The state complexity of star-complement-star

Galina Jirásková ${ }^{1, \star}$ and Jeffrey Shallit ${ }^{2}$
${ }^{1}$ Mathematical Institute, Slovak Academy of Sciences
Grešákova 6, 04001 Košice, Slovakia
jiraskov@saske.sk
${ }^{2}$ School of Computer Science, University of Waterloo
Waterloo, ON N2L 3G1 Canada
shallit@cs.uwaterloo.ca

Abstract

We resolve an open question by determining matching (asymptotic) upper and lower bounds on the state complexity of the operation that sends a language L to $\left(\overline{L^{*}}\right)^{*}$.

1 Introduction

Let Σ be a finite nonempty alphabet, let $L \subseteq \Sigma^{*}$ be a language, let $\bar{L}=\Sigma^{*}-L$ denote the complement of L, and let L^{*} (resp., L^{+}) denote the Kleene closure (resp., positive closure) of the language L. If L is a regular language, its state complexity is defined to be the number of states in the minimal deterministic finite automaton accepting L [7]. In this paper we resolve an open question by determining matching (asymptotic) upper and lower bounds on the deterministic state complexity of the operations

$$
\begin{aligned}
& L \rightarrow\left(\overline{L^{*}}\right)^{*} \\
& L \rightarrow\left(\overline{L^{+}}\right)^{+}
\end{aligned}
$$

To simplify the exposition, we will write everything using an exponent notation, using c to represent complement, as follows:

$$
\begin{aligned}
L^{+c} & :=\overline{L^{+}} \\
L^{+c+} & :=\left(\overline{L^{+}}\right)^{+},
\end{aligned}
$$

and similarly for $L^{* c}$ and $L^{* c *}$.
Note that

$$
L^{* c *}= \begin{cases}L^{+c+}, & \text { if } \varepsilon \notin L \\ L^{+c+} \cup\{\varepsilon\}, & \text { if } \varepsilon \in L\end{cases}
$$

It follows that the state complexity of L^{+c+} and $L^{* c *}$ differ by at most 1 . In what follows, we will work only with L^{+c+}.

[^0]
2 Upper Bound

Consider a deterministic finite automaton (DFA) $D=\left(Q_{n}, \Sigma, \delta, 0, F\right)$ accepting a language L, where $Q_{n}:=\{0,1, \ldots, n-1\}$. As an example, consider the threestate DFA over $\{a, b, c, d\}$ shown in Fig. 1 (left). To get a nondeterministic finite automaton (NFA) N_{1} for the language L^{+}from the DFA D, we add an ε transition from every non-initial final state to the state 0 . In our example, we add an ε-transition from state 1 to state 0 ; see Fig. 1 (right). After applying the subset construction to the NFA N_{1} we get a DFA D_{1} for the language L^{+}. The state set of D_{1} consists of subsets of Q_{n} see Fig. 2 (left). Here the sets in the labels of states are written without commas and brackets; thus, for example 012 stands for the set $\{0,1,2\}$. Next, we interchange the roles of the final and non-final states of the DFA D_{1}, and get a DFA D_{2} for the language L^{+c}; see Fig. 2 (right).

To get an NFA N_{3} for L^{+c+} from the DFA D_{2}, we add an ε-transition from each non-initial final state of D_{2} to the state $\{0\}$, see Fig. 3(top). Applying the subset construction to the NFA N_{3} results in a DFA D_{3} for the language L^{+c+} with its state set consisting of some sets of subsets of Q_{n}; see Fig. 3 (middle). Here, for example, the label 0,2 corresponds to the set $\{\{0\},\{2\}\}$. This gives an upper bound of $2^{2^{n}}$ on the state complexity of the operation plus-complementplus.

Our first result shows that in the minimal DFA for L^{+c+} we do not have any state $\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$, in which a set S_{i} is a subset of some other set S_{j}; see Fig. 3 (bottom). This reduces the upper bound to the number of antichains of subsets of an n-element set known as the Dedekind number $M(n)$ with [2]

$$
\binom{n}{\lfloor n / 2\rfloor} \leq \log M(n) \leq\binom{ n}{\lfloor n / 2\rfloor}\left(1+O\left(\frac{\log n}{n}\right)\right) .
$$

Fig. 1. DFA D for a language L and NFA N_{1} for the language L^{+}.

