A Generalized Apéry Series

M. L. Glasser Department of Physics, Clarkson University, Postdam, NY 13699-5820 *laryg@clarkson.edu*

Abstract

The inverse central binomial series

$$S_k(z) = \sum_{n=1}^{\infty} \frac{n^k z^n}{\binom{2n}{n}}$$

popularized by Apéry and Lehmer is evaluated for positive integers k along with the asymptotic behavior for large k. It is found that value z = 2, as commented on by D. H. Lehmer provides a unique relation to π .

1 Introduction

Since the appearance of $S_{-3}(1)$ in Apéry's famous proof [1] in 1979 that $\zeta(3)$ is irrational, an extensive literature has been devoted to the series

$$S_k(z) = \sum_{n=1}^{\infty} \frac{n^k z^n}{\binom{2n}{n}} \tag{1}$$

For example, in 1985 Lehmer [2] presented a number of special cases which could be obtained from the Taylor series for $f(x) = x^{-1/2}(1-x)^{-1/2}\sin^{-1}x$ using only elementary calculus. In passing, he noted that when k is a positive integer, $S_k(2)$ had the form $a_k - b_k \pi$ and that the rational number a_k/b_k "is a close approximation to π . This remark was recently taken up by Dyson et al. [3], who proved that $|a_k/b_k - \pi| = O(Q^{-k})$ as $k \to \infty$ where $Q = \sqrt{1 + (2\pi/\ln 2)^2}$. Lehmer also showed that for positive integer k

$$S_k(z) = \frac{2^{k+z^{5/2}} z^{1/2}}{(4-z)^{k+3/2}} (A_k(z/4) \sin^{-1}(\sqrt{z/4}) + \sqrt{z(4-z)} B_k(z/4))$$
(2)

where A_k and B_k are recursively defined polynomials. It was apparently not until 2005 that (2) was evaluated explicitly, for z = 1, by J. Borwein and P. Girgensohn [4] who showed

$$S_k(1) = \frac{1}{2} (-1)^{k+1} \sum_{j=1}^{k+1} (-1)^j j! S(j+1,j) 3^{-j} {2j \choose j} \left(\sum_{i=1}^{j-1} \frac{3^i}{(2i+1){2i \choose i}} + \frac{2}{3\sqrt{3}} \pi \right).$$
(3)

where the Stirling numbers of the second kind are defined by

$$S(k,j) = \frac{(-1)^j}{j!} \sum_{m=0}^{j} (-1)^m m^k \binom{j}{m}.$$
(4)

The aim of the present note is to extend (3) to complex z and thus to continue (1) analytically beyond its circle of convergence |z| = 4.

2 Calculation

We begin with the observation that $(m\binom{2m}{m})^{-1} = B(m, m+1)$, where B denotes Euler's beta integral. Hence,

$$S_k(z) = \int_0^1 \frac{dt}{t} \sum_{m=1}^\infty m^{k+1} (zt(1-t))^m.$$
(5)

Next, equation (21) of Girgensohn and Borwein [4],

$$\sum_{m=1}^{\infty} m^p X^m = \sum_{n=1}^p \sum_{m=1}^n (-1)^{m+n} \binom{n}{m} m^p X^n (1-X)^{-n-1},$$
(6)

gives

$$S_k(z) = \sum_{n=1}^{k+1} \sum_{m=1}^n (-1)^{m+n} \binom{n}{m} m^{k+1} \int_0^1 \frac{dt}{t} \frac{(zt(1-t))^n}{(1-zt(1-t))^{n+1}}.$$
(7)

In the appendix it is shown that

$$\int_{0}^{1} \frac{dt}{t} \frac{(zt(1-t))^{n}}{(1-zt(1-t))^{n+1}} = \frac{\sqrt{\pi}\Gamma(n)}{\Gamma(n+1/2)} X^{n} {}_{2}F_{1}(-1/2, n; n+1/2; -X)$$
(8)

where X = z/(4-z), so

$$S_k(z) = \sum_{n=1}^{k+1} n! B(n, 1/2) S(k+1, n) X^n {}_2F_1(-1/2, n; n+1/2; -X).$$
(9)

By induction, starting with the tabulated value for n = 1 and using Gauss' contiguity relations we find (some details are given in the appendix)

$$_{2}F_{1}(-1/2, n; n+1/2; -X) =$$

$$\left(\frac{1}{2}\right)_{n} \left(\frac{1}{n!} + \frac{1}{\sqrt{\pi}\Gamma(n)} \sum_{k=0}^{n-1} \frac{(-1)^{k}\Gamma(k+1/2)}{(k+1)!} \binom{n-1}{k} \left(\frac{X+1}{X}\right)^{k+1} \times \left[\sqrt{X} \sin^{-1}\sqrt{\frac{X}{X+1}} - \frac{1}{2} \sum_{l=1}^{k} \frac{(l-1)!}{(1/2)_{l}} \left(\frac{X}{X+1}\right)^{l}\right]\right).$$
(10)

