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A NOTE ON THE THIRD CUBOID
CONJECTURE. PART 1.

RUSLAN SHARIPOV

ABSTRACT. The problem of finding perfect Euler cuboids or proving their non-
existence is an old unsolved problem in mathematics. The third cuboid conjecture
is the last of the three propositions suggested as intermediate stages in proving the
non-existence of perfect Euler cuboids. It is associated with a certain Diophantine
equation of the order 12. In this paper a structural theorem for the solutions of this
Diophantine equation is proved.

1. INTRODUCTION.
Let’s denote through P,y (t) the following polynomial of the order 12 depending
on three integer parameters a, b, and u:
Pop(t) =t + (6u* —2a* —20*) 10 + (a* + b* +u* + 40w+
+4b%u? — 1262 a*) 18 + (6a* u? +6u?b* —8ab? u® —
—2uta? —2u*b? —2a*b? — 20 a?) 15 + (4uP bt a® + (1.1)
+4u?a’b? — 120t a® b? +uta® +ut b+ at bt +
+(6au?b* —2uta? b — 2ut a® bY) t? + ut a b1,

There are some special cases where the polynomial P, (t) is reducible and explicitly
splits into lower order factors. Here are these cases:

(1.2)

The special cases (1.2) were studied in [1], [2], and [3]. In a general case other than
those listed in (1.2) the polynomial (1.1) is described by the following conjecture.

Conjecture 1.1 (third cuboid conjecture). For any three positive coprime
integer numbers a, b, and u such that none of the conditions (1.2) is satisfied the
polynomial (1.1) is irreducible in the ring Z[t].

The subcases 2, 5, and 6 in (1.2) are trivial. The subcase 1 leads to the first
cuboid conjecture. The subcases 3 and 4 lead to the second cuboid conjecture.
The first, the second, and the third cuboid conjectures were introduced [1]. They
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are associated with the problem of constructing a perfect Euler cuboid (see [4] and
[5-39] for more details). As for the polynomial (1.1), it was derived in [40].
Let’s write the following equation using the polynomial (1.1):

Pabu(t) =0. (13)

The equation (1.3) can be understood as a Diophantine equation of the order 12
with three integer parameters a, b, and u. The third cuboid conjecture 1.1 implies
the following theorem.

Theorem 1.1. For any three positive coprime integer numbers a, b, and u such
that none of the conditions (1.2) is satisfied the polynomial Diophantine equation
(1.3) has no integer solutions.

A similar theorem associated with the first cuboid conjecture was formulated
and proved in [2]. A similar theorem associated with the second cuboid conjecture
was formulated in [3]. However, it is not yet proved.

Being a weaker proposition than the conjecture 1.1, the theorem 1.1 in our
present case is also rather difficult. Probably it is equally difficult as the third cuboid
conjecture itself. Below in section 6 we formulate and prove a structural theorem
for the solutions of the Diophantine equation (1.3). This structural theorem is the
main result of the present paper.

2. THE INVERSION SYMMETRY.

The polynomial P, (t) in (1.1) possesses some special properties. They are
expressed by the following formulas which can be verified by direct calculations:

Pvu (t) = Ppau (t), Pabu(_t) = Pupu (t) (2.1)

The first equality (2.1) means that the polynomial P,p,(t) is symmetric with re-
spect to the permutation of the parameters a and b. The second equality is also
a symmetry. It is called parity. This symmetry means that that the polynomial
P,y (t) is an even function of its argument ¢.

Apart from the two symmetries (2.1), the polynomial P, (t) has a third symme-
try which is called the inversion symmetry. Having three positive integer numbers
a, b, and u, we define the transformation

o: (a,b,u) —> (a,b, @) (2.2)
by means of the following three formulas:

. 1cm(a,b,u), b 7 -
a b u

lem(a, b, u) lem(a, b, w)

(2.3)

The numerator lem(a, b, u) of the fractions (2.3) is the least common multiple of
the integer numbers a, b, and u. The formula

Popu(lem(a, b,u)/t) t12

Po(abu) (t) = At bt oyl

(2.4)
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is written in terms of the transformation (2.2). This formula is easily verified
by means of the direct calculations. The formula (2.4) expresses the inversion
symmetry of the polynomial (1.1).

3. SOME PREREQUISITES.

Lemma 3.1. For any three positive integer numbers a, b, and u the numbers a, b,
and @ produced by applying the transformation (2.2) are coprime.

Proof. Let p1 ..., p, be the prime factors of the numbers a, b, and u. Then we
can present a, b, and u in the following way:

n n n
a:Hpio”, b:pri, u:pri. (3.1)
i=1 i=1 i=1

The multiplicities «;, f;, and w; in (3.1) obey the inequalities
a; >0, Bi =0, w; = 0. (3.2)
Using the multiplicities (3.2), we define the integer numbers
0; = max(«;, Bi,w;). (3.3)

Then the least common multiple Z = lem(a, b, u) in (2.3) is expressed through the
above numbers (3.3) in the following way:

n

Z =lem(a, b, u) = pri. (3.4)

i=1

Let’s substitute the formulas (3.1) and (3.4) into the formulas (2.3). As a result

we derive the following expressions for a, b, and u:

n n n
= Hpi@i—ai, h— Hpieifﬁi, i = Hpiei—o.m" (3.5)
=1 i=1 i=1

The greatest common divisor of the numbers @, b, and @ in (3.5) is calculated by a
formula very similar to (3.5). Indeed, we have

ged(a, b, @) = [ [ p/", (3.6)
i=1

where the exponents m; are given by the formula
T, = min(@i — i, 91' — Bi, 91' — wi). (37)

Comparing (3.7) with (3.3), we easily see that m; = 0 for all ¢ = 1, ..., n. Sub-
stituting m; = 0 into (3.6), we derive ged(a,b,4) = 1. By definition the equal-

ity gcd(d,i), @) = 1 means that the numbers @, b, and @ are coprime. Thus, the
lemma 3.1 is proved. [J
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Lemma 3.2. If three positive integer numbers a, b, u are coprime and if the num-

bers a, b, @ are produced by applying the transformation (2.2) to a, b, u, then,
applying the transformation (2.2) to a, b, 4, we get back the numbers a, b, u.

Proof. In order to prove the lemma 3.2 it is convenient to use the formulas (3.1)
for the numbers a, b, u and the formulas (3.5) for the numbers a, b, and @. The
coprimality condition for a, b, u is written as

ged(a, by u) = Hpii =1 (3.8)
i=1

For the exponents ; the equality (3.8) yields the formula

& = min(ay, B, w;) = 0. (3.9)

Let’s denote through a, b, % the numbers obtained by applying the transforma-
tion (2.2) to the numbers a, b, @. Then we have

lem(a, b, @
i , i cm(a, ,u)'

lem(a, b, @) (3.10)
— .

=g}

The numerator of the fractions (3.10) is calculated according to the formula

lem(a, b, ) = [ [ pf", (3.11)

where the exponents (; are given by the formulas
Ci = max(@l- — Oy, 91 — ﬂi; 91 — wi) = 91 — min(ai,ﬁi,wi). (312)

The formula (3.12) is derived from (3.5), while 6; are given by the formula (3.3).

Now, applying (3.9) to (3.12), we derive (; = ;. The rest is to substitute ¢; = 6;
into (3.11) and then substitute (3.11) into (3.10). And finally, applying the formulas
(3.5) to the transformed formulas (3.10), we derive

dszio‘i, I;:pri, ﬁ:pri. (3.13)
i=1 i=1 i=1

Comparing (3.13) with (3.1), we find that the lemma 3.2 is proved. O

The lemma 3.2 means that transformation (2.2) acts as an involution upon co-
prime triples of positive integer numbers (a, b, u), i.e. we have the equality

0’ =000 =id. (3.14)

Lemma 3.3. Let a, b, u be three positive coprime integer numbers and let a, l~7, U
be the numbers produced from a, b, u by applying the transformation (2.2). If one
of the conditions (1.2) is fulfilled for a, b, u, then the same condition is fulfilled for
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a, b, a, i.e. Z)azbimpliesdziy, 2)a=~b=u implies @ = b = 1, 3) bu = a?
implies bt = 62,~4) au = b? implies at = b, 5) a = u implies a = U, and finally
6) b =wu implies b = 4.

Lemma 3.4. Let a, b, u be three positive coprime integer numbers and let a, l;,
U be the numbers produced from a, b, u by applying the transformation (2.2). If
none of the conditions (1.2) is fulfilled for the numbers a, b, u, then none of them
is fulfilled for the numbers a, b, @.

The lemma 3.3 is proved by means of direct calculations with the use of the
formula (2.3). The lemma 3.4 is immediate from the lemma 3.3.

Assume that we have an equation (1.3) with the parameters a, b, u satisfying
the assumptions of the theorem 1.1. Then due to the lemma 3.4 the equation

Pcr(abu) (t) =0 (315)

is also an equation of the form (1.3) whose parameters satisfy the assumptions of
the theorem 1.1. For this reason and due to (3.14) the equations (1.3) and (3.15)
ate called o-conjugate cuboid equations.

