The state complexity of star-complement-star

Galina Jirásková^{1,*} and Jeffrey Shallit²

 Mathematical Institute, Slovak Academy of Sciences Grešákova 6, 040 01 Košice, Slovakia jiraskov@saske.sk
School of Computer Science, University of Waterloo Waterloo, ON N2L 3G1 Canada shallit@cs.uwaterloo.ca

Abstract. We resolve an open question by determining matching (asymptotic) upper and lower bounds on the state complexity of the operation that sends a language L to $(\overline{L^*})^*$.

1 Introduction

Let Σ be a finite nonempty alphabet, let $L \subseteq \Sigma^*$ be a language, let $\overline{L} = \Sigma^* - L$ denote the complement of L, and let L^* (resp., L^+) denote the Kleene closure (resp., positive closure) of the language L. If L is a regular language, its *state complexity* is defined to be the number of states in the minimal deterministic finite automaton accepting L [7]. In this paper we resolve an open question by determining matching (asymptotic) upper and lower bounds on the deterministic state complexity of the operations

$$L \to \left(\overline{L^*}\right)^*$$
$$L \to \left(\overline{L^+}\right)^+.$$

To simplify the exposition, we will write everything using an exponent notation, using c to represent complement, as follows:

$$L^{+c} := \overline{L^+}$$
$$L^{+c+} := (\overline{L^+})^+,$$

and similarly for L^{*c} and L^{*c*} .

Note that

$$L^{*c*} = \begin{cases} L^{+c+}, & \text{if } \varepsilon \notin L; \\ L^{+c+} \cup \{\varepsilon\}, & \text{if } \varepsilon \in L. \end{cases}$$

It follows that the state complexity of L^{+c+} and L^{*c*} differ by at most 1. In what follows, we will work only with L^{+c+} .

^{*} Research supported by VEGA grant 2/0183/11.

2 Upper Bound

Consider a deterministic finite automaton (DFA) $D = (Q_n, \Sigma, \delta, 0, F)$ accepting a language L, where $Q_n := \{0, 1, \ldots, n-1\}$. As an example, consider the threestate DFA over $\{a, b, c, d\}$ shown in Fig. 1 (left). To get a nondeterministic finite automaton (NFA) N_1 for the language L^+ from the DFA D, we add an ε transition from every non-initial final state to the state 0. In our example, we add an ε -transition from state 1 to state 0; see Fig. 1 (right). After applying the subset construction to the NFA N_1 we get a DFA D_1 for the language L^+ . The state set of D_1 consists of subsets of Q_n see Fig. 2 (left). Here the sets in the labels of states are written without commas and brackets; thus, for example 012 stands for the set $\{0, 1, 2\}$. Next, we interchange the roles of the final and non-final states of the DFA D_1 , and get a DFA D_2 for the language L^{+c} ; see Fig. 2 (right).

To get an NFA N_3 for L^{+c+} from the DFA D_2 , we add an ε -transition from each non-initial final state of D_2 to the state $\{0\}$, see Fig. 3 (top). Applying the subset construction to the NFA N_3 results in a DFA D_3 for the language L^{+c+} with its state set consisting of some sets of subsets of Q_n ; see Fig. 3 (middle). Here, for example, the label 0, 2 corresponds to the set $\{\{0\}, \{2\}\}$. This gives an upper bound of 2^{2^n} on the state complexity of the operation plus-complementplus.

Our first result shows that in the minimal DFA for L^{+c+} we do not have any state $\{S_1, S_2, \ldots, S_k\}$, in which a set S_i is a subset of some other set S_j ; see Fig. 3 (bottom). This reduces the upper bound to the number of antichains of subsets of an *n*-element set known as the Dedekind number M(n) with [2]

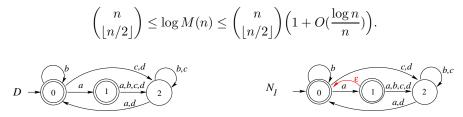


Fig. 1. DFA D for a language L and NFA N_1 for the language L^+ .