(We have used the ascending factorial notation $(a)_n = \Gamma(a+n)/\Gamma(a)$). Therefore we have the principal result

$$S_k(z) = \sum_{n=1}^{k+1} n! \left(\frac{z}{4-z}\right)^n S(k+1,n) \times \left(\frac{1}{n} + \sum_{p=0}^{n-1} (-1)^p \frac{(1/2)_p}{(p+1)!} \binom{n-1}{p} \left(\frac{4}{z}\right)^{p+1} \left(\sqrt{\frac{z}{4-z}} \sin^{-1} \frac{\sqrt{z}}{2} - \frac{1}{2} \sum_{l=1}^p \frac{\Gamma(l)}{(1/2)_l} \left(\frac{z}{4}\right)^l\right)\right)$$
(11)

Equation (11) is rather condensed; in unpacking it, sums with upper limit less than the lower limit are to be interpreted as 0. It is clear from (11) that for rational z

$$\sum_{m=1}^{\infty} \frac{n^k z^n}{\binom{2n}{n}} = R_1(z,k) + R_2(z,k) \sqrt{\frac{z}{4-z}} \sin^{-1} \frac{\sqrt{z}}{2},$$
(12)

where R_i is a rational number.

One sees from (11) that $S_k(z)$ is analytic on the two-sheeted Riemann surface formed by two planes cut and rejoined along the real half-line x > 4. The numbers in (12) have the explicit expressions

$$R_1(z,k) = \tag{13}$$

$$\sum_{n=1}^{k+1} n! S(k+1,n) \left(\frac{z}{4-z}\right)^n \left(\frac{1}{n} - \frac{1}{2} \sum_{p=1}^{n-1} \sum_{l=1}^p \frac{(-1)^p (1/2)_p}{(p+1)! (1/2)_l} \binom{n-1}{p} \Gamma(l) \left(\frac{4}{z}\right)^{p-l+1}\right),$$

$$R_2(z,k) = \sum_{n=1}^{k+1} n! S(k+1,n) \sum_{p=0}^{n-1} \frac{(-1)^p}{(p+1)!} \binom{n-1}{p} \left(\frac{4}{z}\right)^{p+1}.$$
(14)

3 Asymptotics

It is convenient to work in terms of the exponential generating function

$$G(z,t) := \sum_{k=0}^{\infty} S_k(z) \frac{t^k}{k!} = S_0(ze^t) = \frac{z}{4 - ze^t} + \frac{4\sqrt{z}e^{t/2}}{(4 - ze^t)^{3/2}} \sin^{-1}\frac{\sqrt{z}e^{t/2}}{2}$$
(15)

To find the generating functions $\rho_j(z,t) := \sum R_j(z,k)t^k/k!$, it would be simplest to start with a series $D_k(z) = R_1(z,k) - R_2(z,k)\sqrt{\frac{z}{4-z}}\sin^{-1}\sqrt{z}/2$, work out its generating function D(z,t) and by taking the sum and difference identify ρ_1 and ρ_2 . However, this series has not been found and there is nothing to guarantee its existence in tractable form. Therefore, the ρ_j were evaluated directly from (13) and (14). The details are omitted as the results

$$\rho_1(z,t) = \frac{ze^t}{4-ze^t} + \frac{8}{\pi} \sqrt{\frac{ze^t}{(4-ze^t)^{3/2}}} \left(\sin^{-1} \frac{\sqrt{z}e^{t/2}}{2} \cos^{-1} \frac{\sqrt{z}}{2} - \cos^{-1} \frac{\sqrt{z}e^{t/2}}{2} \sin^{-1} \frac{\sqrt{z}}{2} \right), \quad (16)$$

$$\rho_2(z,t) = 4\sqrt{\frac{(4-z)e^t}{(4-ze^t)^3}} \tag{17}$$

are easily verified. In the case z = 2, (15) and (16) are identical to Dyson's formulas [3, 5] obtained empirically.

