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ENUMERATION OF PERMUTATIONS BY NUMBER OF CYCLIC

OCCURRENCE OF PEAKS AND VALLEYS

SHI-MEI MA AND CHAK-ON CHOW

Abstract. In this paper, we focus on the enumeration of permutations by number of cyclic

occurrence of peaks and valleys. We find several recurrence relations involving the number of

permutations with a prescribed number of cyclic peaks, cyclic valleys, fixed points and cycles.

Several associated permutation statistics and the corresponding generating functions are also

studied. In particular, we establish a connection between cyclic valleys and Pell numbers as

well as cyclic peaks and alternating runs.
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1. Introduction

Let [n] = {1, 2, . . . , n}, and let Sn denote the the set of permutations of [n]. A permutation

π ∈ Sn can be written in one-line notation as the word π = π(1)π(2) · · · π(n). Another way

of writing the permutation is given by the standard cycle decomposition, where each cycle is

written with its smallest entry first and the cycles are written in increasing order of their smallest

entry. For example, the permutation π = 64713258 ∈ S8 has the standard cycle decomposition

(1, 6, 2, 4)(3, 7, 5)(8).

A permutation π = π(1)π(2) · · · π(n) ∈ Sn is alternating if π(1) > π(2) < π(3) > π(4) < · · · .
Similarly, π is reverse alternating if π(1) < π(2) > π(3) < π(4) > · · · . It is well known [1] that

the Euler numbers En defined by

∞
∑

n=0

En
xn

n!
= tan x+ sec x

count alternating permutations in Sn. The first few values of En are 1, 1, 1, 2, 5, 16, 61, 272, . . ..

The bijection π 7→ πc on Sn defined by πc(i) = n + 1 − π(i) shows that En is also the num-

ber of reverse alternating permutations in Sn. The study of the Euler numbers is a topic in

combinatorics (see [22]). For example, Elizalde and Deutsch [9] recently studied cycle up-down

permutations. A cycle is said to be up-down if, when written in standard cycle form, say

(b1, b2, b3, . . .), we have b1 < b2 > b3 < · · · . We say that π is a cycle up-down permutation if it is

a product of up-down cycles. Elizalde and Deutsch [9, Proposition 2.1] found that the number

of cycle up-down permutations of [n] is En+1 .

There is a wealth of literature on peak statistics of permutations (see [3, 8, 11, 12, 16, 17, 23]

for instance). For example, Kitaev [11] found that there are 2n−1 permutations of [n] without

interior peaks. Let π = π(1)π(2) · · · π(n) ∈ Sn. An interior peak (resp. interior valley) in π is an
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index i ∈ {2, 3, . . . , n− 1} such that π(i− 1) < π(i) > π(i+1) (resp. π(i− 1) > π(i) < π(i+1)).

Clearly, interior peaks and interior valleys are equidistributed on Sn. Let pk (π) (resp. val (π))

denote the number of interior peaks (resp. the number of interior valleys) in π. An left peak in

π is an index i ∈ [n − 1] such that π(i − 1) < π(i) > π(i + 1), where we take π(0) = 0. Let

pkl (π) denote the number of left peaks in π. For example, the permutation π = 64713258 ∈ S8

has pk (π) = 2, val (π) = 3 and pkl (π) = 3.

For n > 1, we define

Wn(q) =
∑

π∈Sn

qpk (π) and Wn(q) =
∑

π∈Sn

qpk
l (π).

It is well known that the polynomials Wn(q) satisfy the recurrence relation

Wn+1(q) = (nq − q + 2)Wn(q) + 2q(1 − q)W ′
n(q),

with initial values W1(q) = 1, W2(q) = 2 and W3(q) = 4+2q, and the polynomials Wn(q) satisfy

the recurrence relation

W n+1(q) = (nq + 1)W n(q) + 2q(1 − q)W
′
n(q),

with initial values W 1(q) = 1, W 2(q) = 1+ q and W 3(q) = 1+ 5q (see [18, A008303, A008971]).

The exponential generating functions of the polynomials Wn(q) andW n(q) are respectively given

as follows (see [12]):

W (q, z) =
∑

n≥1

Wn(q)
zn

n!
=

sinh(z
√
1− q)√

1− q cosh(z
√
1− q)− sinh(z

√
1− q)

,

W (q, z) = 1 +
∑

n≥1

W n(q)
zn

n!
=

√
1− q√

1− q cosh(z
√
1− q)− sinh(z

√
1− q)

. (1)

An occurrence of a pattern τ in a permutation π is defined as a subsequence in π whose letters

are in the same relative order as those in τ . For example, the permutation π = 64713258 ∈ S8

has two occurrences of the pattern 1–2–3–4, namely the subsequences 1358 and 1258. In [2],

Babson and Steingŕımsson introduced generalized permutation patterns that allow the require-

ment that two adjacent letters in a pattern must be adjacent in the permutation. Thus, an

occurrence of an interior peak in a permutation is an occurrence of the pattern 132 or 231.