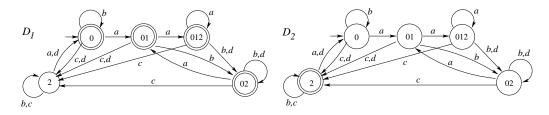


Fig. 2. DFA D_1 for language L^+ and DFA D_2 for the language L^{+c} .

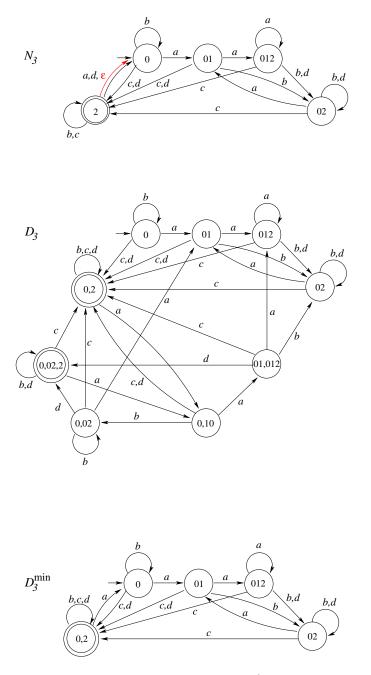


Fig. 3. NFA N_3 , DFA D_3 , and the minimal DFA D_3^{\min} for the language L^{+c+} .

Lemma 1. If S and T are subsets of Q_n such that $S \subseteq T$, then the states $\{S, T\}$ and $\{S\}$ of the DFA D_3 for the language L^{+c+} are equivalent.

Proof. Let S and T be subsets of Q_n such that $S \subseteq T$. We only need to show that if a string w is accepted by the NFA N_3 starting from the state T, then it also is accepted by N_3 from the state S.

Assume w is accepted by N_3 from T. Then in the NFA N_3 , an accepting computation on w from state T looks like this:

$$T \xrightarrow{u} T_1 \xrightarrow{\varepsilon} \{0\} \xrightarrow{v} T_2,$$

where w = uv, and state T goes to an accepting state T_1 on u without using any ε -transitions, then T_1 goes to $\{0\}$ on ε , and then $\{0\}$ goes to an accepting state T_2 on v; it also may happen that w = u, in which case the computation ends in T_1 . Let us show that S goes to an accepting state of the NFA N_3 on u.

Since T goes to an accepting state T_1 on u in the NFA N_3 without using any ε -transition, state T goes to the accepting state T_1 in the DFA D_2 , and therefore to the rejecting state T_1 of the DFA D_1 . Thus, every state q in T goes to rejecting states in the NFA N_1 . Since $S \subseteq T$, every state in S goes to rejecting states in the NFA N_1 , and therefore S goes to a rejecting state S_1 in the DFA D_1 , thus to the accepting state S_1 in the DFA D_2 . Hence w = uv is accepted from S in the NFA N_3 by computation

$$S \xrightarrow{u} S_1 \xrightarrow{\varepsilon} \{0\} \xrightarrow{v} T_2.$$

Hence whenever a state $S = \{S_1, S_2, \ldots, S_k\}$ of the DFA D_3 contains two subsets S_i and S_j with $i \neq j$ and $S_i \subseteq S_j$, then it is equivalet to state $S \setminus \{S_j\}$. Using this property, we get the following result.

Lemma 2. Let D be a DFA for a language L with state set Q_n , and D_3^{\min} be the minimal DFA for L^{+c+} as described above. Then every state of D_3^{\min} can be expressed in the form

$$\mathcal{S} = \{X_1, X_2, \dots, X_k\}\tag{1}$$

where

 $-1 \leq k \leq n;$

- there exist subsets $S_1 \subseteq S_2 \subseteq \cdots \subseteq S_k \subseteq Q_n$; and

- there exist q_1, \ldots, q_k , pairwise distinct states of D not in S_k ; such that
- $-X_i = \{q_i\} \cup S_i \text{ for } i = 1, 2, \dots, k.$

Proof. Let $D = (Q_n, \Sigma, \delta, 0, F)$.

