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Abstract

We show the existence of a series of transforms that capture several
structures that underlie higher-dimensional partitions. These transforms
lead to a sequence of triangles whose entries are given combinatorial in-
terpretations as the number of particular types of skew Ferrers diagrams.
The end result of our analysis is the existence of a triangle, that we denote
by F , which implies that the data needed to compute the number of parti-
tions of a given positive integer is reduced by a factor of half. The number
of spanning rooted forests appears intriguingly in a family of entries in the
F . Using modifications of an algorithm due to Bratley-McKay, we are able
to directly enumerate entries in some of the triangles. As a result, we have
been able to compute numbers of partitions of positive integers ≤ 25 in
any dimension.
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1 Introduction

An unrestricted d-dimensional partition of n is a collection of n points (nodes)
in Z

d+1
+ satisfying the following property: if the collection contains a node a =

(a1, a2, . . . , ad+1), then all nodes x = (x1, x2, . . . , xd+1) with 0 ≤ xi ≤ ai ∀ i =
1, . . . , d+ 1 also belong to it [1,2]. Let pd(n) denote the number of distinct such
partitions. Denote by Pd(q), the generating function of unrestricted d-dimensional
partitions: (pd(0) ≡ 1)

Pd(q) =
∞∑

n=0

pd(n) q
n . (1.1)

There exist explicit formulae for the generating functions for d = 1 and d = 2
due to Euler and MacMahon respectively [3]. However, no such formulae exist for
d > 2 as an inspired guess of MacMahon was subsequently proven to be false [1].
It appears that there is no simple formula and one has to take recourse to brute
force enumeration. Given that asymptotically one has [4–6]

log pd(n) ∼ nd/d+1 , (1.2)

it is easy to see that the numbers grow exponentially fast and naive enumeration
is not the way to go.

The first serious attempt at direct enumeration of partitions in any dimension
is due to Atkin et. al. [1] based on an algorithm due to Bratley and McKay
[7]. Knuth provided another algorithm that enumerates numbers of topological
sequences which can be used, in principle, to generate numbers of partitions in
any dimension [8]. Both algorithms are highly recursive and easily implemented
on a computer.

This paper attempts to find structures in the enumeration of partitions and
come up with refinements in their enumeration. Such refinements when cleverly
combined with computer-based enumeration should in principle enable one to
enumerate partitions of integers below some maximum value in any dimension.
The maximum value turns out be 25 in our case though we believe that, with
some effort, this number can be pushed to around 30.

Our refinements begin with the result of of Atkin et. al. who showed that the
binomial transform of pd(n) leads to a lower-triangular matrix that we denote by
A = (an,r).

pd(n) =
d+1∑

r=0

(
d+ 1

r

)
an,r . (2.4)

This transform implies that in order to compute partitions of a positive integer
n in any dimension, we need to only compute (n − 1) numbers that make up
a particular row of the triangle A. We show the existence another triangular
matrix, that we denote by F = (fn,x), as a transform of the matrix A with fewer
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entries.

am+r+1,r =
r∑

x=0

m∑

p=x

(
r

x

)((r−x
2

)

m− p

)
fp+x+1, x . (2.20)

Our result is that we need only [(n−1)/2] independent numbers i.e., roughly half
of the initial estimate to determine partitions of n in any dimension. We illustrate
the gain by explicitly displaying the first eleven rows of the A and F -matrices.

A =




1
0 1
0 1 1
0 1 3 1
0 1 5 6 1
0 1 9 18 10 1
0 1 13 44 49 15 1
0 1 20 97 172 110 21 1
0 1 28 195 512 550 216 28 1
0 1 40 377 1370 2195 1486 385 36 1
0 1 54 694 3396 7603 7886 3514 638 45 1




, F =




1
0
0 1
0 1
0 1 3
0 1 7
0 1 11 16
0 1 18 58
0 1 26 135 125
0 1 38 293 618
0 1 52 574 1927 1296




.

The F -triangle is, in a sense, the end-point of a sequence of transforms and
triangles that we introduce. We also provide combinatorial interpretations for the
various triangles that appear as a result of these transforms. This enables use to
modify the Bratley-McKay(BM) algorithm to directly enumerate the matrix A
that we mentioned earlier and a second triangle, C that we define in the sequel. As
we discuss in the appendix, similar refinements can be carried out for partitions
restricted in a box.

1.1 Summary of results

1. Given a partition in any dimension, we have introduced two new attributes:
its intrinsic dimension (i.d.) - see definition 2.1 and its reduced dimension
(r.d.) - see definition 2.7.

2. These two attributes lead to two new triangles, the A and C-matrices (see
Eq. (2.4) and (2.11)) whose entries admit combinatorial interpretations.
We propose a further refinement in the form of two other triangles, the D
matrix(see Eq. (2.15)).

3. We show that the C/D triangles are the first in a series of transforms, the
end-point of which leads to a triangle F (see Eq. (2.20)). The n-th row
of this matrix has only [(n− 1)/2] entries (where [x] is the integral part of
x) and these entries determine the partitions of n in any dimension. This
constitutes the main result of this paper.

4. We see an intriguing relationship between the numbers of spanning rooted
forests on m vertices and α components and a family of entries in the F -
matrix. This is Proposition 2.16.

5. We conjecture the existence of two other triangles, the α- and the β-matrices
with integer entries.
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6. We prove a conjecture of Hanna on the existence of a triangle that deter-
mines all higher-dimensional partitions.

7. We propose a modification to an algorithm of Bratley and McKay that
enables us to directly compute the A and C matrices. We compute the first
25 rows of the F -matrix thereby obtaining partitions in all dimensions for
integers ≤ 25.

8. Tables 1-8 provide the numerical results that we have obtained.

2 Structures in higher-dimensional partitions

2.1 Ferrers diagrams and permutation symmetry

A Ferrers diagram represents the partition as a (d+1)-dimensional arrangement
of nodes. For instance, the following one-dimensional partition of 4

{(
0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
0
2

)}
or ( 0 1 0 0

0 0 1 2 ) in compressed form ,

is represented by the following two-dimensional Ferrers diagram or as a Young
diagram where we replace the nodes by squares(more generally, hypercubes).

x2

x1

or

There is a natural action of Sd+1 on the (d+1)-dimensional Ferrers diagram –
this corresponds to permuting the (d+1) coordinates. For one-dimensional parti-
tions, this is referred to as conjugation. The symmetry group of a d-dimensional
partition is the largest sub-group of Sd+1 that acts trivially on the corresponding
Ferrers diagram.

2.2 The intrinsic dimension

Typically, one is interested in the asymptotic behavior of pd(n) for large number
of nodes n while keeping the dimension d fixed. However, one may ask about what
happens to pd(n) if we keep the number of nodes. i.e., n, fixed and keep increasing
d. It is easy to see that when d > n + 1, all the nodes of the Ferrers diagram
necessarily lie in some r-dimensional hyperplane with r < d. This motivates the
following definition (implicitly present in Atkin et. al. [1]).

Definition 2.1 Given a Ferrers diagram, let it be contained in a r-dimensional
hyperplane but not in any (r − 1)-dimensional hyperplane. The intrinsic dimen-
sion(i.d.) of the Ferrers diagram is defined to be r.
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Note that such a r-dimensional hyperplane is given by setting (d + 1 − r)
coordinates to zero. Any permutation of the (d + 1 − r) coordinates (that are
set to zero to obtain the hyperplane containing the nodes) does not change the
Ferrers diagram. It is thus easy to see that the symmetry of a Ferrers diagram in
(d+ 1)-dimensions of i.d. r is necessarily of the form H × Sd+1−r where H ⊆ Sr.
We shall (somewhat loosely) call H , the symmetry of the Ferrers diagram.

Let two d-dimensional partitions be equivalent if their Ferrers diagram are
related by an Sd+1 action. It is easy to see that all d-dimensional partitions
belonging to such an equivalence class have the same intrinsic dimension. Further,
given a d + 1-dimensional Ferrers diagram with symmetry H and i.d. r, the
number of Ferrers diagrams in its equivalence class is given by the order of the
coset Sd+1/(H × Sd+1−r) i.e.,

(d+ 1)!

(d+ 1− r)!× ord(H)
=

(
d+ 1

r

)
×

r!

ord(H)
.

Definition 2.2 A Ferrers diagram is said to be strict when its intrinsic dimen-
sion equals its dimension.

Given a d + 1-dimensional Ferrers diagram of i.d. r, it is useful to drop the
(d + 1 − r) dimensions that are orthogonal to the hyperplane containing the
nodes thus obtaining a strict FD. The symmetry of the strict Ferrers diagram is
now H ⊆ Sr.

Definition 2.3 A generalized Ferrers diagram (gFD) refers to the equivalence
class of strict Ferrers diagrams obtained by the action of Sr on a given strict
Ferrers diagram of i.d. r.

The number of strict FD’s in a gFD of i.d. r and symmetry group H is r!
ord(H)

.

Definition 2.4 The weight of a gFD of i.d. r and symmetry H ⊆ Sr is defined
to be r!

ord(H)
.

