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Abstract

The number of ad-nilpotent ideals of the Borel subalgebra of the classical Lie algebra
of type Bn is determined using combinatorial arguments involving a generalization
of Dyck-paths. We also solve a similar problem for the untwisted affine Lie algebra
of type B̃n, where we instead enumerate a certain class of ideals called basic ideals.
This leads to an explicit formula for the number of basic ideals in B̃n, which gives
rise to a new integer sequence.

1 Introduction

Let g be a simple complex Lie algebra with a fixed triangular decomposition

g = n− ⊕ h⊕ n+

in the sense of Moody and Pianzola [8] and let b = h ⊕ n+ be the corresponding Borel
subalgebra. An ideal i of b is called ad-nilpotent provided that the adjoint action of
each element of i on b is nilpotent. When g = sln(C), the set of strictly upper triangular
matrices is a typical example of an ad-nilpotent ideal, but there are many other such ideals
contained in this one. This leads to the problem of enumerating ad-nilpotent ideals, which
has been done by Krattenthaler, Orsina and Papi [7] for all simple finite dimensional Lie
algebras. See also [4, 5, 1]. For example, when g = sln(C), the number of ad-nilpotent
ideals in b is given by the n’th Catalan number 1

n+1

(

2n
n

)

.
In the case when g is an untwisted affine Lie algebra, any ad-nilpotent ideal of b is

contained in the center of g so the corresponding enumeration problem becomes trivial.
Baur and Mazorchuk [2] formulated another problem, where instead of ad-nilpotent ideals,
one considers the so called basic ideals (see the definition in Section 4). The enumeration
problem for basic ideals was solved for the affine algebra s̃ln which led to a new integer
sequence.

In the present paper we solve the enumeration problem for basic ideals for untwisted
affine Lie algebras of affine type B̃n. We prove the following statement.

Theorem 1. The number b̃n of basic ideals in the Lie algebra of type B̃n is given by the

formula

b̃n = (3n+ 5)22n−2 − 2(3n − 1)

(

2n− 2

n− 1

)

.

To prove Theorem 1 we establish a combinatorial scheme in which basic ideals for
type B are encoded using certain pairs of type B-analogues for Dyck-paths. This gives
an explicit but complicated formula for the number of basic ideals. The simplification of
this expression to the simple form in Theorem 1 is a nontrivial combinatorial computation
which was performed by Christian Krattenthaler. The above simple formula, in particular,
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implies that the sequence b̃n satisfies the following non-homogeneous linear recurrence
relation.

b̃n − 8b̃n−1 + 16b̃n−2 =
24

n− 1

(

2n− 6

n− 2

)

, n ≥ 4.

We do not have any direct combinatorial explanation for this recursion.
The paper is organized as follows. In Section 2 we focus on Lie algebras of regular

type B. We introduce B-paths, an analogue for Dyck paths in type B, and show that
the set of such paths bijectively corresponds to the set of ad-nilpotent ideals in type B.
We use this to show that the number of ad-nilpotent ideals in the Lie algebra of type Bn

equals
(

2n
n

)

, the type B Catalan number, which agrees with a previous result [7]. After
this we want to generalize these ideas to the affine case. The untwisted affine Lie algebra
of type B is introduced in Section 3 and in Section 4 we study its root system structure.
Following Baur and Mazorchuk [2], we then proceed to define the concept of a basic
ideal, our affine analogue of a nilpotent ideal, and in Section 5 we show that there is a
bijective correspondence between basic ideals and a certain set of pairs of B-paths called
admissible pairs. This reduces our problem to an enumeration of the admissible pairs.
Finally, in Section 6 we write down an explicit formula for the number of admissible pairs
by considering a number of cases. We then proceed to simplify this expression using a
number of combinatorial lemmas, and after a lot of simplification we arrive at the short
expression of Theorem 1.

2 The simple algebra of type B

2.1 Root system structure

Following the notation of Bourbaki [3], the root system of type Bn can be constructed in
R
n as follows. Let {ei}

n
i=1 be the standard orthogonal basis for R

n. For 1 ≤ i ≤ n − 1
define αi = ei − ei+1, and let αn = en. Then the (simple roots) α1, . . . , αn constitutes a
base for a root system of type Bn where the positive roots are given by

∑

j≤i≤k

αi, 1 ≤ j ≤ k ≤ n;
∑

j≤i≤k

αi +
∑

k+1≤i≤n

2αi, 1 ≤ j < k < n.

We identify each such root with the integer pair (r, s), such that r is the minimal value
of i for which the αi-coefficient of the root in the simple basis is non-zero, and s =
r + h − 1 where h is the height of the root (the sum of its coefficients in the simple
basis). For example, in B7 we write (3, 10) for the root (0, 0, 1, 1, 2, 2, 2), and (2, 5) for
(0, 1, 1, 1, 1, 0, 0).

