
ar
X

iv
:1

20
4.

11
46

v1
  [

m
at

h.
N

T
] 

 5
 A

pr
 2

01
2

ON A QUESTION OF A. SCHINZEL: OMEGA ESTIMATES FOR

A SPECIAL TYPE OF ARITHMETIC FUNCTIONS

MANFRED KÜHLEITNER AND WERNER GEORG NOWAK

Abstract. The paper deals with lower bounds for the remainder term in
asymptotics for a certain class of arithmetic functions. Typically, these are
generated by a Dirichlet series of the form ζ2(s)ζ(2s− 1)(ζ(2s))M H(s) where
M is an arbitrary integer and H(s) has an Euler product which converges

absolutely for ℜs > 1

3
.

To Professor Andrzej Schinzel on his 75th birthday

1. Introduction

1.1. This article is concerned with a special class C of arithmetic functions fH
with a generating Dirichlet series1

FH(s) =

∞∑

n=1

fH(n)

ns
= ζ2(s)ζ(2s− 1)(ζ(2s))M H(s) (ℜs > 1) , (1.1)

where M is an integer, and H(s) has an Euler product which converges absolutely
for ℜs > 1

3 .
We mention some examples of special arithmetic interest: Firstly, the function

f∗(n) :=
∑

m |n

gcd
(
m,

n

m

)
(1.2)

(see N. Sloane [17]) in a way quantifies the property of n to be not square-free,
i.e., to possess non-unitary divisors. (For n square-free, f∗(n) coincides with the
number-of-divisors function d(n).) f∗(n) is generated by the Dirichlet series

∞∑

n=1

f∗(n)

ns
=

ζ2(s)ζ(2s− 1)

ζ(2s)
(ℜ(s) > 1) . (1.3)

This is (1.1) with M = −1, H(s) = 1 identically.
Secondly, consider

f1(n) =
∑

m |n

σ
(
gcd

(
m,

n

m

))
, (1.4)
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where σ denotes the sum-of-divisors function: cf. again N. Sloane [19]. The corre-
sponding generating function simply reads

F1(s) =

∞∑

n=1

f1(n)

ns
= ζ2(s)ζ(2s− 1) (ℜs > 1) . (1.5)

This is (1.1) with M = 0, H(s) = 1 identically.
As a third example, we mention the modified Pillai’s function (N. Sloane [18])

P ∗(n) :=
1

n

n∑

k=1

gcd(k2, n) . (1.6)

This is generated by

∞∑

n=1

P ∗(n)

ns
=

ζ2(s)ζ(2s− 1)

(ζ(2s))2
H∗(s) (ℜs > 1) , (1.7)

where H∗(s) has an Euler product absolutely convergent for ℜs > 1
3 .

1.2. The class of functions C has been dealt with in detail in a recent paper by
E. Krätzel, W.G. Nowak, and L. Tóth [7]. In that article, the emphasis was on
upper bounds for the error term RfH (x) in the asymptotic formula

∑

n≤x

fH(n) = Res
s=1

(
FH(s)

xs

s

)
+RfH (x) . (1.8)

Since FH(s) has a triple pole at s = 1, explicitly

Res
s=1

(
FH(s)

xs

s

)
= x pH(log x) ,

where pH is a quadratic polynomial whose coefficients depend on H and M . Using
contour integration and properties of the Riemann zeta-function, it has been proved
in [7] that

RfH (x) = O
(
x2/3(log x)16/9

)
. (1.9)

Employing Krätzel’s method [6], which involves fractional part sums and the theory
of (classic) exponent pairs, the slight refinement

RfH (x) = O
(
x925/1392

)
(1.10)

has been obtained ( 925
1392 = 0.6645 . . . ). Finally, bringing in Martin Huxley’s deep

and new technique [2], [3], [4] (”Discrete Hardy-Littlewood method”), the authors
of [7] deduced the further improvement

RfH (x) = O
(
x547/832(log x)26947/8320

) (
547
832 = 0.65745 . . .

