
Integer Complexity: Experimental and
Analytical Results
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Opmanis1, and Kārlis Podnieks1

1 Institute of Mathematics and Computer Science, University of Latvia, Raiņa
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Abstract. We consider representing of natural numbers by arithmetical
expressions using ones, addition, multiplication and parentheses. The
(integer) complexity of n – denoted by ‖n‖ – is defined as the number
of ones in the shortest expressions representing n. We arrive here very
soon at the problems that are easy to formulate, but (it seems) extremely
hard to solve. In this paper we represent our attempts to explore the field
by means of experimental mathematics. Having computed the values of
‖n‖ up to 1012 we present our observations. One of them (if true) implies
that there is an infinite number of Sophie Germain primes, and even that
there is an infinite number of Cunningham chains of length 4 (at least).
We prove also some analytical results about integer complexity.

1 Introduction

The field explored in this paper is represented most famously in F26 of Guy
[1], and as the sequence A005245 in “The On-Line Encyclopedia of Integer
Sequences”[2].

We consider representing of natural numbers by arithmetical expressions us-
ing ones, addition, multiplication and parentheses. Let’s call this “representing
numbers in basis {1,+, ·}”. For example,

2 = 1 + 1;

3 = 1 + 1 + 1;

4 = 1 + 1 + 1 + 1 = 2 · 2 = (1 + 1) · (1 + 1);

5 = 1 + 1 + 1 + 1 + 1 = 1 + 2 · 2 = 1 + (1 + 1) · (1 + 1);

6 = 1 + 1 + 1 + 1 + 1 + 1 = 2 · 3 = (1 + 1) · (1 + 1 + 1);

7 = 1 + 1 + 1 + 1 + 1 + 1 + 1 = 1 + 2 · 3 = 1 + (1 + 1) · (1 + 1 + 1);

8 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 =

= 2 + 2 · 3 = 1 + 1 + (1 + 1) · (1 + 1 + 1) =

= 2 · 2 · 2 = (1 + 1) · (1 + 1) · (1 + 1);

9 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 3 + 2 · 3 = 1 + 2 · 2 · 2 =
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= 3 · 3 = (1 + 1 + 1) · (1 + 1 + 1);

10 = 1 + 1 + . . .+ 1 = 2 · 2 + 2 · 3 = 2 + 2 · 2 · 2 =

= 2 · 5 = (1 + 1) · (1 + 1 + 1 + 1 + 1);

11 = . . . = 2 + 3 · 3 = 1 + 2 · 5;

12 = . . . = 2 · 2 · 3;

13 = . . . = 2 · 2 + 3 · 3 = 3 + 2 · 5;

14 = . . . = 2 · (1 + 2 · 3);

. . .

As we see, most numbers can be represented in several ways that may dif-
fer in size. For example, the number 8 is represented above by three different
expressions containing 8, 7 and 6 ones respectively.

We will measure the size of an expression by the number of ones it contains.
We don’t need counting neither of operations (if an expression contains k ones,
then it contains k–1 operations), nor of parentheses (the postfix notation might
be used).

The size of the shortest expressions representing a particular number n can
be considered as the “complexity” of n. Hence, the term “integer complexity”.
Some numbers allow for several shortest expressions (for examples, see above: 4,
5, 10, 11, 13).

Definition 1. Let’s denote by ‖n‖ the number of ones in the shortest expres-
sions representing n in basis {1,+, ·}. We will call it the integer complexity
of n.

For example, as we see above:

‖1‖ = 1; ‖5‖ = 5; ‖9‖ = 6; ‖13‖ = 8;
‖2‖ = 2; ‖6‖ = 5; ‖10‖ = 7; ‖14‖ = 8;
‖3‖ = 3; ‖7‖ = 6; ‖11‖ = 8; ‖15‖ = 8;
‖4‖ = 4; ‖8‖ = 6; ‖12‖ = 7; . . .

This definition corresponds to the sequence A005245 in “The On-Line Ency-
clopedia of Integer Sequences”. In [1], ‖n‖ is denoted by f(n), the notation ‖n‖
is due to Arias de Reyna [3].

In a similar fashion, representation of natural numbers in other bases, for
example, {1,+, ·,−}, {1,+, ·, ↑} and {1,+, ·, –, ↑} could also be considered (se-
quences A091333, A025280 and A091334 [4,5,6], ↑ stands for exponentiation).

As a function of n, in average, ‖n‖ is growing logarithmically, namely, one
can prove easily:

Theorem 1. For all n > 1,

3 log3 n ≤ ‖n‖ ≤ 3 log2 n ≈ 4.755 log3 n



In [1], Guy attributes this result to Dan Coppersmith.

The lower bound of Theorem 1 is reached by infinitely many numbers n,
exactly – by the powers of three. For example,

34 = 81 = (1 + 1 + 1) · (1 + 1 + 1) · (1 + 1 + 1) · (1 + 1 + 1),

and, indeed, products of 1 + 1 + 1s is the best way of representing powers of
three in basis {1,+, ·}:

Theorem 2. ‖n‖ = 3 log3 n, if and only if n = 3b for some b ≥ 1. In particular,
for all b ≥ 1,

∥∥3b
∥∥ = 3b (moreover, the product of 1 + 1 + 1s is shorter than any

other representation of 3b).

Similarly, the product of 1 + 1s seems to be the best way of representing
powers of two in basis {1,+, ·}. For example,

25 = 32 = (1 + 1) · (1 + 1) · (1 + 1) · (1 + 1) · (1 + 1).

Hypothesis 1. For all a ≥ 1, ‖2a‖ = 2a (moreover, the product of 1 + 1s is
shorter than any other representation of 2a).

‖2a‖ = 2a is true for all powers 2a < 1012, i.e. for all a, 0 < a ≤ 39 – as
verified by Jānis Iraids. We consider proving or disproving of Hypothesis 1 as
one of the biggest challenges of number theory.

The upper bound of Theorem 1 doesn’t seem to be exact. As observed by

Rawsthorne [7], the “worst” value of ‖n‖
log3 n seems to be ≈ 3.928 (and not 4.755

of Theorem 1), and it is reached only by a single number, namely, by 1439
(‖1439‖ = 26):

Hypothesis 2. For all n > 1,

‖n‖ ≤ ‖1439‖
log3 1439

log3 n ≈ 3.928 log3 n

Hypothesis 2 is true for all n ≤ 1012 – as verified by Jānis Iraids.

Thus, we arrive here very soon at the problems that are easy to formulate,
but (it seems) extremely hard to solve. In this paper we represent our attempts
to explore the field by means of experimental mathematics. We managed to
prove analytically only a few of the experimental observations.

