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Abstract

Cantor primes are primes p such that 1/p belongs to the middle-third Can-
tor set. One way to look at them is as containing the base-3 analogues of the
famous Mersenne primes, which encompass all base-2 repunit primes, i.e.,
primes consisting of a contiguous sequence of 1’s in base 2 and satisfying an
equation of the form p + 1 = 29. The Cantor primes encompass all base-3
repunit primes satisfying an equation of the form 2p+1 = 39, and I show that
in general all Cantor primes > 3 satisfy a closely related equation of the form
2pK + 1 = 39, with the base-3 repunits being the special case K = 1. I use this
to prove that the Cantor primes > 3 are exactly the prime-valued cyclotomic
polynomials of the form ®,(3%") =1 (mod 4). Significant open problems con-
cern the infinitude of these, making Cantor primes perhaps more interesting
than previously realised.
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1 Introduction

Any base-N repunit prime p is a cyclotomic polynomial evaluated at N, ®,(N),
with ¢ also prime, i.e.,

p=0,(N) = =Y NF (1)

It is therefore expressible as a contiguous sequence of 1’s in base N. For
example, p = 31 satisfies (1) for N = 2 and ¢ = 5 and can be expressed as
11111 in base 2. The term repunit was coined by A. H. Beiler [I] to indicate
that numbers like these consist of repeated units.
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The case N = 2 corresponds to the famous Mersenne primes on which
there is a vast literature [6]. They are sequence number A000668 in The
Online Encyclopedia of Integer Sequences [7] and are exactly the prime-valued
cyclotomic polynomials of the form ®4(2) = 3 (mod 4).

In this note I show that Cantor primes can be characterised in a similar
way as being exactly the prime-valued cyclotomic polynomials of the form
®,(3*) = 1 (mod 4). They are primes whose reciprocals belong to the middle-
third Cantor set Cs.

It is easily shown that C3 contains the reciprocals of all base-3 repunit
primes, i.e., those primes p which satisfy an equation of the form 2p + 1 =
37 with ¢ prime. Cs is a fractal consisting of all the points in [0, 1] which
have non-terminating base-3 representations involving only the digits 0 and 2.
Rerranging (1) to get the infinite series

o0

1
. Nq—l Zqu )

and putting N = 3 shows that those primes p which satisfy 2p+1 = 37 are such
that % can be expressed in base 3 using only zeros and the digit 2. This single

digit 2 will appear periodically in the base-3 representation of % at positions
which are multiples of ¢q. Since only zeros and the digit 2 appear in the ternary
representation of 1—1?, % is never removed in the construction of Cs, so % must
belong to Cs.

Base-3 repunit primes are sequence number A076481 in The Online Ency-
clopedia of Integer Sequences and the exact analogues of the Mersenne primes,
i.e., they are the case N = 3 in (1). In the next section I show that Can-
tor primes > 3 more generally satisfy a closely related equation of the form
2pK +1 = 39, with the base-3 repunits being the special case K = 1. A subse-
quent section proves that the Cantor primes > 3 are exactly the prime-valued
cyclotomic polynomials of the form ®,(3*') = 1 (mod 4), and a final section
considers related open problems.

2 An Exponential Equation Characterising All
Cantor Primes

Theorem 2.1. A prime number p > 3 is a Cantor prime if and only if it
satisfies an equation of the form 2pK +1 = 37 where q is the order of 3 modulo
p and K is a sum of non-negative powers of 3 each smaller than 39.

Comment. The base-3 repunit primes are then the special case in which
K =3%=1. An example is 13, which satisfies 2p 4+ 1 = 32. A counterexample
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which shows that not all Cantor primes are base-3 repunit primes is 757, which
satisfies 26p + 1 = 3° with K =3+ 3! +32 =13 and ¢ = 9.
Proof. Fach x € C3 can be expressed in ternary form as

> a
szg—ZzO.a1a2... (3)
k=1

where all the a; are equal to 0 or 2. The construction of C3 amounts to
systematically removing all the points in [0, 1] which cannot be expressed in
ternary form with only 0’s and 2’s, i.e., the removed points all have a, = 1 for
one or more k € N [4].