)
. (1.11)

For the context of the class C within the frame of the theory of arithmetic functions,
as well as for a wealth of enlightening related results, see also the recent papers by
L. Tóth [23], [24].
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1.3. The results of [7] have been presented at the 20th Czech and Slovak Interna-
tional Conference on Number Theory in Stará Lesná, September 2011 [8]. At the
end of that talk, Professor Andrzej Schinzel raised the following question: ”What
can be said concerning Omega-estimates for the remainder term?”

The authors of the present paper are very grateful for this valuable stimulation
of further research and are pleased to be able to provide the following answer.

Theorem 1. For any arithmetic function fH ∈ C with a generating function FH(s)
according to (1.1), it holds true that, as x → ∞,

∑

n≤x

fH(n) = Res
s=1

(
FH(s)

xs

s

)
+Ω

( √
x(log x)2

(log log x)|M+1|

)
.

1.4. Remarks. For the simplest case (1.5), it is immediate that f1(n) = Ω(
√
n),

hence also Rf1 (x) = Ω(
√
x). The achievement of the elaborate analysis to come is

thus only an improvement by a logarithmic factor. On the other hand, it is easy to
see that, e.g. for the first example mentioned, it follows that f∗(n) ≪ √

n(log logn)3,
hence our Ω-bound cannot be deduced by consideration of the individual values of
the arithmetic function involved.

The situation may be compared with the sphere problem in R
3: If r3(n) denotes

the number of ways to write the positive integer n as a sum of three squares, then

∑

n≤x

r3(n) =
4π

3
x3/2 +Ω

(
(x log x)1/2

)

is the best Omega-result known to date [21], while, by the very same asymptotics,
r3(n) = Ω(

√
n).

The method of proof which turned out to be appropriate in this problem goes
back to ideas due to Ramachandra [14] and Balasubramanian, Ramachandra &
Subbarao [1]. They have been worked out in papers by Schinzel [16], Kühleitner
[9], and the authors [10]. However, in the present situation certain adaptions are
necessary: On the one hand, fH(n) is not as small as O(nǫ). On the other hand, in
the last step it will be advantageous to use special properties of the Riemann zeta-
function, instead of a general theorem of Ramachandra’s on Dirichlet series [14]. It
should be mentioned that also in the caseM = 0, when the generating function does
not contain any factor involving ζ(2s), the present approach seems to give a better
result than Soundararajan’s method [20] which up to date was most successful in
the divisor and circle problems.

2. Preliminaries

2.1. First of all, we can restrict our analysis to the case that H(s) = 1 identically,
i.e., to

F (s) =

∞∑

n=1

f(n)

ns
= ζ2(s)ζ(2s− 1)ζM (2s) (ℜs > 1) . (2.1)

In fact, assume that for some fH ∈ C and arbitrarily small c0 > 0,

|RfH (x)| ≤ c0

√
x(log x)2

(log log x)|M+1|
(x ≥ x0) . (2.2)
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Let
1

H(s)
=

∞∑

n=1

h(n)n−s

(
ℜs > 1

3

)
,

where the series converges absolutely for ℜs > 1
3 . Since f = fH ∗h, where ∗ denotes

the convolution of arithmetic functions, it readily follows that, for x large2,
∑

n≤x

f(n) =
∑

k≤x

h(k)
∑

m≤x/k

fH(m) =
∑

k≤x

h(k)
(x
k
pH

(
log
(x
k

))
+RfH

(x
k

))

= Res
s=1

(
F (s)

xs

s

)
+
∑

k>x

h(k)
x

k
pH

(
log
(x
k

))
+
∑

k≤x

h(k)RfH

(x
k

)
.

(2.3)
From this it is immediate that

Rf (x) ≪
c0

√
x(log x)2

(log log x)|M+1|
,

which yields a contradiction for c0 sufficiently small, provided that the Theorem
has been established for the case of (2.1).

