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Abstract. We resolve an open question by determining matching (asymp-
totic) upper and lower bounds on the state complexity of the operation
that sends a language L to

(

L∗

)

∗

.

1 Introduction

Let Σ be a finite nonempty alphabet, let L ⊆ Σ∗ be a language, let L = Σ∗ −L
denote the complement of L, and let L∗ (resp., L+) denote the Kleene closure
(resp., positive closure) of the language L. If L is a regular language, its state

complexity is defined to be the number of states in the minimal deterministic
finite automaton accepting L [7]. In this paper we resolve an open question by
determining matching (asymptotic) upper and lower bounds on the deterministic
state complexity of the operations

L →
(

L∗
)∗

L →
(

L+
)+

.

To simplify the exposition, we will write everything using an exponent nota-
tion, using c to represent complement, as follows:

L+c := L+

L+c+ := (L+)+,

and similarly for L∗c and L∗c∗.
Note that

L∗c∗ =

{

L+c+, if ε 6∈ L;

L+c+ ∪ {ε}, if ε ∈ L.

It follows that the state complexity of L+c+ and L∗c∗ differ by at most 1. In
what follows, we will work only with L+c+.

⋆ Research supported by VEGA grant 2/0183/11.
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2 Upper Bound

Consider a deterministic finite automaton (DFA) D = (Qn, Σ, δ, 0, F ) accepting
a language L, where Qn := {0, 1, . . . , n− 1}. As an example, consider the three-
state DFA over {a, b, c, d} shown in Fig. 1 (left). To get a nondeterministic finite
automaton (NFA) N1 for the language L+ from the DFA D, we add an ε-
transition from every non-initial final state to the state 0. In our example, we
add an ε-transition from state 1 to state 0; see Fig. 1 (right). After applying
the subset construction to the NFA N1 we get a DFA D1 for the language L+.
The state set of D1 consists of subsets of Qn see Fig. 2 (left). Here the sets in
the labels of states are written without commas and brackets; thus, for example
012 stands for the set {0, 1, 2}. Next, we interchange the roles of the final and
non-final states of the DFA D1, and get a DFA D2 for the language L+c; see
Fig. 2 (right).

To get an NFA N3 for L+c+ from the DFA D2, we add an ε-transition from
each non-initial final state of D2 to the state {0}, see Fig. 3 (top). Applying the
subset construction to the NFA N3 results in a DFA D3 for the language L+c+

with its state set consisting of some sets of subsets of Qn; see Fig. 3 (middle).
Here, for example, the label 0, 2 corresponds to the set {{0}, {2}}. This gives an
upper bound of 22

n

on the state complexity of the operation plus-complement-
plus.

Our first result shows that in the minimal DFA for L+c+ we do not have
any state {S1, S2, . . . , Sk}, in which a set Si is a subset of some other set Sj ; see
Fig. 3 (bottom). This reduces the upper bound to the number of antichains of
subsets of an n-element set known as the Dedekind number M(n) with [2]

(

n

⌊n/2⌋

)

≤ logM(n) ≤

(

n

⌊n/2⌋

)

(

1 +O(
logn

n
)
)

.
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Fig. 1. DFA D for a language L and NFA N1 for the language L+.
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Fig. 2. DFA D1 for language L+ and DFA D2 for the language L+c.
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Lemma 1. If S and T are subsets of Qn such that S ⊆ T , then the states {S, T }
and {S} of the DFA D3 for the language L+c+ are equivalent.

Proof. Let S and T be subsets of Qn such that S ⊆ T . We only need to show
that if a string w is accepted by the NFA N3 starting from the state T , then it
also is accepted by N3 from the state S.

Assume w is accepted by N3 from T . Then in the NFA N3, an accepting
computation on w from state T looks like this:

T
u
→ T1

ε
→ {0}

v
→ T2,

where w = uv, and state T goes to an accepting state T1 on u without using any
ε-transitions, then T1 goes to {0} on ε, and then {0} goes to an accepting state
T2 on v; it also may happen that w = u, in which case the computation ends in
T1. Let us show that S goes to an accepting state of the NFA N3 on u.