In Section 2 we explain the basic concepts and their simplest properties. Sec-
tion 3 represents our analytical results. Section 4 considers algorithms allowing
to calculate the values of ‖n‖. The best of them was used by Jānis Iraids to cal-
culate ‖n‖ up to n = 1012. In Section 5 we present our experimental observations
(several confirmed and refuted hypotheses included).

Wolfram—Alpha (by Wolfram Alpha LLC, 2009) was used for some of the
computations in this paper.



2 Basic concepts and related work

2.1 The largest and smallest numbers of complexity n

For a given n, there exists only a finite number of expressions of size ≤ n. Hence,

Definition 2. a) Let’s denote by E(n) the largest m such that ‖m‖ = n.
b) Let’s denote by Ek(n) the k-th largest m such that ‖m‖ ≤ n (if it exists).

Thus, E(n) = E0(n).
c) Let’s denote by e(n) the smallest m such that ‖m‖ = n.

In this definition, E(n) corresponds to the sequence A000792[8], and e(n) –
to A005520[9].

Proposition 1. As a function of n, E(n) is monotonically increasing.

Proof. Take one of the shortest expressions for E(x) and append +1 to it. Now,
it contains x+ 1 ones, and its value is E(x) + 1. Therefore the greatest number
of complexity x+ 1 is no less than E(x) + 1.

Proposition 2. As a function of n, e(n) is monotonically increasing.

Proof. Assume that there exists n, such that e(n) < e(n− 1). Take the smallest
such n. Then it would mean that before e(n) there are no numbers of complexity
≥ n, in particular, ‖e(n)‖ − ‖e(n)− 1‖ > 1. But it is impossible since e(n) can
be written as e(n) + 1.

Proposition 3. For all n ≥ 1, n ≤ E(‖n‖).

Proof. By definition – E(y) is the greatest number whose complexity is y. Thus
for all n, if ‖n‖ = y then n ≤ E(y).

Proposition 4. For all x, y ≥ 1, E(x) · E(y) ≤ E(x+ y).

Proof. Take the product of shortest expressions for E(x) and E(y). The value
of this product is E(x) ·E(y) and it contains x+ y ones, so it cannot be greater
than E(x+ y).

Theorem 3. For all k ≥ 0:

E(3k + 2) = 2 · 3k;

E(3k + 3) = 3 · 3k;

E(3k + 4) = 4 · 3k.

Guy [10] attributes this result to John L. Selfridge.

Theorem 4. For all n ≥ 8:

E2(n) =
8

9
E(n).



This result is due to Rawsthorne[7].
The behaviour of e(n) appears to be more complicated, for details see Section

5.1.

Lemma 1. If a+b = n and ‖a‖+‖b‖ = ‖n‖ and ‖a‖ ≤ ‖b‖ and given ‖n‖ ≤ N ,

then E(‖a‖) ≤ n−
√

n2−4E(N)

2 .

Proof. From a+b = n we get E(‖a‖)+E(‖b‖) ≥ n using Proposition 3. Further,

as ‖a‖+‖b‖ = ‖n‖, we get E(‖a‖)+ E(‖n‖)
E(‖a‖) ≥ n by Proposition 4. Still more due

to the monotonicity of E(x) we can substitute for the estimate of n’s complexity:

E(‖a‖) + E(N)
E(‖a‖) ≥ n. For convenience let us denote E(‖a‖) by x and E(N) by y

obtaining x+ y
x ≥ n. Solving the quadratic inequality for x we get x ≤ n−

√
n2−4y
2 .

To complete the proof insert back the original values of x and y.

Corollary 1. For n ≥ 29, if a + b = n and ‖a‖ + ‖b‖ = ‖n‖ and ‖a‖ ≤ ‖b‖,
then a ≤ 2nlog2 3−1 ≈ 2n0.585.

Proof. By Theorem 1, N ≤ 3 log2 n. Furthermore, we use the convenient fact
that E(n) ≤ 3

n
3 .

a ≤ E(‖a‖) ≤
n−

√
n2 − 4E(N)

2
≤

≤ n−
√
n2 − 4 · 3log2 n

2
≤ n(1−

√
1− 4 · nlog2 3−2)

2
≤

≤ n(1− (1− 4 · nlog2 3−2))

2
≤ 2nlog2 3−1.

A similar proof of Corollary 1 is given in [11].

2.2 Ranking numbers

Consider an expression in basis {1,+, ·} drawn as a rooted n-ary tree, its leaves
containing ones and inner nodes containing either + or ·. Since both addition
and multiplication is associative and commutative, let us merge any adjacent
additions and multiplications. For example, the shortest expression for 56 can
be obtained as follows, it contains 29 ones (not 5 · 6 = 30, as one might expect):

56 = 15625 = 1 + 23 · 32 · 217 = 1 + 23 · 32(1 + 23 · 33)

The corresponding tree is drawn in Figure 1.

Definition 3. The height of an expression is the height of the corresponding
tree.



Fig. 1. The tree of the shortest expression for 56

In general, for a given n, there can be several shortest expressions of different
height, for example, of height 2 and 1:

4 = (1 + 1) · (1 + 1) = 1 + 1 + 1 + 1,

or of height 4, 3 and 2:

10 = (1+1)·(1+(1+1)·(1+1)) = 1+(1+1+1)·(1+1+1) = (1+1)·(1+1+1+1+1).

We will be interested in classifying the shortest expressions by introducing ex-
pression height as another complexity measure of positive integers:

Definition 4. rank(n) – the rank of a number n – is defined as the minimum
height among the shortest expressions representing n.

Examples:

∗ the only number of rank 0 is 1;
∗ the only numbers of rank 1 are: 2, 3, 4, 5;
∗ numbers of rank 2: 6, 8, 9, 10, 12, 15, ...; see Hypothesis 5 below;
∗ rank(7) = rank(11) = rank(13) = 3;
∗ rank(14) = 4.

For n ≤ 109, max rank(n) = 19 and max ‖n‖ = 67. For other observations –
see Section 5.4.

Obviously rank(n) = 2 for infinitely many numbers n. Namely, for all the
powers of 3.

Hypothesis 3. For all r > 2 there exists an infinite amount of numbers having
rank r.



This hypothesis implies

Hypothesis 4. As a function of n, rank(n) is unlimited.

Definition 5. Let’s denote by r(n) the smallest m such that rank(m) = n.

The values of r(n) up to n=19 are represented in Table 4.
Now, let’s try exploring more closely the numbers of rank 2.