For a state q in Q_n and a symbol a in Σ , let q.a denote the state in Q_n , to which q goes on a, that is, $q.a = \delta(q, a)$. For a subset X of Q_n let X.a denote the set of states to which states in X go by a, that is,

$$X.a = \bigcup_{q \in X} \{\delta(q, a)\}.$$

Consider transitions on a symbol a in automata D, N_1, D_1, D_2, N_3 ; Fig. 4 illustrates these transitions. In the NFA N_1 , each state q goes to a state in $\{0, q.a\}$ if q.a is a final state of D, and to state q.a if q.a is non-final. It follows that in the DFA D_1 for L^+ , each state X (a subset of Q_n) goes on a to final state $\{0\} \cup X.a$ if X.a contains a final state of D, and to non-final state X are non-final in D. Hence in the DFA D_2 for L^{+c} , each state X goes on a to non-final state $\{0\} \cup X.a$ if X.a contains a final state $\{0\} \cup X.a$ if X.a contains a final state $\{0\} \cup X.a$ if X.a contains a final state $\{0\} \cup X.a$ if X.a contains a final state $\{0\} \cup X.a$ if X.a contains a final state of D, and to the final state X.a if all states in X.a are non-final in D.

Therefore, in the NFA N_3 for L^{+c+} , each state X goes on a to a state in $\{\{0\}, X.a\}$ if all states in X.a are non-final in D, and to state $\{0\} \cup X.a$ if X.a contains a final state of D.

To prove the lemma for each state, we use induction on the length of the shortest path from the initial state to the state of D_3^{\min} in question. The base case is a path of length 0. In this case, the initial state is $\{\{0\}\}$, which is in the required form (1) with $k = 1, q_1 = 0$, and $S_1 = \emptyset$.

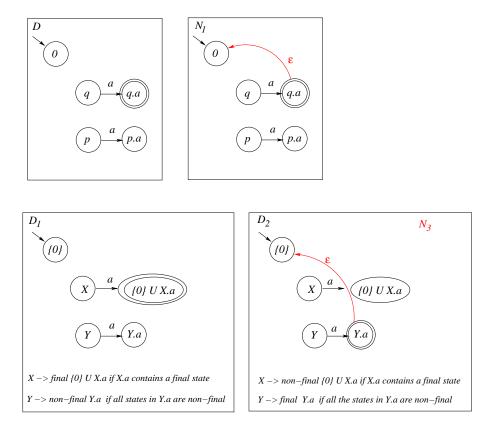


Fig. 4. Transitions under symbol a in automata D, N_1, D_1, D_2, N_3 .

For the induction step, let

$$\mathcal{S} = \{X_1, X_2, \dots, X_k\},\$$

where $1 \leq k \leq n$, and

- $S_1 \subseteq S_2 \subseteq \cdots \subseteq S_k \subseteq Q_n$,
- q_1, \ldots, q_k are pairwise distinct states of D that are not in S_k and
- $X_i = \{q_i\} \cup S_i \text{ for } i = 1, 2, \dots, k.$

We now prove the result for all states reachable from S on a symbol a.

First, consider the case that each X_i goes on a to a non-final state X'_i in the NFA N_3 . It follows that S goes on a to $S' = \{X'_1, X'_2, \ldots, X'_k\}$, where

$$X'_{i} = \{q_{i}.a\} \cup S_{i}.a \cup \{0\}.$$

Write $p_i = q_i a$ and $P_i = S_i a \cup \{0\}$. Then we have $P_1 \subseteq P_2 \subseteq \cdots \subseteq P_k \subseteq Q_n$.

