A Generalized Apéry Series

M. L. Glasser
Department of Physics, Clarkson University, Postdam, NY 13699-5820
laryg@clarkson.edu

Abstract

The inverse central binomial series $$
S_{k}(z)=\sum_{n=1}^{\infty} \frac{n^{k} z^{n}}{\binom{2 n}{n}}
$$ popularized by Apéry and Lehmer is evaluated for positive integers k along with the asymptotic behavior for large k. It is found that value $z=2$, as commented on by D. H . Lehmer provides a unique relation to π.

1 Introduction

Since the appearance of $S_{-3}(1)$ in Apéry's famous proof [1] in 1979 that $\zeta(3)$ is irrational, an extensive literature has been devoted to the series

$$
\begin{equation*}
S_{k}(z)=\sum_{n=1}^{\infty} \frac{n^{k} z^{n}}{\binom{2 n}{n}} \tag{1}
\end{equation*}
$$

For example, in 1985 Lehmer [2] presented a number of special cases which could be obtained from the Taylor series for $f(x)=x^{-1 / 2}(1-x)^{-1 / 2} \sin ^{-1} x$ using only elementary calculus. In passing, he noted that when k is a positive integer, $S_{k}(2)$ had the form $a_{k}-b_{k} \pi$ and that the rational number a_{k} / b_{k} "is a close approximation to π. This remark was recently taken up by Dyson et al. [3], who proved that $\left|a_{k} / b_{k}-\pi\right|=O\left(Q^{-k}\right)$ as $k \rightarrow \infty$ where $Q=\sqrt{1+(2 \pi / \ln 2)^{2}}$. Lehmer also showed that for positive integer k

$$
\begin{equation*}
S_{k}(z)=\frac{2^{k+z^{5 / 2}} z^{1 / 2}}{(4-z)^{k+3 / 2}}\left(A_{k}(z / 4) \sin ^{-1}(\sqrt{z / 4})+\sqrt{z(4-z)} B_{k}(z / 4)\right) \tag{2}
\end{equation*}
$$

where A_{k} and B_{k} are recursively defined polynomials. It was apparently not until 2005 that (2) was evaluated explicitly, for $z=1$, by J. Borwein and P. Girgensohn [4] who showed

$$
\begin{equation*}
S_{k}(1)=\frac{1}{2}(-1)^{k+1} \sum_{j=1}^{k+1}(-1)^{j} j!S(j+1, j) 3^{-j}\binom{2 j}{j}\left(\sum_{i=1}^{j-1} \frac{3^{i}}{(2 i+1)\binom{2 i}{i}}+\frac{2}{3 \sqrt{3}} \pi\right) . \tag{3}
\end{equation*}
$$

where the Stirling numbers of the second kind are defined by

$$
\begin{equation*}
S(k, j)=\frac{(-1)^{j}}{j!} \sum_{m=0}^{j}(-1)^{m} m^{k}\binom{j}{m} . \tag{4}
\end{equation*}
$$

The aim of the present note is to extend (3) to complex z and thus to continue (1) analytically beyond its circle of convergence $|z|=4$.

2 Calculation

We begin with the observation that $\left(m\binom{2 m}{m}\right)^{-1}=B(m, m+1)$, where B denotes Euler's beta integral. Hence,

$$
\begin{equation*}
S_{k}(z)=\int_{0}^{1} \frac{d t}{t} \sum_{m=1}^{\infty} m^{k+1}(z t(1-t))^{m} \tag{5}
\end{equation*}
$$

Next, equation (21) of Girgensohn and Borwein [4],

$$
\begin{equation*}
\sum_{m=1}^{\infty} m^{p} X^{m}=\sum_{n=1}^{p} \sum_{m=1}^{n}(-1)^{m+n}\binom{n}{m} m^{p} X^{n}(1-X)^{-n-1}, \tag{6}
\end{equation*}
$$

gives

$$
\begin{equation*}
S_{k}(z)=\sum_{n=1}^{k+1} \sum_{m=1}^{n}(-1)^{m+n}\binom{n}{m} m^{k+1} \int_{0}^{1} \frac{d t}{t} \frac{(z t(1-t))^{n}}{(1-z t(1-t))^{n+1}} \tag{7}
\end{equation*}
$$