2.2. The assertion will be an easy consequence of the following integral mean
result.

Proposition 1. There exist positive constants B and C0 with the property that
∞∫

T

|Rf (u)|2
u2

e−u/TB

du ≥ C0 (logT )
5

(log logT )|2M+2|
(2.4)

for all T sufficiently large.

The conclusion from this result to Theorem 1 is easy and has many analogues in
the literature; see [1], [9], [10]. Nevertheless, we supply the details for convenience
of the reader. Assume that for any arbitrarily small constant c0 > 0, there exists
u0 so that

|Rf (u)| ≤
c0

√
u(log u)2

(log log u)|M+1|
for all u ≥ u0 . (2.5)

Then, for B as in the Proposition, and T sufficiently large,
∞∫

T

|Rf (u)|2
u2

e−u/TB

du

≤ c20

∞∫

T

1

u
e−u/TB (log u)4

(log log u)|2M+2|
du = c20




TB∫

T

+

∞∫

TB




≪ c20 (log T )
4

(log logT )|2M+2|

TB∫

T

du

u
+ c20

∞∫

1

e−v(log(TBv))4

(log log(TBv))|2M+2|

dv

v

≪ c20 (log T )
5

(log logT )|2M+2|
.

2It is clear by the asymptotics with O-terms cited, that the main term in this calculation

amounts to Res
s=1

(

F (s)x
s

s

)

.
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For c0 sufficiently small this contradicts (2.4).

2.3. One special feature of the present situation - as opposed to the cases consid-
ered in [1], [16], [9], [10] - is that the function f(n) is not ”small”, i.e., not O(nǫ)

for each ǫ > 0. However, if f is generated by ζ2(s)ζ(2s − 1)(ζ(2s))M , call f̂ the
arithmetic function generated by ζ2(s)ζ(2s− 1)(ζ(2s))|M|. Then,

|f(n)| ≤ f̂(n) =
∑

m1m2(m3k1...k|M|)2=n

m3 ≪ n1/2+ǫ .

Hence, using a trivial version of (1.8), applied to f̂ , and summation by parts, it
follows that ∑

n≤X

nβ (f(n))2 ≪ X3/2+β+ǫ (2.6)

for each fixed β > − 3
2 , large X , and any ǫ > 0.

2.4. The following auxiliary result is classic and provides some information that
the factor of F (s) involving ζ(2s) is ”not too harmful” close to the critical line.

Lemma 1. Let ǫ0 > 0 be a sufficiently small constant. Then, for T̂ a sufficiently

large real parameter, there exists a set A(T̂ ) ⊂ [T̂ , 2T̂ ] with the following properties:

(i) A(T̂ ) is the union of at most O(T̂ ǫ0) open intervals, with a total length of O(T̂ ǫ0).

(ii)

sup
t∈[T̂ ,2T̂ ]\A(T̂ )

|ζ(1 + 2it)|±1 ≪ log log T̂

(iii) There exist a real number δ(ǫ0) > 0 and a certain constant C so that

|ζ(2s)|±1 ≪ T̂C

uniformly in ℜs ≥ 1
2 − δ(ǫ0), ℑs ∈ [T̂ , 2T̂ ] \ A(T̂ ).

Proof. This result is contained in [14, Theorem 1] and [15, Lemma 3.2]. An exten-
sion to Dedekind zeta-functions, along with a neat proof, was given in [11, Lemma
and formula (2.6)]. �

2.5. We conclude this section by quoting a deep and celebrated result due to
Montgomery and Vaughan which provides a mean-square bound for Dirichlet poly-
nomials.

Lemma 2. For an arbitrary sequence of complex numbers (γn)
∞
n=1 with the property

that
∑∞

n=1 n |γn|2 converges, and a large real parameter X,

X∫

0

∣∣∣∣∣

∞∑

n=2

γn(n+ u)−it

∣∣∣∣∣

2

dt =
∞∑

n=2

|γn|2 (X +O(n)) ,

uniformly in −1 ≤ u ≤ 1, and

X∫

0

∣∣∣∣∣

∞∑

n=1

γnn
−it

∣∣∣∣∣

2

dt =

∞∑

n=1

|γn|2 (X +O(n)) .