Lemma 2. For n > 1, the shortest expression of height ≤ 2 representing n, is
obtained from the prime decomposition p1 · . . . ·pk of n as (1 + . . .+ 1) · (1 + . . .+
1) · . . . · (1 + . . .+ 1).

The number of ones in this expression, i.e. p1 + . . .+pk, is called, sometimes,
the integer logarithm of n (see also the sequence A001414[12]).

Theorem 5. If rank(n) = 2, then n = 2a3b5c for some a, b, c with a+b+c > 0
and c < 6.

Jānis Iraids, Rihards Opmanis. If n is divisible by a prime p > 5, then (since
‖p‖ < p) one can convert the expression of Lemma 2 into a shorter expression
representing n. Hence, if rank(n) = 2, then n = 2a3b5c for some a, b, c with
a+ b+ c > 0. But

∥∥56
∥∥ < 5 · 6 with the shortest expression being of height 5, as

seen in Figure 1. Hence, if n is divisible by 56, then, again, one can convert the
expression of Lemma 2 into a shorter expression representing n.

Hypothesis 5. All and only numbers of rank 2 are the numbers 2a3b5c > 5
with c < 6. An equivalent form, extending Hypothesis 1:∥∥2a3b5c

∥∥ = 2a+ 3b+ 5c

for all a, b, c with a+ b+ c > 0 and c < 6 (moreover, the product of 1 + ...+ 1s
is shorter than any other representation of 2a3b5c).

As verified by Jānis Iraids,
∥∥2a3b5c

∥∥ = 2a+3b+5c is true for all 2a3b5c ≤ 1012

with a+ b+ c > 0 and c < 6.
For c = 0, Hypothesis 5 appears in [7].

2.3 Logarithmic complexity

Because of Theorem 1, the values of ‖n‖
log3 n are located within the segment

[3, 4.755]. Hence, the

Definition 6. The logarithmic complexity of n > 1 is defined as

‖n‖log =
‖n‖

log3 n
.

For example, ‖2‖log = ‖2‖
log3 2 ≈ 3.1699.



Hypothesis 6. It would follow from Hypothesis 5, that the values of ‖n‖log are
dense across the segment [3, ‖2‖log], i.e. no subsegment of it is free from the
values of ‖n‖log.

Proof. According to Hypothesis 5,
∥∥2a3b

∥∥ = 2a + 3b, for all a + b > 0. Hence,

by choosing a and b appropriately, one can locate the value of
∥∥2a3b

∥∥
log

within

any given subsegment of [3, ‖2‖log].

As observed by Mārtiņš Opmanis (and confirmed by Jānis Iraids for all the
numbers ≤ 1012), it seems, the largest values of ‖n‖log are taken by single num-
bers, see Table 1. The lists in braces represent Cunningham chains of primes
[13].

Table 1: Largest values of ‖n‖log

n ‖n‖ ≈ ‖n‖log rank(n) Other properties

1439 26 3.928 9 e(26), r(9), {89, 179, 359, 719, 1439, 2879}
23 11 3.854 5 e(11), r(5), {2, 5, 11, 23, 47}

719 23 3.841 7 e(23), {89, 179, 359, 719, 1439, 2879}
179 18 3.812 7 e(18), r(7), {89, 179, 359, 719, 1439, 2879}

4283 29 3.809 7 e(29), {2141, 4283}
1438 25 3.777 8 e(25), 2× 719

59 14 3.772 5 e(14), {29, 59}
6299 30 3.767 7 e(30), prime

15287 33 3.763 9 e(33), {3821, 7643, 15287}
107 16 3.762 5 e(16), {53, 107}
347 20 3.756 7 e(20), {173, 347}

1499 25 3.756 7 prime
467 21 3.754 5 e(21), {233, 467}

11807 32 3.749 7 e(32), {5903, 11807}
263 19 3.746 5 e(19), {131, 263}

21599 34 3.743 7 e(34), {2699, 5399, 10799, 21599}

The values of ‖n‖log become (and, it seems, stay) less than 3.60 approxi-

mately at n = 2 · 109.
Let’s consider the subsegments [C,D], C < D of the segment [3, 4.755] that

do not contain the values of ‖n‖log at all. Of course, according to Hypothesis 6,
then C > ‖2‖log. Let’s denote by C1 the infimum of these numbers. I.e. C1 is the
point separating the area where the values of ‖n‖log are dense, from the area,
where these values are not dense.

Hypothesis 7. It would follow from Hypothesis 5, that C1 ≥ ‖2‖log.

On the other hand, for some numbers C, ‖n‖log > C only for finitely many
values of n. Let’s denote by C2 the infimum of these numbers. This is also known



as lim sup
n→∞

‖n‖log. I.e. C2 is the point separating the area where the values of

‖n‖log are ”absolutely sparse”, from the area, where these values are not sparse.
Of course, C1 ≤ C2. Hence,

Hypothesis 8. It would follow from Hypothesis 5, that C2 ≥ ‖2‖log.

More about the possible value of C2 – in Section 5.1.

3 Analytical results

3.1 Complexity of 2n − 1

For the sake of brevity let us introduce A(n) = ‖2n − 1‖ − 2n and B(n) =
‖2n + 1‖ − 2n. We can then establish the following facts.

Theorem 6. For n ≥ 1,

a) A(2n) ≤ A(n) +B(n);
b) A(3n) ≤ A(n) +B(n) + 1;
c) A(n+ 1) ≤ A(n) + 1.

Proof. We shall provide the expressions that will result in these upper bounds.

a) 22n−1 = (2n−1)(2n+1). If we take the complexity of both sides and subtract
4n we get:

A(2n) =
∥∥22n − 1

∥∥− 4n ≤ ‖2n − 1‖ − 2n+ ‖2n + 1‖ − 2n = A(n) +B(n).

b) 23n − 1 = (2n − 1)((2n + 1)2n + 1). Similarly, we get

A(3n) =
∥∥23n − 1

∥∥− 6n ≤
≤ ‖2n − 1‖ − 2n+ ‖2n + 1‖ − 2n+ ‖2n‖ − 2n+ 1 ≤
≤ A(n) +B(n) + 1.

c) 2n+1 − 1 = (2n − 1) · 2 + 1. Once again we have

A(n+ 1) =
∥∥2n+1 − 1

∥∥− 2n− 2 ≤ ‖2n − 1‖ − 2n+ 2− 2 + 1 = A(n) + 1.

This method can be extended for numbers other than 2, but then it yields
significantly less interesting results because of the very inefficient “n + 1” step.