If $p_i = p_j$ for some i, j with i < j, then $X'_i \subseteq X'_j$, and therefore X'_j can be removed from state S' in the minimal DFA D_3^{\min} . After several such removals, we arrive at an equivalent state

$$S'' = \{X''_1, X''_2, \dots, X''_\ell\}$$

where $\ell \leq k$, $X''_i = \{r_i\} \cup R_i$ and the states r_1, r_2, \ldots, r_ℓ are pairwise distinct.

If $r_i \in R_\ell$ for some *i* with $i < \ell$, then $X_i \subseteq R_\ell$; thus R_ℓ can be removed. After all such removals, we get an equivalent set

$$\mathcal{S}''' = \{X_1''', X_2''', \dots, X_m'''\}$$

where $m \leq \ell$, $X_i'' = \{t_i\} \cup T_i$ and the states t_1, t_2, \ldots, t_m are pairwise distinct and $t_1, t_2, \ldots, t_{m-1}$ are not in T_m . If $t_m \notin T_m$, then the state \mathcal{S}''' is in the required form (1). Otherwise, if T_{m-1} is a proper subset of T_m , then there is a state t in $T_m - T_{m-1}$, and then we can take $X_m'' = \{t\} \cup T_m - \{t\}$: since t_1, \ldots, t_{m-1} are not in T_m , they are distinct from t, and moreover $T_{m-1} \subseteq T_m - \{t\}$.

If $T_{m-1} = T_m$, then $X_{m-1}'' \supseteq X_m'''$, and therefore X_{m-1}'' can be removed from \mathcal{S}''' . After all these removals we either reach some T_i that is a proper subset of T_m , and then pick a state t in $T_m - T_i$ in the same way as above, or we only get a single set T_m , which is in the required form $\{r_m\} \cup T_m - \{r_m\}$.

This proves that if each X_i in S goes on a to a non-final state X'_i in the NFA N_3 , then S goes on a in the DFA D_3^{\min} to a set that is in the required form (1).

Now consider the case that at least one X_j in S goes to a final state X'_j in the NFA N_3 . It follows that S goes to a final state

$$\mathcal{S}' = \{\{0\}, X'_1, X'_2, \dots, X'_k\},\$$

where $X'_j = \{q_j.a\} \cup S_j.a$ and if $i \neq j$, then $X'_i = \{q_i.a\} \cup S_i.a$ or $X'_i = \{0\} \cup \{q_i.a\} \cup S_i.a$ We now can remove all X_i that contain state 0, and arrive at an equivalent state

$$\mathcal{S}'' = \{\{0\}, X_1'', X_2'', \dots, X_\ell''\}$$

where $\ell \leq k$, and $X''_i = \{p_i\} \cup P_i$, and $P_1 \subseteq P_2 \subseteq \cdots \subseteq P_\ell \subseteq Q_n$, and each p_i is distinct from 0.

Now in the same way as above we arrive at an equivalent state

$$\{\{0\}, \{t_1\} \cup T_1, \dots, \{t_m\} \cup T_m\}$$

where $m \leq \ell$, all the t_i are pairwise distinct and different from 0, and moreover, the states t_1, \ldots, t_{m-1} are not in T_m . If t_m is not in T_m , then we are done. Otherwise, we remove all sets with $T_i = T_m$. We either arrive at a proper subset T_j of T_m , and may pick a state t in $T_m - T_j$ to play the role of new t_m , or we arrive at $\{\{0\}, T_m\}$, which is in the required form $\{\{0\} \cup \emptyset, t_m \cup T_m - \{t_m\}\}$. This completes the proof of the lemma.

Corollary 1 (Star-Complement-Star: Upper Bound). If a language L is accepted by a DFA of n states, then the language L^{*c*} is accepted by a DFA of $2^{O(n \log n)}$ states.