Since H ⊆ Sr, Lagrange’s theorem implies that the weight, r!
ord(H)

, is a positive
non-zero integer. Note that the weight is independent of the dimension of the
Ferrers diagram and is the same for all elements in an equivalence class. Thus,
to an equivalence class of a given Ferrers diagram, we associate three numbers:
the number of nodes n, the i.d. r, and the weight, w. An important observation
is that there exist no Ferrers diagram with n nodes and i.d. r ≥ n – this follows
from noting that one needs at least r + 1 nodes to create a Ferrers diagram of
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i.d. r. We see that the number of d-dimensional partitions is thus given by

pd(n) =
n−1∑

r=0

(
d+ 1

r

) ∑

λ⊢(n,r)

1 (2.1)

=

n−1∑

r=0

(
d+ 1

r

) ∑

[λ]⊢(n,r)

w(λ) (2.2)

:=

n−1∑

r=0

(
d+ 1

r

)
an,r , (2.3)

where the second line defines an,r as the sum over all strict FD’s with n nodes and
i.d. r. In the second line, the sum over [λ] indicates that we sum over equivalence
classes of strict Ferrers diagrams(gFD). Note that an,r has no dependence on d
and counts the numbers of strict Ferrers diagrams with n nodes and i.d. r. We
shall provide a second, and more useful, combinatorial description of an,r later.

2.3 The first transform

We extend anr into a lower-triangular matrix, that we denote by A, by setting
anr = 0 when r ≥ n. Thus, we obtain the matrix A =

(
anr
)
for n = 1, 2, . . . and

r = 0, 1, 2, . . .. With this definition, we an rewrite the above equation as

pd(n) =

d+1∑

r=0

(
d+ 1

r

)
anr . (2.4)

To our knowledge, the above observation first appeared in a paper by Atkin et. al.
[1]. Thus the pd(n), for a fixed value of n, corresponds to the Binomial Transform
of the n-th row of the matrix A. It is easy to see that an,0 = δn,1. The lower
triangular nature of A implies that only (n− 1) numbers, (an,1, an,2, . . . , an,(n−1))
determine pd(n) for any d. The matrix A appears in the OEIS as sequence number
A119271 [9]. The inverse Binomial transform is given by

anr =

r−1∑

d=0

(−1)d+r+1

(
r

d+ 1

)
pd(n) for n ≥ r + 1 , (2.5)

with p0(n) ≡ 1. Of course, anr = 0 when n < r+1 reflecting the lower-triangular
nature of the matrix. Suppose we know all partitions of nmax up to dmax. This
determines the first nmax rows and (dmax + 1) columns of the matrix A.

For low values of n, we can explicitly compute the entries in the A-matrix by
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listing the gFD’s and working out their weights as we do below.

pd(2) =
(
d+1
1

)
w
( )

=
(
d+1
1

)
(2.6)

pd(3) =
(
d+1
1

)
w
( )

+
(
d+1
2

)
w

( )
=
(
d+1
1

)
+
(
d+1
2

)
. (2.7)

pd(4) =
(
d+1
1

)
w
( )

+
(
d+1
2

)
w

( )
+
(
d+1
2

)
w

( )
+
(
d+1
3

)
w

( )

=
(
d+1
1

)
+ 3
(
d+1
2

)
+
(
d+1
3

)
. (2.8)

The first few rows of the A-matrix are as follows (see also [10])

A =




1
0 1
0 1 1
0 1 3 1
0 1 5 6 1
0 1 9 18 10 1
0 1 13 44 49 15 1
0 1 20 97 172 110 21 1
0 1 28 195 512 550 216 28 1
0 1 40 377 1370 2195 1486 385 36 1
0 1 54 694 3396 7603 7886 3514 638 45 1
0 1 75 1251 7968 23860 35115 24318 7484 999 55 1




.

Definition 2.5 Consider a pair of FD’s (λ, µ) such that µ ⊆ λ. Then, a skew
Ferrers diagram is the set of nodes λ \ µ.

One can think of the entries in the A-matrix as counting skew Ferrers diagrams
obtained by deleting the node at the origin (0, 0, . . . , 0)T that is contained in any
Ferrers diagram. Then, an,r is the number of strict FD’s of dimension r obtained
by adding (n− 1) nodes to the node at the origin. One sets a1,0 ≡ 1.

2.4 A combinatorial interpretation

We will now provide another combinatorial interpretation for the numbers anr
that make up the lower-triangular matrix A. We begin with the observation that
ar+1,r = 1 – this follows because there is a unique FD of i.d. r containing r + 1
nodes. The coordinates are given in the following r × (r + 1) matrix1

µr :=

(
0
0
...
0

1
0
...
0

0
1
...
0

. . .

0
0
...
1

)
. (2.9)

1Recall that each column is the coordinate of a node and thus there are (r+1) columns and
r rows.
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This FD has maximal symmetry Sr and weight 1.

Remark: Every FD with intrinsic dimension r necessarily contains µr. This
implies that an FD with n nodes and i.d. r can be obtained by adding m =
n − r − 1 additional nodes to µr. This leads to the following combinatorial
interpretation for am+r+1,r.

Proposition 2.6 am+r+1,r is the number of strict Ferrers diagrams with i.d. r
obtained by adding m nodes to the standard Ferrers diagram, µr.

Let λ be an FD that contributes to an,r. Its symmetry group H ⊆ Sr – this
implies that there will be r!/odd(H) = wt(λ) distinct FD’s obtained from it by
the action of Sr. It is easy to see that the process of adding m nodes to µr will
generate the same number of FD’s that belong to the equivalence class (gFD) [λ].

So far we have completely determined the first 25 rows of the A-matrix (see
Table 2). The entries have been determined by combining several methods: (i)
taking the inverse Binomial transform of known numbers for higher-dimensional
partitions, (ii) by direct enumeration using the combinatorial interpretation and
(iii) by determining another triangle, the C-matrix, that we introduce later. It is
important to note that the numbers, when available, from the different methods
agree. Further, none of the conjectural formulae are used in determining the
entries.

2.5 The second transform

Definition 2.7 Let λ be an FD of i.d. r and consider the skew FD λ \ µr. Let
the nodes of the skew FD be contained in a x-dimensional hyperplane (obtained by
setting r− x coordinates to zero) but not in any (x− 1)-dimensional hyperplane.
The reduced dimension (r.d.) of the FD λ is said to be x.

Clearly the reduced dimension of an FD is always less than or equal to its intrinsic
dimension. The symmetry of a FD with i.d. r and r.d. x is necessarily of the
form H × Sr−x ⊂ Sr. Then, one has

am+r+1,r =

r∑

x=0

(
r

x

)
cm,x , (2.10)

where the binomial term
(
r
x

)
takes into account the situation with maximal sym-

metry and c0,0 ≡ 1 and cm,0 = c0,m ≡ 0 for m > 0.

1. The coefficients cm,x are clearly independent of the the i.d. (r) as they are
related to the skew FD’s with m nodes and r.d. x.

2. We say that a skew FD is strict if its dimension and r.d. are the same.
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3. Let us denote the equivalence class of strict skew Ferrers diagrams, λ \ µx,
under the Sx action as an sFD. All skew FD’s in an sFD will have identical
reduced and intrinsic dimensions. Thus, given such a skew Ferrers diagram
with symmetry H ⊆ Sx, its equivalence class will contain x!

ord(H)
distinct

skew Ferrrers diagrams.

4. The cm,x are non-negative integers since they count the number of strict
skew FD’s with m nodes and r.d. x.

5. For fixed m, one can see that the maximum value of r.d. with m nodes is
2m. This enables us to convert the above equation into a second binomial
transform

am+r+1,r =
2m∑

x=0

(
r

x

)
cm,x , (2.11)

where we extend cm,x into a triangle, C = (cm,x), by setting cm,x = 0 for
x > 2m. We usually do not write out the zeroth row and column of the
C-matrix.

6. For fixed m, we can consider am+r+1,r as a function of r. The function
gm(r) := 2m!! am+r+1,r is a polynomial of degree 2m, conjecturally with
integer coefficients, in the variable r and gm(0) = 0 for m > 0.

7. We have directly determined eleven rows (m ∈ [0, 10]) of the C-matrix (see
Table 3). The first few rows of the C-matrix are:

C =




1
0 1 1
0 1 3 6 3
0 1 7 20 46 45 15
0 1 11 61 198 480 645 420 105
0 1 18 138 706 2508 6441 10395 9660 4725 945




.

It is easy to see that there is only one sFD with m nodes and r.d. 2m. In the
picture below, the m nodes of the sFD are indicated by open circles. The filled
circles indicate the nodes of µ2m that must be added to the sFD to obtain an FD.

x2

x1

◦ ×

x4

x3

◦ × · · · ×

x2m

x2m−1

◦
(2.12)
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The symmetry of the skew FD is (Sm ⋉ Z
m
2 ) and thus cm,2m is the dimension of

the coset i.e.,

cm,2m =
dim(S2m)

ord(Sm ⋉ Zm
2 ))

=
2m!

2m!!
= (2m− 1)!! .

Definition 2.8 A skew FD of i.d. r is said to be reducible if a proper subset of
its nodes are contained in a d-dimensional hyperplane (obtained by setting r − d
coordinates to zero) with d < r and the nodes not in the proper subset lie in
the orthogonal (r − d)-dimensional hyperplane (obtained by setting the other d
coordinates to zero).

Definition 2.9 We say that an FD, λ, of i.d. r is reducible if the skew FD,
λ \ µr is reducible.

