = T(1 + 3x2|1)T(1|
√

2)T
(

1
3
|1 + x2

3

)
T(3| 3√

2
). (4.10)

By identifying Riordan matrix for Fermat polynomials in the right term of Eq. (4.10), the

desired equality holds.

Expressions (4.2) and (4.7) are very useful for developing the already proposed Boubaker

polynomials Expansion Scheme (BPES).

5 Conclusion

The Boubaker polynomials have been investigated. Using y Riordan matrices analysis,

a sequence of relations outlining the relations with Chebyshev and Fermat polynomials

have been obtained as guides to further studies. The obtained expression are a meaning-

ful supply to recent applied physics studies [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]

using the Boubaker polynomials Expansion Scheme (BPES).
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