4. INTEGER SOLUTIONS OF 0-CONJUGATE CUBOID EQUATIONS.

Assume that the polynomial P, (¢) has an integer root ¢ = Ag. Since a, b, u
are nonzero integers, we have Ay # 0. Then due to the inversion symmetry in (2.4)
the o-conjugate polynomial P, (4, has an integer root ¢t = By, where

lem(a, b, u
) "
0

The integer number By in (4.1) is also nonzero. Applying the parity symmetry
from (2.1), we conclude that the polynomial P,;,(t) has the other integer root
t = —Ag, while P,(qpy)(t) has the other integer root ¢ = —By. As a result the
polynomials Py, (t) and Py(quy)(t) split into factors

Papu(t) = (t* = A7) Cio(t), Prabu) (t) = (t* = B) Dio(t) (4.2)

with Ag > 0 and By > 0. Here Cio(t) and Dyg(t) are tenth order polynomials
complementary to t? — A2 and > — B2. Applying (2.1) to (4.2) we derive

C1o(t) = Cro(-t), D1o(t) = Dio(—t). (4.3)
Due to (4.3) the polynomials Cg(t) and Dg(t) are given by the formulas

Cro(t) =t + Cst® 4+ Cs t° + Cy t* + C2 t* + C,

4.4
Dlo(t) =t10+D8t8+D6t6+D4t4+D2t2+DQ. ( )

Now let’s apply the inversion symmetries from (2.4) to (4.2). As a result we get

Dio(lem(a, b, @) /t) t10

Cro(lem(a, b, u)/t) t10
atbtat/B2 '

Ol()(t) = 5 Dlo(t) - a4 b4 ’LL4/A% (45)
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Applying the symmetries (4.5) to (4.4), we derive a series of relationships for the
coefficients of the polynomials Ci(t) and D1o(¢):

Co 7% = —a4b4u4Bg,
Cy 7% = —a*b* u* BZ Dg,
Cs 7' = —a*b*u* B} D,

Dy 2% = —a* b* u* A,
Dy Z° = —a* b* a* A Cs,
Dg ' = —a*b* it AJ Cs,

Cy Z* = —a*b* u* B? Dg,
Cs Z° = —a*b* u* BE Dy, (4.6)

7% = —a* v u' B2 Dy,

Dy Z* = —a* b* u* A Cs,
Ds 78 = —a*b*at A2 Cy, (4.7)

712 = gt bt at A2 Gy,

Here we use the notations (3.4), i.e. the relationships

Z =lem(a, b, u) = lem(a, b, @) (4.8)

are fulfilled for the parameter Z in (4.6) and (4.7). The equations (4.6) and (4.7)
are excessive. Due to (2.3) and (4.8) some of them are equivalent to some others.
For this reason we can eliminate excessive variables:

Co = _a4b4u4Bg,
72
Cn _a4b4u4B(2)D6
4 — Z6 ’
5 _atbtat ARGy
2 — Z4 )

_ a*b* u? B2 Dg

Substituting (4.9) into the formulas (4.4) for Cio(t) and Dyg(t), we get

Cro(t) =t + Cgt® + Cst° — a* b*u* B2 Dg 270 t* —

—a* v u' B Dg 27t —

CZ - Z4 )
at bt at A2
Dy = —TO, (4.9)
D _atbtat A3 Ce
4 — Z6 .
a*b*ut B 272,
(4.10)

Dio(t) =t 4+ Dgt® + Dgt® —a* b a* A2Cs 27614 —

—E At AZCs 2R —

atvrat A2z 2.

Having derived the formulas (4.10), we substitute them back into the relation-
ships (4.2). As a result we derive the following formulas:

Papu(t) = 12 + (Cg — A2 10 + (Cs — A2 Cg) t° —

A3Co 20+ Bya*b'u' Ds 5 Bia'b'u(Ds Z° — A3 D) 4

Zﬁ

 Bia'b'u' (2% - A3 Dy)

= - (411)

74

n A% BZ a* bt ut

Z? ’
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Pg(abu) (t) =12 + (Dg - Bg) 10 + (DG - Bg Dg) 8 —

_ B3DsZ5+ Ajat bt s o A2a* b @t (Cs 2% — B2 Cg) a

76 76 (4.12)
A2a*btat (Z2 — B3Cg) , B2 AZatbtat
- o 2+ 7 :

The polynomial Py, (t) in (4.11) is initially given by the formula (1.1). As for the
polynomial P, (4py)(t) it is produced from the polynomial (1.1) by substituting a,
b, and @ for the parameters a, b, and u respectively:

Pyapwy (1) = 12+ (60% — 2a% — 20%) 10 + (a* + b* + a* + 4a>a@® +
+4b0%a? —120%a%) ® + (6a* a® +6a2b* —8ab*u’ —
—2u*a? —2a*b? —2a*b? — 20*a?) 15 + (4@ vra’ + (4.13)
+aaath? — 1204 a0 +atat +atbt +atbt) et
+(6a*a? vt —2ata*b? —2a* b a®) ? + atat v
Comparing the formula (4.11) with (1.1) and comparing the formula (4.12) with

(4.13), we derive twelve equations for the coefficients of the polynomials (4.10).
Two of them are equivalent to the equation (4.1) written as

Ao By = Z. (4.14)
The other ten of these equations are written as follows:

Cs — A3 =6u® —2a* — 2%,

s 4.15
Ds — B3 =64 —2a* — 2b%, (4.15)

C’g—A%C’g:a4+b4+u4+4a2u2+4b2u2—12b2a2, ( )
~ ~ ~ 4.16
Dg — B2 Dg = a* + b +a* +4a*a® + 40% a* — 12b% a2,
—(A2Cs Z2° + B2 a* b u' D) Z7% = 6 a* u® + 6 u* b* —
—8a?b?u? —2u*a® — 2utb? —2a* b2 — 2b* 2,
—(B2Dg 2%+ A2a* b a* Cs) Zz S = 6a* @ + 6 a2 b* —

—8ab*a? —2a'a® —2a'b? —2a*v? — 2b @’

(4.17)

B2a*b*ut (A2 Ds — Ds %) 276 = 4u? bt a® +
+4u?a*b? — 120t a® b? + ut ot + ut bt + ot P,
A2a* bt at (B2 Cs — Cs 2%) 275 = aa®b* a® +
+4a2a* b —12a' @’ v + atat + at vt +atv?,

(4.18)

Bia*bvtu* (A3 Dg — Z*) Z7* = 6a* u? b* — 2ut a* b* — 20" b* 0,

s ; B ; 4.19
Azatbvtat (B Cs — 7% Z7* =6a*a*b* — 2a*at b — 24" b &> (4.19)
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Note that the parameters a, b, u and @, b, @ are related with each other by means

of the formulas (2.3). Now we write these formulas as follows:
ai=Z, ab= 7, ui = Z. (4.20)
The equations (4.15), (4.16), (4.17), (4.18), (4.19) are excessive. Indeed, the equa-
tions (4.18) can be derived from the equations (4.16) by applying the equalities
(4.14) and (4.20). Similarly, the equations (4.19) can be derived from the equations
(4.15) by applying the equalities (4.14) and (4.20). As for the equations (4.15),
(4.16), (4.17), when complemented with the equation (4.14), they constitute a sys-

tem of Diophantine equations with respect to the integer variables Cy, Dg, Cg, Ds,
Ag and By. The results of the above calculations are summarized as a lemma.

Lemma 4.1. For any three positive coprime integer numbers a, b, and u the poly-
nomial Pyp,(t) has integer roots if and only if the system of Diophantine equations
(4.14), (4.15), (4.16), and (4.17) is solvable with respect to the integer variables Cs,
Dg, CG, Dg, Ay > 0, and By > 0.

Now let’s consider the equations (4.17). They are not independent. The second
equation (4.17) can be derived from the first one. Indeed, it is sufficient to multiply
the first equation (4.17) by tu*ta* tb* Z=6 and then apply the relationships (4.20).
Due to this observation we can omit the second equation (4.17) preserving the first
equation (4.17) only. We write this equation as follows:

a2 b? u? A2 Cs + a® b u? B2 Dg = Z* (8 2% — 6b%a® —

- 4.21
—6b%a* +2a*u* +2b%u? + 20 a® + 2% b?). (4.21)
The equation (4.21) is produced from the first equation (4.17) by multiplying it by
a% b? % and then applying the relationships (4.20). In terms of the equation (4.21)
the above lemma 4.1 is reformulated as follows.

Lemma 4.2. For any three positive coprime integer numbers a, b, and u the poly-
nomial Pup,,(t) has integer roots if and only if the system of Diophantine equations
(4.14), (4.15), (4.16), and (4.21) is solvable with respect to the integer variables Cs,
Dg, CG, Dg, Ay > 0, and By > 0.