In the appendix it is shown that

$$
\begin{equation*}
\int_{0}^{1} \frac{d t}{t} \frac{(z t(1-t))^{n}}{(1-z t(1-t))^{n+1}}=\frac{\sqrt{\pi} \Gamma(n)}{\Gamma(n+1 / 2)} X^{n}{ }_{2} F_{1}(-1 / 2, n ; n+1 / 2 ;-X) \tag{8}
\end{equation*}
$$

where $X=z /(4-z)$, so

$$
\begin{equation*}
S_{k}(z)=\sum_{n=1}^{k+1} n!B(n, 1 / 2) S(k+1, n) X^{n}{ }_{2} F_{1}(-1 / 2, n ; n+1 / 2 ;-X) \tag{9}
\end{equation*}
$$

By induction, starting with the tabulated value for $n=1$ and using Gauss' contiguity relations we find (some details are given in the appendix)

$$
\begin{gather*}
{ }_{2} F_{1}(-1 / 2, n ; n+1 / 2 ;-X)= \\
\left(\frac{1}{2}\right)_{n}\left(\frac{1}{n!}+\frac{1}{\sqrt{\pi} \Gamma(n)} \sum_{k=0}^{n-1} \frac{(-1)^{k} \Gamma(k+1 / 2)}{(k+1)!}\binom{n-1}{k}\left(\frac{X+1}{X}\right)^{k+1} \times\right. \\
\left.\left[\sqrt{X} \sin ^{-1} \sqrt{\frac{X}{X+1}}-\frac{1}{2} \sum_{l=1}^{k} \frac{(l-1)!}{(1 / 2)_{l}}\left(\frac{X}{X+1}\right)^{l}\right]\right) . \tag{10}
\end{gather*}
$$

(We have used the ascending factorial notation $\left.(a)_{n}=\Gamma(a+n) / \Gamma(a)\right)$. Therefore we have the principal result

$$
\begin{gather*}
S_{k}(z)=\sum_{n=1}^{k+1} n!\left(\frac{z}{4-z}\right)^{n} S(k+1, n) \times \\
\left(\frac{1}{n}+\sum_{p=0}^{n-1}(-1)^{p} \frac{(1 / 2)_{p}}{(p+1)!}\binom{n-1}{p}\left(\frac{4}{z}\right)^{p+1}\left(\sqrt{\frac{z}{4-z}} \sin ^{-1} \frac{\sqrt{z}}{2}-\frac{1}{2} \sum_{l=1}^{p} \frac{\Gamma(l)}{(1 / 2)_{l}}\left(\frac{z}{4}\right)^{l}\right)\right) \tag{11}
\end{gather*}
$$

Equation (11) is rather condensed; in unpacking it, sums with upper limit less than the lower limit are to be interpreted as 0 . It is clear from (11) that for rational z

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{n^{k} z^{n}}{\binom{n}{n}}=R_{1}(z, k)+R_{2}(z, k) \sqrt{\frac{z}{4-z}} \sin ^{-1} \frac{\sqrt{z}}{2} \tag{12}
\end{equation*}
$$

where R_{j} is a rational number.
One sees from (11) that $S_{k}(z)$ is analytic on the two-sheeted Riemann surface formed by two planes cut and rejoined along the real half-line $x>4$. The numbers in (12) have the explicit expressions

$$
\begin{gather*}
R_{1}(z, k)= \tag{13}\\
\sum_{n=1}^{k+1} n!S(k+1, n)\left(\frac{z}{4-z}\right)^{n}\left(\frac{1}{n}-\frac{1}{2} \sum_{p=1}^{n-1} \sum_{l=1}^{p} \frac{(-1)^{p}(1 / 2)_{p}}{(p+1)!(1 / 2)_{l}}\binom{n-1}{p} \Gamma(l)\left(\frac{4}{z}\right)^{p-l+1}\right) \\
R_{2}(z, k)=\sum_{n=1}^{k+1} n!S(k+1, n) \sum_{p=0}^{n-1} \frac{(-1)^{p}}{(p+1)!}\binom{n-1}{p}\left(\frac{4}{z}\right)^{p+1} \tag{14}
\end{gather*}
$$