Thus a reducible sFD has multiple components consisting of non-intersecting
proper subsets of its nodes lying in mutually orthogonal hyperplanes. Thus the
sFD given in Eq. (2.12) is reducible with m components each of which is isomor-
phic to the irreducible sFD σ2 defined as follows:

σ2 ≡ ◦ = ( 1
1 ) . (2.13)

We can thus write the sFD (2.12) as σ2 × σ2 × · · · × σ2 = σm
2 .

Similarly, one has two distinct sFD’s with x = 2m− 1 and the two sFD’s are
reducible containing σn

2 (for some suitable value of n) as one of the components
and the other component are the following two irreducible sFD’s that contribute
to c1,1 and c2,3 respectively.

σ1 ≡

(a)

◦
σ3 ≡ =

(
1 0
1 1
0 1

)
,◦

◦

(b)

(2.14)

where we have called the second sFD σ3 – it has two nodes and has r.d. 3. In other
words, c2m,2m−1 has contributions from two sFD’s – one of the form σ

(m−1)
2 × σ1

and the other of the form σ
(m−2)
2 × σ3. Studying the symmetries of these two

sFD’s with r.d. (2m− 1), one obtains

cm,2m−1 =
(2m− 1)!

(2m− 2)!!
+

(2m− 1)!

2(2m− 4)!!
= m×

(2m− 1)!

(2m− 2)!!
.

Clearly, such a diagrammatic method will enable one to write further formulae
(we will provide a few more in an appendix) for cm,x. However, it can get tricky to
find all possible diagrams. Keeping this in mind, we make the following definition.
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Definition 2.10 The density, ρ, of a sFD with m nodes and r.d. x is ρ ≡ m/x.

The density of a sFD is always greater than or equal to 1
2
since cm,x = 0 when

x > 2m.

Proposition 2.11 When its density is in the range (1
2
, 2
3
), an sFD with m nodes

and r.d. x is necessarily reducible and one of its components is the sFD, (σ2)
n,

for some n ≥ nmin ≡ 2x− 3m.

The proof follows from Proposition 2.15 that we prove later. When ρ < 2/3, the
proposition implies it is impossible to construct an sFD that does not contain σ2

as a component. The first new sFD, σ3, appears at ρ = 2
3
. The minimum value

of n is fixed by the condition that the density of the sFD goes past or equals 2
3

after deleting the nodes that appear in (σ2)
n i.e., it is smallest value of n such

that
m− n

x− 2n
≥

2

3
=⇒ n ≥ 2x− 3m .

2.6 The third transform

Proposition 2.11 suggests that in counting the skew FD’s that contribute to cm,x,
we can remove components isomorphic to σ2 in reducible skew FD’s and only
count skew FD’s that do not contain any σ2 components. This motivates the
next transform where we introduce a new triangle D = (dm,x).

cm,x =
m∑

y=ymin

x!

(2y)!!(x− 2y)!
dm−y,x−2y , (2.15)

with d0,0 = 1, dm,0 = d0,m = 0 for m > 0 and ymin = 2x − 3m. The pre-factor
in the transform is determined by the order of the symmetry of σy

2 which is
2yy! = (2y)!!.

1. dm,x counts the number of skew FD’s withm nodes and r.d. x not containing
σ2 as its components. Thus it is positive definite.

2. Proposition 2.11 implies that dm,x = 0 when m/x > 2/3. This is stronger
than the condition m/x > 1/2 implied by the property of the C-matrix.

3. It is useful to rewrite the transform as follows:

cm,2m−z =
2z∑

y=⌈z/2⌉

(2m− z)!

(2m− 2y)!!(2y − z)!
dy,2y−z . (2.16)

In this form, one sees that completely determining row z of the D-matrix
leads to a nice compact formula for cm,2m−z . The D-matrix clearly contains
fewer terms than the C-matrix since dm,x = 0 when ρ < 2/3.
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4. To illustrate the transform, consider cm,2m−1 which we have already com-
puted. One sees that

c2m,2m−1 =

2∑

y=1

(2m− 1)!

(2m− 2y)!!(2y − 1)!
dy,2y−1

=
(2m− 1)!

(2m− 2)!!
d1,1 +

(2m− 1)!

3!(2m− 4)!!
d2,3 . (2.17)

It is easy to see that d1,1 = 1 as there is precisely one sFD ((a) in Eq. (2.14))
and d2,3 = 3 as there are three inequivalent diagrams under the action of
S3 on the sFD, σ3.

5. When ρ = 2/3, there is only one sFD, σm
3 , that contributes to d2m,3m. This

implies that

d2m,3m =
3m!

m! 2m
, m = 1, 2, 3, . . . (2.18)

D =




1
0 1
0 1 3 3
0 1 7 17 28
0 1 11 58 156 295 90
0 1 18 135 640 1913 3786 2310




2.7 The final transform

The main advantage of the D-matrix is that it contains fewer terms than the
C-matrix. Using it, we have arrived at formulae for cm,2m−z for z = 2, 3, 4, 5
analogous to the one in Eq. (2.17) that can be obtained, in principle, from the
table that gives the D-matrix. Can we do better? We saw that as the density
increased from 1/2 to 2/3, only one irreducible diagram appears. At ρ = 3

4
, two

new sFD’s appear. They are

σ4a =

(
1
1
0
0

0
1
1
0

0
0
1
1

)
, σ4b =

(
1
1
0
0

1
0
1
0

1
0
0
1

)
. (2.19)

In fact, one can define another transform that removes reducible components of
type σ3 from sFD;s that contribute to the D-matrix for ρ ∈ (2/3, 3/4). The next
proposition will enable to do this and a lot more by removing a whole family of
reducible components that necessarily appear when in sFD’s with ρ < 1.

Definition 2.12 Let D ≡ ∪rDr, where Dr denotes the set of strict Ferrers dia-
grams of dimension r consisting only of nodes of the form (1, 1, 0, . . . , 0)T or its
Sr images in addition to the nodes present in µr.
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We say, somewhat loosely, that a strict skew FD, σ of r.d. x is in D if the FD
µx ∪ σ ∈ D. One can show that σ2, σ3 and σ4a/b are the only irreducible strict
skew Ferrers diagrams at dimensions 2, 3 and 4 respectively that appear in D.

Let em,r denote the number of Ferrers diagrams in D obtained by adding m

nodes to µr. It is easy to see that em,x =

((x
2

)

m

)
as there are

(
x
2

)
possible nodes

from which we need to choose m nodes. We define a new transform that removes
reducible components that are in D.

am+r+1,r =

r∑

x=1

m∑

p=0

(
r

x

)
em−p,r−x fp+x+1, x

=
r∑

x=1

m∑

p=0

(
r

x

)((r−x
2

)

m− p

)
fp+x+1, x , (2.20)

where in the second line we use the explicit formula for em,x and f1,0 ≡ 1, fn,0 =
f1,n−1 = 0 for n > 1. In the first line, a typical term in the summation on the
right hand side consists of reducible strict FD’s with the component in D having
i.d. r − x and (m− p) nodes added to µr−x and the other component consisting
of an strict FD with no reducible component in D, i.d. and r.d. x and p nodes
added to µx – their number is counted by fp+x+1,x. The binomial factor

(
r
x

)
is the

number of ways one can choose x dimensions occupied by the FD’s contributing
to fp+x+1,x. The above formula defines a new triangle F = (fn,r). The entry
fr+m+1,r is the the number of strict FD’s of i.d. r obtained by adding m nodes
to µr and does not contain any reducible components that are in D. Such an FD
must necessarily have r.d. also equal to r, else it will necessarily have a reducible
component isomorphic to µr−x if its r.d. is x.

It is easy to see that fr+1,r = 0. The only contribution to ar+1,r is the unique
FD µr which is D. Similarly, fr+2,r = 0 when r > 1 as the only contribution to
ar+2,r is of the form σ1 × σr−1

2 . One also has f3,1 = 1 with σ1 being the unique
FD contributing to it. The next proposition shows the advantage of defining the
F -matrix.

Proposition 2.13 fm+r+1,r = 0 when r > m.

Proof: Let λ be an FD of i.d. r with m + r + 1 nodes that contributes to
fm+r+1,r. Consider the skew FD, λ \ µr – it has m nodes. It must be a strict
skew FD else it has a irreducible component isomorphic to µx for some x < r.
Thus, the proposition implies that there are no strict skew FD’s with density
ρ = m/r < 1.

We can also assume that the skew FD is irreducible – if it is reducible, it
must necessarily have at least one irreducible component with density < 1 and
we can focus on (proving the non-existence) such irreducible components. Our
goal is thus reduced to proving that there are no irreducible strict skew FD’s with
density < 1.

12



Definition 2.14 Let us call the nodes obtained by all permutations of the coor-
dinates of the node (1, 1, 0, . . . , 0)T as nodes of type 1. Similarly, call the nodes
obtained by permuting coordinates of (2, 0, . . . , 0)T as type 2. Nodes of type 3 are
nodes that are not of type 1 or 2.

Examples of type 3 nodes include (1, 1, 1, 0, . . . , 0)T and (3, 0, . . . , 0). Such nodes
cannot be added to the FD µr without including supporting nodes of type 1 and
2. The addition of nodes of type 3, when possible, never increase the r.d. of
an FD thus increasing the density. Thus, given a FD λ (of i.d. r and r.d. r)
containing type 3 nodes, we can form a new FD λ′ with the same r.d. but lower
density. Further, if λ \ µr is irreducible, λ

′ \ µr is also irreducible. The skew FD
λ′ \ µr thus consists of nodes of type 1 and type 2. If it consists of only nodes of
type 1, then λ′ ∈ D. Thus, we need to only consider irreducible strict skew FD’s
containing at least one node of type 2.