Note that the equations (4.15) can be explicitly resolved with respect to the
variables Cg and Dg. As a result we get
Cy = A2 +6u® —2a% — 217,

N 4.22
Dg = B3 +6a* —2a* — 2b° (4.22)

Similarly, the equations (4.16) can be explicitly resolved with respect to the vari-
ables Cs and Dg. Resolving them, we get
Co = AJCs +a" +b* +u' +4a®u® + 40> u® — 1207,

B . s 4.23
Dg = B Ds +a* +b* +a* +4a®a® + 40 a° — 12b%a°. (4.23)

Then we can substitute the expressions (4.22) for Cs and Dsg into the equations
(4.23). As a result we get the expressions for Cs and Dg directly through Ay and
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By. We write these expressions in the following way:
Co = A3 (A3 +6u® —2a* — 2b) + a*+
+ b+ ut +4a%u® + 402w — 1207 a?,
D¢ = B2 (B2 + 64> —2a* — 2b%) + a*+
+ bt +at +4a? @ + 407 @ - 120262

(4.24)

(4.25)

The next step is to substitute (4.24) and (4.25) into the equation (4.21). As a result
we obtain the following equation for the variables Ay and By:
a?b?a? A3 (A2 (A2 +6u —2a% —2b) +a* + b? +u' +4a u?+
+4b%u? —120%a?) +a® 0% u? B3 (B (B2 + 6 4% — 2a* — 2b%) +
+at+ bt +at 4@ a + 47 @’ —120%6%) — 24 (8 2% —
—6b%a® —6b%a% +2a%ut 4+ 20%u? + 202 a> + 202 b?) = 0.

(4.26)

With the use of the equation (4.26) now the lemma 4.2 is reformulated as follows.

Lemma 4.3. For any three positive coprime integer numbers a, b, and u the poly-
nomial Papy, (t) has integer roots if and only if the system of Diophantine equations
(4.14) and (4.26) is solvable with respect to the integer variables Ay > 0, and By > 0.

5. THE PRIME FACTORS STRUCTURE.

Below we continue studying the equations (4.14) and (4.26) implicitly assuming
a, b, and u to be three positive coprime integer numbers. Assuming p1, ... , p, to be
the prime factors of a, b, and u, we apply the formulas (3.1) with the multiplicities
a;, Bi, and w; obeying the inequalities (3.2). For the least common multiple Z of
the numbers a, b, and u in (4.8) we use the formula (3.4), where the exponents 6;
are given by the formula (3.3).

The equation (4.14) combined with the formula (3.4) means that the numbers
Ap and By cannot have prime factors other than pi, ..., p,. Therefore we write

Ag =pi* ..o phm, By =p" ... plm. (5.1)

In terms of (5.1) and (3.3) the equation (4.14) yields the equalities
ti + i = b; (5.2)
for each particular value of the index ¢ = 1, ..., n. The coprimality condition for

the numbers a, b, u is ged(a,b,u) = 1. It leads to (3.8) and (3.9). Due to (3.9) at
least one of the three options is fulfilled for each particular i =1, ..., n:

o; =0, or B; =0, or w; = 0. (5.3)

Note that the multiplicities «;, §;, and w; in (5.3) cannot vanish simultaneously.
For this reason, applying the formula (3.3), we derive

0; = max(ai, Bi,wi) > 0. (54)
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The inequality (5.4) means that the multiplicities p; and 7; in (5.2) cannot vanish
simultaneously either.

In order to investigate the equation (4.26) we introduce the notation mult, (V)
for the multiplicity of the prime number p in the prime factors expansion of N:

mult,(N) = k means N = N'-pF where N’ # 0 (mod p). (5.5)
Assume that an integer number N is a sum of some other integer numbers:
N=N;+...+ Np. (5.6)

Let’s denote through k; = mult,(N;) the multiplicities of the summands in (5.6)
and denote through ki, the minimum of these multiplicities:

kmin = min(kl, . ,km). (57)
In terms of the notations (5.5), (5.6), and (5.7) we can formulate the following three
simple lemmas. Their proofs are obvious.

Lemma 5.1. If exactly one term Ny in the sum (5.6) has the minimal multiplic-
ity ks = kmin, then the multiplicity of the sum in whole is equal to this minimal
multiplicity, i. e. mult,(N) = ks = kmin-

Lemma 5.2. If more than one term in the sum (5.6) has the minimal multiplicity
Emin, then mult,(N) = kmin.

Lemma 5.3. If ezactly one term Ny in the sum (5.6) has the minimal multiplicity
ks = kmin, then the sum N cannot vanish, i.e. N # 0.

Using the notation (5.5) and the above three lemmas 5.1, 5.2, and 5.3, below we
study several options derived from (5.3).

The case a; > §; > w; = 0 and p; # 2. In this case the multiplicities of the
parameters a, b, and u obey the following equalities and inequalities:

mult,, (a) = oy > multy, (b) = §; > multy, (u) = w; = 0. (5.8)

Applying the formulas (3.3), (3.4), and (4.20) to (5.8), we derive

0; =mult,, (Z) = ay, a; =mult,, (a) =0,
. ’ (5.9)
B; =multy, (b) = a; — S, @; =multy, () = ;.
Combining (5.9) with the inequalities (5.8), we get
mult,, (@) = ©; > mult,, (b) = §; > mult,, (@) = a; = 0. (5.10)

In order to continue studying the equation (4.26), we write this equation as
2b?u? A2Cs+a® b ul B Dg — Z*E = 0, (5.11)
where Cs and Dg are given by the formulas (4.23), while E' is a new parameter:

E=822—-60%a>-6b%a>+2a*u® +20%u? + 202 a® + 202 b2 (5.12)
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The right hand side of the formula (5.12) is a sum of seven terms. Applying the
formulas (5.8), (5.9), and (5.10) and taking into account that p; # 2, we derive

mult,, (8 Z4) = 2 ay, mult,, (—6b%a?) > 4a; — 2 5;,
mult,, (—6b%a?) > 2 B;, mult,, (2% u?) = 2a; — 2 3, (5.13)
mult,, (2 %% a?) = 4 o, mult,, (232 b%) = 2 a; + 2 B;,

The only term with the minimal multiplicity in the sum (5.12) is the term 2 a2 u?
mult,, (2a* u?) = 0. (5.14)
Applying the lemma 5.1, from (5.13) and (5.14) we derive the multiplicity of E:
mult,, (E) = 0. (5.15)
Using (5.15), we can calculate the multiplicity of the last term in (5.11):
mult,, (—Z* E) = 4 ;. (5.16)

Assume that both multiplicities p; and 7; in (5.2) are nonzero. Under this
assumption for the terms in the right hand side of the formulas (4.23) we have

mult,, (A2 Cs) > 2 i, mult,, (a*) = 4041,

mult,, (b*) = 4 5;, mult,, (u*) =

mult,, (4 a* u?) = 2, mult,, (4 b2 2) =20,

mult,, (—12b%a?) = 2 a; + 2 B;, mult,, (B Dg) = 21;, (5.17)
mult,, (a*) = 0, mult,, (b*) = 4a; — 4 3,

mult,, (7*) = 4, mult,, (4 a* @) = 20417

mult,, (402 4%) = 4a; — 2 B;, mult,, (—125%6%) = 20 — 2 5;

Applying the formulas (5.17) and the lemma 5.1 to (4.22), we find
mult,,, (Cs) = mult,, (Dg) = 0. (5.18)
Now we apply (5.18) to the equation (5.11). As a result we get

mult,, (a? b a2 A2 Ce) =4da; —2B; + 2 s,

L (5.19)
mult,, (a® b* u® B2 Dg) = 2 i +2 B; + 2 ;.

Due to (5.19) and (5.16) the lemma 5.3 applied to the equation (5.11) means that
at least one of the following three conditions should be fulfilled:

da; —20;+2pu; =4a; <205 +206; + 21, (520)
20, +26;+2m; =4 <4da; — 26 + 2 g, (521)
20, +20;+2n;, =40; —26; + 2 u; < 4da. (5.22)
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The equality in (5.20) is easily resolvable. Resolving this equality, we obtain

i = Bi, N = o — Bi. (5.23)

Substituting (5.23) back into (5.20), we find that the inequality (5.20) turns to the
equality and the condition (5.20) in whole appears to be fulfilled.

The equality in (5.21) is also easily resolvable. The solution of this equality coin-
cides with (5.23). Substituting (5.23) into (5.20), we again find that the inequality
(5.21) turns to the equality and the condition (5.21) in whole appears to be fulfilled.
Similarly, the solution of the equality (5.22) coincides with (5.23) and the condition
(5.22) in whole appears to be fulfilled upon substituting (5.23) into it.

