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Abstract. Weresolve an open question by determining matching (asymp-
totic) upper and lower bounds on the state complexity of the operation
that sends a language L to (L* )*

1 Introduction

Let X be a finite nonempty alphabet, let L C X* be a language, let L = X* — L
denote the complement of L, and let L* (resp., L) denote the Kleene closure
(resp., positive closure) of the language L. If L is a regular language, its state
complezity is defined to be the number of states in the minimal deterministic
finite automaton accepting L [7]. In this paper we resolve an open question by
determining matching (asymptotic) upper and lower bounds on the deterministic
state complexity of the operations

L (TF)

L— (L_+>+

To simplify the exposition, we will write everything using an exponent nota-
tion, using ¢ to represent complement, as follows:

Lte.= L+
Lot .— (F)+,
and similarly for L*¢ and L*“*.
Note that
Lo _ {L+C+, ifegL;
Ltet U {e}, ifee L.

It follows that the state complexity of LTt and L*¢* differ by at most 1. In
what follows, we will work only with LT¢t,
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2 Upper Bound

Consider a deterministic finite automaton (DFA) D = (Q,,, X, 6,0, F') accepting
a language L, where Q,, := {0,1,...,n — 1}. As an example, consider the three-
state DFA over {a, b, ¢, d} shown in Fig. [ (left). To get a nondeterministic finite
automaton (NFA) N; for the language L+ from the DFA D, we add an e-
transition from every non-initial final state to the state 0. In our example, we
add an e-transition from state 1 to state 0; see Fig. [ (right). After applying
the subset construction to the NFA Ni we get a DFA D; for the language L.
The state set of D; consists of subsets of @, see Fig. 2 (left). Here the sets in
the labels of states are written without commas and brackets; thus, for example
012 stands for the set {0,1,2}. Next, we interchange the roles of the final and
non-final states of the DFA D1, and get a DFA D, for the language LT¢; see
Fig. 2 (right).

To get an NFA N3 for LTt from the DFA D5, we add an e-transition from
each non-initial final state of Ds to the state {0}, see Fig. Bl (top). Applying the
subset construction to the NFA N3 results in a DFA D3 for the language L1et
with its state set consisting of some sets of subsets of @,,; see Fig. Bl (middle).
Here, for example, the label 0, 2 corresponds to the set {{0}, {2}}. This gives an
upper bound of 22" on the state complexity of the operation plus-complement-
plus.

Our first result shows that in the minimal DFA for L*t" we do not have
any state {S1, Sz, ..., Sk}, in which a set S; is a subset of some other set S;; see
Fig. B (bottom). This reduces the upper bound to the number of antichains of
subsets of an n-element set known as the Dedekind number M (n) with [2]

") <togMmy< (") (14028,
[n/2] |n/2] ( n )
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Fig. 2. DFA D; for language L™ and DFA D for the language L™°.
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Fig.3. NFA N3, DFA Ds, and the minimal DFA D$" for the language L*¢T.



Lemma 1. IfS and T are subsets of Q, such that S C T, then the states {S,T}
and {S} of the DFA Ds for the language LTV are equivalent.

Proof. Let S and T be subsets of @, such that S C T. We only need to show
that if a string w is accepted by the NFA Nj starting from the state T, then it
also is accepted by N3 from the state S.

Assume w is accepted by N3 from T. Then in the NFA N3, an accepting
computation on w from state T looks like this:

T35T 5 {0} 5 Ty,

where w = uv, and state 1" goes to an accepting state 71 on u without using any
e-transitions, then T; goes to {0} on ¢, and then {0} goes to an accepting state
T5 on v; it also may happen that w = u, in which case the computation ends in
T. Let us show that S goes to an accepting state of the NFA N3 on w.

Since T' goes to an accepting state 73 on u in the NFA N3 without using
any e-transition, state T goes to the accepting state T in the DFA Dy, and
therefore to the rejecting state 17 of the DFA D;. Thus, every state ¢ in T goes
to rejecting states in the NFA N;. Since S C T, every state in .S goes to rejecting
states in the NFA N7, and therefore S goes to a rejecting state S in the DFA
D, thus to the accepting state S7 in the DFA Dy. Hence w = uw is accepted
from S in the NFA N3 by computation

S5 S 5 (0} ST
O

Hence whenever a state S = {Sl, Sa,..., Sk} of the DFA Dj contains two
subsets S; and S; with ¢ # j and S; C S;, then it is equivalet to state S\ {S;}.
Using this property, we get the following result.