For the rest of the discussion, let λ′ be an FD such that λ′\µr is an irreducible
strict skew FD containing only nodes of type 1 and at least one node of type 2.
It is easy to see that removing of node of type 2 does not affect the irreducibility
of the skew FD. Further, it does not reduce the r.d. as the only way a type 2
node can reduce the r.d. of a skew FD is when it appears as a part of a reducible
component isomorphic to σ1. Thus, we can delete all type 2 nodes to obtain a
new FD λ′′ that is irreducible and contains only type 1 nodes. Again, it is easy
to see that ρ(λ′′) ≤ ρ(λ′). Further λ′′ ∈ D. Thus, one has the sequence

ρ(λ′′) ≤ ρ(λ′) ≤ ρ(λ) . (2.21)

Let λ′ \ µr have (r − 1)-nodes so that its density is just below one and contain
z nodes of type 2. Then, λ′′ \ µr will have (r − 1− z) nodes and be irreducible.
The next proposition shows that such a λ′′ does not exist. Hence, there exists no
FD λ′′ and hence no FD λ′ with density < 1. �

Proposition 2.15 The only strict FD’s in D of i.d. r such that the skew FD
λ \ µr is strict and irreducible with density less than 1 necessarily have ρ = r−1

r
.

Proof: Let us assume that λ \ µr has (r − 2) nodes and is irreducible. Let us
try to construct such a strict skew FD and we will see that there are not enough
nodes. Start by putting the first type 1 node in the x1x2 plane. The irreducibility
condition implies that the second node must be either in the x1xα or x2xα plane
where α is not 1 or 2. The key point is that the additional node must contain
one of the used up coordinates, x1 or x2 in this case and a new coordinate so that
irreducibility is maintained. Clearly, such a process needs (r−1) nodes to get an
irreducible skew FD λ \ µr with r.d. r. This is impossible. Hence, there exists
no irreducible skew FD λ with density r−2

r
. it is easy to extend the argument to

exclude even lower densities. Thus, the only possibility that is not ruled out is

13



to have strict skew FD’s with (r− 1) nodes with r.d. r – these have density r−1
r
.

�

Remark: σ2, σ3 and σ4a/b are the only irreducible strict skew FD’s with r.d.
2, 3, 4 respectively.

2.7.1 Properties of the F -matrix

1. The most important property is the one implied by Proposition 2.13 which
says that the F matrix is lower triangular with fn,r = 0 when r < [(n−1)/2].
For fixed value of n, the F -matrix has far fewer terms (roughly half) than
the corresponding row in the A-matrix. We have determined the first 25
rows of the F -matrix (see Table 4).

2. It turns out that there are other transforms that also lead to matrices with
fewer entries like the F -matrix. See for instance, the box transform that we
consider in the appendix. However, their relationship to A is not as simple
as Eq. (2.20). The simplicity of Eq. (2.20) is what picks out the F -matrix
as special.

3. We can also use this idea to refine the counting problem associated with
the C-matrix. Let CD = (cDm,x) denote the contribution to the C-matrix
that arise from FD’s that are in D. Since the set Dr is invariant under Sr,
it is easy to see that CD is given by the transform

((x
2

)

m

)
=

2m∑

x=0

(
r

x

)
cDm,x . (2.22)

Then, we can define C̃ = (c̃m,x) by removing contributions that arise from
reducible parts that are isomorphic to contributions to CD. Then, one has

cm,x = c̃m,x + cDm,x +

x−1∑

y=1

m−1∑

p=1

(
x

y

)
cDm−p,x−y c̃p,y . (2.23)

Given a strict skew FD that contributes to c̃m,x, it is easy to see that there
is a unique FD obtained by adding nodes in µx to the skew FD. Further,
this FD must contribute to the entry fm+x+1,x in F . Since the converse also
holds i.e, given a strict FD of i.d. x that contributes to the F -matrix, the
skew FD obtained by deleting nodes in µx gives a skew FD that contributes
to C̃. Thus, one has

c̃m,x = fm+x+1,x . (2.24)

We observe numerically that f2m+1,m = (m + 1)m−2 for m = 0, 1, 2, . . . , 12.
We will show that it holds for all m. These numbers appear in the sequence
numbered A000272 in the OEIS [9]. The next proposition presents a further
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refinement. We need a few definitions which we briefly state. A graph, consisting
of vertices and undirected edges, with no cycles is called an acyclic graph or a
forest. A forest may consist of disconnected components and is called a tree if it
has only one connected component. A rooted tree is one with a marked/special
vertex (called the root) while a rooted forest is one in which every component
is rooted. A spanning forest is any subgraph that is both a forest (contains no
cycles) and spanning (includes every vertex) [11, 12].

Proposition 2.16 Let α be the number of nodes of type 2 contained in an FD
that contributes to f2m+1,m. Let f2m+1,m(α) denote the total number of such Fer-
rers diagrams. Then, f2m+1,m(α) is the number of spanning rooted forests on m
vertices and α components. It follows from a result due to Cayley on the numbers
of spanning rooted forests that [13]

f2m+1,m(α) =

(
m− 1

α− 1

)
mm−α . (2.25)

Proof: We will provide a bijective map relating FD’s that contribute to f2m+1,m(α)
to spanning rooted forests on m vertices and α components. There is a natural
action of Sm on both sides – on the FD side, it corresponds to permuting the
m coordinates and on the rooted forest side, it corresponds to relabeling the m
nodes. We identify these two groups.

Given a skew FD that contributes to f2m+1,m(α), we can construct a graph
with m vertices labeled from (1, . . . , m) as follows. The type 2 nodes become
root vertices carrying the label of the non-vanishing coordinate. Thus if a type
2 node has non-vanishing j-th coordinate, assign it the label j. Add (m − α)
vertices and label them with the unused labels. Every type 1 vertex has two
non-vanishing coordinates, say the j-th and k-th coordinates. Assign an edge
that connects vertex j to vertex k. Repeat for all type 1 nodes. In this process,
there are as many components as there are type 2 nodes. Thus the graph is a
spanning rooted forest on m vertices and α components. The following example
illustrates the map for m = 4 and α = 1. The root vertex is shown by a filled
circle.

(
2 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

)
←→

1

◦ 2 ◦ 3

◦ 4

To prove the converse statement, given a spanning rooted forest with m
vertices and α components, we need to construct an FD that contributes to
f2m+1,m(α). This is easy to do . Pick the root vertices and assign them to type
2-nodes whose non-vanishing coordinate decided by the label of the vertex. Next
assign to all edges a type 1 node that has non-vanishing coordinates at precisely
the locations decided by the labels of the vertices it connects. We thus recover
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the skew FD. �

An example: We know that f5,2 = 3. The three skew FD’s are:

σ2
1 = ( 2 0

0 2 ) ; ( 2 1
0 1 ) ; ( 1 0

1 2 ) ,

where the nodes are listed by the ordering: (a1, a2) > (b1, b2) if a1 > b1 or a1 = b1
and a2 > b2. Note that there are two equivalence classes of skew FD’s. Under S2

action as the second and third skew FD’s get mapped to each other.

1 2 ; 1

◦
2 ; 1 2

◦ .

Remark: Given a skew FD, it is possible to uniquely label the nodes by ordering
them by a choice of ordering as illustrated above.

3 Other triangles

3.1 New triangles

So far, we have considered transforms that lead to new triangles (A/C/D/F ) all
of which have positive definite entries since we they all count numbers of skew
Ferrers diagrams. We will now provide two other transforms that are partly
conjectural and lead to triangles that are not positive definite – we denote the
entries with Greek letters to remind us of this. We begin by expanding the entries
in the A-matrix as follows. Let

am+r+1,r =

2m∑

z=0

αm,z
r2m−z

2m!!
, (3.1)

with αm,0 = 1 for m ≥ 0 and αm,2m = 0 for m > 0. The above transform provides
the entries for another triangular matrix, αm,z, that we call the α-triangle by
setting αm,z = 0 for z > 2m. One can explicitly relate the αm,z to the entries in
the C-matrix using Stirling numbers of the first kind. Thus the above formula is
not conjectural. However the following is conjectural:

Conjecture 3.1 The entries of the α-triangle, i.e., αm,z, are all integers.

This is true for the first ten rows and appears to hold for the first eleven rows
which have been determined using conjectures.

The second conjecture introduces a new triangle, that we call the β-triangle,
and its associated transform. It has been determined experimentally and verified
to hold to the extent possible.
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Conjecture 3.2 The α-matrix admits the following decomposition.

αm,z =

⌊z/2⌋∑

y=0

(
m

z − y

)
βz,y , (3.2)

with β0,0 = 1 and β2y,y = 0 for all y > 0.

By setting βz,y = 0 for y > ⌊z/2⌋, this becomes the binomial transform

αm,z =
m∑

y=0

(
m

z − y

)
βz,y . (3.3)

The inverse transform is

βz,y =

z−y∑

m=0

(−1)m+z−y

(
z − y

m

)
αm,z . (3.4)

We now state a conjecture of Meeussen that fixes one of the coefficients.