The subcase u; = 0 is slightly different. The formula (5.16) remains unchanged,
while the formulas (5.19) in this subcase are replaced by the following ones:

multpi (ZLQ l~)2 ﬁz Ag 06) = Cl 2 40&1' - 2ﬂz,

5.24
mult,, (a* b* u* B Dg) = 4 i + 2 ;. (5:24)

Due to (5.24) and (5.16) the lemma 5.3 applied to the equation (5.11) means that
at least one of the following three conditions should be fulfilled:

G=40q; <4da; +20;, (5.25)
da; +206;, = < 4day. (5.27)

The conditions (5.26) and (5.27) are inconsistent since 8; > 0. However, the subcase
u; = 0 in whole is consistent because (5.25) is consistent. In this subcase 7; = «;
due to the relationships (5.2) and (5.9).

The subcase 7; = 0 is another option. In this subcase the formula (5.16)
remains unchanged, while the formulas (5.19) are replaced by the following ones:

mult,, (% b% @% A2 Cs) = 6 a; — 2 B;,

5.28
mult,, (a® b® u® B§ Dg) = & > 2a; + 2 B;. (5:28)

Due to (5.28) and (5.16) the lemma 5.3 applied to the equation (5.11) means that
at least one of the following three conditions should be fulfilled:

fi = Gai — Qﬁl < 40(1'. (531)

The conditions (5.29) and (5.31) are inconsistent since a; > ;. However, the
subcase 7; = 0 in whole is consistent because (5.30) is consistent. In this subcase
1 = «; due to the relationships (5.2) and (5.9).

The cases and subcases are too numerous. In order to describe them we use
tables. For this purpose let’s introduce the following notations:

me = mult,, (a2 6% 4% A2 C), mp = mult,, (a® b* u? B Dg). (5.32)



A NOTE ON THE THIRD CUBOID CONJECTURE. PART I 13

Besides (5.32), let’s denote through mp the multiplicity of the last term in (5.11):
mp = mult,,(—Z* E). (5.33)

In terms of (5.32) and (5.33) we build the table for the first case considered above.
Table 5.1
o >fi>wi=0,pi#2 | py>0andn >0 = p;=F; and g, = o —

me =4a; —28; + 2 i, mp =2aq; +20; +2n;, mge =4
4oy —2B;+2p; =4a; <20 +20; +21; Vv
20 +20;+2n; =4a; <da; — 26 +2 1 Vv
20, +208; +2m; =4y — 208 +2u; <4y vV

The first row of the table 5.1 is a general information. The second row of this table
reflects the formulas (5.19) and (5.16). The rest of this table is the conditions (5.20),
(5.21), and (5.22). Check marks say that all of these conditions are consistent.

Table 5.2
a; > B >w=0,p#2 | iy =0and n; =

me =G 2 4o — 25, mp =4a; +2 i, mg =4aq;
G=4a; <4a; +25; v
dai+20i=40; <G
do; +28; =G <4

The last two rows in the table 5.2 are not check marked. This means that the
corresponding conditions (5.26) and (5.27) are not consistent.

Table 5.3
a; > Pi>wi=0,p;#2 | pi=ca;andn =0

me = 6a; — 20, mp =¢& =2 2a; + 20, mp =4aq;
6a; —20;, =4a; <&
§i=4a; <6a; =205 Vv
§&=6a;—20; <4da

Below we list other cases and subcases in a tabular form without any detailed
comments for them.

Table 5.4
ai>ﬂi>wi:(),pi:2 ui>0andm>0 = uizﬂiandni:ai—ﬂi

me =4a; — 2 i + 2 g, mp =2a; +20; +2n;, mp=4a; +1
do; =203 +2p =40 +1 <20 +28; + 21
20 +2Bi+2m =4y +1<4a; =28+ 2
20 +20;i+2m; =4 — 20 +2p; <4da; + 1 Vv
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Table 5.5
o > P >w;=0,p; =2

w; =0and n; = q

me =G = 4a; — 205, mp =4o; +2p5;,

mp=4a; +1

G=4a;+1<40;+20;
4ai+2ﬁi:4ai+1<§i
da; +28, =G <4y +1

Table 5.6

w; =a; and g; =0

o > P >w;=0,p; =2

me = 60; — 2 B;, mp =& =2 20; +2p5;,

mg=4o; +1

60[1—25124az+1<§1
§i:4ai+1<6ai—2ﬁi
& =60; —20; <4y +1

Table 5.7

;> Bi=wi=0,p; #2,3 | 5 >0=mn =o; and j; =0

me =G = 4da; + 2, mp = 2o + 21,

mpe = x; > 4oy

2 =G <20+ 21
%i:205i+2771\<1
G=20a;+2n < x

< <

<<

Table 5.8

a;>Pi=w;=0,p;#2,3 | ;=0and p; =

mg = 2 > 4o

me = (i 2 6 a, mp =& 2 2,
=G <& vi
=6 <G v
G=& < v

to p; = 2 and to p; = 3.

The following tables correspond to the special values of the prime factor p;, i.e

Table 5.9

o >Bi=wi=0,p;=2|1n>0=>n=a and p; =0

Z4da;+1

me =G = 4da; + 2, mp = 2a; + 21, mpe = %

M =G <20+ 2
%i:204i+2771\<-1
G=20;+2m < 55
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Table 5.10

;> Bi=w;=0,p,=2 | 7, =0and u; = ay

mg = =240; +1

me = ( = 6, mp =& = 2qy,
% =G <& v
2 =6 <G vi
G=28& < v

Table 5.11

;> Bi=w;=0,p,=3 | 7 >0=mn=aq and yu; =0

me =G = 4da; + 2 s, mp = 2a; + 21,

meg :4041'

do; =G <20+ 27
doa; =20+ 2 < G
G=2a; +2m <4y

Table 5.12
a;>Bi=wi=0,p; =3 | ;;=0and p; = oy
me = ( = 6, mp =& = 2qy, mgp =4aq;
dai =G <&
do; =& <G Vv
G=¢& <4

In the following cases the multiplicity £; is not zero. It is equal to the multiplicity

a; and, according to (3.3), we have 6; = max(«, Bi,w;) = q;.

Table 5.13

ai=pi>wi=0,p;#2 | i >0 = p; =a; and n; =0

mC:2ai+2ui7 mD:fi>4ai+2ni7

mpe = x; 2 4y

200 +2p =54 <&
&= <205 + 21

& =20 +2p < 55

< <

<

Table 5.14
;=i >w; =0,p; #2

mp = > 4aq;

me =G 2 2aq, mp =& = 6w,
G = <& v
§i = <G v
§i =G < 5 v
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The case p; = 3 for o; = B; > w; = 0 leads to the same equalities and inequalities
as the other cases in the tables 5.13 and 5.14.

Table 5.15
=B >wi=0,p;=2| ;>0 = p;=ca; andn; =0

me = 2o; + 2 g, mp =& =2 4a; +2n;, mep =22 =240, +1

20+ 2 = 5 <&
&= <20 +2

& =2a; +2p; <y Vv
Table 5.16
=i >w=0,p;=2 | p;=0and 1 = oy
me = G = 2aq, mp =& = 6a;, mp = 240;+1
G = <& v
Ez:%ig i \/
gi:@g%z \/

In the following cases the multiplicity (; is zero, while w; is nonzero.

Table 5.17
a;>wi > =0,p;#2,3 | p;>0andn; >0 = p; =w; and n; = @; — w;

me =4a; — 2w; + 2 u;, mp = 2aq; +2w; + 2n;, mg =4
do; —2wi+2pu; =40; <204 +2w; + 21 vV
20;+2w; +2n; =4do; <4do; —2w; + 24 vV
20 + 2w +2m =4y — 2w + 2 <4 vV

Table 5.18
a;>w;>P;=0,p;#2,3 | iy =0and n; = q;

me = ¢ =2 4a; — 2w, mp = 4o + 2wy, me = 4q;

G=40; <4o;+2w; Vv

daj+2w;=40; <G
40&14-2&11:@ g 40&1'

Table 5.19
a;>w; > =0,p; #2,3 | py=ca; andn; =0

me = 6a; — 2w, mp =& = 20 + 2wy, mp =4aq;

6a; —2w; =4a; <&
§i:4ai<6ai—2wi \/

&=060;—2w; <4
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Table 5.20
a; >w>P;=0,p,=2,3| gy >0andn; >0 = u; =w; and n; = @; — w;
meo =4o; —2w; + 2 p;, mp =2aq; +2w; +2n;, mg=4a; +1

20 2w +2m; =4+ 1 <4y —2w; + 2

2 2w +2m, =40 —2w; + 2 <4a; + 1

Table 5.21

az>w1>51207p12253

w; =0and n;, = q

me = G = 4doa; — 2w, mp =4a; + 2w;,

mg=4o; +1

CZ:4O[Z—|—1<4O[Z+2(UZ
do; +2w; =4a; +1 <
4o +2w;i=¢ <4 +1

Table 5.22

a; >w;>Pi=0,p;=2,3 | gy =0ao;andn; =0

me = 6 o; — 2wy, mp =& = 20; + 2w,

mg=4a; +1

60&1—2w124az—|—1<§1
LG =4da;+1<60; —2w;

(Li=60; —2w; <4da;+1

In the following cases the multiplicity w; coincides with the multiplicity «; and,

according to (3.3), we have 6; = max(«;, 8;,w;) = ;.