Proof. Lemma 2 gives the following upper bound

$$\sum_{k=1}^{n} \binom{n}{k} k! (k+1)^{n-k}$$

since we first choose any permutation of k distinct elements q_1, \ldots, q_k , and then represent each set S_i as disjoint union of sets S'_1, S'_2, \ldots, S'_i given by a function f from $Q_n - \{q_1, \ldots, q_k\}$ to $\{1, 2, \ldots, k+1\}$ as follows:

$$S'_{i} = \{q \mid f(q) = i\}, \qquad S_{i} = S'_{1} \stackrel{.}{\cup} S'_{2} \stackrel{.}{\cup} \cdots \stackrel{.}{\cup} S'_{i},$$

while states with f(q) = k + 1 will be outside each S'_i ; here $\dot{\cup}$ denotes a disjoint union. Next, we have

$$\sum_{k=1}^{n} \binom{n}{k} k! (k+1)^{n-k} \le n! \sum_{k=1}^{n} \binom{n}{k} (n+1)^{n-k} \le n! (n+2)^n = 2^{O(n\log n)},$$

and the upper bound follows.

Remark 1. The summation $\sum_{k=1}^{n} {n \choose k} k! (k+1)^{n-k}$ differs by one from Sloane's sequence A072597 [5]. These numbers are the coefficients of the exponential generating function of $1/(e^{-x}-x)$. It follows, by standard techniques, that these numbers are asymptotically given by $C_1 W(1)^{-n} n!$, where

$W(1) \doteq .5671432904097838729999686622103555497538$

is the Lambert W-function evaluated at 1, equal to the positive real solution of the equation $e^x = 1/x$, and C_1 is a constant, approximately

1.12511909098678593170279439143182676599.

The convergence is quite fast; this gives a somewhat more explicit version of the upper bound.

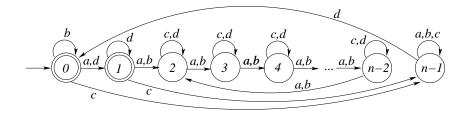


Fig. 5. DFA D over $\{a, b, c, d\}$ with many reachable states in DFA D_3 for L^{+c+} .

3 Lower Bound

We now turn to the matching lower bound on the state complexity of pluscomplement-plus. The basic idea is to create one DFA where the DFA for L^{+c+} has many reachable states, and another where the DFA for L^{+c+} has many distinguishable states. Then we "join" them together in Corollary 2.

The following lemma uses a four-letter alphabet to prove the reachability of some specific states of the DFA D_3 for plus-complement-plus.

Lemma 3. There exists an n-state DFA $D = (Q_n, \{a, b, c, d\}, \delta, 0, \{0, 1\})$ such that in the DFA D_3 for the language $L(D)^{+c+}$ every state of the form

$$\{\{0,q_1\}\cup S_1,\{0,q_2\}\cup S_2,\ldots,\{0,q_k\}\cup S_k\}$$

is reachable, where $1 \leq k \leq n-2, S_1, S_2, \ldots, S_k$ are subsets of $\{2, 3, \ldots, n-2\}$ with $S_1 \subseteq S_2 \subseteq \cdots \subseteq S_k$, and the q_1, \ldots, q_k are pairwise distinct states in $\{2, 3, \ldots, n-2\}$ that are not in S_k .

Proof. Consider the DFA D over $\{a, b, c, d\}$ shown in Fig. 5. Let L be the language accepted by the DFA D.

Construct the NFA N_1 for the language L^+ from the DFA D by adding loops on a and d in the initial state 0. In the subset automaton corresponding to the NFA N_1 , every subset of $\{0, 1, \ldots, n-2\}$ containing state 0 is reachable from the initial state $\{0\}$ on a string over $\{a, b\}$ since each subset $\{0, i_1, i_2, \ldots, i_k\}$ of size k, where $1 \le k \le n-1$ and $1 \le i_1 < i_2 < \cdots < i_k \le n-2$, is reached from the set $\{0, i_2 - i_1, \ldots, i_k - i_1\}$ of size k-1 on the string ab^{i_1-1} . Moreover, after reading every symbol of string ab^{i_1-1} , the subset automaton is always in a set that contains state 0. All such states are rejecting in the DFA D_2 for the language L^{+c} , and therefore, in the NFA N_3 for L^{+c+} , the initial state $\{0\}$ only goes to the rejecting state $\{0, i_1, i_2, \ldots, i_k\}$ on ab^{i_1-1} .