3 Asymptotics

It is convenient to work in terms of the exponential generating function

$$
\begin{equation*}
G(z, t):=\sum_{k=0}^{\infty} S_{k}(z) \frac{t^{k}}{k!}=S_{0}\left(z e^{t}\right)=\frac{z}{4-z e^{t}}+\frac{4 \sqrt{z} e^{t / 2}}{\left(4-z e^{t}\right)^{3 / 2}} \sin ^{-1} \frac{\sqrt{z} e^{t / 2}}{2} \tag{15}
\end{equation*}
$$

To find the generating functions $\rho_{j}(z, t):=\sum R_{j}(z, k) t^{k} / k$!, it would be simplest to start with a series $D_{k}(z)=R_{1}(z, k)-R_{2}(z, k) \sqrt{\frac{z}{4-z}} \sin ^{-1} \sqrt{z} / 2$, work out its generating function $D(z, t)$ and by taking the sum and difference identify ρ_{1} and ρ_{2}. However, this series has not been found and there is nothing to guarantee its existence in tractable form. Therefore, the ρ_{j} were evaluated directly from (13) and (14). The details are omitted as the results

$$
\begin{align*}
\rho_{1}(z, t)= & \frac{z e^{t}}{4-z e^{t}}+ \\
& \frac{8}{\pi} \sqrt{\frac{z e^{t}}{\left(4-z e^{t}\right)^{3 / 2}}}\left(\sin ^{-1} \frac{\sqrt{z} e^{t / 2}}{2} \cos ^{-1} \frac{\sqrt{z}}{2}-\cos ^{-1} \frac{\sqrt{z} e^{t / 2}}{2} \sin ^{-1} \frac{\sqrt{z}}{2}\right), \tag{16}
\end{align*}
$$

$$
\begin{equation*}
\rho_{2}(z, t)=4 \sqrt{\frac{(4-z) e^{t}}{\left(4-z e^{t}\right)^{3}}} \tag{17}
\end{equation*}
$$

are easily verified. In the case $z=2$, (15) and (16) are identical to Dyson's formulas [3, 5] obtained empirically.

In view of the prominent role that the ratio $R_{1}(z, t) / R_{2}(z, t)$ plays in Dyson et al. [3] for $z=2$ it is interesting to examine it for general z. From (17) we have

$$
\begin{equation*}
R_{2}(z, k)=\frac{2 k!\sqrt{4-z}}{\pi i} \oint \frac{d s}{s^{k+1}} \frac{e^{s / 2}}{\left(4-z e^{s}\right)^{3 / 2}} \tag{18}
\end{equation*}
$$

The non-zero singularity closest to $s=0$ is $s_{0}=\ln (4 / z)$ and it dominates the asymptotic behavior. Ignoring the other singularities, distorting the contour to a small circle about s_{0} and translating back to the origin by $t=s-s_{0}$, we have

$$
\begin{equation*}
R_{2}(z, k) \sim-\frac{k!\sqrt{4-z}}{z s_{0}^{k+1}} \oint \frac{d t}{2 \pi i} \frac{e^{t / 2}}{\left.\left(1-e^{t}\right)\right)^{3 / 2}} . \tag{19}
\end{equation*}
$$

The exact value of the integral in (19) is $-(2 / \pi) \sqrt{e /(e-1)}$, and so

$$
\begin{equation*}
R_{2}(z, k) \sim \frac{k!}{(\ln (4 / z))^{k+1}} \frac{2}{\pi} \sqrt{\frac{e(4-z)}{z(e-1)}} \tag{20}
\end{equation*}
$$

In the same way we obtain

$$
\begin{equation*}
R_{1}(z, k) \sim \frac{k!}{(\ln (4 / z))^{k+1}}\left(\sqrt{2}+\frac{2}{\pi}\left(\sqrt{\frac{e}{e-1}}-\sqrt{2}\right) \cos ^{-1} \frac{\sqrt{z}}{2}-\frac{2^{3 / 2}}{\pi} \sin ^{-1} \frac{\sqrt{z}}{2}\right) \tag{21}
\end{equation*}
$$

4 Discussion

From (20) and (21) we find

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\frac{R_{1}(z, k)}{R_{2}(z, k)}-\sqrt{\frac{z}{4-z}} \sin ^{-1} \frac{\sqrt{z}}{2}\right)=\sqrt{\frac{z}{4-z}}\left(\cos ^{-1} \frac{\sqrt{z}}{2}-\sin ^{-1} \frac{\sqrt{z}}{2}\right) . \tag{22}
\end{equation*}
$$