Similarly, an occurrence of interior valley is an occurrence of the pattern 213 or 312. Recently,

Parviainen [14, 15] explored cyclic occurrence of patterns over Sn via continued fractions.

In this paper, we focus on the enumeration of permutations by number of cyclic occurrence

of peaks and valleys. The paper is organised as follows. In Section 2, we collect some notation,

definitions and results that will be needed in the rest of the paper. In Section 3, we present several

recurrence relations. In Section 4, we discuss two classes of triangular arrays. In Section 5, we

compute two exponential generating functions of generating functions of permutations by their

numbers of cyclic peaks/valleys, cycles and fixed points. In Section 6, we establish a connection

between cyclic valleys and the famous Pell numbers. In Section 7, we establish a connection

between cyclic peaks and alternating runs.
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2. Notation, definitions and preliminaries

In the following discussion we always write a permutation π ∈ Sn in standard cycle decom-

position. Let

π = (c11, c
1
2, . . . c

1
i1)(c

2
1, c

2
2, . . . c

2
i2) . . . (c

k
1 , c

k
2 , . . . c

k
ik
),

and let σ be a generalised pattern. Following Parviainen [14, 15], the pattern σ occurs cyclically

in π if it occurs in the permutation

Ψ(π) = c11, c
1
2, . . . c

1
i1 , c

2
1, c

2
2, . . . c

2
i2 , . . . c

k
1 , c

k
2 , . . . c

k
ik
,

with the further restriction that cjij and cj+1
1 are not adjacent, where 1 ≤ j ≤ k − 1. For

example, 132 does not occur in (1)(2, 4, 5)(3), but 13–2 occurs exactly twice. An entry cjm in

the cycle (cj1, c
j
2, . . . c

j
ij
) is called a cyclic peak (resp. cyclic valley) of π if cjm−1 < cjm > cjm+1

(resp. cjm−1 > cjm < cjm+1), where 2 6 m 6 ij − 1 and 1 6 j 6 k. For example, the permutation

(1, 6, 2, 4)(3, 7, 5)(8) has the cyclic peaks 6 and 7 and the cyclic valley 2.

Let cpk (π) (resp. cval (π)) denote the number of cyclic peaks (resp. the number of cyclic

valleys) of π. The number of fixed points of π is fix (π) = #{1 6 i 6 n : π(i) = i}. A fixed-

point-free permutation is called a derangement. Let Dn denote the set of derangements of [n].

Denote by cyc (π) the number of cycles of π. For n > 1, we introduce the following generating

functions:

Pn(q, x, y) =
∑

π∈Sn

qcpk (π)xcyc (π)yfix (π);

Vn(q, x, y) =
∑

π∈Sn

qcval (π)xcyc (π)yfix (π);

Mn(q) =
∑

π∈Sn

qcpk (π) =
∑

k>0

Mn,kq
k;

Mn(q) =
∑

π∈Sn

qcval (π) =
∑

k>0

Mn,kq
k;

Dn(q) =
∑

π∈Dn

qcpk (π) =
∑

k>0

Dn,kq
k;

Dn(q) =
∑

π∈Dn

qcval (π) =
∑

k>0

Dn,kq
k.

Let

p(n, t, s, r) = #{π ∈ Sn : cpk (π) = t, cyc (π) = s,fix (π) = r},
and let

v(n, t, s, r) = #{π ∈ Sn : cval (π) = t, cyc (π) = s,fix (π) = r}.
The Stirling numbers of the second kind

{n
k

}

is the number of partitions of [n] into k blocks.

Let Sn(x) =
∑n

k=1

{n
k

}

xk. It is well known (see [18, A008277]) that
{

n+ 1

k

}

=

{

n

k − 1

}

+ k

{

n

k

}

,

which is equivalent to

Sn+1(x) = xSn(x) + xS′
n(x).
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The associated Stirling numbers of second kind T (n, k) is the number of partitions of [n] into k

blocks of size at least 2. Let Tn(x) =
∑

k>1 T (n, k)x
k. It is well known (see [18, A008299]) that

T (n+ 1, k) = kT (n, k) + nT (n− 1, k − 1),

which is equivalent to

Tn+1(x) = xT ′
n(x) + nxTn−1(x).

Clearly, Pn(0, x, 1) = Sn(x) and Pn(0, x, 0) = Tn(x). For example, take a permutation

π = (π(i1), . . .)(π(i2), . . .) · · · (π(is), . . .)

counted by p(n, 0, s, r). Recall that

p(n, 0, s, r) = #{π ∈ Sn : cpk (π) = 0, cyc (π) = s,fix (π) = r}.

Erasing the parentheses, we get a partition of [n] with s blocks. Hence

∑

r>0

p(n, 0, s, r) =

{

n

s

}

.