Proof. This is an immediate consequence of Montgomery and Vaughan [12, Corol-
lary 2, formula (1.9)]. �
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3. Proof of Proposition 1

3.1. For positive real T sufficiently large, we construct a set U(T ) on the real line

as follows: Let J :=
[

log T
10 log 2

]
, then 2−JT ≍ T 9/10. For j = 1, . . . , J , set Tj := 2−jT .

For some appropriate small ǫ0 > 0, consider the sets A(Tj) furnished by Lemma 1.
Let

A(Tj) =
⋃

i∈Ij

]a
(j)
i , b

(j)
i [

be the decomposition of A(Tj) into #(Ij) = O(T ǫ0) open intervals of total length
O(T ǫ0). Then we define

U(T ) :=
J⋃

j=1

⋃

i∈Ij

]a
(j)
i − (log T )2, b

(j)
i + (log T )2[ . (3.1)

By construction, it is clear that U(T ) consists of O(T 2ǫ0) open intervals of total
length O(T 2ǫ0).

3.2. We set y = TB, with a suitably large positive constant B, for throughout
what follows. It suffices to consider those values of T for which

∞∫

T

|Rf (u)|2
u2

e−u/y du ≤ (logT )6 . (3.2)

(Otherwise the assertion of Proposition 1 is obvious.) In this subsection, our aim
is to deduce the asymptotic representation

F (s) =
∞∑

n=1

f(n)

ns
e−n/y + O(1) , (3.3)

for

s = 1
2 + it , t ∈ [2−JT, T ] \ U(T ) , (3.4)

which will be assumed throughout the sequel.
By a version of Perron’s formula (see, e.g., [13, p. 380]),

∞∑

n=1

f(n)

ns
e−n/y =

1

2πi

2+i∞∫

2−i∞

F (s+ w)ywΓ(w) dw . (3.5)

We use Stirling’s formula in the crude form

Γ(σ + iτ) ≍ exp
(
−π

2
|τ |
)
|τ |σ−1/2 , (|τ | → ∞) (3.6)

which holds uniformly in every strip σ1 ≤ σ ≤ σ2. From this it is an immediate
consequence that, for every fixed k ∈ Z+,

Γ(k)(σ + iτ) ≪ exp
(
−π

4
|τ |
)

(|τ | → ∞) (3.7)

again uniformly in any strip of this kind. It is easy to see that we may break off
the part of the integration line in (3.5) corresponding to |w| > (logT )2, with an



7

error of only O(1):

2±i∞∫

2±i(log T )2

F (s+ w) yw Γ(w) dw

≪ T 2B

∞∫

(log T )2

w3/2 e−(π/2)w dw ≪ T 2B exp
(
−π

4
(logT )2

)
≪ 1 .

(3.8)

Next, we replace the remaining line of integration by a broken line segment L

which joins (in this order) 2− i(logT )2, −δ(ǫ0)− i(logT )2, −δ(ǫ0) + i(logT )2, and
2 + i(logT )2, where δ(ǫ0) has the meaning as in Lemma 1. By Lemma 1, clause
(iii), and known upper bounds for the zeta-function,

F (s+ w) ≪ TC′

, (3.9)

with some positive constant C′, as long as w lies on L and s satisfies (3.4). There-
fore,

−δ(ǫ0)+i(log T )2∫

−δ(ǫ0)−i(log T )2

F (s+ w)ywΓ(w) dw ≪ TC′−Bδ(ǫ0)

∞∫

0

Γ(−δ(ǫ0) + iu) du ≪ 1

if we have chosen B ≥ C′/δ(ǫ0), and

∫ 2±i(log T )2

−δ(ǫ0)±i(log T )2
F (s+ w)ywΓ(w) dw ≪ TC′+2B(logT )3 exp

(
−π

2
(log T )2

)
≪ 1 .