The construction of the Cantor set suggests some simple conditions which
a prime number must satisfy in order to be a Cantor prime. If a prime number
p > 3 is to be a Cantor prime, the first non-zero digit ax, in the ternary
expansion of % must be 2. This means that for some k; € N, p must satisfy

2 1 1
3o < p < gh (4)
or equivalently
3k < (2p, 3p) (5)
Prime numbers for which there is no power of 3 in the interval (2p, 3p), e.g.,
5, 7,17, 19, 23, 41, 43, 47, ..., can therefore be excluded immediately from

further consideration. Note that there cannot be any other power of 3 in the
interval (2p, 3p) since 3¥1~1 and 3¥1*1 lie completely to the left and completely
to the right of (2p, 3p) respectively.

If the next non-zero digit after ay, is to be another 2 rather than a 1, it
must be the case for some ky; € N that

2 1 2 1 6
3k1+k2 < p 3k < k1 +ha—1 (6)

or equivalently

3k2€< 2 _ 5P ) (1)

3k —2p’ 3k — 2p

Thus, any prime numbers for which there is a power of 3 in the interval (2p, 3p)
but for which there is no power of 3 in the interval (3’@12—32;::’ 31613—32,,) can again
be excluded, e.g., 37, 113, 331, 337, 353, 991, 997, 1009.

Continuing in this way, the condition for the third non-zero digit to be a 2

3k ¢ 2P 5P
3k2(3k1 — 2p) — 2p’ 3k2(3k1 — 2p) — 2p

18

(8)
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and the condition for the nth non-zero digit to be a 2 is

2p 3p

3k e ,
(Bknl(. .. (3k2(3k1 — 2p) — 2p) .. ) J— 2p Bkn—l(. . (3k2 (3k1 J— 2p) J— 2p) e

(9)

The ternary expansions under consideration are all non-terminating, so at

first sight it seems as if an endless sequence of tests like these would have to

be applied to ensure that a; # 1 for any k € N. However, this is not the case.

Let p be a Cantor prime and let 3¥' be the smallest power of 3 that exceeds

2p. Since p is a Cantor prime, both (5) and (9) must be satisfied for all n.
Multiplying (9) through by 3% =% we get

3k1_kn . 2]9 3k1_kn . 3p

3k ¢ ,
(Bknl(. .. (3k2(3k1 — 2p) — 2p) .. .) — 2p 3kn71(. . (3k2 (Bkl — 2p) — 2p) ..

(10)
Since all ternary representations of prime reciprocals % for p > 3 have a repeat-
ing cycle which begins immediately after the point, it must be the case that
k, = ki for some n in (10). Setting k, = k; in (10) we can therefore deduce
from the fact that 3* € (2p, 3p) and the fact that (10) must be consistent with
this for all values of n, that all Cantor primes must satisfy an equation of the
form

Bknfl(' .. (3k2(3k1 _ 2]9) _ 2p) .. ) —2p=1 (11)

where ki + ko + - - -+ k,_1 = q is the cycle length in the ternary representation
of %. In other words, ¢ is the order of 3 modulo p. By successively considering
the cases in which there is only one non-zero term in the repeating cycle, two
non-zero terms, three non-zero terms, etc., in (11), and defining

dy =q—k
dy=q— ki — ks
ds =q— ki — ko — k3

dn:q—kl—kg—---—kn:()
it is easy to see that (11) can be rearranged as
2 3h41=3 (12)
i=1

Setting K = >_i", 3%, we conclude that every Cantor prime must satisfy an
equation of the form 2pK + 1 = 39 as claimed.

-)—2p)
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Conversely, every prime which satisfies an equation of this form must be a
Cantor prime. To see this, note that we can rearrange (12) to get

12y 34 K111
ST el =2) 3 ittt (13)

Since 23" | 3% involves only products of 2 with powers of 3 which are each
less than 3%, (13) is an expression for % which corresponds to a ternary repre-

sentation involving only 2s. Thus, i must be in the Cantor set if 2pK 41 = 349.

