
Abstract

We prove a formal power series identity, relating the arithmetic sum-of-divisors function to commuting triples of permutations. This establishes a conjecture of Franklin T. Adams-Watters.

A formal identity involving commuting triples of permutations

John R. Britnell

The object of this note is to establish the following formal identity:

$$
\begin{equation*}
\prod_{j=1}^{\infty}\left(1-u^{j}\right)^{-\sigma(j)}=\sum_{n=0}^{\infty} \frac{T(n)}{n!} u^{n} \tag{1}
\end{equation*}
$$

where σ is the arithmetic sum-of-divisors function, and $T(n)$ is the number of triples of pairwisecommuting elements of the symmetric group S_{n}. (Here S_{0} is the trivial group.) This is a surprising fact, as there seems no obvious reason for any connection between the function σ and commuting permutations.

The power series expansion of the left-hand side of this identity has coefficients which are listed on the Online Encyclopedia of Integer Sequences (OEIS) [3] as sequence A061256. The coefficients on the right-hand side are listed as sequence A079860. The identity of the two sequences has been stated conjecturally on OEIS. This conjecture (from 2006) is due to Franklin T. Adams-Watters; he informs me that it was based empirically on the numerical evidence.

For a finite group G, we shall write $k(G)$ for the number of conjugacy classes of G. The following simple fact seems first to have been stated by Erdős and Turán [1.

Lemma 1. The number of pairs of commuting elements of G is $|G| k(G)$.

Let $g \in G$. It follows from Lemma 1 that the number of commuting triples of G whose first element is g, is given by $\left|\operatorname{Cent}_{G}(g)\right| k\left(\operatorname{Cent}_{G}(g)\right)$. So if $T(G)$ is the total number of commuting triples, then

$$
\begin{equation*}
\frac{T(G)}{|G|}=\sum_{g \in G} \frac{\left.\mid \operatorname{Cent}_{G}(g)\right) \mid}{|G|} k\left(\operatorname{Cent}_{G}(g)\right)=\sum_{i=1}^{r} k\left(\operatorname{Cent}_{G}\left(g_{i}\right)\right), \tag{2}
\end{equation*}
$$

where $\left\{g_{1}, \ldots, g_{r}\right\}$ is a set of conjugacy class representatives for G.
In the case that G is the symmetric group S_{n}, the conjugacy classes are parameterized by partitions of n, whose parts correspond to cycle lengths. Let $g \in S_{n}$ have m_{t} cycles of length t
for all t. Then the centralizer of g in S_{n} is given (up to isomorphism) by

$$
\operatorname{Cent}_{S_{n}}(g) \cong \prod_{t=1}^{n} W\left(t, m_{t}\right)
$$

where $W(t, m)$ is the wreath product \mathbf{Z}_{t} 乙 S_{m}. (Here \mathbf{Z}_{t} is used as a shorthand for $\mathbf{Z} / t \mathbf{Z}$, the integers modulo t.) It follows that

$$
\begin{equation*}
k\left(\operatorname{Cent}_{S_{n}}(g)\right)=\prod_{t=1}^{n} k\left(W\left(t, m_{t}\right)\right) \tag{3}
\end{equation*}
$$

We may regard an element of $W(t, m)$ as a pair (A, e), where $A \in \mathbf{Z}_{t}{ }^{m}$ and $e \in S_{m}$. There is a natural action of S_{m} on the coordinates of $\mathbf{Z}_{t}{ }^{m}$ given by $\left(B^{e}\right)_{i}=B_{i e^{-1}}$. The group multiplication $*$ in $W(t, m)$ is defined by

$$
(A, e) *(B, f)=\left(A+B^{e}, e f\right)
$$

Conjugacy in groups of the form $H \backslash S_{m}$ is described in [2, Section 4.2]; the case that $H=\mathbf{Z}_{t}$ is relatively straightforward. Let (A, e) be an element of $W(t, m)$, where $A=\left(a_{1}, \ldots, a_{m}\right)$. Let c be a cycle of the permutation e, and let $\operatorname{supp}(c)$ be the support of c (i.e. the elements of $\{1, \ldots, m\}$ moved by c). We shall write $|c|$ for $|\operatorname{supp}(c)|$, the length of the cycle. Define the cycle sum $A[c] \in \mathbf{Z}_{t}$ by

$$
A[c]=\sum_{i \in \operatorname{supp}(c)} a_{i}
$$

The cycle sum invariant of (A, e) corresponding to the cycle c is defined to be the pair $(A[c],|c|)$. The element (A, e) has one such invariant for each cycle of e.