Corollary 2. (Kaspars Balodis) If n > 1, then

‖2n − 1‖ ≤ 2n+ blog2 nc+H(n)− 3,

where H(n) is the number of 1-s in the binary representation of n, i.e., H(n) is
the Hamming weight of n in binary.



Proof. Using the above theorem we can obtain an upper bound of A(n), setting
B(n) = 1 and A(1) = A(2) = −1 and ignoring the rule b) altogether. We will
use rule c) per every 1 in the binary representation of n except the leftmost
digit, in total, H(n) − 1 times. We will use rule a) per every digit, except the
two leftmost digits, in total, blog2 nc − 1 times. In this way we will reduce n to
2 at which point A(n) = −1 having “paid” 1 for each application of any of the
rules a) and c). To sum up:

A(n) ≤ H(n)− 1 + blog2 nc − 1 + (−1).

Corollary 3. If n > 1 then ‖2n − 1‖ ≤ 2n+ 2 blog2 nc − 2.

3.2 Connection of rank and defect

Definition 7. (Harry Altman, Joshua Zelinsky) The defect of a number n is

d(n)
def
= ‖n‖ − 3 · log3 n.

Proposition 5. (Jānis Iraids)

d(n) ≥
⌊
rank(n)− 1

2

⌋(
1 + 3 log3

6

7

)
.

Proof. We will prove this by induction on the rank. First of all, for all n having
rank(n) < 3 the proposition is true trivially since⌊

rank(n)− 1

2

⌋(
1 + 3 log3

6

7

)
≤ 0.

Now assuming that it is true for all n having rank(n) < r. Suppose r is an even
number, then we again trivially have⌊

r − 1

2

⌋(
1 + 3 log3

6

7

)
=

⌊
r − 2

2

⌋(
1 + 3 log3

6

7

)
.

If on the other hand, r is an odd number greater than 2, then the shortest
expression for n has height at least 3, addition being the outermost operation.
Now write n as a sum of numbers of even rank lower than r and order them in
non-increasing fashion. This can be done since the numbers of odd rank can be
split down further merging them with the n’s outermost addition.

n =

k∑
i=1

ai, rank(a1) ≥ rank(a2) ≥ · · · ≥ rank(ak).

Note that rank(a1) = r − 1 and k ≥ 2. For defects, we have

d(n) =

k∑
i=1

d(ai) + 3 log3

∏k
i=1 ai∑k
i=1 ai

.



Following the induction the defect of a1 is at least r−3
2

(
1 + 3 log3

6
7

)
. If

rank(ak) ≥ 2 and so all ai must necessarily be at least 6. The expression

3 log3

∏k
i=1 ai∑k
i=1 ai

is minimised when k = 2 and a1 = a2 = 6 producing a minimum of

3. However, if there are l numbers of rank 0: rank(ak−l+1) = . . . = rank(ak) = 0

then d(ak−l+1) = . . . = d(ak) = 1 and
∑k

i=k−l+1 d(ai) + 3 log3

∏k
i=1 ai∑k
i=1 ai

is min-

imised at l = 1, a1 = 6 and a2 = 1 giving the 1 + 3 log3
6
7 . Consequently,

d(n) ≥ r − 3

2

(
1 + 3 log3

6

7

)
+ min

(
3, 1 + 3 log3

6

7

)
=

=
r − 1

2

(
1 + 3 log3

6

7

)
.

4 Algorithms for computing the complexity of a number

The purpose of this chapter is to describe several algorithms for computing ‖n‖.
This is useful for both exploring the behaviour of the complexity and as well as
a tool for verifying whether some hypotheses about the value of ‖n‖ hold for
large n.

It appears that computing the complexity of number n is a relatively difficult
task. At the time of writing we are unaware of any algorithm that provably works
faster than O(nlog2 3−1). Yet there exists an algorithm, that in practice runs in
approximately Θ (n log n) time.

The first and simplest algorithm is essentially as follows: evaluate all
the possible expressions of {1,+, ·} with increasing number of ones until an
expression giving n is found. We can do so taking as basis the postfix notation,
also known as Reverse Polish notation. Note, that in the postfix notation the
first (leftmost) symbol will always be 1.

The possible expression generator will use three main rules:

a) After 1 only + or 1 can follow. · can not follow because that would
mean multiplication with 1 that is meaningless;

b) After + only · or 1 can follow. + can not follow because that would
mean that it was possible to make the previous addition earlier and thus it
is not postfix notation;

c) After · only + or 1 can follow. · can not follow because that would mean
that it was possible to make the previous multiplication earlier and thus it is
not postfix notation.

For each total number of ones x in the expression excluding the leading one
we can count the number of distinct expressions as 4x – postfix notation of an
expression with x+1 ones contains 2x+1 symbols and for each symbol there are
two possible symbols that can follow. Assuming, that evaluation of the expression
takes roughly x time, the overall time complexity can be estimated as O (4x).



Thus the overall running time of the algorithm will be O
(
4‖n‖

)
, which taking

into account ‖n‖ ≤ 3 log2 n will yield O
(
n6
)
.

However, the expression generating algorithm can be improved by eliminating
similar expressions of the same number. For instance, 6 can be represented as

∗ (1 + 1) · (1 + 1 + 1) – postfix notation 11 + 11 + 1 + · or
∗ (1 + 1 + 1) · (1 + 1) – postfix notation 11 + 1 + 11 + ·.

Since multiplication is associative, we can omit one of these representations
restricting that the first multiplier has to be smaller or equal to the second
multiplier. The same principle applies to additions.

The second algorithm uses the idea of sieving. We will use an array f [1..n]
of integer values where the complexity of the number n will be stored as f [n]. Be-
fore the main routine starts, precalculate the values of E(n) in an array E[1..m].

for i = 1 to n do
f [i]← i

updated← True
height← 2
while updated do

updated← False
if height ≡ 1 (mod 2) then

for i = 2 to n do

a← n−
√

n2−4E[f [n]]

2
for j = 1 to a do

if f [i] > f [j] + f [i− j] then
f [i]← f [j] + f [i− j]
a← n−

√
n2−4E[f [n]]

2
updated← True

else
for i = 2 to b

√
nc do

j ← i+ i
k ← 2
while j ≤ n do

if f [j] > f [k] + f [i] then
f [j]← f [k] + f [i]
updated← True

j ← j + i
k ← k + 1

height← height+ 1

If the array f is initialized as shown each pass will only update the complex-
ity of numbers that have rank(n) ≥ height. As a consequence, this algorithm
produces the rank of a number; the rank can be stored if necessary. Note that
the array f could be initialized with the upper bound provided by Theorem 1
because at no point would f [i] be smaller than ‖i‖ and yet exceed the value at
the corresponding point in unmodified algorithm. To further reduce the running



time, one can use a bootstrapping step where numbers that could potentially
be used as the smallest of two addends are computed. These are exactly the
numbers that cannot be represented best as sums.