Since T goes to an accepting state T1 on u in the NFA N3 without using
any ε-transition, state T goes to the accepting state T1 in the DFA D2, and
therefore to the rejecting state T1 of the DFA D1. Thus, every state q in T goes
to rejecting states in the NFA N1. Since S ⊆ T , every state in S goes to rejecting
states in the NFA N1, and therefore S goes to a rejecting state S1 in the DFA
D1, thus to the accepting state S1 in the DFA D2. Hence w = uv is accepted
from S in the NFA N3 by computation

S
u
→ S1

ε
→ {0}

v
→ T2.

⊓⊔

Hence whenever a state S =
{

S1, S2, . . . , Sk} of the DFA D3 contains two
subsets Si and Sj with i 6= j and Si ⊆ Sj , then it is equivalet to state S \ {Sj}.
Using this property, we get the following result.

Lemma 2. Let D be a DFA for a language L with state set Qn, and Dmin
3 be

the minimal DFA for L+c+ as described above. Then every state of Dmin
3 can be

expressed in the form

S = {X1, X2, . . . , Xk} (1)

where

– 1 ≤ k ≤ n;
– there exist subsets S1 ⊆ S2 ⊆ · · · ⊆ Sk ⊆ Qn; and
– there exist q1, . . . , qk, pairwise distinct states of D not in Sk; such that

– Xi = {qi} ∪ Si for i = 1, 2, . . . , k.

Proof. Let D = (Qn, Σ, δ, 0, F ).
For a state q in Qn and a symbol a in Σ, let q.a denote the state in Qn,

to which q goes on a, that is, q.a = δ(q, a). For a subset X of Qn let X.a denote
the set of states to which states in X go by a, that is,

X.a =
⋃

q∈X

{δ(q, a)}.
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Consider transitions on a symbol a in automata D,N1, D1, D2, N3; Fig. 4 illus-
trates these transitions. In the NFA N1, each state q goes to a state in {0, q.a} if
q.a is a final state of D, and to state q.a if q.a is non-final. It follows that in the
DFA D1 for L+, each state X (a subset of Qn) goes on a to final state {0}∪X.a
if X.a contains a final state of D, and to non-final state X.a if all states in X.a
are non-final in D. Hence in the DFA D2 for L+c, each state X goes on a to
non-final state {0}∪X.a if X.a contains a final state of D, and to the final state
X.a if all states in X.a are non-final in D.

Therefore, in the NFA N3 for L+c+, each state X goes on a to a state in
{{0}, X.a} if all states in X.a are non-final in D, and to state {0} ∪X.a if X.a
contains a final state of D.

To prove the lemma for each state, we use induction on the length of the
shortest path from the initial state to the state of Dmin

3 in question. The base
case is a path of length 0. In this case, the initial state is {{0}}, which is in the
required form (1) with k = 1, q1 = 0, and S1 = ∅.

q q.a

p p.a

0

a

a

D

{0} U X.a

N1

D1 D2

q q.a

p p.a

0

a

a

ε

a

a

{0}

Y.aY

X

X −> final {0} U X.a if X.a contains a final state 

Y −> non−final Y.a  if all states in Y.a are non−final 

{0}

Y.aY

X {0} U X.a
a

a

ε

X −> non−final {0} U X.a if X.a contains a final state 

Y −> final  Y.a  if all the states in Y.a are non−final 

3N

Fig. 4. Transitions under symbol a in automata D,N1, D1, D2, N3.
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For the induction step, let

S = {X1, X2, . . . , Xk},

where 1 ≤ k ≤ n, and
• S1 ⊆ S2 ⊆ · · · ⊆ Sk ⊆ Qn,
• q1, . . . , qk are pairwise distinct states of D that are not in Sk and
• Xi = {qi} ∪ Si for i = 1, 2, . . . , k.

We now prove the result for all states reachable from S on a symbol a.
First, consider the case that each Xi goes on a to a non-final state X ′

i in the
NFA N3. It follows that S goes on a to S ′ = {X ′

1, X
′

2, . . . , X
′

k}, where

X ′

i = {qi.a} ∪ Si.a ∪ {0}.