Conjecture 3.3 (Meeussen)

βn,0 = Hn(
1
2
) ,

where Hn(x) is the n-th Hermite polynomial.

Recall that the α-matrix has 2m non-zero entries in the m-th row. The β-matrix
has fewer terms, roughly half the entries in the α-matrix. We were able to
determine eleven rows of the α and C-matrices using the β-matrix of which 10
were verified through other means. This was our main motivation in searching
for and find the combinatorial problem that eventually lead to the F -matrix.

3.2 The B-triangle

We now construct another lower triangular matrix B = (bn,r) with n = 1, 2, . . .
and r = 0, 1, 2, . . . and bn,0 = 1.

pd(n) =

n−1∑

r=0

(
d

r

)
bn,r = 1 +

n−1∑

r=1

(
d

r

)
bn,r . (3.5)

The matrix B appear in the OEIS as sequence number A096806. Using Pascal’s
identity (

d+ 1

r

)
=

(
d

r

)
+

(
d

r − 1

)
, (3.6)

we can relate the matrix B to A. Thus, one has the relation

bn,r = an,r + an,r+1 . (3.7)

One can easily show that bn,n−1 = 1 using the above formula and known properties
of the matrix A. The first six rows of B have been determined explicitly, for
instance, in Andrews’ book on Partitions [2]. It is easy to check that the above
relation holds for all six rows.
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3.3 Hanna’s triangle

Conjecture 3.4 (Hanna) There exists a lower-triangular matrix T = (τij) (with
i, j = 0, 1, 2, . . .) with integral entries and ones on its diagonal such that

pd(n) =

n∑

j=0

(T d)n,j .

In other words, the sum of the the n-th row of the d-th power of T give the
d-dimensional partition of n. This matrix appears in the OEIS as sequence
A096651. Since pd(0) = 1, we can set τ0,0 = 1 and τj,0 = 0 for j > 0. For
the rest of the discussion, we will consider n > 0 and can delete the zeroth row
and column of the T -matrix as they no longer play a role. We shall however use
the same symbol T to denote the modified matrix as it is easy to reconstruct the
original T matrix by adding back the zeroth row and column. We shall prove the
existence as well as the integrality of the matrix T by constructing an explicit
map that relates T to the matrix B (and hence A) that we considered in the
previous section.
Proof: For n ≥ 1, the Hanna conjecture can written as

pd(n) =

n∑

j=1

(T d)n,j =
∑

x1···xd

τn,x1
τx1,x2

· · · τxd−1,xd
, (3.8)

where n ≥ x1 ≥ x2 ≥ · · · ≥ xd ≥ 1. It obviously holds for n = 1 since
τ11 = 1. Using the fact that T has ones in its diagonal, we can simplify the above
expression to

pd(n) = 1 +
n−1∑

r=1

(
d

r

) ∑

x1···xr

τn,x1
τx1,x2

· · · τxr−1,xr
. (3.9)

with sum now running over all sequences of r positive non-zero integers (x1, · · · , xr)
such that x0 ≡ n > x1 > x2 > · · · > xr ≥ 1. The combinatorial factor expresses
the number of ways in which diagonal elements are chosen. Comparing the above
equation with Eq. (3.5) implies the (potential) identity for n > 1 and r ≥ 1.

∑

x1···xr

τn,x1
τx1,x2

· · · τxr−1,xr
= bn,r , (3.10)

with n > x1 > x2 > · · · > xr ≥ 1. Let us assume that this relation holds for
n < m) (for some m > 1) and that we have determined (m−1) rows of T . Then,
we can rewrite the above equation as

∑

1≤x<m

τm,xbx,(r−1) = bm,r for m > r ≥ 1 . (3.11)
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The above (m− 1) equations are linear equations in (m− 1) unknowns:
(τm,1, . . . , τm,m−1) – these are the undetermined entries in the m-th row of T .
Hence, they have a solution if the matrix (constructed using bx,(r−1)) is invertible.
The matrix is upper triangular with ones in its diagonal. Hence it is has deter-
minant one and hence is invertible. This enables us to recursively determine all
the entries in the matrix T . This proves the existence of T .

We shall inductively prove the integrality of the matrix T using more explicit
details of Eq. (3.11). We begin with the equation for r = m− 1 and it gives

τm,m−1bm−1,m−2 = bm,(m−1) =⇒ τm,m−1 = 1 , (3.12)

where we have used bm,m−1 = 1 for m ≥ 1. Next consider, r = m − 2. This
equation gives τm,m−2 + τm,m−1bm−1,m−3 = bm,m−2 which gives

τm,m−2 = bm,m−2 − τm,m−1bm−1,m−3 , (3.13)

where we have used the fact that τm,m−1 has been solved for and shown to be
integral in the previous step. Note that this implies that τm,m−2 is integral.
Proceeding in this manner from r = (m− 1) to r = 1, we thus determine all the
unknowns. A typical equation will take the form (reflecting the triangular nature
of the equations)

τm,m−r = bm,m−r −
m−1∑

x=m−r+1

τm,xbx,m−r , (3.14)

for r = 1, 2, . . . , (m− 1). We assume that τm,m−r′ is integral for all r
′ < r. Thus

the right hand side is integral as it only contains integral terms. Hence τm,m−r is
integral. This concludes the proof of integrality of the matrix T .

�

We now state an unproven conjecture of Hanna and Meeussen.

Conjecture 3.5 (Hanna-Meeussen) m! τm+r+1,m is a polynomial of degree m
in r with integral polynomial coefficients.

It is easy to show that τm+r+1,m is a polynomial of degree (2m−1) in r using the
properties of the A-matrix. However, the above conjecture is stronger and seems
to consistent with known data for m = 0, 1, . . . , 11.

4 Practical Considerations

This section provides details on the exact enumeration of higher-dimensional
partitions as well as the triangles defined in this paper. With access to high-
performance computing getting easier in recent times, this is indeed an additional
computational aspect that can and must be added to the theoretical discussion
of the previous section. We will first discuss the algorithms that we used and
then discuss exact enumerations as we carried out.
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4.1 Algorithms for higher-dimensional partitions

There are two algorithms in the literature for computing higher-dimensional par-
titions. The first one is due to Bratley and McKay (the BM algorithm) [7] and
the second one is due to Knuth [8] – both are more than 40 years old reflecting
the lack of progress in this area. Both are highly recursive and provide distinct
ways of exactly enumerating higher dimensional partitions.

The BM algorithm

The partitions in any fixed dimension, say d, form a tree which we call the
partition tree in (d+1)-dimensions2 and denote by the symbol Td+1. Every node
of the tree is the Ferrers diagram associated with a partition. The unique Ferrers
diagram containing one point is the root node of the tree. New partitions can be
formed by adding or deleting a point from the Ferrers diagram3. Add a link to
partitions connected this way. The depth of the tree is the number of points in
the partition.

The BM algorithm recursively traverses the tree up to some fixed depth, say
n, such that each node is visited precisely once. The heart of the algorithm is
the routine called part that takes three arguments and is recursively called in the
algorithm. Every time a node is visited, the partition is stored in an array called
current and presented to user. If one is interested in only counting the number
of partitions of an integer in a given dimension, if the current partition has m
points, increment a suitable counter, call it pd(m), by one. At the end of the
program, the counter thus contains the number of partitions of all integers less
than or equal to the depth of the traversed tree.

The Knuth algorithm

Let Sm = N
m denote the set of points in the totally positive orthant in a hyper

cubic lattice. Let dm(k) denote the number of topological sequences with index k
(see [6, 8] for definitions). Then a theorem due to Knuth [8] relates the numbers
of topological sequences to numbers of partitions. To be precise, one has

pm(n) =
n∑

k=0

dm(k)p1(n− k) . (4.1)

Since one-dimensional partitions are easily enumerated from the generating func-
tion, it is simple to generate pm(n) given dm(k) for all k ≤ n. Knuth provided
an algorithm to generate and count all topological sequences – he illustrated this

2Recall that the Ferrers diagram for a d-dimensional partition is a set of points in d + 1
dimensions.

3To avoid confusion, in this section alone, we shall refer to nodes of a partition as points in
the Ferrers diagram. This is to avoid confusion with the node of the tree.
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method by generating numbers for the numbers of solid partitions for integers
≤ 28. Recently, a parallelized version of this algorithm was used by the author
and other collaborators to enumerate solid partitions of integers ≤ 68 [6].

Remark: An important aspect of the BM algorithm is that its memory usage
is of the order of nd bytes, where d is the dimension and n is the maximum
depth. This is vastly superior to the Knuth algorithm, where a similar problem
needs memory of the order of nd−1 bytes. However, when memory isn’t an issue,
our implementation of the Knuth algorithm typically takes less time than our
implementation of the Bratley-McKay algorithm.

The modified BM algorithm

We begin with the observation that a suitably chosen sub-tree of the partition tree
in r-dimensions, Tr generates all partitions that contribute to the r-th column of
the A-matrix i.e., an,r. The head node of this sub-tree is the Ferrers diagram µr

defined in Eq. (2.9). The rest of the tree is generated by adding points to µr.
Let us denote this sub-tree by Vr and the depth of this tree is clearly m where
m = n− r − 1.