We say that a permutation π is called a circular permutation if cyc (π) = 1. Denote by Cn
the set of circular permutations of [n]. Each π ∈ Cn+1 can be written uniquely as a cycle of

the form π = (1, a1, a2, . . . , an). Let ϕ(π) = b1b2 · · · bn, where bi = ai − 1 for 1 6 i 6 n. The

correspondence ϕ : Cn+1 7→ Sn is clearly a bijection. Using the bijection ϕ, it is clear that the

coefficient of x in the polynomial Pn+1(q, x, y) (resp. Vn+1(q, x, y)) is W n(q) (resp. Wn(q)). In

the next section, we present recurrence relations for the polynomials Pn(q, x, y) and Vn(q, x, y).

3. Recurrence relations

Theorem 1. The numbers p(n, t, s, r) satisfy the recurrence relation

p(n+ 1, t, s, r) = (2t+ s− r)p(n, t, s, r) + p(n, t, s− 1, r − 1)+

(r + 1)p(n, t, s, r + 1) + (n+ 2− 2t− s)p(n, t− 1, s, r).

Proof. Let n be a fixed positive integer. Let σi ∈ Sn+1 be the permutation obtained from

σ ∈ Sn by inserting the entry n+1 either to the left or to the right of σ(i) if i ∈ [n] or as a new

cycle (n+ 1) if i = n+ 1. Then

cyc (σi) =







cyc (σ) if i ∈ [n],

cyc (σ) + 1 if i = n+ 1;

and

fix (σi) =



















fix (σ)− 1 if i ∈ [n] and σ(i) = i,

fix (σ) if i ∈ [n] and σ(i) 6= i,

fix (σ) + 1 if i = n+ 1.

Recall that

p(n+ 1, t, s, r) = #{σi ∈ Sn+1 : cpk (σi) = t, cyc (σi) = s,fix (σi) = r}.

It is evident that cpk (σi) = cpk (σ) or cpk (σi) = cpk (σ)+1. There are four cases to consider.
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(a) If σ has t cyclic peaks, s cycles and r fixed points, then we can put the entry n + 1 on

either side of some cyclic peak or at the end of a cycle of length greater than or equal to

2. This means we have 2t+s−r choices for the positions of n+1. As we have p(n, s, t, r)

choices for σ, the first term of the recurrence relation is obtained.

(b) If σ has t cyclic peaks, s− 1 cycles and r − 1 fixed points, then we can insert the entry

n+1 at the end of σ to form a new cycle (n+1). As we have p(n, t, s− 1, r− 1) choices

for σ, the second term of the recurrence relation is obtained.

(c) If σ has t cyclic peaks, s cycles and r+1 fixed points, then we can insert the entry n+1

to the right of a fixed points. This means we have r+1 choices for the positions of n+1.

This case applies to the third term in the recurrence relation.

(d) If σ has t− 1 cyclic peaks, s cycles and r fixed points, then we can insert the entry n+1

in one of the n− 2(t− 1)− s = n+ 2− 2t− s middle positions and the last term of the

recurrence relation is obtained.

This completes the proof. �

We can express Theorem 1 in terms of differential operators.

Corollary 2. For n > 1, we have

Pn+1(q, x, y) = (nq + xy)Pn(q, x, y) + 2q(1− q)
∂Pn(q, x, y)

∂q
+ x(1− q)

∂Pn(q, x, y)

∂x

+ (1− y)
∂Pn(q, x, y)

∂y
.

In particular,

Pn+1(q, x, 1) = (nq + x)Pn(q, x, 1) + 2q(1− q)
∂Pn(q, x, 1)

∂q
+ x(1− q)

∂Pn(q, x, 1)

∂x
. (2)

By Corollary 2, we can easily compute the first few polynomials Pn(q, x, y):

P1(q, x, y) = xy,

P2(q, x, y) = x+ x2y2,

P3(q, x, y) = (1 + q)x+ 3x2y + x3y3,

P4(q, x, y) = (1 + 5q)x+ (3 + 4y + 4qy)x2 + 6x3y2 + x4y4.

Recall that Mn(q) = Pn(q, 1, 1). For 1 6 n 6 7, using (2), the coefficients of Mn(q) can be

arranged as follows with Mn,k in row n and column k:

1

2

5 1

15 9

52 63 5

203 416 101

877 2741 1361 61
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Let Dn,k(q, x) be the coefficient of yk in Pn(q, x, y). Clearly, the polynomial Pn(q, x, 0) is the

corresponding enumerative polynomial on Dn. Note that

Dn,k(q, x) =
∑

π∈Sn

fix (π)=k

qcpk (π)xcyc (π)

=

(

n

k

)

xk
∑

σ∈Dn−k

qcpk (σ)xcyc (σ)

=

(

n

k

)

xkPn−k(q, x, 0).