Lemma 2. Let D be a DFA for a language L with state set Q,, and D™ be
the minimal DFA for LYt as described above. Then every state of D™ can be
expressed in the form

S={X1,Xo,..., X} (1)
where
—1<k<n;
— there exist subsets S C So C--- C S C Qp; and
— there exist qq, ..., qx, pairwise distinct states of D not in Sg; such that

- X, ={q}US; fori=1,2,... k.

Proof. Let D = (Qn, X,9,0, F).

For a state ¢ in @, and a symbol a in X, let g.a denote the state in @Q,,
to which ¢ goes on a, that is, g.a = §(g, a). For a subset X of @, let X.a denote
the set of states to which states in X go by a, that is,

X.a= U {6(q,a)}.
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Consider transitions on a symbol a in automata D, N1, D1, Do, N3; Fig. @ illus-
trates these transitions. In the NFA Nj, each state ¢ goes to a state in {0, g.a} if
q.a is a final state of D, and to state g.a if q.a is non-final. It follows that in the
DFA D, for LT, each state X (a subset of Q,,) goes on a to final state {0} U X.a
if X.a contains a final state of D, and to non-final state X.a if all states in X.a
are non-final in D. Hence in the DFA Dy for L™¢ each state X goes on a to
non-final state {0} U X.a if X.a contains a final state of D, and to the final state
X.a if all states in X.a are non-final in D.

Therefore, in the NFA N3 for LT¢T, each state X goes on a to a state in
{{0}, X.a} if all states in X.a are non-final in D, and to state {0} U X.a if X.a
contains a final state of D.

To prove the lemma for each state, we use induction on the length of the
shortest path from the initial state to the state of D™ in question. The base
case is a path of length 0. In this case, the initial state is {{0}}, which is in the
required form () with k =1,¢; =0, and S; = 0.

© ORI
(a2
()3

N N :

:
ORI (== @uxa)
Ol O=C)

X —>final {0} U X.a if X.a contains a final state X => non-final {0} U X.a if X.a contains a final state

Y —> non-final Y.a if all states in Y.a are non—fina‘l Y —> final Y.a if all the states in Y.a are non—final

Fig. 4. Transitions under symbol a in automata D, N1, D1, D2, N3.



For the induction step, let
S={X1,Xo,..., X},

where 1 < k < n, and
e 51 C S C--- C 5 CQy,
® qi1,...,qr are pairwise distinct states of D that are not in Sj and
o X;={q}US;fori=1,2,... k.

We now prove the result for all states reachable from S on a symbol a.
First, consider the case that each X; goes on a to a non-final state X/ in the
NFA Nj;. It follows that S goes on a to &' = {X1, X3,..., X}.}, where

X! ={gi.a} U S;.aU{0}.

Write p; = ¢;.a and P; = S;.a U {0}. Then we have Py C P, C--- C P, C Qp.

If p; = p; for some 4, j with i < j, then X/ C X, and therefore X} can be
removed from state S’ in the minimal DFA D", After several such removals,
we arrive at an equivalent state

8" = (X}, XY,..., X/}

where ¢ <k, X" = {r;} UR; and the states r1,73,...,7, are pairwise distinct.
If r; € Ry for some i with ¢ < £, then X; C Ry; thus Ry can be removed.
After all such removals, we get an equivalent set
8/// _ {X/I/ XI/I .XI/I}
— 1 2 gy

m

where m < ¢, X!” = {t;} UT,; and the states t1,ta,...,t, are pairwise distinct
and t1,tg,...,tm—1 are not in T,,. If t,,, ¢ T,,,, then the state S is in the required
form (). Otherwise, if T,,_1 is a proper subset of T,,, then there is a state ¢ in
Tn — Tim—1, and then we can take X/ = {t} UT,, — {t}: since t1,...,t;,_1 are
not in Ty, they are distinct from ¢, and moreover T,,,—1 C T), — {t}.