Fig. 2. DFA D_{1} for language L^{+}and DFA D_{2} for the language L^{+c}.

Fig. 3. NFA N_{3}, DFA D_{3}, and the minimal DFA $D_{3}^{\min }$ for the language L^{+c+}.

Lemma 1. If S and T are subsets of Q_{n} such that $S \subseteq T$, then the states $\{S, T\}$ and $\{S\}$ of the $D F A D_{3}$ for the language L^{+c+} are equivalent.

Proof. Let S and T be subsets of Q_{n} such that $S \subseteq T$. We only need to show that if a string w is accepted by the NFA N_{3} starting from the state T, then it also is accepted by N_{3} from the state S.

Assume w is accepted by N_{3} from T. Then in the NFA N_{3}, an accepting computation on w from state T looks like this:

$$
T \xrightarrow{u} T_{1} \xrightarrow{\varepsilon}\{0\} \xrightarrow{v} T_{2},
$$

where $w=u v$, and state T goes to an accepting state T_{1} on u without using any ε-transitions, then T_{1} goes to $\{0\}$ on ε, and then $\{0\}$ goes to an accepting state T_{2} on v; it also may happen that $w=u$, in which case the computation ends in T_{1}. Let us show that S goes to an accepting state of the NFA N_{3} on u.

Since T goes to an accepting state T_{1} on u in the NFA N_{3} without using any ε-transition, state T goes to the accepting state T_{1} in the DFA D_{2}, and therefore to the rejecting state T_{1} of the DFA D_{1}. Thus, every state q in T goes to rejecting states in the NFA N_{1}. Since $S \subseteq T$, every state in S goes to rejecting states in the NFA N_{1}, and therefore S goes to a rejecting state S_{1} in the DFA D_{1}, thus to the accepting state S_{1} in the DFA D_{2}. Hence $w=u v$ is accepted from S in the NFA N_{3} by computation

$$
S \xrightarrow{u} S_{1} \xrightarrow{\varepsilon}\{0\} \xrightarrow{v} T_{2} .
$$

Hence whenever a state $\mathcal{S}=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ of the DFA D_{3} contains two subsets S_{i} and S_{j} with $i \neq j$ and $S_{i} \subseteq S_{j}$, then it is equivalet to state $\mathcal{S} \backslash\left\{S_{j}\right\}$. Using this property, we get the following result.

Lemma 2. Let D be a DFA for a language L with state set Q_{n}, and $D_{3}^{\min }$ be the minimal DFA for L^{+c+} as described above. Then every state of $D_{3}^{\min }$ can be expressed in the form

$$
\begin{equation*}
\mathcal{S}=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\} \tag{1}
\end{equation*}
$$

where
$-1 \leq k \leq n$;

- there exist subsets $S_{1} \subseteq S_{2} \subseteq \cdots \subseteq S_{k} \subseteq Q_{n}$; and
- there exist q_{1}, \ldots, q_{k}, pairwise distinct states of D not in S_{k}; such that
$-X_{i}=\left\{q_{i}\right\} \cup S_{i}$ for $i=1,2, \ldots, k$.
Proof. Let $D=\left(Q_{n}, \Sigma, \delta, 0, F\right)$.
For a state q in Q_{n} and a symbol a in Σ, let q.a denote the state in Q_{n}, to which q goes on a, that is, q. $a=\delta(q, a)$. For a subset X of Q_{n} let X.a denote the set of states to which states in X go by a, that is,

$$
X . a=\bigcup_{q \in X}\{\delta(q, a)\} .
$$

Consider transitions on a symbol a in automata $D, N_{1}, D_{1}, D_{2}, N_{3}$; Fig. 4 illustrates these transitions. In the NFA N_{1}, each state q goes to a state in $\{0, q . a\}$ if $q . a$ is a final state of D, and to state $q . a$ if $q . a$ is non-final. It follows that in the DFA D_{1} for L^{+}, each state X (a subset of Q_{n}) goes on a to final state $\{0\} \cup X . a$ if $X . a$ contains a final state of D, and to non-final state $X . a$ if all states in X.a are non-final in D. Hence in the DFA D_{2} for L^{+c}, each state X goes on a to non-final state $\{0\} \cup X . a$ if $X . a$ contains a final state of D, and to the final state $X . a$ if all states in $X . a$ are non-final in D.