Write pi = qi.a and Pi = Si.a ∪ {0}. Then we have P1 ⊆ P2 ⊆ · · · ⊆ Pk ⊆ Qn.
If pi = pj for some i, j with i < j, then X ′

i ⊆ X ′

j, and therefore X ′

j can be

removed from state S ′ in the minimal DFA Dmin
3 . After several such removals,

we arrive at an equivalent state

S ′′ = {X ′′

1 , X
′′

2 , . . . , X
′′

ℓ }

where ℓ ≤ k, X ′′

i = {ri} ∪Ri and the states r1, r2, . . . , rℓ are pairwise distinct.
If ri ∈ Rℓ for some i with i < ℓ, then Xi ⊆ Rℓ; thus Rℓ can be removed.

After all such removals, we get an equivalent set

S ′′′ = {X ′′′

1 , X ′′′

2 , . . . , X ′′′

m}

where m ≤ ℓ, X ′′′

i = {ti} ∪ Ti and the states t1, t2, . . . , tm are pairwise distinct
and t1, t2, . . . , tm−1 are not in Tm. If tm /∈ Tm, then the state S ′′′ is in the required
form (1). Otherwise, if Tm−1 is a proper subset of Tm, then there is a state t in
Tm − Tm−1, and then we can take X ′′′

m = {t} ∪ Tm − {t}: since t1, . . . , tm−1 are
not in Tm, they are distinct from t, and moreover Tm−1 ⊆ Tm − {t}.

If Tm−1 = Tm, then X ′′′

m−1 ⊇ X ′′′

m , and therefore X ′′′

m−1 can be removed from
S ′′′. After all these removals we either reach some Ti that is a proper subset of
Tm, and then pick a state t in Tm −Ti in the same way as above, or we only get
a single set Tm, which is in the required form {rm} ∪ Tm − {rm}.

This proves that if each Xi in S goes on a to a non-final state X ′

i in the
NFA N3, then S goes on a in the DFA Dmin

3 to a set that is in the required form
(1).

Now consider the case that at least one Xj in S goes to a final state X ′

j in
the NFA N3. It follows that S goes to a final state

S ′ = {{0}, X ′

1, X
′

2, . . . , X
′

k},

where X ′

j = {qj.a} ∪ Sj .a and if i 6= j, then X ′

i = {qi.a} ∪ Si.a or X ′

i =
{0}∪ {qi.a}∪Si.a We now can remove all Xi that contain state 0, and arrive at
an equivalent state

S ′′ = {{0}, X ′′

1 , X
′′

2 , . . . , X
′′

ℓ },
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where ℓ ≤ k, and X ′′

i = {pi} ∪ Pi, and P1 ⊆ P2 ⊆ · · · ⊆ Pℓ ⊆ Qn, and each pi is
distinct from 0.

Now in the same way as above we arrive at an equivalent state

{{0}, {t1} ∪ T1, . . . , {tm} ∪ Tm}

where m ≤ ℓ, all the ti are pairwise distinct and different from 0, and moreover,
the states t1, . . . , tm−1 are not in Tm. If tm is not in Tm, then we are done.
Otherwise, we remove all sets with Ti = Tm. We either arrive at a proper subset
Tj of Tm, and may pick a state t in Tm − Tj to play the role of new tm, or we
arrive at {{0}, Tm}, which is in the required form {{0} ∪ ∅, tm ∪ Tm − {tm}}.
This completes the proof of the lemma. ⊓⊔

Corollary 1 (Star-Complement-Star: Upper Bound). If a language L is

accepted by a DFA of n states, then the language L∗c∗ is accepted by a DFA of

2O(n logn) states.

Proof. Lemma 2 gives the following upper bound

n
∑

k=1

(

n

k

)

k!(k + 1)n−k

since we first choose any permutation of k distinct elements q1, . . . , qk, and then
represent each set Si as disjoint union of sets S′

1, S
′

2, . . . , S
′

i given by a function
f from Qn − {q1, . . . , qk} to {1, 2, . . . , k + 1} as follows:

S′

i = {q | f(q) = i}, Si = S′

1 ∪̇ S′

2 ∪̇ · · · ∪̇ S′

i,

while states with f(q) = k + 1 will be outside each S′

i; here ∪̇ denotes a disjoint
union. Next, we have

n
∑

k=1

(

n

k

)

k!(k + 1)n−k ≤ n!