Table 5.23

w; >0 = p;=a; and ng; =0

mpe = x 24

20 +2p; =3 <&
&= <2045+ 21
&i

20 + 2 p; <

v
v
A

Table 5.24

me = G = 2,

mp = »; =2 4aq;

G = <&
gz:%ig i

<
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Table 5.25
ai=w; >0, =0,p,=2 | ;>0 = p;=a;andn; =0

me = 20 + 2y, mp =& = 4o; +2n;, mp = 240;+1

20 +2p; = 3 <&
&= <204 + 2

&=20;+2p < Vv
Table 5.26
a;=w;>F;=0,p,=2 | yy;=0and n; =
me =G 2 2w, mp =& = 6a;, me = 24a; +1
Gi=m <& vi
&= <G Vv
& =G<n v
Table 5.27
ai=w;>Pi=0,p;=3 | ;>0 = p;=ca; andn; =0
me = 2a; + 2, mp =& = 4oy + 21, mp =4q;
2a;+2p;=40; <& Vv
E=4a; <205 +2p Vv
§i=2a; +2p; <4do Vv
Table 5.28
;i =w;>F:;=0,p; =3 | p;=0and n; =
me = G = 2, mp =& > 6ay, me =4aq;
G=4a; <& v
§i=4a; <G
Si=G<4da;

In the following cases the multiplicity w; is greater than the multiplicity «;.
Therefore, according to (3.3), we have 0; = max(a;, 8;, w;) = w;.

Table 5.29
wi>a;>F;=0,p; 2 | py;>0andn; >0 = p;, =a; and n; = w; —
me =4w; —2a; + 2 u;, mp =2w; +2a; + 2n;, mg = 4w;
dw—2a;+2p; =4w; <2w; +20; +2n; vV
2wi+20; +2n; =4w; <4w; —2a; + 2, vV
2wi+2a; +2m; =4w; — 20 +2p; < 4wy vV
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wi >0 > P =0,p; #2

w; =0 and 7; = w;

me = ¢ = dw; — 2ay,

mp =4w; +2aq,

mg = 4wi

Ci :4wi §4w1—|—2a1
dwi+20; =4w; <G
dwi+20; = <4dw;

Table 5.31

wi>a; > B =0, p; # 2

W, =w;and n; =0

me =6w; — 2 ay,

mp =& = 2w; + 2y,

mg = 4wi

6(.01'—20[1':4(,«]1' gfz
& =4w; <6w; — 20

& =6w; —20; <4w;

Table 5.32

wi >0 > P =0, p; =2

i >0andn; >0 = u; =q; and 9, = w; —

me = 4w; — 204 + 2y, mp = 2w; +2a; + 21;,

mg =4w; +1

4&11—20&1—{-2#1:4&114-1
2wi+20;+2m =4w; —20; +2p; <4w; + 1

NN

4(4}1'—20@4—2[14'

Table 5.33

wi >0 > B =0,p; =2

pi =0 and 7; = w;

me = G = 4w; — 2a;,

mp =4w; +2aqy,

mg =4w; +1

G=4w;+1<4w; +2q;
dwi+20; =4w; +1 <G
dwi+20; =G <4w;i +1

Table 5.34

wi >0 > B =0,p; =2

p; = w; and n; =0

me = 6w; — 2y,

mp =& 2 2w; + 2ay,

mep =4w; +1

6wi—2ai:4wi+1<§i
§1z4w1+1<6w1—2o¢1
&i=6w;, —2a; <4w; + 1

The case p; = 3 for w; > «a; > B; = 0 leads to the same equalities and inequalities
as the other cases in the tables 5.29, 5.30, and 5.31.
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Table 5.35
wi>a;=0;=0,p; A2 | 1, >0 = n; =w; and p; =0

me = G = 4dw; + 2, mp = 2w; + 21n;, me = »; 2 4dw;

G =5 <2w;i+2n

<

2w +2m; = 2 < G

<<

2wi+ 21 =G < 4

<<

Table 5.36
wi>a;=0;=0,p; #2 | n; =0 and p; = w;
me = ¢ = 6w, mp =& 2 2w, mp = 2 2 4w;
G =2 <& Vv
gz:%zg i \/
gi:Qg%z \/
Table 5.37

wi>a;=0;=0,pi=2|1n>0 = n =w;and pu; =0

me = = 4dw; + 2 p,, mp = 2w; + 2n;, mpe = =>4w; +1

Gi=02 <2wi+2m;
2w +2m; = 2 < G

2w +2n; =G < Vv
Table 5.38
wi>oa;=0;=0,p;=2 | n; =0and p; = w;
me = (i = 6wy, mp =& = 2w, me = 24w; +1
G = <& v
51—%i< 7 \/
& =G < Vv

Note that in all of the above cases a; > B;. The rest of the cases are those where
a; < B;. Let’s recall that the polynomial P, (t) in (1.1) is invariant with respect
to exchanging parameters a and b (see (2.1)). The same is true for P,(qu,)(t) in
(2.4). Therefore we can produce the rest of the cases from those already considered.

Table 5.39 (symmetric to the table 5.1)

Bi>ai >wi=0,p; #2 | py>0andn; >0 = py=a;and 7, = f; —

me =48 — 2a; + 2 p, mp =2 B; +2a; +2n;, mp =405
4B =20 +2pu; =48, <28 +2a; + 21 Vv
2Bi+20;+2n, =408 <A4Bi —20; + 2 v
2B8i+20; +2n;, =408 —20; +2p; <4054 vV
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Table 5.40 (symmetric to the table 5.2)
Bi > >w; =0,p; #2 | p; =0andn =pf
me =G 246 — 2w, mp =48 + 2 a;, mpe =405
G=40 <40+ 20 Vv
48 +20; =43, < G
4B;i+20; = <4p;
Table 5.41 (symmetric to the table 5.3)
Bi > >w; =0,p; #2 | p; =P and n; =0
me =68 — 2ay, mp =& = 26; +2ay, mp =405
68 —2a; =46; <&
§i=40:<6B —2q Vv
§i=68i—2a; <4p;
Table 5.42 (symmetric to the table 5.4)

Bi>a;>wi=0,p;=2 | p;>0andn; >0 = py=a;and n; = B — oy
me =408; — 2a; + 2 uy, mp =20;+2a; +2n;, mp=4p8; +1
48, —20; +2u; =48, +1 <28, +2a; +2m;

28 +2a;+2n, =406, +1<408;, —2a; +2

28 +20;+2n;, =408 —2a; +2p; <48+ 1 vV
Table 5.43 (symmetric to the table 5.5)
Bi>a; >w;=0,pi=2 | p; =0and n; =5
me =G 246 — 2w, mp =48 + 2, mp =40;+1
CG=48+1<48;+ 2 vV
468, +2a; =408, +1 <
4Bi+2a; = <406 +1
Table 5.44 (symmetric to the table 5.6)
Bi>a; >w;=0,pi=2| p=piandn =0
me =60 — 2, mp =& 220 + 2, mp =483 +1
68i—2a;=48;+1<¢§
& =40, +1<608,—2q; Vv
§i=68i—2a; <4Pi+1

In the following cases the multiplicity «; coincides with the multiplicity w; = 0.
I this case, according to (3.3), we have 6; = max(a;, 8, w;) = 5.
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Table 5.45 (symmetric to the table 5.7)

Bi>a;=wi=0,p; #2,3 | 5, >0=1mn = and p; =0

me =G 246 + 2w, mp = 2 + 2, mp = =45
7 =G <2Bi+2m v
s =20 +2n < G v
G=2Bi+2n < v

Table 5.46 (symmetric to the table 5.8)

ﬂi>0zi:wi:0,pi7&2,3 ni:()andui:ﬂi

me = G 2 6 bi, mp =& 2 20, mp = s 2405
=G <& v
=& <G v
G=6& < v

The following tables correspond to the special values of the prime factor p;, i.e.
to p; = 2 and to p; = 3.

Table 5.47 (symmetric to the table 5.9)

Bi>ai=w;=0,p;=2 | n>0=mn =0 and u; =0

me = G =46 + 2 i, mp =2 5; + 21, mp = 248;+1

=G <28 +2n;
%i:2ﬂi+2771\<z
CG=20+2n < Vv

Table 5.48 (symmetric to the table 5.10)

Bi>a;=w;=0,p;=2 | n;=0and pu; =S

me = G 2 6 bi, mp =& 2 20, mp = 246+ 1
=G <& v
s =8 < G vi
G=6& < v

Table 5.49 (symmetric to the table 5.11)

Bi>a;=w=0,p;=3 | n>0=mn =03 and p; =0

me =G 246+ 2 wi, mp = 20; + 2n;, mp =4p;
45, =G <2B;+2n; Vv
48; =26 +2n < G Vv
G=2Bi+2n <406 v
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Table 5.50 (symmetric to the table 5.12)
Bi>ai=w;=0,p; =3 | 7, =0and p; = f;
me = G = 65, mp =& 225, mp =405
4B8i =G <&
48; =& < G Vv
G=8&<4p;

In the following cases the multiplicity w; is greater than the multiplicity a;, but
less than ;. In this case, according to (3.3), we have 6; = max(«, B;,w;) = B;.