Therefore, in the NFA N_{3} for L^{+c+}, each state X goes on a to a state in $\{\{0\}, X . a\}$ if all states in X.a are non-final in D, and to state $\{0\} \cup X . a$ if X.a contains a final state of D.

To prove the lemma for each state, we use induction on the length of the shortest path from the initial state to the state of $D_{3}^{\min }$ in question. The base case is a path of length 0 . In this case, the initial state is $\{\{0\}\}$, which is in the required form (1) with $k=1, q_{1}=0$, and $S_{1}=\emptyset$.

Fig. 4. Transitions under symbol a in automata $D, N_{1}, D_{1}, D_{2}, N_{3}$.

For the induction step, let

$$
\mathcal{S}=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}
$$

where $1 \leq k \leq n$, and

- $S_{1} \subseteq S_{2} \subseteq \cdots \subseteq S_{k} \subseteq Q_{n}$,
- q_{1}, \ldots, q_{k} are pairwise distinct states of D that are not in S_{k} and
- $X_{i}=\left\{q_{i}\right\} \cup S_{i}$ for $i=1,2, \ldots, k$.

We now prove the result for all states reachable from \mathcal{S} on a symbol a.
First, consider the case that each X_{i} goes on a to a non-final state X_{i}^{\prime} in the NFA N_{3}. It follows that \mathcal{S} goes on a to $\mathcal{S}^{\prime}=\left\{X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{k}^{\prime}\right\}$, where

$$
X_{i}^{\prime}=\left\{q_{i} \cdot a\right\} \cup S_{i} \cdot a \cup\{0\} .
$$

Write $p_{i}=q_{i} . a$ and $P_{i}=S_{i} . a \cup\{0\}$. Then we have $P_{1} \subseteq P_{2} \subseteq \cdots \subseteq P_{k} \subseteq Q_{n}$.
If $p_{i}=p_{j}$ for some i, j with $i<j$, then $X_{i}^{\prime} \subseteq X_{j}^{\prime}$, and therefore X_{j}^{\prime} can be removed from state \mathcal{S}^{\prime} in the minimal DFA $D_{3}^{\text {min }}$. After several such removals, we arrive at an equivalent state

$$
\mathcal{S}^{\prime \prime}=\left\{X_{1}^{\prime \prime}, X_{2}^{\prime \prime}, \ldots, X_{\ell}^{\prime \prime}\right\}
$$

where $\ell \leq k, X_{i}^{\prime \prime}=\left\{r_{i}\right\} \cup R_{i}$ and the states $r_{1}, r_{2}, \ldots, r_{\ell}$ are pairwise distinct.
If $r_{i} \in R_{\ell}$ for some i with $i<\ell$, then $X_{i} \subseteq R_{\ell}$; thus R_{ℓ} can be removed. After all such removals, we get an equivalent set

$$
\mathcal{S}^{\prime \prime \prime}=\left\{X_{1}^{\prime \prime \prime}, X_{2}^{\prime \prime \prime}, \ldots, X_{m}^{\prime \prime \prime}\right\}
$$

where $m \leq \ell, X_{i}^{\prime \prime \prime}=\left\{t_{i}\right\} \cup T_{i}$ and the states $t_{1}, t_{2}, \ldots, t_{m}$ are pairwise distinct and $t_{1}, t_{2}, \ldots, t_{m-1}$ are not in T_{m}. If $t_{m} \notin T_{m}$, then the state $\mathcal{S}^{\prime \prime \prime}$ is in the required form (11). Otherwise, if T_{m-1} is a proper subset of T_{m}, then there is a state t in $T_{m}-T_{m-1}$, and then we can take $X_{m}^{\prime \prime \prime}=\{t\} \cup T_{m}-\{t\}$: since t_{1}, \ldots, t_{m-1} are not in T_{m}, they are distinct from t, and moreover $T_{m-1} \subseteq T_{m}-\{t\}$.