n
∑

k=1

(

n

k

)

(n+ 1)n−k ≤ n!(n+ 2)n = 2O(n logn),

and the upper bound follows. ⊓⊔

Remark 1. The summation
∑n

k=1

(

n
k

)

k!(k + 1)n−k differs by one from Sloane’s
sequence A072597 [5]. These numbers are the coefficients of the exponential
generating function of 1/(e−x−x). It follows, by standard techniques, that these
numbers are asymptotically given by C1W (1)−nn!, where

W (1)
.
= .5671432904097838729999686622103555497538

is the Lambert W-function evaluated at 1, equal to the positive real solution of
the equation ex = 1/x, and C1 is a constant, approximately

1.12511909098678593170279439143182676599.

The convergence is quite fast; this gives a somewhat more explicit version of the
upper bound.
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0 1 2 3 4 n−2 n−1...a,b a,b a,ba,b a,b a,ba,d

d

c c a,b

d c,d c,d c,d c,d a,b,cb

Fig. 5. DFA D over {a, b, c, d} with many reachable states in DFA D3 for L+c+.

3 Lower Bound

We now turn to the matching lower bound on the state complexity of plus-
complement-plus. The basic idea is to create one DFA where the DFA for L+c+

has many reachable states, and another where the DFA for L+c+ has many
distinguishable states. Then we “join” them together in Corollary 2.

The following lemma uses a four-letter alphabet to prove the reachability of
some specific states of the DFA D3 for plus-complement-plus.

Lemma 3. There exists an n-state DFA D = (Qn, {a, b, c, d}, δ, 0, {0, 1}) such
that in the DFA D3 for the language L(D)+c+ every state of the form

{

{0, q1} ∪ S1, {0, q2} ∪ S2, . . . , {0, qk} ∪ Sk

}

is reachable, where 1 ≤ k ≤ n− 2, S1, S2, . . . , Sk are subsets of {2, 3, . . . , n− 2}
with S1 ⊆ S2 ⊆ · · · ⊆ Sk, and the q1, . . . , qk are pairwise distinct states in

{2, 3, . . . , n− 2} that are not in Sk.

Proof. Consider the DFA D over {a, b, c, d} shown in Fig. 5. Let L be the lan-
guage accepted by the DFA D.

Construct the NFA N1 for the language L+ from the DFA D by adding loops
on a and d in the initial state 0. In the subset automaton corresponding to the
NFA N1, every subset of {0, 1, . . . , n − 2} containing state 0 is reachable from
the initial state {0} on a string over {a, b} since each subset {0, i1, i2, . . . , ik} of
size k, where 1 ≤ k ≤ n − 1 and 1 ≤ i1 < i2 < · · · < ik ≤ n − 2, is reached
from the set {0, i2 − i1, . . . , ik − i1} of size k− 1 on the string abi1−1. Moreover,
after reading every symbol of string abi1−1, the subset automaton is always in
a set that contains state 0. All such states are rejecting in the DFA D2 for the
language L+c, and therefore, in the NFA N3 for L+c+, the initial state {0} only
goes to the rejecting state {0, i1, i2, . . . , ik} on abi1−1.

Hence in the DFA D3, for every subset S of {0, 1, . . . , n − 2} containing 0,
the initial state {{0}} goes to the state {S} on a string w over {a, b}.

Now notice that transitions on symbols a and b perform the cyclic permuta-
tion of states in {2, 3, . . . , n − 2}. For every state q in {2, 3, . . . , n − 2} and an
integer i, let

q ⊖ i = ((q − i− 2) mod n− 3) + 2

8



denote the state in {2, 3, . . . , n− 2} that goes to the state q on string ai, and, in
fact, on every string over {a, b} of length i. Next, for a subset S of {2, 3, . . . , n−2}
let

S ⊖ i = {q ⊖ i | q ∈ S}.

Thus S ⊖ i is a shift of S, and if q /∈ S, then q ⊖ i /∈ S ⊖ i.