The BM algorithm was designed to recursively traverse the partition tree vis-
iting each node precisely once. The starting point of the algorithm is the root
node whose Ferrers diagram consists of one point. Our idea is to change the ini-
tial configuration in the BM algorithm to the Ferrers diagram, µr and then call
the recursive routine part with suitably chosen arguments4. For this modification
to work correctly, the program should traverse the sub-tree Vr visiting each node
precisely once to the chosen depth. This turned out to be easier as we exper-
imentally observed that the sub-tree Vr appeared naturally in the original BM
algorithm for low values of r. We then checked that the modified BM algorithm
correctly generated entries in the A-matrix for r ≤ 10. However, we have not
rigorously proved that this is indeed the case.

Thus, once we have the modified BM algorithm correctly traversing the sub-
tree Vr, we can do the following:

• Count the number of nodes at each depth – this gives the number am+r+r,r.

• At each node, numerically compute the reduced dimension, x of the Ferrers
diagram. Then organizing the partitions by depth and r.d., we determine(
r
x

)
cm,x. The binomial pre factor is present since all x ≤ r will appear. This

also implies that the algorithm is inefficient computationally for obtaining
entries in the C-matrix.

4We have determined that the correct call is part
(
r + 2, 0,

(
r+1

2

))
. For comparison, the BM

algorithm begins with the call part(1, 0, 1). We thank Arun K. Jayaraman for implementing
the BM algorithm as well as working out this modification.
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A wish list of algorithms

As we just mentioned, the current algorithm to enumerate entries in the C-
matrix is computationally inefficient as we generate

(
r
x

)
partitions for each distinct

contribution to cm,x. It is also inefficient because we need to compute x for every
given partition. Can we create a more efficient algorithm? The problem is that
we do not have an elegant characterization of sFD’s with r.d. equal to x. This
is in contrast to what happened with the A-matrix. In that case, we could show
that any FD that has i.d. r necessarily contains the FD µr. By using it as
our initial configuration, we directly avoided configurations with smaller intrinsic
dimension. For the C-matrix, we cannot avoid configurations that have smaller
r.d. than the one of interest.

We do not have any algorithms for the α and β matrices as well as the D/F
matrices. So far these have been computed only indirectly after the A and C
matrices have been computed. However, Proposition 2.16 might be a good start-
ing point to coming up with an algorithm that directly enumerates entries in the
F -matrix.

4.2 Exact enumeration of higher-dimensional partitions

In order to evaluate higher-dimensional partitions for integers ≤ 25 and dimen-
sions ≤ 10, we chose to use the Knuth algorithm do carry out our computations.
There was no serious memory issues for dimensions ≤ 7 and the Knuth algorithm
worked well.

We needed to modify our computation when for dimensions 8, 9 and 10. The
reduction in memory was done by counting topological sequences that fit into a
box of size b. Then the memory requirement went down from nd−1 to bd−1. For
instance, when n = 20 and b = 10 (for d = 10), the memory usage went down by
a factor of 29 and enabled us to keep our memory requirements in the 4− 8 GB
range as constrained by the IITM supercluster. However, some configurations are
missed out as they do not fit into the box. Interestingly, one can show the error
due to missed configurations is independent of box size when the index lies in the
range [b + 1, 2b]. This makes it easy to estimate the errors by comparing with
known results at smaller values of b and then slowly increasing the value of b.
This method was used, for instance, to determine the ten-dimensional partitions
of 20 – this was carried out by using a box of size 11 with errors determined up
to k = b+9. This was one of the more difficult computations as it took a several
months of computer time to first estimate the errors and then carry out the final
run in the box. Table 1 gives the results obtained used the Knuth algorithm for
n ≤ 23 and d ≤ 10 and represent more than six months of computer time.
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4.3 Exact enumeration of the A and C triangles

The modified BM algorithm was used to generate the A and C matrix. The first
eight rows of the C-matrix have been completely determined. Two additional
rows were determined using additional information from theD-matrix. We obtain

cm,2m−2 =
(2m−2)!
6(2m−4)!!

(3m2 −m− 1)

cm,2m−3 =
(2m−3)!
6(2m−4)!!

(2m4 − 6m3 + 3m2 + 3m+ 4) (4.2)

cm,2m−4 =
(2m−4)!

180(2m−6)!!
(15m5 − 75m4 + 95m3 + 21m2 + 88m+ 42)

cm,2m−5 =
(2m−5)!

90(2m−6)!!
(258− 167m− 80m2 + 111m3 − 174m4 + 116m5 − 31m6 + 3m7)

This determines all entries in the A-matrix of the form am+r+1,r for m = 0, . . . 10
for all values of r. We have determined the remaining entries for an,r for n ≤ 23
by using the BM algorithm when necessary. The entry a23,11 was one of the
longest runs and took about 880 hours of CPU time. Tables 2 and 3 provide our
results.

Using the β and α matrices as well as the Meeussen conjecture, we have also
determined the 11-th row of the C-matrix. While none of these results were used
in finally determining the entries in the A-matrix, there doesn’t seem to be an
inconsistency. This is only to be viewed as evidence for various conjectures.

4.4 Extracting the elements of the other triangles

All other triangles were obtained by using known numbers for the A and C
matrices as we do not have an algorithm to enumerate them. The results for the
D and the β-matrix are presented in Tables 5 and 6 respectively.

An improved implementation of the Bratley-McKay algorithm was provided
to us recently by Prof. Bratley. This enabled us to enumerate a few more terms
– in particular, we were able to enumerate rows 24 and 25 up to and including
a25,12. This enabled us to completely determine 25 rows of the F -matrix. This
in turn determines all entries in 25 rows of the A-matrix and hence determines
partitions of 25 in any dimension. It also provides a check on the 23 rows of the
A-matrix which was independently determined. Table 4 provides our results.

5 Concluding Remarks

We have shown the existence of several structures that lead to simplifications
in the exact enumerations of higher-dimensional partitions. The combinatorial
interpretations that we have provided have enabled us to come up with an al-
gorithms to evaluate the A and C matrices. A few lines of code in Mathemat-
ica/Maple/Maxima/java can be used to store the A matrix and compute pd(n)
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for n ≤ 25 using the Binomial transform in real time. A working implementation
of this is provided on the webpage:

http://www.physics.iitm.ac.in/~suresh/partitions.html .

We will be adding these numbers to the OEIS as well as providing modules for
SAGE/Mathematica/Maxima.

It appears difficult to improve on our results which have determined all entries
for the n = 25 row of the A-matrix. In fact, we have determined most of the
entries for the n = 26 entry and hope to add this row in the future. Further
additions to the A-matrix will require new and efficient algorithms to directly
enumerate either the C or the F matrix. Another approach would be a näıve
parallelization of the BM algorithm. We hope to be able to eventually determine
partitions of integers less than 30 in any dimension in the future.
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among many other things. I thank Nicolas Destainville and Naveen Prabhakar
for useful comments on an earlier draft of the manuscript. Last but not the
least, I would like to thank the High Performance Computing Environment at
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A Ferrers Diagrams in a symmetric box

Let us consider Ferrers diagrams of i.d. r that fit in a symmetric box of size b
– points that lie within the box are such that all their coordinates take values
in (0, 1, . . . , b − 1). Let us call them restricted Ferrers Diagrams. It is easy to
see that under the action of Sr that permutes the r-axes, FD’s that fit in a box
get mapped to FD’s that also fit in the same box. Due to this property, we can
construct analogs of the various triangles A/C/D/F for restricted FD’s as well
even though the total number of restricted FD’s are finite. For instance, we have

prestd (n) =

d+1∑

r=0

(
d+ 1

r

)
arestn,r , (A.1)
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where prestd (n) is the number of FD’s with n-nodes that fit in a symmetric box of
size bd+1 and Arest =

(
arestn,r

)
. Similarly, we can define Crest. The analog of the A-

matrix for restricted partitions not necessarily in a symmetric box has appeared
in the work of Destainville et. al. [14].

Let us focus on partitions that fit into a symmetric box of size two and denote
the corresponding triangles in obvious notation:

Abox2 =
(
abox2n,r

)
, Cbox2 =

(
cbox2m,x

)
, Dbox2 =

(
dbox2m,x

)
and F box2 =

(
fbox2
n,r

)
.

We do not write out their relationships as they exactly mirror the corresponding
formulae for unrestricted partitions.

Definition A.1 Let B be the set of strict Ferrers diagrams that fit in a symmetric
box of size 2.

We say, somewhat loosely, that a strict skew FD, σ of r.d. x is in B if the FD
µx ∪ σ ∈ B. The only irreducible strict skew Ferrers diagrams at dimensions 2, 3
and 4 in B are σ2, σ3 and σ4a/b respectively. It is also easy to see that D ⊂ B.

The matrix Cbox2 =
(
cbox2m,x

)
(for m, x ≥ 0) has non-zero entries when m ∈

[0, 2x−x−1] with cbox20,0 = 1. Further, cbox20,x = cbox2x,0 = 0 for x > 0 and cbox22x−x−1,x = 1.
Thus, it is a triangle. The maximum value of m, for fixed x, is obtained by
considering the FD containing all nodes that are in the box. Such an FD has 2x

nodes in x-dimensions and thus the corresponding skew FD has 2x−x− 1 nodes
after deleting the nodes that lie in µx. Below, we provide the first few rows of
the matrix, Cbox2, for m ∈ [1, 6].