If $T_{m-1}=T_{m}$, then $X_{m-1}^{\prime \prime \prime} \supseteq X_{m}^{\prime \prime \prime}$, and therefore $X_{m-1}^{\prime \prime \prime}$ can be removed from $\mathcal{S}^{\prime \prime \prime}$. After all these removals we either reach some T_{i} that is a proper subset of T_{m}, and then pick a state t in $T_{m}-T_{i}$ in the same way as above, or we only get a single set T_{m}, which is in the required form $\left\{r_{m}\right\} \cup T_{m}-\left\{r_{m}\right\}$.

This proves that if each X_{i} in \mathcal{S} goes on a to a non-final state X_{i}^{\prime} in the NFA N_{3}, then \mathcal{S} goes on a in the DFA $D_{3}^{\min }$ to a set that is in the required form (1).

Now consider the case that at least one X_{j} in \mathcal{S} goes to a final state X_{j}^{\prime} in the NFA N_{3}. It follows that \mathcal{S} goes to a final state

$$
\mathcal{S}^{\prime}=\left\{\{0\}, X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{k}^{\prime}\right\}
$$

where $X_{j}^{\prime}=\left\{q_{j} \cdot a\right\} \cup S_{j} \cdot a$ and if $i \neq j$, then $X_{i}^{\prime}=\left\{q_{i} \cdot a\right\} \cup S_{i} \cdot a$ or $X_{i}^{\prime}=$ $\{0\} \cup\left\{q_{i} . a\right\} \cup S_{i} . a$ We now can remove all X_{i} that contain state 0 , and arrive at an equivalent state

$$
\mathcal{S}^{\prime \prime}=\left\{\{0\}, X_{1}^{\prime \prime}, X_{2}^{\prime \prime}, \ldots, X_{\ell}^{\prime \prime}\right\}
$$

where $\ell \leq k$, and $X_{i}^{\prime \prime}=\left\{p_{i}\right\} \cup P_{i}$, and $P_{1} \subseteq P_{2} \subseteq \cdots \subseteq P_{\ell} \subseteq Q_{n}$, and each p_{i} is distinct from 0 .

Now in the same way as above we arrive at an equivalent state

$$
\left\{\{0\},\left\{t_{1}\right\} \cup T_{1}, \ldots,\left\{t_{m}\right\} \cup T_{m}\right\}
$$

where $m \leq \ell$, all the t_{i} are pairwise distinct and different from 0 , and moreover, the states t_{1}, \ldots, t_{m-1} are not in T_{m}. If t_{m} is not in T_{m}, then we are done. Otherwise, we remove all sets with $T_{i}=T_{m}$. We either arrive at a proper subset T_{j} of T_{m}, and may pick a state t in $T_{m}-T_{j}$ to play the role of new t_{m}, or we arrive at $\left\{\{0\}, T_{m}\right\}$, which is in the required form $\left\{\{0\} \cup \emptyset, t_{m} \cup T_{m}-\left\{t_{m}\right\}\right\}$. This completes the proof of the lemma.

Corollary 1 (Star-Complement-Star: Upper Bound). If a language L is accepted by a DFA of n states, then the language $L^{* c *}$ is accepted by a DFA of $2^{O(n \log n)}$ states.