Hence in the DFA D_3 , for every subset S of $\{0, 1, \ldots, n-2\}$ containing 0, the initial state $\{\{0\}\}$ goes to the state $\{S\}$ on a string w over $\{a, b\}$.

Now notice that transitions on symbols a and b perform the cyclic permutation of states in $\{2, 3, \ldots, n-2\}$. For every state q in $\{2, 3, \ldots, n-2\}$ and an integer i, let

$$q \ominus i = ((q-i-2) \mod n-3) + 2$$

denote the state in $\{2, 3, \ldots, n-2\}$ that goes to the state q on string a^i , and, in fact, on every string over $\{a, b\}$ of length i. Next, for a subset S of $\{2, 3, \ldots, n-2\}$ let

$$S \ominus i = \{q \ominus i \mid q \in S\}.$$

Thus $S \ominus i$ is a shift of S, and if $q \notin S$, then $q \ominus i \notin S \ominus i$.

The proof of the lemma now proceeds by induction on k. To prove the base case, let S_1 be a subset of $\{2, 3, \ldots, n-2\}$ and q_1 be a state in $\{2, 3, \ldots, n-2\}$ with $q_1 \notin S_1$. In the NFA N_3 , the initial state $\{0\}$ goes to the state $\{0\} \cup S_1$ on a string w over $\{a, b\}$. Next, state $q_1 \ominus |w|$ is in $\{2, 3, \ldots, n-2\}$, and it is reached from state 1 on a string b^{ℓ} , while state 0 goes to itself on b. In the DFA D_3 we thus have

$$\left\{\{0\}\right\} \xrightarrow{a} \left\{\{0,1\}\right\} \xrightarrow{b^{\ell}} \left\{\{0,q_1 \ominus |w|\}\right\} \xrightarrow{w} \left\{\{0,q_1\} \cup S_1\right\},$$

which proves the base case.

Now assume that every set of size k-1 satisfying the lemma is reachable in the DFA D_3 . Let

$$\mathcal{S} = \left\{ \{0, q_1\} \cup S_1, \{0, q_2\} \cup S_2, \dots, \{0, q_k\} \cup S_k \right\}$$

be a set of size k satisfying the lemma. Let w be a string, on which $\{\{0\}\}$ goes to $\{\{0\} \cup S_1\}$, and let ℓ be an integer such that 1 goes to $q_1 \ominus |w|$ on b^{ℓ} . Let

$$\mathcal{S}' = \Big\{ \{0, q_2 \ominus |w| \ominus \ell \} \cup S_2 \ominus |w| \ominus \ell, \dots, \{0, q_k \ominus |w| \ominus \ell \} \cup S_k \ominus |w| \ominus \ell \Big\},\$$

where the operation \ominus is understood to have left-associativity. Then S' is reachable by induction. On c, every set $\{0, q_i \ominus |w| \ominus \ell\} \cup S_i \ominus |w| \ominus \ell$ goes to the accepting state $\{n-1, q_i \ominus |w| \ominus \ell\} \cup S_i \ominus |w| \ominus \ell$ in the NFA N_3 , and therefore also to the initial state $\{0\}$. Then, on d, every state $\{n-1, q_i \ominus |w| \ominus \ell\} \cup S_i \ominus |w| \ominus \ell$ goes to the rejecting state $\{0, q_i \ominus |w| \ominus \ell\} \cup S_i \ominus |w| \ominus \ell$, while $\{0\}$ goes to $\{0, 1\}$. Hence, in the DFA D_3 we have