It thus appears that Lehmer's choice, $z=2$, is the unique permissible case for which the limit (22) vanishes. (Also the Lehmer limit, as defined by Dyson et al. [3], relates to $\pi / 4$ here rather than π). Finally, for negative integer indices, since

$$
\begin{equation*}
2 S_{-k}(z)={ }_{k+1} F_{k}\left(1, \ldots, 1 ; \frac{3}{2}, 2, \ldots, 2 ; \frac{1}{4} z\right) \tag{23}
\end{equation*}
$$

the fact that $S_{-k}(z)$ can be obtained from $S_{0}(z)$ by successive integrations with respect to z and the explicit evaluations by Lehmer [2], Borwein and Girgensohn [4] and others [6, 7, 8, $9,10]$ it should be possible to obtain explicit values for sundry generalized hypergeometric functions.

5 Appendix: Derivation of Equations (8) and (10)

Let us consider, for any integrable function F,

$$
I=\int_{0}^{1} \frac{d t}{t} F(t(1-t))
$$

Let $u=t(1-t)$, so $u(0)=u(1)=0 ; u(1 / 2)=1 / 4$. Then there are two expressions for t :

$$
t_{+}=\frac{1}{2}(1+\sqrt{1-4 t}) \quad \text { for } \frac{1}{2} \leq t \leq 1, \text { with } \frac{d t_{+}}{t_{+}}=\left(1-\frac{1}{\sqrt{1-4 u}}\right) \frac{d u}{u}
$$

and

$$
t_{-}=\frac{1}{2}(1-\sqrt{1-4 t}) \quad \text { for } 0 \leq t \leq \frac{1}{2}, \quad \text { with } \frac{d t_{+}}{t_{+}}=\left(1+\frac{1}{\sqrt{1-4 u}}\right) \frac{d u}{u}
$$

Consequently,

$$
\begin{aligned}
I & =\int_{0}^{1 / 2} \frac{d t_{-}}{t_{-}} F(u)+\int_{1 / 2}^{1} \frac{d t_{+}}{t_{+}} F(u)=2 \int_{0}^{1 / 4} \frac{d u}{u \sqrt{1-4 u}} F(u) \\
& =2 \int_{0}^{1} \frac{d x}{x \sqrt{1-x}} F\left(\frac{1}{4} x\right)=2 \int_{0}^{1} \frac{d t}{(1-t) \sqrt{t}} F\left(\frac{1-t}{4}\right)
\end{aligned}
$$

and, with $t=x^{2}$,

$$
I=4 \int_{0}^{1} \frac{d x}{1-x^{2}} F\left(\frac{1-x^{2}}{4}\right)
$$

Therefore,

$$
L=\int_{0}^{1} \frac{d t}{t} \frac{(z t(1-t))^{\alpha}}{(1-z t(1-t))^{\beta}}=2\left(\frac{z}{4}\right)^{\alpha-\beta} \int_{0}^{1} d x \frac{\left(1-x^{2}\right)^{\alpha-1}}{\left(a^{2}+x^{2}\right)^{\beta}}
$$

where $a^{2}=1 / X=(4-z) / z$.
From standard references

$$
\begin{aligned}
& \int_{0}^{1} d x \cos (x y)\left(1-x^{2}\right)^{\alpha-1}=\sqrt{\frac{\pi y}{8}}\left(\frac{2}{y}\right)^{\alpha} \Gamma(\alpha) J_{\alpha-1 / 2}(y) \\
& \int_{0}^{\infty} d x \cos (x y)\left(a^{2}+x^{2}\right)^{-\beta}=\frac{\sqrt{\pi}}{\Gamma(\beta)}\left(\frac{y}{2 a}\right)^{\beta-1 / 2} K_{\beta-1 / 2}(a y)
\end{aligned}
$$

so, by the Parseval relation for the Fourier transform

$$
\int_{0}^{1} d x \frac{\left(1-x^{2}\right)^{\alpha-1}}{\left(a^{2}+x^{2}\right)^{\beta}}=\frac{2^{\alpha-\beta}}{a^{\beta-1 / 2}} \frac{\Gamma(\alpha)}{\Gamma(\beta)} \int_{0}^{\infty} d y y^{\beta-\alpha} J_{\alpha-1 / 2}(y) K_{\beta-1 / 2}(a y) .
$$