Proof. Lemma 2 gives the following upper bound

$$
\sum_{k=1}^{n}\binom{n}{k} k!(k+1)^{n-k}
$$

since we first choose any permutation of k distinct elements q_{1}, \ldots, q_{k}, and then represent each set S_{i} as disjoint union of sets $S_{1}^{\prime}, S_{2}^{\prime}, \ldots, S_{i}^{\prime}$ given by a function f from $Q_{n}-\left\{q_{1}, \ldots, q_{k}\right\}$ to $\{1,2, \ldots, k+1\}$ as follows:

$$
S_{i}^{\prime}=\{q \mid f(q)=i\}, \quad S_{i}=S_{1}^{\prime} \dot{\cup} S_{2}^{\prime} \dot{\cup} \cdots \dot{\cup} S_{i}^{\prime},
$$

while states with $f(q)=k+1$ will be outside each S_{i}^{\prime}; here \dot{U} denotes a disjoint union. Next, we have

$$
\sum_{k=1}^{n}\binom{n}{k} k!(k+1)^{n-k} \leq n!\sum_{k=1}^{n}\binom{n}{k}(n+1)^{n-k} \leq n!(n+2)^{n}=2^{O(n \log n)}
$$

and the upper bound follows.
Remark 1. The summation $\sum_{k=1}^{n}\binom{n}{k} k!(k+1)^{n-k}$ differs by one from Sloane's sequence A072597 [5]. These numbers are the coefficients of the exponential generating function of $1 /\left(e^{-x}-x\right)$. It follows, by standard techniques, that these numbers are asymptotically given by $C_{1} W(1)^{-n} n$!, where

$$
W(1) \doteq .5671432904097838729999686622103555497538
$$

is the Lambert W-function evaluated at 1, equal to the positive real solution of the equation $e^{x}=1 / x$, and C_{1} is a constant, approximately

$$
1.12511909098678593170279439143182676599
$$

The convergence is quite fast; this gives a somewhat more explicit version of the upper bound.

Fig. 5. DFA D over $\{a, b, c, d\}$ with many reachable states in DFA D_{3} for L^{+c+}.

3 Lower Bound

We now turn to the matching lower bound on the state complexity of plus-complement-plus. The basic idea is to create one DFA where the DFA for L^{+c+} has many reachable states, and another where the DFA for L^{+c+} has many distinguishable states. Then we "join" them together in Corollary 2

The following lemma uses a four-letter alphabet to prove the reachability of some specific states of the DFA D_{3} for plus-complement-plus.

Lemma 3. There exists an n-state $D F A D=\left(Q_{n},\{a, b, c, d\}, \delta, 0,\{0,1\}\right)$ such that in the $D F A D_{3}$ for the language $L(D)^{+c+}$ every state of the form

$$
\left\{\left\{0, q_{1}\right\} \cup S_{1},\left\{0, q_{2}\right\} \cup S_{2}, \ldots,\left\{0, q_{k}\right\} \cup S_{k}\right\}
$$

is reachable, where $1 \leq k \leq n-2, S_{1}, S_{2}, \ldots, S_{k}$ are subsets of $\{2,3, \ldots, n-2\}$ with $S_{1} \subseteq S_{2} \subseteq \cdots \subseteq S_{k}$, and the q_{1}, \ldots, q_{k} are pairwise distinct states in $\{2,3, \ldots, n-2\}$ that are not in S_{k}.

Proof. Consider the DFA D over $\{a, b, c, d\}$ shown in Fig. 5 Let L be the language accepted by the DFA D.

Construct the NFA N_{1} for the language L^{+}from the DFA D by adding loops on a and d in the initial state 0 . In the subset automaton corresponding to the NFA N_{1}, every subset of $\{0,1, \ldots, n-2\}$ containing state 0 is reachable from the initial state $\{0\}$ on a string over $\{a, b\}$ since each subset $\left\{0, i_{1}, i_{2}, \ldots, i_{k}\right\}$ of size k, where $1 \leq k \leq n-1$ and $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n-2$, is reached from the set $\left\{0, \overline{i_{2}}-\overline{i_{1}}, \ldots, i_{k}-i_{1}\right\}$ of size $k-1$ on the string $a b^{i_{1}-1}$. Moreover, after reading every symbol of string $a b^{i_{1}-1}$, the subset automaton is always in a set that contains state 0 . All such states are rejecting in the DFA D_{2} for the language L^{+c}, and therefore, in the NFA N_{3} for L^{+c+}, the initial state $\{0\}$ only goes to the rejecting state $\left\{0, i_{1}, i_{2}, \ldots, i_{k}\right\}$ on $a b^{i_{1}-1}$.