$$\begin{split} \mathcal{S}' &\stackrel{c}{\rightarrow} \left\{ \{0\}, \{n-1, q_2 \ominus |w| \ominus \ell\} \cup S_2 \ominus |w| \ominus \ell, \dots, \{n-1, q_k \ominus |w| \ominus \ell\} \cup S_k \ominus |w| \ominus \ell \right\} \\ &\stackrel{d}{\rightarrow} \left\{ \{0, 1\}, \{0, q_2 \ominus |w| \ominus \ell\} \cup S_2 \ominus |w| \ominus \ell, \dots, \{0, q_k \ominus |w| \ominus \ell\} \cup S_k \ominus |w| \ominus \ell \right\} \\ &\stackrel{b^{\ell}}{\rightarrow} \left\{ \{0, q_1 \ominus |w|\}, \{0, q_2 \ominus |w|\} \cup S_2 \ominus |w|, \dots, \{0, q_k \ominus |w|\} \cup S_k \ominus |w| \right\} \stackrel{w}{\rightarrow} \mathcal{S}. \end{split}$$

It follows that S is reachable in the DFA D_3 . This concludes the proof. \Box

The next lemma shows that some rejecting states of the DFA D_3 , in which no set is a subset of some other set, may be pairwise distinguishable. To prove the result it uses four symbols, one of which is the symbol b from the proof of the previuos lemma.

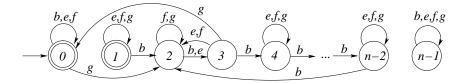


Fig. 6. DFA D over $\{b, e, f, g\}$ with many distinguishable states in DFA D_3 .

Lemma 4. Let $n \geq 5$. There exists an n-state DFA $D = (Q_n, \Sigma, \delta, 0, \{0, 1\})$ over a four-letter alphabet Σ such that all the states of the DFA D_3 for the language $L(D)^{+c+}$ of the form

$$\{\{0\} \cup T_1, \{0\} \cup T_2, \dots, \{0\} \cup T_k\},\$$

in which no set is a subset of some other set and each $T_i \subseteq \{2, 3, ..., n-2\}$, are pairwise distinguishable.

Proof. To prove the lemma, we reuse the symbol b from the proof of Lemma 3, and define three new symbols e, f, g as shown in Fig. 6.

Notice that on states $2, 3, \ldots, n-2$, the symbol *b* performs a big permutation, while *e* performs a trasposition, and *f* a contraction. It follows that every transformation of states $2, 3, \ldots, n-2$ can be performed by strings over $\{b, e, f\}$. In particular, for each subset *T* of $\{2, 3, \ldots, n-2\}$, there is a string w_T over $\{b, e, f\}$ such that in *D*, each state in *T* goes to state 2 on w_T , while each state in $\{2, 3, \ldots, n-2\} \setminus T$ goes to state 3 on w_T . Moreover, state 0 remains in itself while reading the string w_T . Next, the symbol *g* sends state 0 to state 2, state 3 to state 0, and state 2 to itself.

It follows that in the NFA N_3 , the state $\{0\} \cup T$, as well as each state $\{0\} \cup T'$ with $T' \subseteq T$, goes to the accepting state $\{2\}$ on $w_T \cdot g$. However, every other state $\{0\} \cup T''$ with $T'' \subseteq \{2, 3, \ldots, n-2\}$ is in a state containing 0, thus in a rejecting state of N_3 , while reading $w_T \cdot g$, and it is in the rejecting state $\{0, 3\}$ after reading w_T . Then $\{0, 3\}$ goes to the rejecting state $\{0, 2\}$ on reading g.