Table 5.51 (symmetric to the table 5.17)

Bi >wi >0; =0,p; #2,3

w; >0andn; >0 = pu; =w; and n; = B; — w;

& =60 —2w; <48

me =48 — 2w; + 2 py, mp = 28; + 2w; + 21, mp =405
4B —2wi +2p; =48 <28, +2w; + 21 Vv
2Bi+2wi+2n =45 <4Bi —2wi + 2 Vv
20i4+2w; +2n; =40 —2wi +2p; <405; v
Table 5.52 (symmetric to the table 5.18)
Bi>w;>a; =0,p; #2,3 | pu; =0 and n; = B;
me = G =46 — 2w, mp =43 + 2w, mg = 4p;
G=48;<46i+2w; vi
4Bi+2w; =406 < G
40 +2w;i =G <40
Table 5.53 (symmetric to the table 5.19)
fi>wi>a; =0,p; #2,3 | pi=piandn =0
me =60 — 2w, mp =& 220 + 2w, mp =405
68 —2w; =46 <&
§=4Bi<68 —2w; vi

Table 5.54 (symmetric to the table 5.20)

ﬁi>wi>ai:O,pi:2,3 ui>0andm>0 = m:wiandmzﬂi—wi

me =48 —2w; + 2, mp = 28; +2w; + 21,

mE:4ﬁz+1

4B —2wi+2pi =48 +1
2Bi+2wi+2n, =46 +1

NN

28 + 2w +2m;
48; —2wi + 2 s
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Table 5.55 (symmetric to the table 5.21)

Bi >wi>a;=0,p; =2,3

pi =0 and n; = f;

me =G =46 — 2w,

mp =43 + 2wy,

mp =43 +1

G=4B+1<48+2w; v
4Bi +2w; =G <48 +1

Table 5.56 (symmetric to the table 5.22)

pi =P and n; =0

mp =& 220 + 2w,
68 —2w; =48 +1 <&
§=4B8i+1<6p —2w; vi
§=60—2w; <48 +1

Bi >wi>a;=0,p; =2,3

me = 65; — 2w;, mp =48; +1

In the following cases the multiplicity w; coincides with the multiplicity 5;. Then,
according to (3.3), we have 0; = max(«a;, 8;,w;) = B;.

Table 5.57 (symmetric to the table 5.23)
Bi=wi>a;=0,p; #2,3
me =20 + 2 pi,

/Li>0 = ulzﬂlandm:()
mp =& =45 +2mn;,

mp = »; 2 406;

28i+2p = <& V
&= <2042 v
§&=20i+2p < v

Table 5.58 (symmetric to the table 5.24)
Bi=wi>a;=0,p; #2,3

me = ¢ = 2 fi,

ui:Oandm: i

mp = »; 2 40;

G=»m <& v
gz:%zgz \/
gi:Qg%z \/

Table 5.59 (symmetric to the table 5.25)

/Li>0 = ulzﬂzandm:()
mp =& =48+ 2,

ﬂi:wi>0zi:(),pi:2

me = 2 6; + 2 g, mp = »; 243 +1

28i+2p = <&
&= <28+ 2
& =20+ 21 < Vv
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Table 5.60 (symmetric to the table 5.26)

fi=wi>a;=0,p;=2 | p; =0andn =f

me = G = 20, mp =& = 64;, mp = 248;+1
CGi=0x <& vV
61—%i< 7 \/
gi:Cigxz \/

Table 5.61 (symmetric to the table 5.27)

Bi=wi>a;=0,p;=3 | t; >0 = p;=pH;andn; =0
me = 28 + 2, mp =& = 46; +2n;, mp =4p;

2Bi+2pi =48 <& Vv
§ =48 <2Bi+2u Vv
& =20 +2p <40 Vv
Table 5.62 (symmetric to the table 5.28)
Bi=w;>a;=0,p; =3 | p; =0and n; = B
me =G = 2p;, mp =& =60, me =4p;
G=48 <& v
§ =48 <G
&=G<4p6

In the following cases the multiplicity w; is greater than the multiplicity ;.
Therefore, according to (3.3), we have 6; = max(«;, 8;, w;) = w;.

Table 5.63 (symmetric to the table 5.29)
wi>ﬂi>ai20,pi7§2 ui>0andm>0 = Mizﬂi andni:wi—ﬂi

me =4w; — 2B + 2 p;, mp = 2w; +2 B +2n;, mpe = 4w;
dw; —208;i +2pu; =4w; <2w; +26; +2n; vV
2w; +26;+2m =4dw; <4dw; —26; +2 vV
20 +208i+2n=4w; — 268 + 21 < 4w vV

Table 5.64 (symmetric to the table 5.30)

w;>Pi>a;=0,p; #2 | p; =0 and 7; = w;

me = G = 4w — 2 i, mp =4w; + 25, mp =4w;
G=4w; <4w; +205; Vv
dw; +28; =4w; <G
4w +28; =G < 4w
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Table 5.65 (symmetric to the table 5.31)

wi>Pi>a;=0,p; #2 | p;=w;and n; =0

me = 6w; — 20, mp =& = 2w; + 20, mp =4w;
6w =20 =4w; <&
§i=4w; < 6w, —20; v
§i=6w; =20 <4w;

Table 5.66 (symmetric to the table 5.32)
wi>pFi>a;=0,p;, =2 ui>0andm>0 = Ni:ﬂi andm:wi—ﬂi

me = 4w; — 26 + 2y, mp =2w; +20; +2mn, mp =4w; +1
dw; —20;+2p; =4dw; +1 < 2w; + 28, +2n;
2w +28; 2 =4wi + 1< 4w — 26 + 2
2w +2Bi+21n =4w; —208; + 2 <4dw; + 1 vV

Table 5.67 (symmetric to the table 5.33)

wi>Pi>a;=0,p; =2 | p;=0andn =w;

me = ( = 4w; —20;, mp = 4dw; + 206, mp=4w; +1
G=4wi+1<4w; +25 v
dw;i+2Bi=4w; +1< G
dw;i+20 =G <4wi+1

Table 5.68 (symmetric to the table 5.34)

wi>Fi>a;=0,p;=2 | py=w;and n; =0
me = 6w; — 2, mp =& 2 2w; + 2 i, mp =4w; +1
6w, =28 =4w; +1 <&

§i=4wi+1< 6w, —2p; v

§=0w —20; <4dw;+1

Thus, totally we have 68 cases placed into 68 tables. They describe completely
the structure of the prime factors p1, ..., p, in (5.1).

6. THE STRUCTURAL THEOREM.

Analyzing the whole variety of data in the tables 5.1 through 5.68, we subdivide
the set of prime factors S = {p1, ..., pn} from (5.1) into a disjoint union of several
sets. The first three of such sets are given by the formulas

Si={peS: ;>0 >w; =0, i =0, mi =0; — B},
ng{piES:ai>ﬂi>wi20,ui20,m:ai}, (61)
Sy={pieS: a;>pi>w =0, pi =0y, n; =0}.
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The formulas (6.1) correspond to the tables 5.1 through 5.6. Using the formulas

(6.1), we define the following integer numbers:

bl = H piﬁiv

pi€S1 pi€S1

bo= [ »/ b= [ p", (6.2)
pi€S2 pi€S2

bs= ] p, b= [] p o
Pi€Ss Pi€Ss

The next three sets Sy, S5, and Sg are defined by the following formulas:

Sy={pieS: wi>p>a; =0, pi =Bi, i =w; — i},
Ss={pieS: w>p>a0=0, p; =0, n; =w;}, (6.3)
SGZ{Z)Z'ES: wi>ﬂi>ai:0, Wi = Wy, 771':0}.

The formulas (6.3) correspond to the tables 5.63 through 5.68. Using the formulas

(6.3), we define the following integer numbers:

b4: H piﬁia

64 = H pf17ﬁ17

Pi€Sa Pi €S54

bs = H piﬁiv 65 = H piwi_Biv (6'4)
Pi€Ss Pi€Ss

b= [] o, bo= [] »" "
pi€Se pi€Se

Some of the sets Sy, S, S3, S4, S5, Sg can be empty. Therefore we interpret the
formulas (6.2) and (6.4) so that by = by = 1 if the corresponding set S, is empty.
Moreover, by # 1 implies b, # 1 and vice versa. If by - b, # 1, then the prime
factors of the number by coincide with the prime factors of the number bre.