While the second algorithm is as fast as any we know, it uses a linear amount
of memory – the array where the complexity values are stored. For n > 1011 the
calculation thus becomes unfeasible. We used this algorithm to calculate ‖n‖
and rank(n) up to n = 1.5 · 109.

The third and final algorithm – the one we used for calculating ‖n‖ for n
up to 1012 – is conceptually very simple: for every natural number compute the
complexity by definition and store for subsequent steps.

‖1‖ = 1 (1)

‖n‖ = min
a+b=n∨a·b=n

{‖a‖+ ‖b‖} (2)

The techniques used are identical to what Fuller [14] describes in the comments of
his program. For factorisation we used an approach similar to the one described
in [15]. The core idea is to maintain a priority queue of the so called eliminators
– at any point n for each prime the priority is the smallest integer multiple that
is no less than n.

5 Experimental results

5.1 e(n) – the least number of complexity n

Function e(n) corresponds to the sequence A005520 [9]. Our observations up
n = 89 are represented in Table 2.

Hypothesis 9. e(n) is prime for all n, except n ∈ {1, 4, 7, 11, 25}.

Observation 1. For k ≤ 3, the number e(n)−k
k+1 is prime for almost all n.

If, for k = 1, Observation 1 holds for an infinite number of values of n, it
would imply that there is an infinite number of Sophie Germain primes –
these are defined as integers p such that p and 2p+ 1 are both primes.

Moreover, it seems that the sequence of e(n) contains primes which are the
end numbers of increasingly long Cunningham chains. Cunningham chain
(CC) of length k is defined as a sequence of k primes {p1, p2, ..., pk} such that
pi+1 = 2 · pi + 1, 1 ≤ i < k [13]. In particular,

∗ e(13) is the end number of the first CC of length 5: {2, 5, 11, 23, 47};
∗ e(26) is the end number of another CC of length 5: {89, 179, 359, 719, 1439};
∗ e(27) is the end number of the first CC of length 6:

{89, 179, 359, 719, 1439, 2879};

∗ e(80) is the end number of another CC of length 5.



The above-mentioned are the only CCs of length ≥ 5 backward-generated by
e(n), n ≤ 89.

For the following 19 values of n ≤ 89, e(n) generates CCs of length 4:

{11, 23, 34, 49, 51, 60, 61, 65, 66, 67, 70, 72, 73, 74, 77, 84, 86, 87, 89}.

If, for k = 2; 3, Observation 1 holds for an infinite number of values of n, it
would imply that there is an infinite number of integers p such that p and 3p+ 2
(or, correspondingly, p and 4p+ 3) are both primes [16].

Table 2: Prime factorizations of numbers close to e(n)

n e(n)−2
3

e(n)−1
2 e(n) e(n) + 1

1 – – 1 2
2 – – 2 3
3 – 1 3 22

4 – – 22 5
5 1 2 5 2 · 3
6 5 3 7 23

7 – – 2 · 5 11
8 3 5 11 22 · 3
9 5 23 17 2 · 32
10 – – 2 · 11 23
11 7 11 23 23 · 3
12 13 22 · 5 41 2 · 3 · 7
13 3 · 5 23 47 24 · 3
14 19 29 59 22 · 3 · 5
15 29 22 · 11 89 2 · 32 · 5
16 5 · 7 53 107 22 · 33
17 5 · 11 83 167 23 · 3 · 7
18 59 89 179 22 · 32 · 5
19 3 · 29 131 263 23 · 3 · 11
20 5 · 23 173 347 22 · 3 · 29
21 5 · 31 233 467 22 · 32 · 13
22 227 11 · 31 683 22 · 32 · 19
23 239 359 719 24 · 32 · 5
24 11 · 37 13 · 47 1223 23 · 32 · 17
25 – – 2 · 719 1439
26 479 719 1439 25 · 32 · 5
27 7 · 137 1439 2879 26 · 32 · 5
28 5 · 251 7 · 269 3767 23 · 3 · 157
29 1427 2141 4283 22 · 32 · 7 · 17
30 2099 47 · 67 6299 22 · 32 · 52 · 7
31 3359 5039 10079 25 · 32 · 5 · 7



32 5 · 787 5903 11807 25 · 32 · 41
33 5 · 1019 7643 15287 23 · 3 · 72 · 13
34 23 · 313 10799 21599 25 · 33 · 52
35 3 · 3733 107 · 157 33599 26 · 3 · 52 · 7
36 5 · 23 · 131 2 · 11299 45197 2 · 36 · 31
37 18679 28019 56039 23 · 3 · 5 · 467
38 5 · 5443 40823 81647 24 · 36 · 7
39 32999 49499 98999 23 · 32 · 53 · 11
40 54419 81629 163259 22 · 32 · 5 · 907
41 53 · 1283 101999 203999 25 · 3 · 53 · 17
42 80627 120941 241883 22 · 32 · 6719
43 5 · 24763 185723 371447 23 · 32 · 7 · 11 · 67
44 180179 270269 540539 22 · 33 · 5 · 7 · 11 · 13
45 196799 295199 590399 26 · 32 · 52 · 41
46 302399 453599 907199 26 · 34 · 52 · 7
47 173 · 2083 540539 1 081 079 23 · 33 · 5 · 7 · 11 · 13
48 617039 925559 1 851 119 24 · 33 · 5 · 857
49 680399 1 020 599 2 041 199 24 · 36 · 52 · 7
50 1 081 079 1 621 619 3 243 239 23 · 34 · 5 · 7 · 11 · 13
51 1 280 159 1 920 239 3 840 479 25 · 33 · 5 · 7 · 127
52 2 187 359 3 281 039 6 562 079 25 · 33 · 5 · 72 · 31
53 2 735 519 4 103 279 8 206 559 25 · 32 · 5 · 41 · 139
54 3 898 919 5 848 379 11 696 759 23 · 32 · 5 · 32491
55 4 882 919 7 324 379 14 648 759 23 · 32 · 5 · 7 · 5813
56 13 · 59 · 9697 11 156 399 22 312 799 25 · 33 · 52 · 1033
57 9 164 959 13 747 439 27 494 879 25 · 3 · 5 · 73 · 167
58 13 915 439 20 873 159 41 746 319 24 · 33 · 5 · 7 · 11 · 251
59 17 417 399 26 126 099 52 252 199 23 · 32 · 52 · 7 · 11 · 13 · 29
60 26 110 559 39 165 839 78 331 679 25 · 32 · 5 · 7 · 19 · 409
61 36 202 319 54 303 479 108 606 959 24 · 33 · 5 · 7 · 11 · 653
62 6577 · 7247 71 495 279 142 990 559 25 · 32 · 5 · 109 · 911
63 67 699 439 101 549 159 203 098 319 24 · 33 · 5 · 17 · 5531
64 91 328 639 136 992 959 273 985 919 27 · 32 · 5 · 13 · 3659
65 127 340 639 191 010 959 382 021 919 25 · 34 · 5 · 7 · 4211
66 165 145 679 247 718 519 495 437 039 24 · 33 · 5 · 72 · 31 · 151
67 227 109 119 340 663 679 681 327 359 28 · 32 · 5 · 72 · 17 · 71
68 335 430 119 503 145 179 1 006 290 359 23 · 32 · 5 · 601 · 4651
69 468 798 119 703 197 179 1 406 394 359 23 · 33 · 5 · 7 · 17 · 31 · 353
70 619 264 799 928 897 199 1 857 794 399 25 · 33 · 52 · 7 · 11 · 1117
71 909 474 719 1 364 212 079 2 728 424 159 25 · 32 · 5 · 7 · 112 · 2237
72 1 247 732 639 1 871 598 959 3 743 197 919 25 · 34 · 5 · 7 · 113 · 31
73 40499 · 41221 2 504 113 919 5 008 227 839 29 · 33 · 5 · 7 · 11 · 941
74 2 290 896 719 3 436 345 079 6 872 690 159 24 · 33 · 5 · 7 · 454543
75 3 279 830 399 7643 · 643693 9 839 491 199 27 · 34 · 52 · 7 · 11 · 17 · 29
76 4 495 159 679 6 742 739 519 13 485 479 039 27 · 32 · 5 · 113 · 1759