Hence in the DFA D_{3}, for every subset S of $\{0,1, \ldots, n-2\}$ containing 0 , the initial state $\{\{0\}\}$ goes to the state $\{S\}$ on a string w over $\{a, b\}$.

Now notice that transitions on symbols a and b perform the cyclic permutation of states in $\{2,3, \ldots, n-2\}$. For every state q in $\{2,3, \ldots, n-2\}$ and an integer i, let

$$
q \ominus i=((q-i-2) \bmod n-3)+2
$$

denote the state in $\{2,3, \ldots, n-2\}$ that goes to the state q on string a^{i}, and, in fact, on every string over $\{a, b\}$ of length i. Next, for a subset S of $\{2,3, \ldots, n-2\}$ let

$$
S \ominus i=\{q \ominus i \mid q \in S\}
$$

Thus $S \ominus i$ is a shift of S, and if $q \notin S$, then $q \ominus i \notin S \ominus i$.
The proof of the lemma now proceeds by induction on k. To prove the base case, let S_{1} be a subset of $\{2,3, \ldots, n-2\}$ and q_{1} be a state in $\{2,3, \ldots, n-2\}$ with $q_{1} \notin S_{1}$. In the NFA N_{3}, the initial state $\{0\}$ goes to the state $\{0\} \cup S_{1}$ on a string w over $\{a, b\}$. Next, state $q_{1} \ominus|w|$ is in $\{2,3, \ldots, n-2\}$, and it is reached from state 1 on a string b^{ℓ}, while state 0 goes to itself on b. In the DFA D_{3} we thus have

$$
\{\{0\}\} \xrightarrow{a}\{\{0,1\}\} \xrightarrow{b^{\ell}}\left\{\left\{0, q_{1} \ominus|w|\right\}\right\} \xrightarrow{w}\left\{\left\{0, q_{1}\right\} \cup S_{1}\right\},
$$

which proves the base case.
Now assume that every set of size $k-1$ satisfying the lemma is reachable in the DFA D_{3}. Let

$$
\mathcal{S}=\left\{\left\{0, q_{1}\right\} \cup S_{1},\left\{0, q_{2}\right\} \cup S_{2}, \ldots,\left\{0, q_{k}\right\} \cup S_{k}\right\}
$$

be a set of size k satisfying the lemma. Let w be a string, on which $\{\{0\}\}$ goes to $\left\{\{0\} \cup S_{1}\right\}$, and let ℓ be an integer such that 1 goes to $q_{1} \ominus|w|$ on b^{ℓ}. Let

$$
\mathcal{S}^{\prime}=\left\{\left\{0, q_{2} \ominus|w| \ominus \ell\right\} \cup S_{2} \ominus|w| \ominus \ell, \ldots,\left\{0, q_{k} \ominus|w| \ominus \ell\right\} \cup S_{k} \ominus|w| \ominus \ell\right\}
$$

where the operation \ominus is understood to have left-associativity. Then \mathcal{S}^{\prime} is reachable by induction. On c, every set $\left\{0, q_{i} \ominus|w| \ominus \ell\right\} \cup S_{i} \ominus|w| \ominus \ell$ goes to the accepting state $\left\{n-1, q_{i} \ominus|w| \ominus \ell\right\} \cup S_{i} \ominus|w| \ominus \ell$ in the NFA N_{3}, and therefore also to the initial state $\{0\}$. Then, on d, every state $\left\{n-1, q_{i} \ominus|w| \ominus \ell\right\} \cup S_{i} \ominus|w| \ominus \ell$ goes to the rejecting state $\left\{0, q_{i} \ominus|w| \ominus \ell\right\} \cup S_{i} \ominus|w| \ominus \ell$, while $\{0\}$ goes to $\{0,1\}$. Hence, in the DFA D_{3} we have