Thus
(

∂Pn(q, x, y)

∂y

)

y=0

= Dn,1(q, x) = nxPn−1(q, x, 0).

Therefore, we get the following result.

Proposition 3. For n > 2, the polynomials Pn(q, x, 0) satisfy the following recurrence relation

Pn+1(q, x, 0) = nqPn(q, x, 0)+2q(1−q)
∂Pn(q, x, 0)

∂q
+x(1−q)

∂Pn(q, x, 0)

∂x
+nxPn−1(q, x, 0), (3)

with initial values P0(q, x, 0) = 1, P1(q, x, 0) = 0, P2(q, x, 0) = x and P3(q, x, 0) = (1 + q)x.

Recall that Dn(q) = Pn(q, 1, 0). For 1 6 n 6 7, using (3), the coefficients of Dn(q) can be

arranged as follows with Dn,k in row n and column k:

0

1

1 1

4 5

11 28 5

41 153 71

162 872 759 61

In order to provide a recurrence relation for the numbers v(n, t, s, r), we first define an op-

eration. Assume that π is a permutation in Sn with k cycles C1, C2, . . . , Ck, where Cj =

(cj1, c
j
2, . . . , c

j
ij
) and 1 6 j 6 k. Let φ : Sn → Sn be defined as follows:

• φ(C1, C2, . . . , Ck) = (φ(C1), φ(C2), . . . , φ(Ck)).

• For every cycle Cj, we have

φ(cj1, c
j
2, . . . , c

j
ij
) = (φ(cj1), φ(c

j
2), . . . , φ(c

j
ij
)).

• Let {a1, a2, . . . , aij} be the set of entries of the cycle Cj = (cj1, c
j
2, . . . , c

j
ij
), and assume

that a1 < a2 < · · · < aij . Then φ(am) = aij+1−m, where 1 6 m 6 ij .

For example, φ((1, 6, 2, 4)(3, 7, 5)(8)) = (6, 1, 4, 2)(7, 3, 5)(8). Following [10], we call this op-

eration a switching. Clearly, if π has t cyclic valleys, then φ(π) has t cyclic peaks, and vice

versa.
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Theorem 4. The numbers v(n, t, s, r) satisfy the recurrence relation

v(n+ 1, t, s, r) = (2t+ 2s− 2r)v(n, t, s, r) + v(n, t, s− 1, r − 1)

+ (r + 1)v(n, t, s, r + 1) + (n+ 2− 2t− 2s + r)v(n, t− 1, s, r).

Proof. Let n be a fixed positive integer. Let σi ∈ Sn+1 be the permutation obtained from

σ ∈ Sn by inserting the entry n+1 either to the left or to the right of σ(i) if i ∈ [n] or as a new

cycle (n+ 1) if i = n+ 1. Recall that

v(n+ 1, t, s, r) = #{σi ∈ Sn+1 : cval (σi) = t, cyc (σi) = s,fix (σi) = r}.

It is evident that cval (σi) = cval (σ) or cval (σi) = cval (σ) + 1. There are four cases to

consider.

(a) If σ has t cyclic valleys, s cycles and r fixed points, then φ(σ) is a permutation with

t cyclic peaks, s cycles and r fixed points. Consider the permutation φ(σ), we can

appending n + 1 either at the beginning or at the end of a cycle of length greater than

or equal to 2. We can also put the entry n+1 on either side of some cyclic peak of φ(σ).

This means we have 2t+2s−2r choices for the positions of n+1. As we have v(n, s, t, r)

choices for σ, the first term of the the recurrence relation is explained.

(b) If σ has t cyclic valleys, s− 1 cycles and r− 1 fixed points, then we can insert the entry

n+1 at the end of σ to form a new cycle (n+1). As we have v(n, t, s− 1, r− 1) choices

for σ, the second term of the recurrence relation is obtained.

(c) If σ has t cyclic valleys, s cycles and r + 1 fixed points, then we can insert the entry

n+ 1 to the right of a fixed points. This means we have r + 1 choices for the positions

of n+ 1. This case applies to the third term of the recurrence relation.

(d) If σ has t−1 cyclic valleys, s cycles and r fixed points, then we can insert the entry n+1

in one of the n − s − (s − r) − 2(t − 1) = n + 2 − 2t − 2s + r middle positions. As we

have v(n, t− 1, s, r) choices for σ, the last term of the recurrence relation is obtained.

This completes the proof. �

We can express Theorem 4 in terms of differential operators.

Corollary 5. For n > 1, we have

Vn+1(q, x, y) = (nq + xy)Vn + 2q(1 − q)
∂Vn(q, x, y)

∂q
+ 2x(1 − q)

∂Vn(q, x, y)

∂x

+ (1− 2y + qy)
∂Vn(q, x, y)

∂y
.