77 5 574 925 439 8 362 388 159 16 724 776 319 27 · 38 · 5 · 7 · 569
78 8 226 486 239 12 339 729 359 24 679 458 719 25 · 32 · 5 · 7 · 19 · 128861
79 11 841 566 159 17 762 349 239 35 524 698 479 24 · 32 · 5 · 49339859
80 14 737 208 639 22 105 812 959 44 211 625 919 26 · 32 · 5 · 72 · 11 · 19 · 1499
81 20 797 230 719 31 195 846 079 62 391 692 159 27 · 32 · 5 · 72 · 221059
82 31 251 071 039 46 876 606 559 93 753 213 119 26 · 32 · 5 · 72 · 61 · 10891
83 40 517 305 919 60 775 958 879 121 551 917 759 26 · 34 · 5 · 7 · 13 · 29 · 1777
84 54 513 320 399 81 769 980 599 163 539 961 199 24 · 33 · 52 · 7 · 11 · 196657
85 83 528 413 919 125 292 620 879 250 585 241 759 25 · 34 · 5 · 7 · 2762183
86 106 809 776 639 160 214 664 959 320 429 329 919 29 · 33 · 5 · 72 · 37 · 2557
87 141 615 840 239 212 423 760 359 424 847 520 719 24 · 34 · 5 · 7 · 9366127
88 210 123 688 319 315 185 532 479 630 371 064 959 27 · 33 · 5 · 7 · 13 · 17 · 23581
89 290 857 880 879 436 286 821 319 872 573 642 639 24 · 33 · 5 · 73 · 19 · 61987

The behaviour of e(n) provides some evidence that the logarithmic complex-
ity of n does not tend to 3, and even that the constant C2 = lim sup

n→∞
‖n‖log is

greater than ‖2‖log. It is useful to note the following fact:

Proposition 6.

C2 = lim sup
n→∞

‖n‖log = lim sup
n→∞

‖e(n)‖log

Proof. Since ‖e(n)‖log is a subsequence of ‖n‖log the ≥ follows obviously.
The ≤ is proven from the contrary. Assume that there exists an infinite list of

numbers {xi}, that only have a finite number of elements from sequence e(n) of
logarithmic complexity ≥ mini{‖xi‖log}. Furthermore, there is an infinite sub-
sequence {yi} of {xi}’s such that the complexity of numbers strongly increases.
But any number of this sequence has a corresponding number in e(n), namely
e(‖yi‖) that has greater or equal logarithmic complexity.

Alternatively, on the axis of logarithmic complexity, e(n) yields the rightmost
point of numbers of complexity n.

Hypothesis 10. The limit lim
n→∞

‖e(n)‖log exists and

lim
n→∞

‖e(n)‖log = lim sup
n→∞

‖e(n)‖log

As one can see in Figures 2 and 3:

Hypothesis 11. log3 e(n) behaves almost linearly, namely,

log3 e(n) ≈ 0.297n− 1.55.

Hence,

‖e(n)‖log =
n

log3 e(n)
≈ 3.37 +

5.2

0.297n− 1.55
,

and lim
n→∞

‖e(n)‖log ≈ 3.37.
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Lemma 3. For all n > 1:

‖n‖log ≤ ‖e(‖n‖)‖log .

Proof. Obviously, ‖n‖ = ‖e(‖n‖)‖, and n ≥ e(‖n‖). Hence, log3 n ≥ log3 e(‖n‖),
and ‖n‖log ≤ ‖e(‖n‖)‖log.

Thus, if ε > 0, then, it seems, ‖n‖log > 3.37 + ε can be true only for finitely
many values of n. Thus, in terms of Section 2.3:

Hypothesis 12. It would follow from Hypothesis 11, that C2 ≤ 3.37 (approxi-
mately).

5.2 Structure of shortest expressions

Analyzing the structure of the shortest expressions representing numbers, we
have come to the conclusion that we should not only abandon any attempts to
obtain a ”deterministic” method for construction of shortest expressions, and
turn to ”nondeterministic” methods. We should abandon also radical attempts
to predict regularities in the structure of shortest expressions.

For example, one might propose the following hypothesis: if p is the smallest
prime divisor of n > 1, then

‖n‖ = min (1 + ‖n− 1‖ , ‖p‖+ ‖n/p‖).

For p = n, and p = 2 (with prime n/p) this hypothesis appears in Guy [10]:
for any prime p,

‖p‖ = 1 + ‖p− 1‖ ,

‖2p‖ = min (1 + ‖2p− 1‖ , 2 + ‖p‖).

Similarly, one could suppose:

‖3p‖ = min (1 + ‖3p− 1‖ , 3 + ‖p‖).