The next three sets S7, Sg, and Sy are defined by the following formulas:

Sr={peS: Bi>w > =0, gy =w;, n;, =G —wi},
Ss={pi€S: Bi>wi>a; =0, uy =0, n; = Bi}, (6.5)
ng{piES: Bi>wi>o¢i:(), ui:ﬂi, 771:0}

The formulas (6.5) correspond to the tables 5.51 through 5.56. Using the formulas
(6.5), we define the following integer numbers:

ur =[] pi*, i =[]

pi€S7 pi€ST
_ w; ~ Bi—wi
Uz = H D; la Uz = H D; ) (66)
pi€Ss pi€Ss
wi ~ Bi—wi
USZHPila USZHPi .
pi €S9 pi€Se
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The next three sets S1g, S11, and S12 are defined by the following formulas:

Sio=1{pi€S: a;>w;>Bi =0, pui =w;, i = —w;},
Su={pi€S: ai>w;>pi =0, =0, g; =}, (6.7)
Sio={pi€S: a;>w; > B =0, u; =a;, n; =0}

The formulas (6.7) correspond to the tables 5.17 through 5.22. Using the formulas
(6.7), we define the following integer numbers:

i _ S
Uy = H pi ' ug = H bt

pi€S10 pi€S10
Wi ~ _ Qg — Wy
us = H Pt U5 = H D; , (6.8)
pi€S11 pi€S11
W N s
ug = Hpilv ug = Hpil E
pi€S12 pi€S12

Some of the sets S7, Ss, Sg, S10, S11, S12 can be empty. Therefore we interpret the
formulas (6.6) and (6.8) so that uy = u; = 1 if the corresponding set S is empty.
Moreover, ug # 1 implies 4y # 1 and vice versa. If uy -t # 1, then the prime
factors of the number uj coincide with the prime factors of the number .

The next three sets Si13, S14, and S15 are defined by the following formulas:

Siz={pi€S: wi>a;>Bi=0, u; =, 7 =w; —a},
814:{p1‘681 wi >a; > B =0, u; =0, ni:wi}7 (6.9)
5152{]91'652wi>ai>ﬁi:0,/ﬁ:wi7ni:0}'

The formulas (6.9) correspond to the tables 5.29 through 5.34. Using the formulas

(6.9), we define the following integer numbers:

a;
ay = H pi

~ wi;—Qy
a1 = H D; )

pi€S13 pi€S13
o - Wi — v
az = H pila a2 = H pil 5 (610)
pi€S14 pi€S14
(e 7] ~ _ wi;—Qy
w- T n w= IT oo
pi€S15 pi€S1s

The next three sets Sy, S17, and Sig are defined similarly. For this purpose we
use the following three formulas analogous to (6.9):

Sie={pi€eS: Bi>a;>wi =0, yu; =, n; = fi —},
Sir={pi€S: Bi>ai>wi =0, i =0, n; = B}, (6.11)
Sis={pieS: Bi>a;>w =0, p; =P, n; =0}.

The formulas (6.11) correspond to the tables 5.39 through 5.44. We use the formulas
(6.11) in order to define six numbers a4, as, ag, a4, @5, g similar to the numbers
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a1, as, as, ai, az, as in (6.10). For this purpose we write

ay = H piaiv gy = H piﬁi*ai7

pi€Sie6 pi€S16
a; ~ Bi—a
a5 = H P’ a5 = H D; , (6-12)
pi€S17 pi€S17
[e23 P Bi—a
a= [] ag = | pf
pi€S1s pi€S18

Some of the sets Si3, S14, S15, S16, S17, S18 can be empty. Therefore we interpret
the formulas (6.10) and (6.12) so that a = ar = 1 if the corresponding set Sy, is
empty. Moreover, a; # 1 implies a; # 1 and vice versa. If ay - ar # 1, then the
prime factors of the number a; coincide with the prime factors of the number a.

The following sets and their associated numbers are defined in a slightly different
manner. The sets Si9, Sa0, S21, S22 are given by the formulas

S19 = ieS:ai>Bi:wi:O, i =g, 1n; =0},
19 ={p I Ui } (6.13)
SQOZ{piES:ai>Bi:wi:07 Mi:07 ni:ai}7

S21:{pi€S: wizﬂi>o¢i:(), i = w;, 771':0},

(6.14)
SQQZ{piES: wizﬂi>ai:(), ,LLZ':O, m:wi}.

The formulas (6.13) and (6.14) correspond to the tables 5.7 through 5.12 and 5.57
through 5.62. Using them, we define the following integer numbers:

ar = [] » ir = [ ™ (6.15)

Pi€S19 pi €S20
W N s
ag = H P ag = H P (6-16)
pi€S21 pi €S22

Some of the sets Sig, Sag, S21, S22 can be empty. Therefore we interpret the
formulas (6.15) and (6.16) so that ar = 1 or a5 = 1 if the corresponding set S, is
empty. Unlike the numbers (6.12), the numbers (6.15) and (6.16) are not correlated
within their pairs.

The sets Sag, So4, Sas, Sog are given by the following formulas

Sas={p;€S: Bi>a,=w; =0, u; =F;, ni =0}, (6.17)
Suu={p;eS: Bi>a,=w; =0, u; =0, 7; =i}, '

Sos={p;, €5S: ay=w; >B; =0, u; =a;, n; =0},
25 = {p 1 i =0} (6.18)
Sggz{piES:ai:wi>6i20,ui20,ni:ai}.

The formulas (6.17) and (6.18) correspond to the tables 5.45 through 5.50 and 5.23
through 5.28. Using them, we define the following integer numbers:

b= [ »7. br=[] o (6.19)

pi€Sa3 Pi€S24
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bs= [] pi bs= [] pi (6.20)

pi€Sas pi€S26

Some of the sets Sa3z, Sa4, So5, S2¢ can be empty. Therefore we interpret the

formulas (6.19) and (6.20) so that by = 1 or by = 1 if the corresponding set Sy, is

empty. The numbers (6.19) and (6.20) are also not correlated within their pairs.
The sets Sao7, Sas, Sag, S30 are given by the following formulas:

Sor={pi€S: wi>a;=p =0, p; =w;, n; =0}, (6.21)
528:{pi65:Wi>ai:ﬁi:07ﬂi:07ni:wi}7 '

Sog={pi €S: a; =i >w; =0, p; =y, n; =0},

(6.22)
Sso={pi€S: a;=0>w;i =0, ; =0, 7; = a;}.

The formulas (6.21) and (6.22) correspond to the tables 5.35 through 5.38 and 5.13
through 5.16. Using them, we define the following integer numbers:

ur= T »¥. ar= [ ». (6.23)

pi€Sa7 pi€Sas
Qg ~ Qg
ug = H P, g = H P, (6.24)
pi€S29 pi€S30

Now we can compare the formulas (6.1), (6.3), (6.5), (6.7), (6.9), (6.11), (6.13),
(6.14), (6.17), (6.18), (6.21), and (6.22) with the tables 5.1 through 5.68 considered
in the previous section. As a result we derive that

30
S={pi, ..., p} = J S (6.25)
i=1

Then we apply (6.25) to the formulas (6.2), (6.4), (6.2), (6.6), (6.8), (6.10), (6.12),
(6.15), (6.16), (6.19), (6.20), (6.23), and (6.24). This yields the following formulas:

6 3 6
a = ay d7bg [N)g us ’ﬁg Hai Hbl Bi Hui ’ﬁi, (626)
i=1 i=1 i=4
~ 6 3 6
b= b7 b7 us ’ag as C~L8 bl H’U,l ﬁz Hai ZLZ', (627)
i=1 i=1 i=4
~ 6 3 6
u=wﬁ7a8 (~L8 bg bg Hul Hai di Hbl bz, (628)
i=1 i=1 i=4
~ 6 3 6 ~
@ = ag dg by by uy iy H a; 1w @ H b; by, (6.29)
i=1 i=1 i=4
B ~ 6 B 3 6
b= bg bg u7&7a7 d7 I_IbZ Hai dz Huz ’ﬁl, (630)
i=1 i=1 i=4
~ 6 3 ~ 6
il = ug @ig ag a7 by by Hu Hbi b; Haz a; (6.31)

~
Il
—-
~
Il
—-
~
Il
i
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Along with the formulas (6.26), (6.27), (6.28), (6.29), (6.30), (6.31), we derive the
following formulas for the parameters Z, Ag, and By:

7 = Halal Hb b; Huluz, (6.32)
Hazb uZHalb s, (6.33)

i=1,3,4 1=3,6
i=6,7,8
By = [ [ b [ b (6.34)
i=1,2,4 1=2,5
i:5,7,8

Thus, the variables a, b, u, a, l~7, u, Z, Ay, Bg are expressed through 48 new variables
A1y v .y ag,dl, ,dg,bl, ,bg,gl, ,Bg,ul, ey u8,&1, ey ﬂgbymeansof
the formulas (6.26), (6.27), (6.28), (6.29), (6.30), (6.31), (6.32), (6.33), and (6.34).
Most of the new variable are coprime by their definition. Indeed, we have the
following coprimality conditions to be fulfilled:

ged(as, a) =1, ged(bi,bj) =1, ged(ug,u;) =1 for i # j;
ged(ai, aj) =1, ged(bs, b)) = 1, ged(as, i) = 1 for i # j;
ged(aq, aj) = ged(bs, bj) = ged(ug, @) = 1 for i # j or i > 6 or j > 6;

N (6.35)
gcd(ai, bJ) = ng(CLi, bJ) = ng(CLi, Uj) = gcd(ai,ﬂj) = 1,
b

j) = gcd(&i,uj) = ng(ZLZ,’lNJ,J) = 1,
ged(bi, uj) = ged(b;, uj) = gcd(l;i,uj) = gcd(gi,ﬁj) =1.