The proof of the lemma now proceeds by induction on k. To prove the base
case, let S1 be a subset of {2, 3, . . . , n− 2} and q1 be a state in {2, 3, . . . , n− 2}
with q1 /∈ S1. In the NFA N3, the initial state {0} goes to the state {0}∪S1 on a
string w over {a, b}. Next, state q1 ⊖ |w| is in {2, 3, . . . , n− 2}, and it is reached
from state 1 on a string bℓ, while state 0 goes to itself on b. In the DFA D3 we
thus have

{

{0}
} a
→

{

{0, 1}
} bℓ

→
{

{0, q1 ⊖ |w|}
} w
→

{

{0, q1} ∪ S1

}

,

which proves the base case.

Now assume that every set of size k− 1 satisfying the lemma is reachable in
the DFA D3. Let

S =
{

{0, q1} ∪ S1, {0, q2} ∪ S2, . . . , {0, qk} ∪ Sk

}

be a set of size k satisfying the lemma. Let w be a string, on which
{

{0}
}

goes

to
{

{0} ∪ S1

}

, and let ℓ be an integer such that 1 goes to q1 ⊖ |w| on bℓ. Let

S ′ =
{

{0, q2 ⊖ |w| ⊖ ℓ} ∪ S2 ⊖ |w| ⊖ ℓ, . . . , {0, qk ⊖ |w| ⊖ ℓ} ∪ Sk ⊖ |w| ⊖ ℓ
}

,

where the operation ⊖ is understood to have left-associativity. Then S ′ is reach-
able by induction. On c, every set {0, qi ⊖ |w| ⊖ ℓ} ∪ Si ⊖ |w| ⊖ ℓ goes to the
accepting state {n−1, qi⊖|w|⊖ℓ}∪Si⊖|w|⊖ℓ in the NFA N3, and therefore also
to the initial state {0}. Then, on d, every state {n− 1, qi⊖ |w|⊖ ℓ}∪Si⊖ |w|⊖ ℓ
goes to the rejecting state {0, qi⊖|w|⊖ ℓ}∪Si⊖|w|⊖ ℓ, while {0} goes to {0, 1}.
Hence, in the DFA D3 we have

S ′ c
→

{

{0}, {n− 1, q2 ⊖ |w| ⊖ ℓ} ∪ S2 ⊖ |w| ⊖ ℓ, . . . , {n− 1, qk ⊖ |w| ⊖ ℓ} ∪ Sk ⊖ |w| ⊖ ℓ
}

d
→

{

{0, 1}, {0, q2 ⊖ |w| ⊖ ℓ} ∪ S2 ⊖ |w| ⊖ ℓ, . . . , {0, qk ⊖ |w| ⊖ ℓ} ∪ Sk ⊖ |w| ⊖ ℓ
}

bℓ

→
{

{0, q1 ⊖ |w|}, {0, q2 ⊖ |w|} ∪ S2 ⊖ |w|, . . . , {0, qk ⊖ |w|} ∪ Sk ⊖ |w|
}

w
→ S.

It follows that S is reachable in the DFA D3. This concludes the proof. ⊓⊔

The next lemma shows that some rejecting states of the DFA D3, in which
no set is a subset of some other set, may be pairwise distinguishable. To prove
the result it uses four symbols, one of which is the symbol b from the proof of
the previuos lemma.
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0 1 2 3 4 n−2 n−1...b b b

b

b,e

e,f
f,gb,e,f

g

g
e,f,g e,f,g b,e,f,ge,f,g

b

Fig. 6. DFA D over {b, e, f, g} with many distinguishable states in DFA D3.

Lemma 4. Let n ≥ 5. There exists an n-state DFA D = (Qn, Σ, δ, 0, {0, 1})
over a four-letter alphabet Σ such that all the states of the DFA D3 for the

language L(D)+c+ of the form

{

{0} ∪ T1, {0} ∪ T2, . . . , {0} ∪ Tk

}

,

in which no set is a subset of some other set and each Ti ⊆ {2, 3, . . . , n − 2},
are pairwise distinguishable.

Proof. To prove the lemma, we reuse the symbol b from the proof of Lemma 3,
and define three new symbols e, f, g as shown in Fig. 6.