The first hypothesis fails, the smallest counterexample being

p = 353 942 783 = 2 · 3 + (1 + 22 · 32)(2 + 34(1 + 2 · 310)),

‖p‖ = 63, 1 + ‖p− 1‖ = 64, found by Martin N. Fuller, 2008, see [2].
The second hypothesis fails as well, the smallest counterexample being

2p = 10 278 600 694 = 2 · 3 + (1 + 2 · 32(1 + 24))(1 + 314(1 + 2 · 3)),

‖2p‖ = 72, 1 + ‖2p− 1‖ = 2 + ‖p‖ = 73, found by Jānis Iraids, 2010.
By analogy, it seems, the third hypothesis also should fail, but this does not

happen for 3p ≤ 1012.
Thus, when trying to build the shortest expression representing a number,

subtraction of 1 and division by primes are not universal candidates for the first
operation. How about subtraction of other numbers?



Subtractions of 3, 4, 5, 7, 10, 11, 13, etc. include subtraction of 1. Thus, it
remains to consider only subtractions of 6, 8, 9, 12, etc.

The first number, for which subtraction of 6 is necessary as the first operation,
is the above prime found by Fuller:

353 942 783 = 2 · 3 + (1 + 22 · 32)(2 + 34(1 + 2 · 310)).

Until 1012, there are only 21360 numbers for which subtraction of 6, 8 or 9
is necessary as the first operation.

Until 1012, there are exactly 3 numbers for which the first operation must be
subtraction of 8:

341 317 451 698 = 2 · prime = 23 + (1 + 24(1 + 2 · 33))(1 + 318);

474 934 483 834 = 2 · 6011 · 39505447 = 23 + (1 + 24)(1 + 23 · 34)(1 + 316);

782 747 233 558 = 2 · prime = 23 + (1 + 24(1 + 2 · 35))(1 + 315(1 + 2 · 3)).

Until 1012, there are 119 numbers for which the first operation must be
subtraction of 9, the first three ones being:

16 534 727 299 = 103 · 160531333 = 32 + (1 + 27 · 33)(1 + 314);

68 238 632 999 = prime = 32 + (1 + 1 + 32)(1 + 24 · 34)(1 + 314);

85 619 928 299 = prime = 32 + (1 + 22 · 3)(1 + 24)(1 + 318).

Necessity for subtraction of 12 (or larger addendum) was not detected for
numbers until 1012.

According to Corollary 1, if n ≥ 29 and the shortest expression for n is a
sum n = a + b, then the smaller addendum a ≤ 2nlog2 3−1 ≈ 2n0.585. However,
the above observations show that for n ≤ 1012 the smaller addendum does not
exceed 9.

5.3 Complexity of 2n + 1 and 2n − 1

Since, it seems, ‖2n‖ = 2n, one can suppose

Hypothesis 13. For all n ≥ 0, except 3 and 9,

‖2n + 1‖ = 2n+ 1.

Hypothesis 13 is true for all 2n + 1 ≤ 1012, i.e. for all n ≤ 39 – as verified by
Jānis Iraids.

Both exceptions are due to relatively massive divisibility by 3:

23 + 1 = 9 = 2 · 2 · 2 + 1 = 3 · 3;

29 + 1 = 513 = (3 · 3 · 2 + 1) · 3 · 3 · 3.
On the other hand, since we do not have subtraction in our expression basis

{1,+, ·}, the numbers 2n− 1 seem to be more complicated than 2n. In Theorem
2, an upper bound of ‖2n − 1‖ was proved. In Table 3 this result is compared
with experimental data for n ≤ 39.



Table 3: Complexity of ‖2n − 1‖

n ‖2n − 1‖ − 2n blog2 nc+H(n)− 3 n ‖2n − 1‖ − 2n blog2 nc+H(n)− 3
1 −1 − 21 2 4
2 −1 −1 22 3 4
3 0 0 23 4 5
4 0 0 24 2 3
5 1 1 25 3 4
6 0 1 26 3 4
7 1 2 27 2 5
8 1 1 28 3 4
9 1 2 29 4 5
10 2 2 30 3 5
11 3 3 31 4 6
12 1 2 32 3 3
13 2 3 33 4 4
14 2 3 34 4 4
15 2 4 35 4 5
16 2 2 36 2 4
17 3 3 37 2 5
18 1 3 38 2 5
19 2 4 39 3 6
20 2 3 − − −

Thus, it seems, the upper bound of Theorem 2 is exact for all n = 2k, k > 0:

Observation 2. For all 0 ≤ k ≤ 5,∥∥∥22
k

− 1
∥∥∥ = 2 · 2k + k − 2.

5.4 Observing ranks

The first number for which subtraction of 6 is necessary as the first operation to
obtain the shortest expression of minimum height, is

22 697 747 = prime = 2 · 3 + (2 + 37)(1 + 27 · 34),

complexity 55, rank 5.
The values of r(n) up to n = 19 are represented in Table 4. The lists in braces

represent Cunningham chains of primes [13].

Table 4: r(n) – the least number of rank n

n r(n) ‖r(n)‖ Other properties
1 2 2 e(2), {2, 5, 11, 23, 47}
2 6 5 2 · 3



3 7 6 e(6), {3, 7}
4 14 8 2 · 7
5 23 11 e(11), {2, 5, 11, 23, 47}
6 86 14 2 · 43
7 179 18 e(18), {89, 179, 359, 719, 1439, 2879}
8 538 21 2 · 269
9 1439 26 e(26), {89, 179, 359, 719, 1439, 2879}
10 9566 30 2 · 4783
11 21383 33 {10691, 21383, 42767}
12 122847 37 3 · 40949
13 777419 44 prime
14 1965374 46 2 · 982687
15 6803099 51 {3401549, 6803099}
16 19860614 53 2 · 9930307
17 26489579 55 {13244789, 26489579, 52979159}
18 269998838 61 2 · 4093 · 32983
19 477028439 64 14207 · 33577

In Figure 4, the values of log3 r(n) are compared with n.

Observation 3. log3 r(n) tends to n, hence, it seems, r(n) ≈ 3n.

5.5 Collapse of powers

While attempting to prove or disprove the Hypothesis 1 one might try to gen-
eralize the hypothesis by looking for other numbers n, such that the shortest
expressions for all the integer powers of n: n2, n3, n4, . . . can be obtained as
products of shortest expressions for n.

Definition 8. If this property holds, then the number n is called resistant.

Obviously, if n is resistant, then for all k > 0,∥∥nk∥∥ = k ‖n‖ ;∥∥nk∥∥
log

= ‖n‖log .