This is a tabulated Hankel Transform and yields

$$
L=\sqrt{\pi}\left(\frac{4}{z}\right)^{\beta-\alpha} X^{\beta} \frac{\Gamma(\alpha)}{\Gamma(\alpha+1)}{ }_{2} F_{1}\left(\frac{1}{2}, \beta ; \alpha+\frac{1}{2} ;-X\right) .
$$

Consequently

$$
\int_{0}^{1} \frac{d x}{x} \frac{(z t(1-t))^{n}}{(1-z t(1-t))^{n+1}}=\sqrt{\pi}\left(\frac{4}{z}\right) X^{n+1}{ }_{2} F_{1}\left(\frac{1}{2}, n+1 ; n+\frac{1}{2} ;-X\right)
$$

However, since ${ }_{2} F_{1}(a, b ; c ; z)=(1-z)^{c-a-b}{ }_{2} F_{1}(c-a, c-b ; c ; z)$,

$$
{ }_{2} F_{1}\left(\frac{1}{2}, n+1 ; n+\frac{1}{2} ;-X\right)=(1+X)^{-1}{ }_{2} F_{1}\left(-\frac{1}{2} ; n ; n+\frac{1}{2} ;-X\right)
$$

Next, we note that [11, p . 590]

$$
{ }_{2} F_{1}(-1 / 2,1 ; 3 / 2 ; z)=\frac{1}{2}\left(1+(1-z) \frac{\tanh ^{-1} \sqrt{z}}{\sqrt{z}}\right) .
$$

With $z \rightarrow-z$, noting that $-i \tanh ^{-1} i w=\sin ^{-1} \sqrt{\frac{w}{1+w}}$ one has

$$
\begin{equation*}
{ }_{2} F_{1}(-1 / 2,1 ; 3 / 2 ;-z)=\frac{1}{2}\left(1+(1+z) \frac{\sin ^{-1} \sqrt{\frac{z}{1+z}}}{\sqrt{z}}\right) \tag{24}
\end{equation*}
$$

We next apply Gauss' differentiation formula

$$
\begin{gather*}
\frac{d}{d z}\left((1+z)^{k}{ }_{2} F_{1}(-1 / 2, k ; k+1 / 2 ;-z)\right)= \\
\frac{2 k(k+1)}{2 k+1}(1+z){ }_{2} F_{1}(-1 / 2, k+1 ; k+3 / 2 ;-z) \tag{25}
\end{gather*}
$$

Iteration of (25) starting with (24), after a great deal of tedious algebra, aided by Mathematica, results in (10).

6 Acknowledgements

The author is grateful to Profs. N. E. Frankel for suggesting this problem and F. J. Dyson for enlightening correspondence.

References

[1] R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, Asterique 61 (1979), 11-13.
[2] D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly 92 (1985), 449-457.
[3] F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's second interesting series, preprint http//:arxiv.org/abs/1009.4274.
[4] J. M. Borwein and R. Girgensohn, Evaluations of binomial series, Aequ.Math. 70 (2005), 25-36.
[5] F. J. Dyson, correspondence.
[6] I. J. Zucker, On the series $\sum\binom{2 n}{n}^{-1} n^{-k}$ and related series, J. Number Theory 20 (1981), 92-102.
[7] N. Batir, On the series $\sum\binom{2 k}{k}^{-1} k^{-a} x^{k}$, Proc. Ind. Acad. Sci. 115 (2005), 371-382.
[8] J. -H. Yang and F. -Z. Zhao, Certain sums involving inverses of binomial coefficients and some integrals, J. Int. Sequences 10 (2007), 1-11.
[9] R. Sprugnoli, Sums of the reciprocals of the central binomial coefficients, INTEGERS 6 (2006), 1-18.
[10] R. J. Mathar, Corrigenda to "Interesting series involving the central binomial coefficient by D. H. Lehmer, preprint http//: arxiv.org/abs/0905.0215v1.
[11] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Tables of Integrals and Series, Vol 3., Gordon and Breach Publishers, Amsterdam (1998)

2000 Mathematics Subject Classification: Primary 11B65; Secondary 33B05.
Keywords: Binomial coefficient, infinite series, generating function.
(Concerned with sequences A008277, A145557

Received ; revised version received

Return to Journal of Integer Sequences home page.