If Tyooy1 = T, then X1 DO X! and therefore X", can be removed from
S". After all these removals we either reach some Tj; that is a proper subset of
T, and then pick a state t in T}, — T; in the same way as above, or we only get
a single set T}y, which is in the required form {r;,} U T, — {rm}.

This proves that if each X; in S goes on a to a non-final state X/ in the
NFA N3, then S goes on a in the DFA D to a set that is in the required form

@.

Now consider the case that at least one X; in S goes to a final state X in
the NFA Nj. It follows that S goes to a final state

S/ = {{0}’X{7Xé? R 7X];}7

where X! = {g;.a} U Sj.a and if i # j, then X/ = {g;.a} U Si.a or X =
{0} U{¢;.a} US;.a We now can remove all X; that contain state 0, and arrive at

an equivalent state
S’ ={{o}, XV, X5, ..., X/},



where ¢ <k, and X! = {p;,}UP,, and P, C P, C--- C P, C Q,, and each p; is
distinct from 0.
Now in the same way as above we arrive at an equivalent state

({0}, {t.} U1, ... {tm} U T}

where m < /, all the t; are pairwise distinct and different from 0, and moreover,
the states ti,...,t,,_1 are not in T,,. If ¢,, is not in T,,, then we are done.
Otherwise, we remove all sets with T; = T,,,. We either arrive at a proper subset
T; of Ty, and may pick a state t in T3, — T} to play the role of new t,,, or we
arrive at {{0},T},}, which is in the required form {{0} U@, ¢, U Ty, — {tm}}-
This completes the proof of the lemma.

Corollary 1 (Star-Complement-Star: Upper Bound). If a language L is
accepted by a DFA of n states, then the language L** is accepted by a DFA of
20(nlogn) giytes.

Proof. Lemma [2 gives the following upper bound

S ()

k=1
since we first choose any permutation of k distinct elements ¢1, ..., gx, and then
represent each set S; as disjoint union of sets S7,5%,...,S; given by a function

f from Q. — {q1,...,qr} to {1,2,...,k + 1} as follows:
Si={q¢lfl9=14}, Si=5US8U---US,

while states with f(¢) = k + 1 will be outside each S}; here U denotes a disjoint
union. Next, we have

n

Z<>k|k+1 Z<>n+1n k<n|(n+2) _QO(nlogn)7

k=1
and the upper bound follows. a

Remark 1. The summation Y, (7)k!(k + 1)"~* differs by one from Sloane’s
sequence A072597 [5]. These numbers are the coefficients of the exponential
generating function of 1/(e™® —x). It follows, by standard techniques, that these
numbers are asymptotically given by C1W (1)~ "n!, where

W (1) = .5671432904097838729999686622103555497538

is the Lambert W-function evaluated at 1, equal to the positive real solution of
the equation e® = 1/x, and C} is a constant, approximately

1.12511909098678593170279439143182676599.

The convergence is quite fast; this gives a somewhat more explicit version of the
upper bound.



Fig. 5. DFA D over {a,b, c,d} with many reachable states in DFA D3 for L.

3 Lower Bound

We now turn to the matching lower bound on the state complexity of plus-
complement-plus. The basic idea is to create one DFA where the DFA for Ltet
has many reachable states, and another where the DFA for LT¢* has many
distinguishable states. Then we “join” them together in Corollary 2

The following lemma uses a four-letter alphabet to prove the reachability of
some specific states of the DFA D3 for plus-complement-plus.

Lemma 3. There exists an n-state DFA D = (Qn,{a,b,c,d},§,0,{0,1}) such
that in the DFA Dj for the language L(D)T¢T every state of the form

{{07Q1}US15{07q2} USQv" 5{07Qk} USk}

is reachable, where 1 <k <n—2, S1,5,...,Sk are subsets of {2,3,...,n— 2}
with S € S C --- C Sk, and the q1,...,q are pairwise distinct states in
{2,3,...,n— 2} that are not in Sk.