$$
\begin{aligned}
\mathcal{S}^{\prime} & \stackrel{c}{\rightarrow}\left\{\{0\},\left\{n-1, q_{2} \ominus|w| \ominus \ell\right\} \cup S_{2} \ominus|w| \ominus \ell, \ldots,\left\{n-1, q_{k} \ominus|w| \ominus \ell\right\} \cup S_{k} \ominus|w| \ominus \ell\right\} \\
& \xrightarrow{d}\left\{\{0,1\},\left\{0, q_{2} \ominus|w| \ominus \ell\right\} \cup S_{2} \ominus|w| \ominus \ell, \ldots,\left\{0, q_{k} \ominus|w| \ominus \ell\right\} \cup S_{k} \ominus|w| \ominus \ell\right\} \\
& \xrightarrow{b^{\ell}}\left\{\left\{0, q_{1} \ominus|w|\right\},\left\{0, q_{2} \ominus|w|\right\} \cup S_{2} \ominus|w|, \ldots,\left\{0, q_{k} \ominus|w|\right\} \cup S_{k} \ominus|w|\right\} \xrightarrow{w} \mathcal{S} .
\end{aligned}
$$

It follows that \mathcal{S} is reachable in the DFA D_{3}. This concludes the proof.
The next lemma shows that some rejecting states of the DFA D_{3}, in which no set is a subset of some other set, may be pairwise distinguishable. To prove the result it uses four symbols, one of which is the symbol b from the proof of the previuos lemma.

Fig. 6. DFA D over $\{b, e, f, g\}$ with many distinguishable states in DFA D_{3}.

Lemma 4. Let $n \geq 5$. There exists an n-state $D F A D=\left(Q_{n}, \Sigma, \delta, 0,\{0,1\}\right)$ over a four-letter alphabet Σ such that all the states of the DFA D_{3} for the language $L(D)^{+c+}$ of the form

$$
\left\{\{0\} \cup T_{1},\{0\} \cup T_{2}, \ldots,\{0\} \cup T_{k}\right\}
$$

in which no set is a subset of some other set and each $T_{i} \subseteq\{2,3, \ldots, n-2\}$, are pairwise distinguishable.

Proof. To prove the lemma, we reuse the symbol b from the proof of Lemma 3, and define three new symbols e, f, g as shown in Fig. 6.

Notice that on states $2,3, \ldots, n-2$, the symbol b performs a big permutation, while e performs a trasposition, and f a contraction. It follows that every transformation of states $2,3, \ldots, n-2$ can be performed by strings over $\{b, e, f\}$. In particular, for each subset T of $\{2,3, \ldots, n-2\}$, there is a string w_{T} over $\{b, e, f\}$ such that in D, each state in T goes to state 2 on w_{T}, while each state in $\{2,3, \ldots, n-2\} \backslash T$ goes to state 3 on w_{T}. Moreover, state 0 remains in itself while reading the string w_{T}. Next, the symbol g sends state 0 to state 2 , state 3 to state 0 , and state 2 to itself.

It follows that in the NFA N_{3}, the state $\{0\} \cup T$, as well as each state $\{0\} \cup T^{\prime}$ with $T^{\prime} \subseteq T$, goes to the accepting state $\{2\}$ on $w_{T} \cdot g$. However, every other state $\{0\} \cup T^{\prime \prime}$ with $T^{\prime \prime} \subseteq\{2,3, \ldots, n-2\}$ is in a state containig 0 , thus in a rejecting state of N_{3}, while reading $w_{T} \cdot g$, and it is in the rejecting state $\{0,3\}$ after reading w_{T}. Then $\{0,3\}$ goes to the rejecting state $\{0,2\}$ on reading g.

Hence the string $w_{T} \cdot g$ is accepted by the NFA N_{3} from each state $\{0\} \cup T^{\prime}$ with $T^{\prime} \subseteq T$, but rejected from any other state $\{0\} \cup T^{\prime \prime}$ with $T^{\prime \prime} \subseteq\{2,3, \ldots, n-2\}$.