Hence the string $w_T \cdot g$ is accepted by the NFA N_3 from each state $\{0\} \cup T'$ with $T' \subseteq T$, but rejected from any other state $\{0\} \cup T''$ with $T'' \subseteq \{2, 3, \ldots, n-2\}$. Now consider two different states of the DFA D_3

$$\mathcal{T} = \{\{0\} \cup T_1, \dots, \{0\} \cup T_k\},\$$
$$\mathcal{R} = \{\{0\} \cup R_1, \dots, \{0\} \cup R_\ell\},\$$

in which no set is a subset of some other set and where each T_i and each R_j is a subset of $\{2, 3, \ldots, n-2\}$. Then, without loss of generality, there is a set $\{0\} \cup T_i$ in \mathcal{T} that is not in \mathcal{R} . If no set $\{0\} \cup T'$ with $T' \subseteq T_i$ is in \mathcal{R} , then the string $w_{T_i} \cdot g$ is accepted from \mathcal{T} but not from \mathcal{R} . If there is a subset T' of T_i such that $\{0\} \cup T'$ is in \mathcal{R} , then for each suset T'' of T' the set $\{0\} \cup T''$ cannot be in \mathcal{T} , and then the string $w_{T'} \cdot g$ is accepted from \mathcal{R} but not from \mathcal{R} . If $\{0\} \cup T''$ cannot be in \mathcal{T} ,

Corollary 2 (Star-Complement-Star: Lower Bound). There exists a language L accepted by an n-state DFA over a seven-letter input alphabet, such that any DFA for the language L^{*c*} has $2^{\Omega(n \log n)}$ states.

Proof. Let $\Sigma = \{a, b, c, d, e, f, g\}$ and L be the language accepted by *n*-state DFA $D = (\{0, 1, \dots, n-1\}, \Sigma, \delta, 0, \{0, 1\})$, where transitions on symbols a, b, c, d are defined as in the proof of Lemma 3, and on symbols d, e, f as in the proof of Lemma 4.

Let $m = \lceil n/2 \rceil$. By Lemma 3, the following states are reachable in the DFA D_3 for L^{+c+} :

$$\{\{0,2\} \cup S_1, \{0,3\} \cup S_2, \dots, \{0,m-2\} \cup S_{m-1}\},\$$

where $S_1 \subseteq S_2 \subseteq \cdots \subseteq S_{m-1} \subseteq \{m-1, m, \ldots, n-2\}$. The number of such subsets S_i is given by m^{n-m} , and we have

$$m^{n-m} \ge \left(\frac{n}{2}\right)^{\frac{n}{2}-1} = 2^{\Omega(n\log n)}.$$

By Lemma 4, all these states are pairwise distinguishable, and the lower bound follows. $\hfill \Box$

Hence we have an asymptotically tight bound on the state complexity of star-complement-star operation that is significantly smaller than 2^{2^n} .

Theorem 1. The state complexity of star-complement-star is $2^{\Theta(n \log n)}$.

4 Applications

We conclude with an application.

Corollary 3. Let L be a regular language, accepted by a DFA with n states. Then any language that can be expressed in terms of L and the operations of positive closure, Kleene closure, and complement has state complexity bounded by $2^{\Theta(n \log n)}$.

Proof. As shown in [1], every such language can be expressed, up to inclusion of ε , as one of the following 5 languages and their complements:

$$L, L^+, L^{c+}, L^{+c+}, L^{c+c+}$$
.

If the state complexity of L is n, then clearly the state complexity of L^c is also n. Furthermore, we know that the state complexity of L^+ is bounded by 2^n (a more exact bound can be found in [7]); this also handles L^{c+} . The remaining languages can be handled with Theorem 1.

References

- Brzozowski, J., Grant, E., and Shallit, J.: Closures in formal languages and Kuratowski's theorem, Int. J. Found. Comput. Sci. 22, 301–321 (2011)
- Kleitman, D. and Markowsky, G.: On Dedekind's problem: the number of isotone Boolean functions. II, Trans. Amer. Math. Soc. 213, 373–390 (1975)
- Rabin, M., Scott, D.: Finite automata and their decision problems. IBM Res. Develop. 3, 114–129 (1959)
- 4. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company, Boston (1997)
- 5. Sloane, N. J. A.: Online Encyclopedia of Integer Sequences, http://oeis.org
- Yu, S.: Chapter 2: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages - Vol. I, pp. 41–110. Springer, Heidelberg (1997)
- Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)