Since these integrals are bounded, the main contribution to the right-hand side of
(3.5) comes from the residue of the integrand F (s + w)ywΓ(w) at w = 0, which
amounts to F (s). This readily yields (3.3).

3.3. It is an easy consequence of (3.2) that there exists some T ∗ ∈ [T, 2T ], not an
integer, for which

|Rf (T
∗)| e−T∗/y

√
T ∗

≪ (logT )3 (3.10)

and

1

y

∞∫

T∗

|Rf (u)|√
u

e−u/y du ≪ (log T )3 . (3.11)

This can be readily verified following the example of [1, p. 111, Lemma 4]. With
this choice of T ∗, we will split up the series on the right-hand side of (3.3). In this
subsection, we shall handle

∑

n>T∗

f(n)

ns
e−n/y =

∞∫

T∗

u−se−u/y d



∑

n≤u

f(n)




=

∞∫

T∗

u−se−u/y d (u pH(log u)) +

∞∫

T∗

u−se−u/y dRf (u) =: I1 + I2 ,

(3.12)
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where we have used Stieltjes integrals. Integrating by parts, we obtain

I2 = Rf (u)u
−se−u/y

∣∣∣
u=∞

u=T∗

+ s

∞∫

T∗

u−s−1e−u/yRf (u) du+
1

y

∞∫

T∗

u−se−u/yRf (u) du

=s

ξ+1∫

ξ

∑

n>T∗

(n+ v)−s−1e−(n+v)/yRf (n+ v) dv +O
(
(logT )3

)
.

(3.13)

Here ξ := T ∗ − [T ∗]− 1, and the bounds (3.10), (3.11) have been used.
To estimate I1, we have to deal with integrals of the form

∞∫

T∗

u−s(log u)re−u/y du ,

with r ∈ {0, 1, 2}, and s satisfying (3.4). We write this as

∞∫

0

u−s(log u)re−u/y du −
T∗∫

0

u−s(log u)r du

+

T∗∫

0

u−s(log u)r
(
1− e−u/y

)
du =: J1 − J2 + J3 .

(3.14)

By Taylor expansion,

J3 ≪ 1

y

∫ T∗

0

u1/2(log u)r du ≪ T−B+3/2+ǫ ≪ 1 .

Integrating by parts r times, we infer that

J2 ≪ T 1/2(logT )r

|1− s| ≪ T 1/2(logT )r

T 9/10
≪ 1 .

Finally,

J1 = y1−s

∞∫

0

u−s(log(uy))r e−u du

= y1−s
r∑

ρ=0

(
r

ρ

)
(log y)r−ρ Γ(ρ)(1 − s) ≪ 1 ,

by (3.7). Altogether this shows that I1 ≪ 1, hence, together with (3.3), (3.12) and
(3.13),

F (s) =
∑

n≤T∗

f(n)

ns
e−n/y

+ s

ξ+1∫

ξ

∑

n>T∗

Rf (n+ u)

(n+ u)s+1
e−(n+u)/y du + O

(
(log T )3

)
(3.15)

for s satisfying (3.4).
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3.4. The next step is to prove that

∫

[2−JT,T ]\U(T )

∣∣∣∣
F (12 + it)

1
2 + it

∣∣∣∣
2

dt ≪ 1 +

∞∫

T

|Rf (u)|2
u2

e−u/y du . (3.16)

By (3.15), the left-hand side of (3.16) is

≪ T−9/5

T∫

2−JT

∣∣∣∣∣∣

∑

n≤T∗

f(n)

n1/2+it
e−n/y

∣∣∣∣∣∣

2

dt

+

T∫

2−JT

∣∣∣∣∣∣∣

ξ+1∫

ξ

∑

n>T∗

Rf (n+ u)

(n+ u)3/2+it
e−(n+u)/y du

∣∣∣∣∣∣∣

2

dt

+O
(
T−9/10(log T )6

)
.