Proof. Consider the DFA D over {a,b,c,d} shown in Fig. Bl Let L be the lan-
guage accepted by the DFA D.

Construct the NFA N for the language L™ from the DFA D by adding loops
on a and d in the initial state 0. In the subset automaton corresponding to the
NFA Ni, every subset of {0,1,...,n — 2} containing state 0 is reachable from

the initial state {0} on a string over {a, b} since each subset {0, 1,42, ... 4%} of
size k, where 1 < k <n—1land 1 <i; <iy < -+ < i <n—2,is reached
from the set {0,iy —i1,...,i; — i1} of size k — 1 on the string ab’*~*. Moreover,

after reading every symbol of string ab’*~!, the subset automaton is always in
a set that contains state 0. All such states are rejecting in the DFA D5 for the
language LT¢, and therefore, in the NFA N3 for L™t the initial state {0} only
goes to the rejecting state {0, 1,42, ...,i;} on ab 1.

Hence in the DFA Ds, for every subset S of {0,1,...,n — 2} containing 0,
the initial state {{0}} goes to the state {S} on a string w over {a, b}.

Now notice that transitions on symbols a and b perform the cyclic permuta-
tion of states in {2,3,...,n — 2}. For every state ¢ in {2,3,...,n — 2} and an
integer 7, let

qoi=((¢g—i—2)modn—3)+2



denote the state in {2,3,...,n — 2} that goes to the state ¢ on string a’, and, in
fact, on every string over {a, b} of length . Next, for a subset S of {2,3,...,n—2}
let

Sei={¢oi|qe S}

Thus S & is a shift of S, and if ¢ ¢ S, then & i ¢ S S .

The proof of the lemma now proceeds by induction on k. To prove the base
case, let S7 be a subset of {2,3,...,n— 2} and ¢1 be a state in {2,3,...,n— 2}
with ¢1 ¢ S1. In the NFA N3, the initial state {0} goes to the state {0} U.S; on a
string w over {a,b}. Next, state g1 © |w| is in {2,3,...,n — 2}, and it is reached
from state 1 on a string b, while state 0 goes to itself on b. In the DFA D3 we
thus have

({0} 5 {00,135 {{0.01 © [w]}} % {{0.q1} U Sy},

which proves the base case.

Now assume that every set of size k — 1 satisfying the lemma is reachable in
the DFA Ds. Let

§= {{qul} USlv{anQ}USQa' 5{07Qk} USk}

be a set of size k satisfying the lemma. Let w be a string, on which {{0}} goes
to {{0} U S1}, and let £ be an integer such that 1 goes to ¢1 © |w| on b’. Let

S = {{o,q29|w|ee}u52@|w|ez,...,{o,qke|w|ez}uske|w|ee},

where the operation © is understood to have left-associativity. Then &' is reach-
able by induction. On ¢, every set {0,¢; & |w| &£} U S; & |w| © £ goes to the
accepting state {n—1, ¢; ©|w|6L}US; ©|w|©¢ in the NFA N3, and therefore also
to the initial state {0}. Then, on d, every state {n —1,¢; © |[w|&}US; © |w|&¢
goes to the rejecting state {0, ¢; ©|w|©L}US; ©|w|© ¢, while {0} goes to {0,1}.
Hence, in the DFA D3 we have

85 {0} {n-1L,eo w0 US 6w ol .. {n-1,¢6 w6 USowor}

LA {{0,1},{0,qze|w|@e}usge|w|e£,...,{0,qke|w|e£}u5ke|w|@e}

bt w

% {00 © ful}, {0,026 [} USo S .. {0,0 © [uwl} U S © ful } 5 .
It follows that S is reachable in the DFA Ds. This concludes the proof. a

The next lemma shows that some rejecting states of the DFA Dg, in which
no set is a subset of some other set, may be pairwise distinguishable. To prove

the result it uses four symbols, one of which is the symbol b from the proof of
the previuos lemma.



efg

b,efg

Fig. 6. DFA D over {b,e, f,g} with many distinguishable states in DFA Ds.