In view of the prominent role that the ratio $R_1(z,t)/R_2(z,t)$ plays in Dyson et al. [3] for z = 2 it is interesting to examine it for general z. From (17) we have

$$R_2(z,k) = \frac{2k!\sqrt{4-z}}{\pi i} \oint \frac{ds}{s^{k+1}} \frac{e^{s/2}}{(4-ze^s)^{3/2}}.$$
(18)

The non-zero singularity closest to s = 0 is $s_0 = \ln(4/z)$ and it dominates the asymptotic behavior. Ignoring the other singularities, distorting the contour to a small circle about s_0 and translating back to the origin by $t = s - s_0$, we have

$$R_2(z,k) \sim -\frac{k!\sqrt{4-z}}{zs_0^{k+1}} \oint \frac{dt}{2\pi i} \frac{e^{t/2}}{(1-e^t))^{3/2}}.$$
(19)

The exact value of the integral in (19) is $-(2/\pi)\sqrt{e/(e-1)}$, and so

$$R_2(z,k) \sim \frac{k!}{(\ln(4/z))^{k+1}} \frac{2}{\pi} \sqrt{\frac{e(4-z)}{z(e-1)}}.$$
(20)

In the same way we obtain

$$R_1(z,k) \sim \frac{k!}{(\ln(4/z))^{k+1}} \left(\sqrt{2} + \frac{2}{\pi} \left(\sqrt{\frac{e}{e-1}} - \sqrt{2}\right) \cos^{-1} \frac{\sqrt{z}}{2} - \frac{2^{3/2}}{\pi} \sin^{-1} \frac{\sqrt{z}}{2}\right).$$
(21)

4 Discussion

From (20) and (21) we find

$$\lim_{k \to \infty} \left(\frac{R_1(z,k)}{R_2(z,k)} - \sqrt{\frac{z}{4-z}} \sin^{-1} \frac{\sqrt{z}}{2} \right) = \sqrt{\frac{z}{4-z}} \left(\cos^{-1} \frac{\sqrt{z}}{2} - \sin^{-1} \frac{\sqrt{z}}{2} \right).$$
(22)

It thus appears that Lehmer's choice, z = 2, is the unique permissible case for which the limit (22) vanishes. (Also the *Lehmer limit*, as defined by Dyson et al. [3], relates to $\pi/4$ here rather than π). Finally, for negative integer indices, since

$$2S_{-k}(z) = {}_{k+1}F_k(1,\ldots,1;\frac{3}{2},2,\ldots,2;\frac{1}{4}z),$$
(23)

the fact that $S_{-k}(z)$ can be obtained from $S_0(z)$ by successive integrations with respect to z and the explicit evaluations by Lehmer [2], Borwein and Girgensohn [4] and others [6, 7, 8, 9, 10] it should be possible to obtain explicit values for sundry generalized hypergeometric functions.

5 Appendix: Derivation of Equations (8) and (10)

Let us consider, for any integrable function F,

$$I = \int_0^1 \frac{dt}{t} F(t(1-t))$$

Let u = t(1 - t), so u(0) = u(1) = 0; u(1/2) = 1/4. Then there are two expressions for t:

$$t_{+} = \frac{1}{2}(1 + \sqrt{1 - 4t})$$
 for $\frac{1}{2} \le t \le 1$, with $\frac{dt_{+}}{t_{+}} = \left(1 - \frac{1}{\sqrt{1 - 4u}}\right)\frac{du}{u}$

and

$$t_{-} = \frac{1}{2}(1 - \sqrt{1 - 4t})$$
 for $0 \le t \le \frac{1}{2}$, with $\frac{dt_{+}}{t_{+}} = \left(1 + \frac{1}{\sqrt{1 - 4u}}\right)\frac{du}{u}$

Consequently,

$$I = \int_{0}^{1/2} \frac{dt_{-}}{t_{-}} F(u) + \int_{1/2}^{1} \frac{dt_{+}}{t_{+}} F(u) = 2 \int_{0}^{1/4} \frac{du}{u\sqrt{1-4u}} F(u)$$
$$= 2 \int_{0}^{1} \frac{dx}{x\sqrt{1-x}} F\left(\frac{1}{4}x\right) = 2 \int_{0}^{1} \frac{dt}{(1-t)\sqrt{t}} F\left(\frac{1-t}{4}\right)$$

and, with $t = x^2$,

$$I = 4 \int_0^1 \frac{dx}{1 - x^2} F\left(\frac{1 - x^2}{4}\right).$$

Therefore,

$$L = \int_0^1 \frac{dt}{t} \frac{(zt(1-t))^{\alpha}}{(1-zt(1-t))^{\beta}} = 2\left(\frac{z}{4}\right)^{\alpha-\beta} \int_0^1 dx \frac{(1-x^2)^{\alpha-1}}{(a^2+x^2)^{\beta}},$$

where $a^2 = 1/X = (4 - z)/z$.