Now consider two different states of the DFA D_{3}

$$
\begin{aligned}
& \mathcal{T}=\left\{\{0\} \cup T_{1}, \ldots,\{0\} \cup T_{k}\right\}, \\
& \mathcal{R}=\left\{\{0\} \cup R_{1}, \ldots,\{0\} \cup R_{\ell}\right\},
\end{aligned}
$$

in which no set is a subset of some other set and where each T_{i} and each R_{j} is a subset of $\{2,3, \ldots, n-2\}$. Then, without loss of generality, there is a set $\{0\} \cup T_{i}$ in \mathcal{T} that is not in \mathcal{R}. If no set $\{0\} \cup T^{\prime}$ with $T^{\prime} \subseteq T_{i}$ is in \mathcal{R}, then the string $w_{T_{i}} \cdot g$ is accepted from \mathcal{T} but not from \mathcal{R}. If there is a subset T^{\prime} of T_{i} such that $\{0\} \cup T^{\prime}$ is in \mathcal{R}, then for each suset $T^{\prime \prime}$ of T^{\prime} the set $\{0\} \cup T^{\prime \prime}$ cannot be in \mathcal{T}, and then the string $w_{T^{\prime}} \cdot g$ is accepted from \mathcal{R} but not from \mathcal{T}.

Corollary 2 (Star-Complement-Star: Lower Bound). There exists a language L accepted by an n-state DFA over a seven-letter input alphabet, such that any DFA for the language $L^{* c *}$ has $2^{\Omega(n \log n)}$ states.

Proof. Let $\Sigma=\{a, b, c, d, e, f, g\}$ and L be the language accepted by n-state DFA $D=(\{0,1, \ldots, n-1\}, \Sigma, \delta, 0,\{0,1\})$, where transitions on symbols a, b, c, d are defined as in the proof of Lemma 3 and on symbols d, e, f as in the proof of Lemma 4.

Let $m=\lceil n / 2\rceil$. By Lemma 3, the following states are reachable in the DFA D_{3} for L^{+c+} :

$$
\left\{\{0,2\} \cup S_{1},\{0,3\} \cup S_{2}, \ldots,\{0, m-2\} \cup S_{m-1}\right\}
$$

where $S_{1} \subseteq S_{2} \subseteq \cdots \subseteq S_{m-1} \subseteq\{m-1, m, \ldots, n-2\}$. The number of such subsets S_{i} is given by m^{n-m}, and we have

$$
m^{n-m} \geq\left(\frac{n}{2}\right)^{\frac{n}{2}-1}=2^{\Omega(n \log n)}
$$

By Lemma 4, all these states are pairwise distinguishable, and the lower bound follows.

Hence we have an asymptotically tight bound on the state complexity of star-complement-star operation that is significantly smaller than $2^{2^{n}}$.

Theorem 1. The state complexity of star-complement-star is $2^{\Theta(n \log n)}$.

4 Applications

We conclude with an application.
Corollary 3. Let L be a regular language, accepted by a DFA with n states. Then any language that can be expressed in terms of L and the operations of positive closure, Kleene closure, and complement has state complexity bounded by $2^{\Theta(n \log n)}$.

Proof. As shown in [1], every such language can be expressed, up to inclusion of ε, as one of the following 5 languages and their complements:

$$
L, L^{+}, L^{c+}, L^{+c+}, L^{c+c+}
$$

If the state complexity of L is n, then clearly the state complexity of L^{c} is also n. Furthermore, we know that the state complexity of L^{+}is bounded by 2^{n} (a more exact bound can be found in [7]); this also handles L^{c+}. The remaining languages can be handled with Theorem 1 .

References

1. Brzozowski, J., Grant, E., and Shallit, J.: Closures in formal languages and Kuratowski's theorem, Int. J. Found. Comput. Sci. 22, 301-321 (2011)
2. Kleitman, D. and Markowsky, G.: On Dedekind's problem: the number of isotone Boolean functions. II, Trans. Amer. Math. Soc. 213, 373-390 (1975)
3. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM Res. Develop. 3, 114-129 (1959)
4. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company, Boston (1997)
5. Sloane, N. J. A.: Online Encyclopedia of Integer Sequences, http://oeis.org
6. Yu, S.: Chapter 2: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages - Vol. I, pp. 41-110. Springer, Heidelberg (1997)
7. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations on regular languages. Theoret. Comput. Sci. 125, 315-328 (1994)

[^0]: * Research supported by VEGA grant 2/0183/11.