By Corollary 5, we can easily compute the first few polynomials Vn(q, x, y):

V1(q, x, y) = xy,

V2(q, x, y) = x+ x2y2,

V3(q, x, y) = 2x+ 3x2y + x3y3,

V4(q, x, y) = (4 + 2q)x+ (3 + 8y)x2 + 6x3y2 + x4y4,

V5(q, x, y) = (8 + 16q)x+ (20 + 20y + 10qy)x2 + (15y + 20y2)x3 + 10x4y3 + x5y5.
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Recall that Mn(q) = Vn(q, 1, 1). For 1 6 n 6 7, the coefficients of Mn(q) can be arranged as

follows with Mn,k in row n and column k:

1

2

6

22 2

94 26

460 244 16

2532 2124 384

Let Dn,k(q, x) be the coefficient of yk in Vn(q, x, y). Clearly, Dn,k(q, x) =
(n
k

)

xkVn−k(q, x, 0).

Then
(

∂Vn(q, x, y)

∂y

)

y=0

= Dn,1(q, x) = nxVn−1(q, x, 0).

Hence we get the following result.

Proposition 6. For n > 2, the polynomials Vn(q, x, 0) satisfy the following recurrence relation

Vn+1(q, x, 0) = nqVn(q, x, 0)+2q(1−q)
∂Vn(q, x, 0)

∂q
+2x(1−q)

∂Vn(q, x, 0)

∂x
+nxVn−1(q, x, 0), (4)

with initial values V0(q, x, 0) = 1, V1(q, x, 0) = 0, V2(q, x, 0) = x and V3(q, x, 0) = 2x.

Recall that Dn(q) = Vn(q, 1, 0). For 1 6 n 6 7, using (4), the coefficients of Dn(q) can be

arranged as follows with Dn,k in row n and column k:

0

1

2

7 2

28 16

131 118 16

690 892 272

4. On combinations of polynomials and Euler numbers

Recall that Mn(q) = Pn(q, 1, 1), Mn(q) = Vn(q, 1, 1), Dn(q) = Pn(q, 1, 0) and Dn(q) =

Vn(q, 1, 0). It is easy to verify that degMn(q) = degDn(q) = ⌊n−1
2 ⌋ and degMn(q) = degDn(q) =

⌊n2 ⌋ − 1 for n > 2.

We define

Rn(q) = Mn(q
2) + qMn(q

2) for n > 3.

Let Rn(q) =
∑

k>0Rn,kq
k. Then for n > 3, we have

Rn,k =







Mn, k−1

2

if k is odd,

Mn, k
2

if k is even.
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The nth Bell number Bn counts the number of partitions of [n] into non-empty blocks (see [18,

A000110] for details). Recall that Mn,0 = #{π ∈ Sn : cpk (π) = 0}. Take a permutation

π = (π(i1), . . .)(π(i2), . . .) · · · (π(ij), . . .)

counted by Mn,0. Erasing the parentheses, we get a partition of [n] with j blocks. Hence

Rn,0 = Mn,0 = Bn. (5)

Set R1(x) = 1 and R2(x) = 2 + x. For 1 6 n 6 6, the coefficients of Rn(q) can be arranged as

follows with Rn,k in row n and column k:

1

2 1

5 6 1

15 22 9 2

52 94 63 26 5

203 460 416 244 101 16

We define

In(q) = Dn(q
2) + qDn(q

2) for n > 2.

Let In(q) =
∑

k>0 In,kq
k. Then for n > 2, we have

In,k =







Dn, k−1

2

if k is odd,

Dn, k
2

if k is even.

Recall that Dn,0 = #{π ∈ Dn : cpk (π) = 0}. Take a permutation

π = (π(p1), . . .)(π(p2), . . .) · · · (π(pk), . . .)

counted by Dn,0. When n > 2, erasing the parentheses, we get a partition of [n] into k blocks

of size at least 2. Therefore, Dn,0 =
∑

k>1 T (n, k) for n > 2, where T (n, k) is the associated

Stirling numbers of second kind. Set I1(q) = 1. For 1 6 n 6 6, the coefficients of In(q) can be

arranged as follows with In,k in row n and column k:

1

1 1

1 2 1

4 7 5 2

11 28 28 16 5

41 131 153 118 71 16

Note that

M2k+1,k = D2k+1,k = #{π ∈ S2k+1 : cpk (π) = k}
and

M2k+2,k = D2k+2,k = #{π ∈ S2k+2 : cval (π) = k}.
Then from [9, Proposition 2.1], we get the following result.

Proposition 7. For n > 0, we have Rn+1,n = In+1,n = En.
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Let a0, a1, a2 . . . , an be a sequence of nonnegative real numbers. The sequence is said to

be log-concave if ai−1ai+1 6 a2i for i = 1, 2, . . . , n − 1. We end this section by proposing the

following.

Conjecture 8. For n > 1, the sequences of coefficients of the polynomials Rn(x) and In(x) are

both log-concave.