From standard references

$$\int_{0}^{1} dx \cos(xy)(1-x^{2})^{\alpha-1} = \sqrt{\frac{\pi y}{8}} \left(\frac{2}{y}\right)^{\alpha} \Gamma(\alpha) J_{\alpha-1/2}(y),$$
$$\int_{0}^{\infty} dx \cos(xy)(a^{2}+x^{2})^{-\beta} = \frac{\sqrt{\pi}}{\Gamma(\beta)} \left(\frac{y}{2a}\right)^{\beta-1/2} K_{\beta-1/2}(ay)$$

so, by the Parseval relation for the Fourier transform

$$\int_0^1 dx \frac{(1-x^2)^{\alpha-1}}{(a^2+x^2)^{\beta}} = \frac{2^{\alpha-\beta}}{a^{\beta-1/2}} \frac{\Gamma(\alpha)}{\Gamma(\beta)} \int_0^\infty dy y^{\beta-\alpha} J_{\alpha-1/2}(y) K_{\beta-1/2}(ay).$$

This is a tabulated Hankel Transform and yields

$$L = \sqrt{\pi} \left(\frac{4}{z}\right)^{\beta-\alpha} X^{\beta} \frac{\Gamma(\alpha)}{\Gamma(\alpha+1)} \, _{2}F_{1}\left(\frac{1}{2},\beta;\alpha+\frac{1}{2};-X\right).$$

Consequently

$$\int_0^1 \frac{dx}{x} \frac{(zt(1-t))^n}{(1-zt(1-t))^{n+1}} = \sqrt{\pi} \left(\frac{4}{z}\right) X^{n+1} {}_2F_1\left(\frac{1}{2}, n+1; n+\frac{1}{2}; -X\right)$$

However, since $_{2}F_{1}(a,b;c;z) = (1-z)^{c-a-b} _{2}F_{1}(c-a,c-b;c;z),$

$$_{2}F_{1}\left(\frac{1}{2}, n+1; n+\frac{1}{2}; -X\right) = (1+X)^{-1} _{2}F_{1}\left(-\frac{1}{2}; n; n+\frac{1}{2}; -X\right)$$

Next, we note that [11, p. 590]

$$_{2}F_{1}(-1/2, 1; 3/2; z) = \frac{1}{2} \left(1 + (1-z) \frac{\tanh^{-1} \sqrt{z}}{\sqrt{z}} \right).$$

With $z \to -z$, noting that $-i \tanh^{-1} iw = \sin^{-1} \sqrt{\frac{w}{1+w}}$ one has

$${}_{2}F_{1}(-1/2,1;3/2;-z) = \frac{1}{2}(1+(1+z)\frac{\sin^{-1}\sqrt{\frac{z}{1+z}}}{\sqrt{z}}).$$
(24)

We next apply Gauss' differentiation formula

$$\frac{d}{dz}((1+z)^{k} {}_{2}F_{1}(-1/2,k;k+1/2;-z)) = \frac{2k(k+1)}{2k+1}(1+z) {}_{2}F_{1}(-1/2,k+1;k+3/2;-z).$$
(25)

Iteration of (25) starting with (24), after a great deal of tedious algebra, aided by Mathematica, results in (10).

6 Acknowledgements

The author is grateful to Profs. N. E. Frankel for suggesting this problem and F. J. Dyson for enlightening correspondence.

References

- [1] R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, Asterique **61** (1979), 11–13.
- [2] D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly 92 (1985), 449–457.
- [3] F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's second interesting series, preprint http//:arxiv.org/abs/1009.4274.
- [4] J. M. Borwein and R. Girgensohn, Evaluations of binomial series, Aequ. Math. 70 (2005), 25–36.

- [5] F. J. Dyson, correspondence.
- [6] I. J. Zucker, On the series $\sum {\binom{2n}{n}}^{-1} n^{-k}$ and related series, J. Number Theory **20** (1981), 92–102.
- [7] N. Batir, On the series $\sum {\binom{2k}{k}}^{-1} k^{-a} x^k$, Proc. Ind. Acad. Sci. **115** (2005), 371–382.
- [8] J. -H. Yang and F. -Z. Zhao, Certain sums involving inverses of binomial coefficients and some integrals, J. Int. Sequences 10 (2007), 1–11.
- [9] R. Sprugnoli, Sums of the reciprocals of the central binomial coefficients, *INTEGERS* 6 (2006), 1–18.
- [10] R. J. Mathar, Corrigenda to "Interesting series involving the central binomial coefficient by D. H. Lehmer, preprint http//: arxiv.org/abs/0905.0215v1.
- [11] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Tables of Integrals and Series, Vol 3., Gordon and Breach Publishers, Amsterdam (1998)

2000 Mathematics Subject Classification: Primary 11B65; Secondary 33B05. Keywords: Binomial coefficient, infinite series, generating function.

(Concerned with sequences A008277, A145557

Received ; revised version received

Return to Journal of Integer Sequences home page.