Currently, only the number 3 is proved to be resistant. According to Hy-
pothesis 1, another resistance candidate is the number 2. Existence of resistant
numbers other than powers of 3 would provide a lower bound on C2:

Proposition 7. If n = 2 or n 6= 3k is resistant, C2 ≥ ‖n‖log > 3.

Definition 9. If k > 0 is the least number such that
∥∥nk∥∥ < k ‖n‖, let us say

that the number n collapses at k.
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For example, the number 5 collapses at 6 (see Section 2.2):∥∥56
∥∥ = 29 < 6 ‖5‖ = 6 · 5 = 30.

However, it seems, most primes collapse already at 2, for example,∥∥112
∥∥ = 15 < 2 ‖11‖ = 2 · 8 = 16; 112 = 121 = 1 + 23 · 3 · 5.

Of the 168 primes until 103, 120 primes collapse at 2 (71%), 24 – at 3 (14%),
3 – at 4 (2%), the remaining 21 do not collapse until 4 (13%), and, currently, 12
of them are not known to collapse at all, namely,

2, 3, 109, 163, 379, 433, 487, 541, 577, 733, 739, 811.

For details, see Table 5. The rest of numbers all collapse at 2 or 3, and their
logarithmic complexity exceeds 3.417. It seems, primes having larger logarithmic
complexity are more likely to collapse.

Table 5: Powers in which primes until 1000 collapse, sorted by
increasing logarithmic complexity

p collapses ‖p‖ rank(p) ≈ ‖p‖log
3 − 3 1 3.000



2 ?(> 39) 2 1 3.170
487 ?(> 4) 18 3 3.196
163 ?(> 5) 15 3 3.235
433 ?(> 4) 18 3 3.257
109 ?(> 5) 14 3 3.278
811 ?(> 4) 20 3 3.280
577 ?(> 4) 19 3 3.283
769 3 20 3 3.307
757 ≤ 6 20 5 3.314
541 ?(> 4) 19 3 3.317
739 ?(> 4) 20 5 3.326
73 6 13 3 3.329
379 ?(> 4) 18 5 3.331
733 ?(> 4) 20 5 3.331
271 4 17 3 3.334
193 4 16 3 3.340
991 ≤ 12 21 5 3.344
37 5 11 3 3.347
977 2 21 5 3.351
19 6 9 3 3.358
97 6 14 3 3.362
257 ≤ 6 17 3 3.366
937 3 21 5 3.372
673 3 20 5 3.374
919 3 21 5 3.381
181 3 16 3 3.381
661 3 20 5 3.384
7 9 6 3 3.387

653 2 20 5 3.390
337 3 18 5 3.398
641 4 20 3 3.400
883 3 21 5 3.401
127 2 15 5 3.402
881 2 21 5 3.402
877 3 21 5 3.405
241 3 17 3 3.405
631 2 20 5 3.408
457 3 19 5 3.408
331 3 18 5 3.408
5 6 5 1 3.413

Of the 1229 primes until 104, 1030 primes collapse at 2 (84%), 122 – at 3
(10%), the remaining 77 do not collapse until 3 (6%).



Of the 78498 primes until 106, 71391 primes collapse at 2 (91%), the remain-
ing 7107 do not collapse until 2 (9%), and, currently, only 2722 are not known
to collapse at all (4%).

The following observations are true for primes less than 106.

Observation 4. Almost all primes collapse at 2.

Observation 5. If a prime p does not collapse at all, then ‖p‖log < 3.364. If a
prime p collapses, then ‖p‖log > 3.180 > ‖2‖log.

If we turn to composite numbers, we can encounter numbers that collapse
because one ore more of their prime divisors collapse – even when their initial
shortest expression did not directly contain the prime as a multiplier. 34+1 = 82
is an example of such a number:

∗ ‖82‖ = 13 and ‖41‖ = 12
∗
∥∥8212

∥∥ < 12 · 13, because
∥∥4112

∥∥ ≤ 131 < 12 · 11:

4112 =[23 · 32 ·
(
22 + 1

) (
37 + 1

)(
2 · 34 ·

(
23 · 32 ·

(
2 · 33 + 1

)
+ 1
)

+ 1
)(

2 · 34 ·
(
2 · 39 · (2 · 3 + 1) + 1

)
+ 1
)
] + 1

On the other hand, there could possibly be composite numbers that do not
collapse even though some of their prime divisors do. Obviously, a necessary
condition is that the shortest expression for the composite number does not
directly contain the collapsing prime as a multiplier. One candidate is 35 + 1 =
244 = 22 · 61; ‖244‖ = 16 but ‖61‖ = 13. Using a heuristic algorithm Juris
Čerņenoks was able to produce expressions for 61k for k = 7..15. His results
suggest that 61 does not collapse well enough, i.e., the number of ones saved from
collapsing is less than required to catch up with the expression 244 = 35 + 1.

On a side note, the above mentioned 82 and 244 are interesting because if
they proved to be resistant, then C2 would exceed ‖2‖log.

6 Conclusions

Trying to explore representing of natural numbers by arithmetical expressions
using ones, addition, multiplication and parentheses, one arrives very soon at
the problems that are easy to formulate, but (it seems) extremely hard to solve.

Consider, for example, the above Hypothesis 1 stating that the best way
of representing of 2n is (1 + 1)(1 + 1).... We consider proving or disproving of
Hypothesis 1 as one of the biggest challenges of number theory.

Almost as challenging seems Hypothesis 4 stating that as a function of n,
rank(n) is unlimited. Rank is an additional (to ‖n‖) measure of integer com-
plexity introduced in this paper.

As another challenge we regard determining of the distribution of the values
of logarithmic complexity ‖n‖log which are located within the segment [3, 4.755].



First, denote by C1 the point separating the area (on the left) where the values of
‖n‖log are dense, from the area, where these values are not dense. On the other
hand, on the right, the values of ‖n‖log are ”absolutely sparse”: for most C,
‖n‖log > C only for finitely many values of n. Denote by C2 the point separating
the area (on the right) where the values of ‖n‖log are ”absolutely sparse”, from
the area, where these values are not sparse. Of course, C1 ≤ C2. Our Hypotheses
5 and 11 (if true) imply that

3.1699 ≈ ‖2‖log ≤ C1 ≤ C2 ≤ 3.37.

Our main experimental ”device” is the database containing the values of ‖n‖
up to n = 1012 calculated by Jānis Iraids. The database can be accessed by using
an online calculator page linked from [2].

And finally, our Hypothesis 9 and Observation 1 (if true) imply that there is
an infinite number of Sophie Germain primes, and even that there is an infinite
number of Cunningham chains of length 4 (at least).
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