Notice that on states 2, 3, . . . , n−2, the symbol b performs a big permutation,
while e performs a trasposition, and f a contraction. It follows that every trans-
formation of states 2, 3, . . . , n − 2 can be performed by strings over {b, e, f}.
In particular, for each subset T of {2, 3, . . . , n − 2}, there is a string wT over
{b, e, f} such that in D, each state in T goes to state 2 on wT , while each state
in {2, 3, . . . , n− 2} \ T goes to state 3 on wT . Moreover, state 0 remains in itself
while reading the string wT . Next, the symbol g sends state 0 to state 2, state 3
to state 0, and state 2 to itself.

It follows that in the NFA N3, the state {0}∪T , as well as each state {0}∪T ′

with T ′ ⊆ T , goes to the accepting state {2} on wT · g. However, every other
state {0} ∪ T ′′ with T ′′ ⊆ {2, 3, . . . , n − 2} is in a state containig 0, thus in a
rejecting state of N3, while reading wT · g, and it is in the rejecting state {0, 3}
after reading wT . Then {0, 3} goes to the rejecting state {0, 2} on reading g.

Hence the string wT ·g is accepted by the NFAN3 from each state {0}∪T ′ with
T ′ ⊆ T , but rejected from any other state {0} ∪ T ′′ with T ′′ ⊆ {2, 3, . . . , n− 2}.

Now consider two different states of the DFA D3

T =
{

{0} ∪ T1, . . . , {0} ∪ Tk

}

,

R =
{

{0} ∪R1, . . . , {0} ∪Rℓ

}

,

in which no set is a subset of some other set and where each Ti and each Rj is a
subset of {2, 3, . . . , n−2}. Then, without loss of generality, there is a set {0}∪Ti

in T that is not in R. If no set {0} ∪ T ′ with T ′ ⊆ Ti is in R, then the string
wTi

· g is accepted from T but not from R. If there is a subset T ′ of Ti such that
{0} ∪ T ′ is in R, then for each suset T ′′ of T ′ the set {0} ∪ T ′′ cannot be in T ,
and then the string wT ′ · g is accepted from R but not from T . ⊓⊔
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Corollary 2 (Star-Complement-Star: Lower Bound). There exists a lan-

guage L accepted by an n-state DFA over a seven-letter input alphabet, such that

any DFA for the language L∗c∗ has 2Ω(n log n) states.

Proof. Let Σ = {a, b, c, d, e, f, g} and L be the language accepted by n-state
DFA D = ({0, 1, . . . , n−1}, Σ, δ, 0, {0, 1}), where transitions on symbols a, b, c, d
are defined as in the proof of Lemma 3, and on symbols d, e, f as in the proof of
Lemma 4.

Let m = ⌈n/2⌉. By Lemma 3, the following states are reachable in the DFA
D3 for L+c+:

{{0, 2} ∪ S1, {0, 3} ∪ S2, . . . , {0,m− 2} ∪ Sm−1},

where S1 ⊆ S2 ⊆ · · · ⊆ Sm−1 ⊆ {m − 1,m, . . . , n − 2}. The number of such
subsets Si is given by mn−m, and we have

mn−m ≥
(n

2

)
n

2
−1

= 2Ω(n logn).

By Lemma 4, all these states are pairwise distinguishable, and the lower bound
follows. ⊓⊔

Hence we have an asymptotically tight bound on the state complexity of
star-complement-star operation that is significantly smaller than 22

n

.

Theorem 1. The state complexity of star-complement-star is 2Θ(n log n). ⊓⊔

4 Applications

We conclude with an application.

Corollary 3. Let L be a regular language, accepted by a DFA with n states.

Then any language that can be expressed in terms of L and the operations of

positive closure, Kleene closure, and complement has state complexity bounded

by 2Θ(n log n).

Proof. As shown in [1], every such language can be expressed, up to inclusion
of ε, as one of the following 5 languages and their complements:

L,L+, Lc+, L+c+, Lc+c+.

If the state complexity of L is n, then clearly the state complexity of Lc is also n.
Furthermore, we know that the state complexity of L+ is bounded by 2n (a more
exact bound can be found in [7]); this also handles Lc+. The remaining languages
can be handled with Theorem 1. ⊓⊔
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