5. Generating functions

We present in the present section the exponential generating functions of Pn(q, x, y) and

Vn(q, x, y). Towards this end, we define

P (q, x, y, z) :=
∑

n>0

Pn(q, x, y)
zn

n!
and V (q, x, y, z) :=

∑

n>0

Vn(q, x, y)
zn

n!
.

Instead of computing P (q, x, y, z) and V (q, x, y, z) directly, we first consider P (q, x, 0, z) and

V (q, x, 0, z) since their recurrence relations involve less partial derivatives.

Theorem 9. The generating functions P = P (q, x, 0, z) and V = V (q, x, 0, z) satisfy the follow-

ing partial differential equations (PDEs)

(1− qz)
∂P

∂z
+ 2q(q − 1)

∂P

∂q
+ x(q − 1)

∂P

∂x
= xzP,

(1− qz)
∂V

∂z
+ 2q(q − 1)

∂V

∂q
+ 2x(q − 1)

∂V

∂x
= xzV,

and whose solutions are

P (q, x, 0, z) = e−xz

[(√
q − 1

√
q + 1

)(√
q + cos(z

√
q − 1) +

√
q − 1 sin(z

√
q − 1)

√
q − cos(z

√
q − 1)−√

q − 1 sin(z
√
q − 1)

)]
x

2
√

q

,

V (q, x, 0, z) = e−xz/q

( √
q − 1√

q − 1 cos(z
√
q − 1)− sin(z

√
q − 1)

)
x
q

,

respectively.

Proof. We first prove the assertions for V = V (q, x, 0, z). Multiplying (4) by zn/n!, followed by

summing over n > 1, and using the fact that V1(q, x, 0) = 0, we get

∑

n>1

Vn+1(q, x, 0)
zn

n!
=
∑

n>1

[

nqVn(q, x, 0) + 2q(1− q)
∂Vn(q, x, 0)

∂q
+ 2x(1 − q)

∂Vn(q, x, 0)

∂x

+ nxVn−1(q, x, 0)

]

zn

n!

whence the PDE for V :

(1− qz)
∂V

∂z
+ 2q(q − 1)

∂V

∂q
+ 2x(q − 1)

∂V

∂x
= xzV. (6)

In view of the so-called β-extension [20] (see also [19, §7] for an instance of it), we may assume

that V (q, x, 0, z) = v(q, z)x for some function v. Then

∂V

∂z
= xvx−1∂v

∂z
,

∂V

∂q
= xvx−1∂v

∂q
,

∂V

∂z
= vx ln v
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so that (6) becomes

(1− qz)
∂v

∂z
+ 2q(q − 1)

∂v

∂q
= zv − 2(q − 1)v ln v. (7)

Next, we let w = ln v. Then
1

v

∂v

∂z
=

∂w

∂z
,

1

v

∂v

∂q
=

∂w

∂q

and (7) becomes the following linear PDE:

(1− qz)
∂w

∂z
+ 2q(q − 1)

∂w

∂q
= z − 2(q − 1)w (8)

with auxiliary system
dz

1− qz
=

dq

2q(q − 1)
=

dw

z − 2(q − 1)w
.

Solving the ordinary differential equation arising from the first equality, namely,

dz

dq
+

z

2(q − 1)
=

1

2q(q − 1)
,

we obtain the characteristic defined by

c1 = tan−1
√

q − 1− z
√

q − 1,

where c1 is an arbitrary constant. On this characteristic, (8) becomes the following linear ODE:

2q(q − 1)
dw

dq
=

tan−1
√
q − 1− c1√
q − 1

− 2(q − 1)w

whose solution is

w(q, z) = −z

q
+

1

2q
ln

(

q − 1

q

)

+
c2
q

= −z

q
+

1

2q
ln

(

q − 1

q

)

+
f(tan−1

√
q − 1− z

√
q − 1)

q

where c2 = f(c1) and f is a function to be determined.

Since V (q, x, 0, 0) = v(q, 0)x = 1 for all x, it follows that v(q, 0) = 1 so that

f(tan−1
√

q − 1) =
1

2
ln

(

q

q − 1

)

.

Letting u = tan−1√q − 1, we then have q = 1 + tan2 u = sec2 u and hence

f(u) =
1

2
ln

(

sec2 u

sec2 u− 1

)

= − ln sinu.

Since

f(tan−1
√

q − 1− z
√

q − 1) = − ln sin(z
√

q − 1− z
√

q − 1)

= ln

( √
q√

q − 1 cos(z
√
q − 1)− sin(z

√
q − 1)

)

,

we obtain that

V (q, x, 0, z) = v(q, z)x = ewx = e−xz/q

( √
q − 1√

q − 1 cos(z
√
q − 1)− sin(z

√
q − 1)

)
x
q

.