Lemma 4. Let n > 5. There exists an n-state DFA D = (Q,,X,4§,0,{0,1})
over a four-letter alphabet X such that all the states of the DFA Ds for the
language L(D)" of the form

{{o} Uy, {0} UTQ,...,{O}UTk},

in which no set is a subset of some other set and each T; C {2,3,...,n — 2},
are pairwise distinguishable.

Proof. To prove the lemma, we reuse the symbol b from the proof of Lemma [3]
and define three new symbols e, f, g as shown in Fig.

Notice that on states 2,3, ...,n—2, the symbol b performs a big permutation,
while e performs a trasposition, and f a contraction. It follows that every trans-
formation of states 2,3,...,n — 2 can be performed by strings over {b,e, f}.
In particular, for each subset T' of {2,3,...,n — 2}, there is a string wr over
{b, e, f} such that in D, each state in T goes to state 2 on wr, while each state
in {2,3,...,n—2}\ T goes to state 3 on wr. Moreover, state 0 remains in itself
while reading the string wr. Next, the symbol g sends state 0 to state 2, state 3
to state 0, and state 2 to itself.

It follows that in the NFA N3, the state {0}UT, as well as each state {0} UT’
with 77 C T, goes to the accepting state {2} on wr - g. However, every other
state {0} UT” with T” C {2,3,...,n — 2} is in a state containig 0, thus in a
rejecting state of N3, while reading wr - g, and it is in the rejecting state {0, 3}
after reading wr. Then {0, 3} goes to the rejecting state {0,2} on reading g.

Hence the string wr-g is accepted by the NFA N3 from each state {0}UT” with
T’ C T, but rejected from any other state {0} UT” with T C {2,3,...,n — 2}.

Now consider two different states of the DFA D3

T={{0}UuT,..., {0} UT:},
R ={{0}URy,....{0}UR},

in which no set is a subset of some other set and where each T; and each R; is a
subset of {2,3,...,n—2}. Then, without loss of generality, there is a set {0} UT;
in 7 that is not in R. If no set {0} UT’ with 7" C T; is in R, then the string
wr, - g is accepted from 7 but not from R. If there is a subset 7" of T; such that
{0} U T’ is in R, then for each suset T" of T” the set {0} UT" cannot be in T,
and then the string wy - g is accepted from R but not from 7. ad

10



Corollary 2 (Star-Complement-Star: Lower Bound). There exists a lan-
guage L accepted by an n-state DFA over a seven-letter input alphabet, such that
any DFA for the language L*** has 27198 ™) states.

Proof. Let ¥ = {a,b,c,d,e, f,g} and L be the language accepted by n-state
DFA D = ({0,1,...,n—1},X,6,0,{0,1}), where transitions on symbols a, b, ¢, d
are defined as in the proof of Lemma[3] and on symbols d, e, f as in the proof of
Lemma [4]

Let m = [n/2]. By Lemma[3] the following states are reachable in the DFA
D5 for L*et:

{{0,2} U S1,{0,3} U Ss, ..., {0,m — 2} U Spu_1},

where S;1 C S; C -+ C Sppm1 € {m — 1,m,...,n — 2}. The number of such
subsets S; is given by m™ ™™, and we have

mnT™m > (ﬁ)%_l _ 2Q(nlogn)'
—\2

By Lemma [ all these states are pairwise distinguishable, and the lower bound
follows. O

Hence we have an asymptotically tight bound on the state complexity of
star-complement-star operation that is significantly smaller than 22" .

Theorem 1. The state complexity of star-complement-star is 2°1°8™) ad

4 Applications

We conclude with an application.

Corollary 3. Let L be a reqular language, accepted by a DFA with n states.
Then any language that can be expressed in terms of L and the operations of

positive closure, Kleene closure, and complement has state complezity bounded
by 2@(nlog n)

Proof. As shown in [1], every such language can be expressed, up to inclusion
of €, as one of the following 5 languages and their complements:

L,L+,LC+,L+C+,LC+C+.

If the state complexity of L is n, then clearly the state complexity of L€ is also n.
Furthermore, we know that the state complexity of L™ is bounded by 2" (a more
exact bound can be found in [7]); this also handles L. The remaining languages
can be handled with Theorem [I] O

11
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