Cbox2 =




1

0 0 1

0 0 0 3 3

0 0 0 1 16 30 15

0 0 0 1 15 135 330 315 105

0 0 0 0 18 232 1581 4410 5880 3780 945

0 0 0 0 13 355 4000 23709 71078 116550 107100 51975 10395


 (A.2)

Extending the ideas that were used in defining the D/F triangles, we look
to count only those skew FD’s that do not contain skew FD’s in B are reducible
components. Let the matrix Ĉm,x denote this reduced C-matrix that counts strict
skew FD’s of r.d. x with m-nodes. Such FD’s necessarily contain at least one
node of type 2. Then one has the following relation that relates Ĉ to the C:

cm,x =

x∑

y=0

m∑

p=0

(
x

y

)
cbox2m−p,x−y ĉp,y , (A.3)

with ĉ0,0 ≡ 1 and ĉ0,x = 0 for x > 0. It is better to rewrite the above formula as
follows:

cm,x = ĉm,x + cbox2m,x +
x−1∑

y=1

m−1∑

p=1

(
x

y

)
cbox2m−p,x−y ĉp,y . (A.4)
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The first term in the right hand side of the above equation is the contribution
from skew FD’s that do no contain any reducible components in B, the second
term arise solely from terms that fit into a box of size 2. The last terms runs
over terms that contain reducible components in B but do not fit into a box of
size 2. The next proposition shows that Ĉ is a lower-triangular matrix with the
m-th row containing m non-zero terms.

Proposition A.2 ĉm,x = 0 when x > m or equivalently when the density ρ < 1.

Proof: Since D ⊂ B and all the irreducible strict skew FD’s with density less
than unity lie in D, the above Proposition follows from Proposition 2.13. �

Ĉ =




1
0 1
0 1 3
0 1 7 16
0 1 11 57 125
0 1 18 135 602 1296
0 1 26 293 1911 7980 16807
0 1 38 574 5242 31860 127977 262144
0 1 52 1089 12972 106505 619872 2411416 4782969


 (A.5)

We observe that ĉm,m = (m+ 1)m−1.
We can carry out a similar refinement for strict FD’s that contribute to the

A-triangle. One has

an,r = f̂n,r +

r−1∑

s=0

n−1∑

p=s+1

(
r

s

)
abox2n−p+1,r−s f̂p,s , (A.6)

with f̂1,0 ≡ 1 and f̂n,0 = 0 for n > 0. In order to interpret the first term, it is
better to think of an,r as the number of skew FD’s obtained after removing the
node at the origin of a strict FD. Then, the second term is the contribution from
such skew FD’s that do not contain reducible components that fit in a box of size
two. A second equivalent definition in terms of m is as follows:

am+r+1,r = f̂m+r+1,r + abox2m+r+1,r +
r−1∑

s=1

m∑

p=0

(
r

s

)
abox2m−p+r−s+1,r−s f̂p+s+1,s . (A.7)

It is easy to see there is a bijective map that relates skew FD’s that contribute
to ĉm,x and those that contribute to âm+x+1,x. The bijection follows by observing
that if σ is a strict skew FD with m nodes and r.d. x, there is a unique FD (with
i.d. and r.d. equal to x) obtained by adding the nodes in µx. Thus,

f̂m+x+1,x = ĉm,x .

It is easy to see using Proposition A.2 that for f̂n,r = 0 when r > n/2. We

define the matrix F̂ =
(
f̂n,r) for n = 1, 2, . . . and r = 0, 1, 2, . . .. Further, we

observe that f̂2x+1,x = cx,x = (x+1)x−1. Below we reproduce the first eleven rows
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of the F̂ -matrix. We reproduce the F -matrix alongside for comparison. The first
instance where they differ is when n = 8 and r = 3 – this is precisely where the
node (1, 1, 1)T that is not in D but present in B appears. As we go to higher

values of n, an entry in F̂ will be generically smaller than the corresponding entry
in F . Further, entries in both matrices will agree when the density is in the range
[1, 4/3) – this is because a node present in B but not in D first appears at density
4/3.

F̂ =




1
0
0 1
0 1
0 1 3
0 1 7
0 1 11 16
0 1 18 57
0 1 26 135 125
0 1 38 293 602
0 1 52 574 1911 1296




, F =




1
0
0 1
0 1
0 1 3
0 1 7
0 1 11 16
0 1 18 58
0 1 26 135 125
0 1 38 293 618
0 1 52 574 1927 1296




. (A.8)

The second row has only vanishing entries. That is because the only strict FD
with two nodes fits in a box of size two. So the first non-vanishing contribution
appears at n = 3, r = 1 if we ignore the n = 1, r = 0 term that is more less part
of the definition.

We can now revisit the problem of enumerating partitions of n in any dimen-
sion. We see that we need to enumerate the first n rows of the F̂ matrix and Abox2

in order to obtain row n of the A-matrix. However, from Eq. (A.6) we see that it
is sufficient to determine only the first [n/2] elements of row n as that completely

determines row n of F̂ . However, this reduction is accompanied by the need to
evaluate Abox2 which is yet another computation. Hence, we preferred to work
with the F -matrix. However, one should be open to using the F̂ -matrix if one
has an algorithm to directly compute it. Then, the additional effort to compute
Abox2 might be worth it.

A.1 The box transform

Define the following generating function for the A-matrix

A(q, t) =

∞∑

m=0

∞∑

r=0

am+r+1,r
qmtr

r!
, (A.9)

along with similar definitions for Abox2(q, t) and F̂ (q, t). Then, Eq. (A.6) implies
that the generating functions have a simple relation. One has

A(q, t) = Abox2(q, t)× F̂ (q, t) . (A.10)

It is due to this property that we refer to Eq. (A.9) as the box transform. Simi-
larly, one defines

C(q, t) =

∞∑

m=0

∞∑

r=0

cm,r
qmtr

r!
, (A.11)
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along with similar definitions for Cbox2(q, t) and Ĉ(q, t). Again, one has

C(q, t) = Cbox2(q, t)× Ĉ(q, t) . (A.12)

There is an obvious extension to our considerations by replacing the symmetric
box of size two by one of size b. Again, relations of the kind that we considered
between FD’s that fit in the box and those that don’t appear. For instance, one
has

A(q, t) = Aboxb(q, t)× F̂ (q, t) , (A.13)

where Â(q, t) is the generating function of FD’s that don’t fit into a box of size
b and do not have reducible parts that fit into the box.
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n d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 10
1 1 1 1 1 1 1 1 1 1 1
2 2 3 4 5 6 7 8 9 10 11
3 3 6 10 15 21 28 36 45 55 66
4 5 13 26 45 71 105 148 201 265 341
5 7 24 59 120 216 357 554 819 1165 1606
6 11 48 140 326 657 1197 2024 3231 4927 7238
7 15 86 307 835 1907 3857 7134 12321 20155 31548
8 22 160 684 2145 5507 12300 24796 46209 80920 134728
9 30 282 1464 5345 15522 38430 84625 170370 319555 565983
10 42 500 3122 13220 43352 118874 285784 621316 1247780 2350183
11 56 859 6500 32068 119140 362670 953430 2240838 4821737 9661465
12 77 1479 13426 76965 323946 1095430 3151332 8011584 18478640 39401792
13 101 2485 27248 181975 869476 3271751 10314257 28395213 70261505 159527302
14 135 4167 54804 425490 2308071 9673993 33457972 99845553 265266530 641733862
15 176 6879 108802 982615 6056581 28310881 107557792 348333411 994606250 2565774277
16 231 11297 214071 2245444 15724170 82033609 342732670 1205925033 3704360354 10198601886
17 297 18334 416849 5077090 40393693 235359901 1082509680 4142850423 13705110470 40305279454
18 385 29601 805124 11371250 102736274 668779076 3389190112 14122999548 50367905030 158376907546
19 490 47330 1541637 25235790 258790004 1882412994 10518508294 47772540002 183864216415 618742851276
20 627 75278 2930329 55536870 645968054 5249817573 32361863632 160336300356 666612686420 2403142436321
21 792 118794 5528733 121250185 1598460229 14510628853 98711666690 533909133114 2400146830007
22 1002 186475 10362312 262769080 3923114261 39762851345 298546248070 1763901729589 8581152930795
23 1255 290783 19295226 565502405 9554122089 108058883583 895425789360