3 Cantor Primes as Cyclotomic Polynomials

Let n be a positive integer and let ¢, be the complex number e*™/". The n'®
cyclotomic polynomial is defined as

eu(z)= ][ @—-¢)

1<k<n

ged(k,n)=1

The degree of ®,(z) is ¢(n) where ¢ is the Euler totient function. There is now
a powerful body of theory relating to cyclotomic polynomials and discussions
of their basic properties can be found in any textbook on abstract algebra.

Lemma 3.1. ("~ Yo 4 gn=Da .y g0 4 90 1 s jrreducible in Z[x] if
and only if n = p and a = p* for some prime p and non-negative integer k.

Proof. This is proved as Theorem 4 in [5].

Theorem 3.2. A prime number p > 3 is a Cantor prime if and only if
p = ®,3") =1 (mod 4) where s is an odd prime and j is a non-negative
mnteger.

Proof. Assume p is a Cantor prime. By Theorem 2.1 we then have

pK = = RY (14)

where R((Zs) denotes the base-3 repunit consisting of ¢ contiguous units, and ¢
and K are as defined in that theorem. If ¢ is composite, say ¢ = rs, we obtain
the factorisation

R[(I?») = R® . (36=br L g2 437 L 37 4 ]) (15)

T

If g is prime we can take r = 1. Therefore in both cases at least one factor of
pK must be a base-3 repunit.
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If K =1 then p= R((Zs) = ®,(3), since ¢ must be prime in this case. (R((Zg)
is composite if ¢ is). If K > 1, p is not a base-3 repunit and by Theorem 2.1
K is a sum of powers of 3, so p must be of the general form

p= 3(8—1)7“ + 3(8—2)7’ N 327“ + 37” + 1 (16)

for some s and r, and K must be a corresponding base-3 repunit RS’), otherwise
their product could not be RY. But the polynomial in (16) can only be prime
if it is irreducible in Z[z]. By Lemma 3.1, this requires s to be a prime number
and r = &7 for some non-negative integer j, and we therefore have p = P,(3*)
in this case. We conclude that in all cases we must have p = ®,(3') if p is a
Cantor prime. Note that s must be an odd prime as ®4(3*') is even for s = 2.

Conversely, suppose that p = ®,(3%) is a prime number. Then we can
multiply it by the base-3 repunit R where r = s/ to get the repunit R((I?’) as
in (15). Thus, p must satisfy (14) and must therefore be a Cantor prime.

Base-3 repunits are congruent to 0 modulo 4 when they consist of an even
number of digits, and to 1 modulo 4 otherwise. Therefore if p > 3 is a base-3
repunit prime it must be of the form 4k + 1.

If p is prime but not a base-3 repunit, both r = s/ and ¢ = rs in (15) are
odd, so both Rég) and R%) are base-3 repunits with odd numbers of digits, and
thus of the form 4k + 1. It follows that p is also of the form 4k + 1 in this case.

4 Open Problems

The infinitude of Cantor primes is currently an open problem shown to be
significant in this paper because of the equivalence of Cantor primes and prime-
valued cyclotomic polynomials of the form ®(3%).

In the case j = 0, it is known that ®4(3) is prime for s = 7, 13, 71, 103,
541, 1091, 1367, 1627, 4177, 9011, 9551, 36913, 43063, 49681, 57917, 483611,
and 877843. It seems plausible that there are infinitely many such values of s
but this remains to be proved.

The Cantor prime 757 = ®3(3%) is an example with j > 0. It is again
an open problem to prove there are infinitely many integers j > 0 for which
®,(3*") is prime given a prime s, though all such cyclotomic polynomials must
be irreducible.

Previous studies have considered the infinitude of prime-valued cyclotomic
polynomials of other types. For example, primes of the form ®4(1) and ®4(2)
are studied in [3], and other cases are discussed in [2].
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