(3.17)

To bound the first integral here, we use Lemma 2. In this way,

T−9/5

T∫

2−JT

∣∣∣∣∣∣

∑

n≤T∗

f(n)

n1/2+it
e−n/y

∣∣∣∣∣∣

2

dt

≪ T−9/5
∑

n≤T∗

(f(n))2

n
(T +O(n)) ≪ T−3/10+ǫ ,

(3.18)

for any ǫ > 0, by an appeal to (2.6). Similarly, using Cauchy’s inequality and
Lemma 2 again, we see that the second term of (3.17) is

≤
ξ+1∫

ξ

T∫

0

∣∣∣∣∣
∑

n>T∗

Rf (n+ u)

(n+ u)3/2+it
e−(n+u)/y

∣∣∣∣∣

2

dt du

≪
ξ+1∫

ξ

(
∑

n>T∗

|Rf (n+ u)|2
(n+ u)3

e−2(n+u)/y (T +O(n))

)
du

≪
ξ+1∫

ξ

(
∑

n>T∗

|Rf (n+ u)|2
(n+ u)2

e−(n+u)/y

)
du

≤
∞∫

T

|Rf (u)|2
u2

e−u/y du .

(3.19)

Together with (3.17) and (3.18), this readily yields (3.16).

3.5. In order to complete the proof of Proposition 1, it remains to show that

∫

[2−JT,T ]\U(T )

∣∣∣∣
F (12 + it)

1
2 + it

∣∣∣∣
2

dt ≫ (logT )5

(log logT )|2M+2|
. (3.20)
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In fact, by the functional equation of the zeta-function (see [22, p. 95]),
∣∣F
(
1
2 + it

)∣∣ =
∣∣∣ζ2
(
1
2 + it

)
ζ(−2it) (ζ (1 + 2it))

M
∣∣∣

≍
∣∣∣ζ2
(
1
2 + it

)
(ζ (1 + 2it))

M+1
∣∣∣ |t|1/2

for |t| large. Further, by Lemma 1, clause (iii), and the construction of U(T ) in
subsection 3.1, it follows that |ζ(1 + 2it)|±1 ≪ log logT for t ∈ [2−JT, T ] \ U(T ).
Therefore,

∫

[2−JT,T ]\U(T )

∣∣∣∣
F (12 + it)

1
2 + it

∣∣∣∣
2

dt

≫(log logT )−2|M+1|

∫

[2−JT,T ]\U(T )

∣∣ζ
(
1
2 + it

)∣∣4 dt

t
.

(3.21)

For t ∈ U(T ), we use the classic pointwise bound ζ(12 + it) ≪ |t|1/6+ǫ: See [22,

Theorem 5.5]. Since the total length of U(T ) is O(T 2ǫ0), it follows that
∫

U(T )

∣∣ζ
(
1
2 + it

)∣∣4 dt

t
≪ T−7/30+3ǫ0 . (3.22)

On the other hand, by the known asymptotics for the fourth moment of the zeta-
function (see [5, p. 129]),

T∫

2−JT

∣∣ζ
(
1
2 + it

)∣∣4 dt

t
≫ (log T )5 . (3.23)

Combining (3.21), (3.22), and (3.23), we readily establish (3.20). This completes
the proof of Proposition 1 and, by the observation in subsection 2.2, also that of
Theorem 1.
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[24] TÓTH, L., Weighted gcd-sum functions, Journal of Integer Sequences 14 (2011), 1-10.

Institute of Mathematics

Department of Integrative Biology

BOKU Wien

1180 Vienna, AUSTRIA

E-mail address: kleitner@boku.ac.at, nowak@boku.ac.at


	1. Introduction
	1.1. 
	1.2. 
	1.3. 
	1.4. Remarks.

	2. Preliminaries
	2.1. 
	2.2. 
	2.3. 
	2.4. 
	2.5. 

	3. Proof of Proposition ??
	3.1. 
	3.2. 
	3.3. 
	3.4. 
	3.5. 

	References