The only exception from the above coprimality conditions (6.35) are the numbers
within the pairs (a;, a;), (b, b;), (ui, ;) for 1 <4 < 6. In such pairs we have

a;=1<=a =1 for i=1,...,6;
bi=1<=b=1 for i=1,...,6; (6.36)
u=1<=u;,=1 for i=1,...,6;
pla;<p|a; forpisprimeandi=1, ..., 6;
p|bi <= p|b; forpisprimeandi=1, ..., 6; (6.37)
plui<=pl|u; forpisprimeandi=1,...,6.

The conditions (6.36) and (6.37) are called the cohesion conditions.

The next step now is to substitute the formulas (6.26), (6.27), (6.28), (6.29),
(6.30), (6.31), (6.32), (6.33), and (6.34) into the equation (4.26). As a result we get
a polynomial equation with 27 terms. These terms have the common factor

C=ata2atat alad aZadat ada ad al a2 alt a2 bd b2 b b b2 bl 2 bl

474727474727472 042 4,42 4 2 4 ~d~d =2 o4 o4 ~2 <4 52
- b7 by bs by b bg b7 bg w7 us us g us Ug Uy Ug U] Uy Uz Uy Us Ug Uy Ug.

(6.38)
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Even upon splitting out the nonzero common factor (6.38) the equation (4.26)
appears to be rather huge. It is written as follows:

4 A ~4~4~4~4~474741474747474747478 A 4 8 4 A~4~4~4~4~4

as a7 @7 Qg 3 Gy ag by by bg by by b3 by by bg bg us Uy us ug Uy Uy Us Ug Uy Ug +
4-2-4-27274,27,2121474747672727476. 2. 4.6

3 Gg Q7 Gg by by b3 b3 b7 bg by b5 bg by b5 bg bg uj uy ug -

6 4 2 4 2-4-4-622~4;2727472727472
2 Q3 a3 a7 ag ay d; 4z g a7 ag by by bs bg b7 bg by -

ay a3 az

a7 T3 + af ay a3 aj a3 ag a3 3 g -

d‘%b?b%bgb‘%bg%%ggl}égguﬁuéu‘éu‘%ug ~§aﬁﬂéﬂgﬂg+4a%a3a§aia§a§ag .

a3 ai a3 as ag az ag bt by b3 b b3 bg b7 bg bt b3 b b b3 b b wf w3 uf uiug ug uf uf -

s Us U S a2 al + at s ai aragatas al ag ag by b be bs bg b b ba b ba utusus -
ujuéuéu?&éaéﬁ‘%—2a‘11a§aéaja%aéa?agdgdgd?b%b%b%bib%b?bg@i)gl}g

'i)gBgufuguiugugu?ugﬁgﬂiﬁgﬁgﬁg+6a%a§a§aia§a?aéd%d%dgdgdglﬁb% .

'bibgbéb?bgi)gi)iggnggu%uguéuiuguéu?ugﬂgﬁgﬁg+a%a§aiaéa§a§d§dg'
~b%b%bibgb?bgggBgu%uéuiuéugugﬁgﬁg—2a%a§a§agagd%dédgdidgdédg~
B B0 2B B B2 B B B2 B2 R S w2 w2 i a2 6 i a2 it il + 4a? af ol a2 af -
Rt B A b 202 B2 B2 B0 2 2 2 2

~2 22 ~2 ~4 4 ~4 ~2 ~6 2 6 2 4 2
UL Uy Uz Uy Us Ug Uy Ug — 12 a7 ay ag as az a

Ug Uy Ug UG UT UZ -
4~2~2-~2~2~673472767272
3Gy a5 ag a7 ag by by by bg bz -

~2 52 22 ~2 22 ~4 4 2.4 2 4
Uy U3 Uy Us Ug Uy Ug — 27 A a3 0y -
bs b

=N ON i

47276,2,6,2 2 6 2 4 -
6 b7 bg ul ug uz uy us ug ur U

alagabalala b 202 b u3 u3 us ud v ug 03 a3 iy -
iy s g U — 8 ai aj a af a5 ag a7 a3 a3 a3 Gy a5 63 Gg a7 ay by by b3 b by b by by -
b b3 b b 03 b b7 bs s uj g ug ug ug 4 63 s @) 45 4 U7 Uy — 20} a3 a3 a3 -
a7 a5 @y @ 5 aj a3 ag ag b b bY g by by b3 0 by bg b7 by i uf wg uf ug ug uf af a3 -
s a2 atal —12a? a3 a3 at at apaSa?ajalalala?al bibi v b b2 b2 b8 b2 b3 b3 -
b bg 7 b3 uf w3 uf uf ud ug ug ug GF 43 a8 af af ag s + 4 ai a3 a3 af a3 ag a3 ag -
af a3 a3 aj a ag as by b3 03 bj by bg b b 3 b] b3 0§ b7 bF i uj g uiuf ug ufug af -
a3 aS g uF ui — 2a? a3 af a? ag aS agal al a? al a2 by b3 b b b2 be b b2 S bS b2
utuduiud uubugad a3 al al al + af af at asajasatal bl os b} b b3 bs b b
u us af iy Uy iy g ds + 6 al a3 ab af a2 a3 a3 ay as ag as ag by b3 b3 b b2 b1 b3 b3
b2 b2 b2 b3 u ul w2 af ad a al ad a2 a2 af — 2aS el a?atadal alal a2 aad vgo? -
b3 b2 b2 b2 b3 b b3 b2 b2 bS u? ub ud ul i at s i al al aral + asafab ap ataf
3 dg a7 G b 03 bs by b b by by b bg up s ug @7 @3 1 @5 @ G5 G5 + a3 af a3 ag -
aF a3 4 @3 a3 aj a5 ag ax ag by b b3 07 08 bg by 0T 3 b3 b3 b3 0F by by i ug uf ug uf -
ul @y g U5 U2 a2l ad + a5 af ag at asas a;asagad bi g bl bg b2 i bd bg b2 b3
i ug ug Gy i Gy U iy — 263 af af ag g af a3 G G5 ag a7 ag by b by b7 by b -
- b8 b2 b2 b3 b2 b2 b2 u? ugud uu? ui atas alal al agad + 6 a2 a2 af a2 a? afa? al -
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4 ~4 ~4~6~672747274167416727272747472, 4. 6.4.2 4 2
© Q3 Qg 5 Gg Gg by by b by by bg by bi by b5 bg b7 bg uy ug us ug uz ug
4
5

The above equation is called the structural equation. It is a Diophantine equation
with respect to 48 integer variables a4, ..., ag, a1, ..., as, b1, ..., bs, l~)1, e, I;g,
Ui, ..., Us, Uy, ..., ug. Now, summarizing the results of the sections 5 and 6, then
applying the lemma 4.3, we derive the following theorem.

Theorem 6.1. For a given triple of positive coprime integer numbers a, b, and
u such that none of the conditions (1.2) is satisfied the polynomial Diophantine
equation (1.3) is resolvable if and only if there are 48 positive integer numbers
a, ..., as, dl, ey dg, bl, ey bg, i)l, ey Z)g,’ul, ey u8,&1, ,’17,8 obeymgthe
structural equation on the pages 32 and 33, obeying the cohesion conditions (6.36)
and (6.37), obeying the coprimality conditions (6.35), and such that a, b, and u
are expressed through them by means of the formulas (6.26), (6.27), (6.28). Under
these conditions the equation (1.3) has at least two solutions given by the formulas

t = HaibiuiniI;iai, t = — HaibiuiniI;iai. (639)

The theorem 6.1 is the required structural theorem for the solutions of the Dio-
phantine equation (1.3). The formulas (6.39) in this structural theorem are imme-
diate from the formulas (6.33) and (4.2).

7. CONCLUSIONS.

The structural theorem 6.1 is the main result of this paper. It can be used in
computer search for perfect Euler cuboids or maybe in proving their non-existence
in the case of the third cuboid conjecture 1.1. The theorem 6.1 is analogous to the
structural theorem 4.1 from [3] associated with the second cuboid conjecture.
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