By imitating the above calculations, one can obtain the corresponding assertions for P =

P (q, x, 0, z), whose details are left to the interested readers. �
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Corollary 10. The exponential generating functions P (q, x, y, z) and V (q, x, y, z) have the fol-

lowing explicit expressions:

P (q, x, y, z) = exz(y−1)

[(√
q − 1

√
q + 1

)(√
q + cos(z

√
q − 1) +

√
q − 1 sin(z

√
q − 1)

√
q − cos(z

√
q − 1)−√

q − 1 sin(z
√
q − 1)

)]
x

2
√

q

,

V (q, x, y, z) = exz(y−1/q)

( √
q − 1√

q − 1 cos(z
√
q − 1)− sin(z

√
q − 1)

)
x
q

,

respectively.

Proof. Let σ ∈ Sn have k fixed points. There are
(

n
k

)

choices of fixed points. If τ is the

partial permutation obtained by deleting all the fixed points of σ, then cyc (σ) = cyc (τ) + k

and cval (σ) = cval (τ) since only ℓ-cycles (ℓ > 3) of σ contribute to cval (σ). Thus, Vn(q, x, y) =
∑n

k=0

(n
k

)

Vn−k(q, x, 0)(xy)
k follows. Hence,

∑

n>0

Vn(q, x, y)
zn

n!
=
∑

n>0

n
∑

k=0

(

n

k

)

Vn−k(q, x, 0)(xy)
k z

n

n!

=
∑

k>0

(xyz)k

k!

∑

n>k

Vn−k(q, x, 0)
zn−k

(n − k)!

= exyze−xz/q

( √
q − 1√

q − 1 cos(z
√
q − 1)− sin(z

√
q − 1)

)
x
q

.

thus proving the assertion for V (q, x, y, z). The corresponding assertion for P (q, x, y, z) follows

from similar consideration. �

In Section 4, we combinatorially prove that the nth Bell number Bn is the constant term of

Mn(0), i.e.,

Mn(0) = Mn,0 = Bn.

We now present a generating function proof of this result. Since Mn(q) = Pn(q, 1, 1), we have

∑

n>0

Mn(0)
zn

n!
= lim

q→0

∑

n>0

Pn(q, 1, 1)
zn

n!

= lim
q→0

[(√
q − 1

√
q + 1

)(√
q + cos(z

√
q − 1) +

√
q − 1 sin(z

√
q − 1)

√
q − cos(z

√
q − 1)−√

q − 1 sin(z
√
q − 1)

)]
1

2
√

q

.

Denote the limit on the right by L. It is easy to see that L is of the indeterminate form 1∞. So,

by l’Hôpital’s rule, we have

lnL = lim
q→0

1

2
√
q
ln

(√
q − 1

√
q + 1

)(√
q + cos(z

√
q − 1) +

√
q − 1 sin(z

√
q − 1)

√
q − cos(z

√
q − 1)−√

q − 1 sin(z
√
q − 1)

)

= cosh z + sinh z − 1 = ez − 1.

Consequently,
∑

n>0

Mn(0)
zn

n!
= ee

z−1,

the right side being the exponential generating function of Bn, thus proving Mn(0) = Bn.

Let i =
√
−1. Note that cosh(x) = cos(ix) and sinh(x) = −i sin(ix). Combining (1) and

Corollary 10, we get the following result.
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Theorem 11. We have

V (q, x, y, z) = exz(y−1/q)W (q, z)
x
q .

6. A Pell number identity

The Pell numbers Pn are defined by the recurrence relation

Pn = 2Pn−1 + Pn−2, n = 2, 3, . . . ,

with initial values P0 = 0 and P1 = 1. Other known facts about the Pell numbers include the

Binet formula: for n = 0, 1, 2, . . .,

Pn =
(1 +

√
2)n − (1−

√
2)n

2
√
2

,

and the exponential generating function:

∞
∑

n=0

Pn
yn

n!
=

e(1+
√
2)y − e(1−

√
2)y

2
√
2

.

The Pell numbers can be expressed as (−1)-evaluation of Vn(q, 1, 0), as the next theorem shows.

Theorem 12. We have for n > 1,

∑

σ∈Dn

(−1)cval (σ) = Pn−1. (9)

Proof. By setting x = 1 and q = −1 in V (q, x, 0, z), we see that

V (−1, 1, 0, z) = ez
(√

−2 cos(z
√
−2)− sin(z

√
−2)

)

(−2)−1/2

=
ez[(

√
2 + 1)e−

√
2z + (

√
2− 1)e

√
2z]

2
√
2

= 1 +
∑

n>1

Pn−1
zn

n!
,

since

∑

n>1

Pn−1
zn

n!
=

∫ z

0

∑

n>0

Pn
sn

n!
ds

=
1

2
√
2

∫ z

0
(e(1+

√
2)s − e(1−

√
2)s) ds

=
ez[(

√
2− 1)e

√
2z + (

√
2 + 1)e−

√
2z]

2
√
2

− 1.