Lemma 2. Two elements (A, e) and (B, f) of $W(t, m)$ are conjugate in $W(t, m)$ if and only if they have the same cycle sum invariants-that is, if and only if there is a bijection τ between the cycles of e and the cycles of f, such that for any cycle c of e we have $(A[c],|c|)=(B[c \tau],|c \tau|)$.

Proof. See [2, Theorem 4.2.8], of which this is a particular case.

Let (A, e) be an element of $W(t, m)$. For each $z \in \mathbf{Z}_{t}$ we define λ_{z} to be the partition such that the multiplicity of ℓ as a part of λ_{z} is equal to the multiplicity of (z, ℓ) as a cycle sum invariant of (A, e). Lemma 2 tells us that the partitions λ_{z} for $z \in \mathbf{Z}_{t}$ determine the conjugacy class of (A, e) in $W(t, m)$. Conversely, a collection of t arbitrary partitions $\left\{\lambda_{z} \mid z \in \mathbf{Z}_{t}\right\}$ determines a conjugacy class of $W(t, m)$ if and only if the total sum of the sizes of the partitions λ_{z} is equal to m.

Let $p(d)$ denote the number of partitions of d, and let $P(u)$ be the power series

$$
P(u)=\sum_{d=0}^{\infty} p(d) u^{d}
$$

Consider the formal series

$$
Q(u)=\prod_{t=1}^{\infty} P\left(u^{t}\right)^{t} .
$$

From the discussion above, it is easily seen that each monomial term of degree $t m$ in the expansion of $P\left(u^{t}\right)^{t}$ corresponds to a conjugacy class of $W(t, m)$, and that we therefore have

$$
P\left(u^{t}\right)^{t}=\sum_{m=0}^{\infty} k(W(t, m)) u^{t m} .
$$

Now any single term in the expansion of $Q(u)$ corresponds to a choice, firstly of parameters m_{t} such that $\sum_{t} t m_{t}$ is finite, and secondly of a conjugacy class of $W\left(t, m_{t}\right)$ for each t. It follows from (3) that each term of degree n in this expansion corresponds to a conjugacy class of $\operatorname{Cent}_{S_{n}}(g)$, where g is an element of S_{n} with m_{t} cycles of length t. Now by (2) we have the formal identity

$$
Q(u)=\sum_{n=0}^{\infty} \frac{T(n)}{n!} u^{n} .
$$

Thus $Q(u)$ is equal to the right-hand side of (1), and it remains only to show that $Q(u)$ is also equal to the left-hand side.

We use the Eulerian expansion of $P(u)$,

$$
P(u)=\prod_{s=1}^{\infty}\left(1-u^{s}\right)^{-1}
$$

From this it follows that

$$
Q(u)=\prod_{t=1}^{\infty} \prod_{s=1}^{\infty}\left(1-u^{s t}\right)^{-t}=\prod_{j=1}^{\infty} \prod_{t \mid j}\left(1-u^{j}\right)^{-t}=\prod_{j=1}^{\infty}\left(1-u^{j}\right)^{-\sigma(j)}
$$

as required.
Finally, I am indebted to Mark Wildon for the observation that both sides of (1) are convergent in the open unit disc $|u|<1$, and that they therefore represent a complex function which is analytic in this disc. This can be seen by expressing the formal logarithm of the left-hand side of (1) as

$$
\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{\sigma(j)}{k} u^{j k}=\sum_{d=1}^{\infty}\left(\sum_{a \mid d} \frac{a \sigma(a)}{d}\right) u^{d},
$$

which has radius of convergence 1 , since clearly

$$
\sum_{a \mid d} a \sigma(a)<d^{4} .
$$

Thus the left-hand side of (11) represents an analytic function on the disc $|u|<1$, and it follows that the right-hand side is the Taylor series of that function. An immediate consequence of this observation is that the growth of $T(n) / n$! is subexponential; I do not know of an easy combinatorial proof of this fact.

References

1. P. Erdős and P. Turán, On some problems of a statistical group theory IV, Acta Mathematica Academiae Scientiarum Hungaricae 19 3-4 (1968), 413-435.
2. Gordon James and Adalbert Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications 16, Addison-Wesley, 1981.
3. The Online Encyclopedia of Integer Sequences, http://oeis.org/

Heilbronn Institute for Mathematical
Research
School of Mathematics
University of Bristol
University Walk
Bristol, BS8 1TW
United Kingdom