Table 1: d ≤ 10-dimensional partitions of n ≤ 23 as determined by direct enumeration using Knuth’s algorithm. This
provides an independent cross-check of the entries in the first 11 columns of the A-matrix.
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n\r 0 1 2 3 4 5 6 7 8 9 10 11
1 1
2 0 1
3 0 1 1
4 0 1 3 1
5 0 1 5 6 1
6 0 1 9 18 10 1
7 0 1 13 44 49 15 1
8 0 1 20 97 172 110 21 1
9 0 1 28 195 512 550 216 28 1
10 0 1 40 377 1370 2195 1486 385 36 1
11 0 1 54 694 3396 7603 7886 3514 638 45 1
12 0 1 75 1251 7968 23860 35115 24318 7484 999 55 1
13 0 1 99 2185 17910 69580 138155 138075 65997 14667 1495 66
14 0 1 133 3765 38942 191795 495870 677663 471276 161202 26875 2156
15 0 1 174 6354 82338 505640 1657975 2978735 2864408 1424142 360940 46596
16 0 1 229 10607 170265 1285754 5240090 12016809 15354492 10604286 3880561 751696
17 0 1 295 17446 345291 3173220 15821657 45268685 74497870 68869266 34954135 9685709
18 0 1 383 28449 689026 7637795 45999383 161270025 333494972 400292769 272579245 104184949
19 0 1 488 45863 1355253 17996010 129560563 548523528 1397398036 2123894171 1886698315 965585764
20 0 1 625 73400 2632975 41631740 355205608 1794375520 5541288850 10446368715 11819801575 7897875909
21 0 1 790 116421 5058305 94786545 951526108 5678296645 20973892932 48206965521 68073453307 58101011914
22 0 1 1000 183472 9622420 212812255 2498219985 17463026868 76290515426 210725428060 364964576905 390349624764
23 0 1 1253 287021 18139620 471921560 6444739208 52390397612 268136421612 879260678868 1840128105650 2425318710876

Table 2: The first 12 columns and 23 rows of the triangle A. The other 11 columns can be obtained using the ten rows of
the C-matrix given below. Thus, one can determine partitions of positive integers ≤ 23 from it.

m\x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1

1 0 1 1

2 0 1 3 6 3

3 0 1 7 20 46 45 15

4 0 1 11 61 198 480 645 420 105

5 0 1 18 138 706 2508 6441 10395 9660 4725 945

6 0 1 26 296 2052 10375 38809 105392 192668 224595 159075 62370 10395

7 0 1 38 577 5428 36285 184624 713402 2032500 4080195 5580855 5051970 2889810 945945 135135

8 0 1 52 1092 13226 114220 751639 3854487 15231326 45159822 97613505 150613155 162889650 120270150 57702645 16216200 2027025

9 0 1 73 1963 30648 332035 2747799 17918432 92357844 370929320 1136808010 2609559315 4427605050 5488733250 4892112225 3047969925 1259458200 310134825 34459425

10 0 1 97 3471 67868 910729 9268382 74767133 483797592 2498431224 10155656364 31998207087 77214286182 141528086700 195617897475 201837365730 152796603960 82323566325 29876321475 6547290750

Table 3: The second triangle – the first ten rows and nineteen columns of the C-matrix. We have only shown non-zero
entries.
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n\x 0 1 2 3 4 5 6 7 8 9 10 11 12
1 1
2 0
3 0 1
4 0 1
5 0 1 3
6 0 1 7
7 0 1 11 16
8 0 1 18 58
9 0 1 26 135 125
10 0 1 38 293 618
11 0 1 52 574 1927 1296
12 0 1 73 1089 5256 8220
13 0 1 97 1960 12982 32380 16807
14 0 1 131 3468 30320 107270 131897
15 0 1 172 5955 67414 319530 633442 262144
16 0 1 227 10085 145045 888983 2490187 2483096
17 0 1 293 16759 303101 2346515 8710068 14200018 4782969
18 0 1 381 27564 619564 5952280 28205459 65151254 53672292
19 0 1 486 44714 1241845 14617100 86238209 263040064 359302890 100000000
20 0 1 623 71936 2450043 34962755 252190709 975528302 1899997612 1309707840
21 0 1 788 114546 4765327 81792100 711409264 3398678150 8749699709 10128660960 2357947691
22 0 1 998 181102 9157550 187791450 1948153500 11278286646 36739765288 61114773760 35600917115
23 0 1 1251 284021 17406714 424233500 5203415684 35979941641 144179174632 318163092360 314636749085 61917364224
24 0 1 1571 442713 32771292 944990470 13605818265 111092074842 536798419714 1499829016296 2148096711540 1066426694784
25 0 1 1954 685443 61158328 2079070155 34930133300 333670251012 1915118952548 6574308285588 12551603978445 10672681371264 1792160394037

Table 4: The F -matrix as determined using data up to a25,12. This determines partitions of all integers ≤ 25. We have
only shown non-zero entries.
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m\x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1
1 0 1
2 0 1 3 3
3 0 1 7 17 28
4 0 1 11 58 156 295 90
5 0 1 18 135 640 1913 3786 2310
6 0 1 26 293 1944 9010 28714 59024 50960 7560
7 0 1 38 574 5272 33340 154654 509912 1089488 1158192 378000
8 0 1 52 1089 12998 108465 671389 3123477 10485214 23226165 28428750 14206500 1247400
9 0 1 73 1960 30336 321130 2551119 15580292 72440912 245511503 561332710 762518790 501491760 102702600
10 0 1 97 3468 67430 891114 8811002 67908953 409620720 1895816757 6456110604 15166699372 22350118032 17852174340 5864859000 340540200

Table 5: The first eleven rows of the D-matrix. We have only shown non-zero entries.
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z\y 0 1 2 3 4 5 6 7 8 9 10
0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
2 −1 0 0 0 0 0 0 0 0 0 0
3 −5 6 0 0 0 0 0 0 0 0 0
4 1 74 0 0 0 0 0 0 0 0 0
5 41 252 −40 0 0 0 0 0 0 0 0
6 31 −540 −676 0 0 0 0 0 0 0 0
7 −461 −6470 1180 656 0 0 0 0 0 0 0
8 −895 −4074 69020 10864 0 0 0 0 0 0 0
9 6481 138264 403620 −39016 −9216 0 0 0 0 0 0

10 22591 376872 −961240 −1628984 −191456 0 0 0 0 0 0
11 −107029 −2922930 −21162456 −3687040 463680 195840 0 0 0 0 0
12 β12,0 −15867390 −40350840 168546560 40336016 7455104 0 0 0 0 0
13 β13,0 β13,1 758778240 1656046448 110435472 73922176 −6297600 0 0 0 0
14 β14,0 β14,1 β14,2 −1927766192 −5730022032 −552798336 −382393600 0 0 0 0
15 β15,0 β15,1 β15,2 β15,3 −44646818832 −10585577760 −7549384960 278906880 0 0 0
16 β16,0 β16,1 β16,2 β16,3 β16,4 75450085920 −14753227264 22686050304 0 0 0
17 β17,0 β17,1 β17,2 β17,3 β17,4 β17,5 1603141023616 607200778752 −14729379840 0 0
18 β18,0 β18,1 β18,2 β18,3 β18,4 β18,5 β18,6 2727351931392 −1449282760704 0 0
19 β19,0 β19,1 β19,2 β19,3 β19,4 β19,5 β19,6 β19,7 −47662776674304 873791815680 0
20 β20,0 β20,1 β20,2 β20,3 β20,4 β20,5 β20,6 β20,7 β20,8 101710939668480 0
21 β21,0 β21,1 β21,2 β21,3 β21,4 β21,5 β21,6 β21,7 β21,8 β21,9 −58358690611200

Table 6: The β-triangle to the extent that we have determined it. The first column is consistent with the Meeussen
conjecture. The βm+x,x for x ∈ [0, m−1] completely determine the degree 2m polynomial gm(r). Thus, we have determined
all polynomials for m ≤ 11 albeit assuming the existence of the β-matrix which is conjectural. The polynomials obtained
this way agrees with the ones determined by the C/D/F matrices.
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m\x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1

1 0 0 1

2 0 0 0 3 3

3 0 0 0 1 16 30 15

4 0 0 0 1 15 135 330 315 105

5 0 0 0 0 18 232 1581 4410 5880 3780 945

6 0 0 0 0 13 355 4000 23709 71078 116550 107100 51975 10395

7 0 0 0 0 10 450 8075 78725 431460 1353240 2552130 2962575 2079000 810810 135135

8 0 0 0 0 6 530 14065 204540 1767045 9207945 29811330 62179425 85270185 76621545 43513470 14189175 2027025

9 0 0 0 0 4 580 22315 456400 5704580 44793784 225211165 746795775 1680747090 2612970360 2812925115 2062160100 983782800 275675400 34459425

10 0 0 0 0 1 611 33177 918981 15738310 174240318 1268511894 6207749790 20975922462 50107517460 85928953110 106306245045 94166932860 58305347100 23983759800 5892561675 654729075

Table 7: The first eleven rows of the Cbox2-triangle. We have only shown non-zero entries.

n\r 1 2 3 4 5 6 7 8 9 10 11
1 1
2 0
3 0
4 0
5 0
6 0
7 0
8 0 0 0 1
9 0

10 0 0 0 0 12
11 0 0 0 0 12
12 0 0 0 0 10 150
13 0 0 0 0 6 330
14 0 0 0 0 4 485 2160
15 0 0 0 0 1 570 7750
16 0 0 0 0 1 610 17280 36015
17 0 0 0 0 0 600 30120 185430
18 0 0 0 0 0 580 45720 574280 688128
19 0 0 0 0 0 530 63870 1364195 4727520
20 0 0 0 0 0 470 85325 2751875 19192880 14880348
21 0 0 0 0 0 387 110625 4994640 59080000 130094748
22 0 0 0 0 0 310 140322 8480885 152220320 664737850 360000000
23 0 0 0 0 0 215 174380 13808620 346973284 2557358244 3873139200
24 0 0 0 0 0 155 212815 21879725 726316080 8167776498 24169328400 9646149645

Table 8: The first 24 rows of the F box2-triangle. We have only shown non-zero entries except for rows which have all zeros
where we shown a zero in the first column.
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