Equating the coefficients of zn on both sides, (9) follows. �



14 S.-M. MA AND C.-O. CHOW

7. Relationship to alternating runs

Let π = π(1)π(2) · · · π(n) ∈ Sn. We say that π changes direction at position i if either

π(i− 1) < π(i) > π(i + 1), or π(i − 1) > π(i) < π(i + 1), where i ∈ {2, 3, . . . , n − 1}. We

say that π has k alternating runs if there are k − 1 indices i such that π changes direction at

these positions. Let R(n, k) denote the number of permutations in Sn with k alternating runs.

André [1] found that the numbers R(n, k) satisfy the following recurrence relation

R(n, k) = kR(n− 1, k) + 2R(n− 1, k − 1) + (n− k)R(n − 1, k − 2) (10)

for n, k > 1, where R(1, 0) = 1 and R(1, k) = 0 for k > 1.

For n > 1, we define Rn(q) =
∑n−1

k=1 R(n, k)qk. Then by (10), we obtain

Rn+2(q) = q(nq + 2)Rn+1(q) + q
(

1− q2
)

R′
n+1(q), (11)

with initial value R1(q) = 1. The first few terms of Rn(q)’s are given as follows:

R2(q) = 2q,

R3(q) = 2q + 4q2,

R4(q) = 2q + 12q2 + 10q3,

R5(q) = 2q + 28q2 + 58q3 + 32q4.

There is a large literature devoted to the numbers R(n, k) (see [18, A059427]). The reader is

referred to [4, 13, 21] for recent progress on this subject. In a series of papers [5, 6, 7], Carlitz

studied generating functions for the numbers R(n, k). In particular, Carlitz [5] proved that

H(q, z) =

∞
∑

n=0

zn

n!

n
∑

k=0

R(n+ 1, k)qn−k =

(

1− q

1 + q

)

(

√

1− q2 + sin(z
√

1− q2)

q − cos(z
√

1− q2)

)2

.

Instead of considering
∑n

k=0R(n+ 1, k)qn−k as Carlitz did, we shall study

R(q, z) =
∑

n>0

Rn+1(q)
zn

n!
.

It is clear that R(q, z) = H(1q , qz). Hence

R(q, z) =

(

q − 1

q + 1

)(

√

q2 − 1 + q sin(z
√

q2 − 1)

1− q cos(z
√

q2 − 1)

)2

.



PERMUTATIONS BY CYCLIC PEAKS AND VALLEYS 15

Let u = sec−1 q, i.e., sec u = q. Then
(

√

q2 − 1 + q sin(z
√

q2 − 1)

1− q cos(z
√

q2 − 1)

)2

=

(

sinu+ sin(z
√

q2 − 1)

cos u− cos(z
√

q2 − 1)

)2

=
cos2

(

u−z
√

q2−1
2

)

sin2
(

u−z
√

q2−1
2

)

=
1 + cos(u− z

√

q2 − 1)

1− cos(u− z
√

q2 − 1)

=
q + cos(z

√

q2 − 1) +
√

q2 − 1 sin(z
√

q2 − 1)

q − cos(z
√

q2 − 1)−
√

q2 − 1 sin(z
√

q2 − 1)
,

where in the second, third and fourth equality, we have applied the following results:

sinu+ sin(z
√

q2 − 1) = 2 sin

(

u+ z
√

q2 − 1

2

)

cos

(

u− z
√

q2 − 1

2

)

,

cos u− cos(z
√

q2 − 1) = −2 sin

(

u+ z
√

q2 − 1

2

)

sin

(

u− z
√

q2 − 1

2

)

,

cos(u− z
√

q2 − 1) = 2 cos2
(

u− z
√

q2 − 1

2

)

− 1 = 1− 2 sin2
(

u− z
√

q2 − 1

2

)

,

cos(u− z
√

q2 − 1) =
cos(z

√

q2 − 1) +
√

q2 − 1 sin(z
√

q2 − 1)

q
,

respectively. Thus, we have

R(q, z) =

(

q − 1

q + 1

)(

q + cos(z
√

q2 − 1) +
√

q2 − 1 sin(z
√

q2 − 1)

q − cos(z
√

q2 − 1)−
√

q2 − 1 sin(z
√

q2 − 1)

)

. (12)

Alternatively, by imitating the proof of Theorem 9, it can be shown that R = R(q, z) satisfies

the following linear partial differential equation

(1− zq2)
∂R

∂z
+ q(q2 − 1)

∂R

∂q
= 2qR,

with initial condition R(q, 0) = R1(q) = 1 and whose solution is (12).

Combining (12) and Corollary 10, we get the following result.

Theorem 13. We have

P (q, x, y, z) = exz(y−1)R(
√
q, z)

x
2
√

q .
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