Positive roots are partially ordered via

α ≺ β ⇐⇒ β − α is a Z≥0-linear combination of simple roots.

This order can of course be extended to all of h∗. It is easy to check that (r, s) ≺ (r̂, ŝ)
if and only if r̂ ≤ r and ŝ ≥ s. The (≺)-poset structure on positive roots can now be
visualized in a modified version of the Hasse-diagram. Consider a diagram consisting of
rows and columns. If (i, j) is a root then we write it in the i’th row (from top to bottom)
and j’th column (from left to right), in other words, we write (i, j) in the (i, j)’th position.
Then ≺-greater roots are always in the north and east directions.

Not all positions in the diagram will contain roots. We obviously have i ≥ 1 and
j ≥ 1. We must also have i ≤ j, since positive roots have positive height, and we must
have i ≤ 2n − j (compare the original expression of a general positive root). Thus, all
roots lie in a triangular scheme. For example, in B4 the positive roots are ordered as
follows.
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(1, 1) // (1, 2) // (1, 3) // (1, 4) // (1, 5) // (1, 6) // (1, 7)

(2, 2) //

OO

(2, 3) //

OO

(2, 4) //

OO

(2, 5) //

OO

(2, 6)

OO

(3, 3) //

OO

(3, 4) //

OO

(3, 5)

OO

(4, 4).

OO

Here α → β means that β covers α with respect to ≺, that is β is a minimal element of
the set {γ|α ≺ γ}. Thus we have α ≺ β if and only if there is a directed path from α to
β.

Any ad-nilpotent ideal i in n+ can be decomposed as a direct sum of some root spaces
corresponding to positive roots. If i contains some nonzero x from a root space Lγ , it
contains all of Lγ since the root spaces are one-dimensional. Successively commuting x

with elements from different root spaces Lαi
we can obtain elements from any root space

Lγ′ where γ′ ≻ γ, and hence i also contains all of these root spaces. This shows that an
ad-nilpotent ideal in the Borel subalgebra of Bn corresponds precisely to a coideal of the
poset structure above (recall that a coideal of a poset is subposet S such that α ∈ S and
β ≥ α implies β ∈ S). Since all the arrows above point either up or right, such a subset
can be specified by choosing a path in the diagram, going in the south and east directions
partitioning the roots. Counting the ad-nilpotent ideals then corresponds to counting the
number of such paths.

2.2 B-paths

To formalize this idea of a path, for the algebra of type Bn, consider a (2n−1)×n rectangle
in R

2 with the north-west corner in (0, 0) and the south-east corner in (2n− 1,−n). This
rectangle contains the triangular shape above in the natural way if we think of the roots
as 1× 1-boxes in the Z× Z-lattice. For example, in the case B4 we have

(0,0)

(7,-4)

Definition 2. A Bn-path or just a B-path if n is understood, is a word of length 2n on

the alphabet {r, f} such that each prefix of this word contains at least as many r’s as f ’s.

Note that this generalizes what is known as a Dyck-path. A Dyck-path is a B-path
with an equal number of f ’s and r’s, see Grimaldi [6].
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Example rrffrrfrrr is a B5-path and rrrrrrrr is a B4-path, but rrfrffrffrrrrr is
not a B7-path since the first 9 letters contain more f ’s than r’s.

We shall sometimes use the notation rrrrr = r5 and so on.
Let gn be a Lie algebra of type Bn and let bn be a Borel subalgebra in gn.

Proposition 3. There is a 1-1 correspondence between the set of all ad-nilpotent ideals

of bn and the set of all Bn-paths.

Proof. Let i be an ad-nilpotent ideal in bn. Consider the (2n− 1)×n rectangular picture
described above in which boxes are identified with positive roots of gn. If i contains a root
element for some root α, the fact that i is an ideal implies that i contains root elements
for all roots β such that β ≻ α. From this it follows that there is a unique path p = p(i)
which has the following properties.

• p starts at (−1, 0);

• each step of p goes to the right (along (1, 0)) or down (along (0,−1));

• p terminates at a point of the form (2n− 1− x,−x), x ∈ {0, 1, . . . , n};

• p separates all boxes corresponding to elements of i from all other boxes.

Substituting each (1, 0)-step in p with r and each (0,−1)-step in p with f , we obtain a
Bn-path.

Conversely, given a Bn-path we make the reverse substitution and obtain a path
satisfying the first three conditions above. It is easy to see that the linear span of root
elements corresponding to the roots lying to the northeast of this path is an ad-nilpotent
ideal of bn. The claim follows.

Here is an explicit example in type B4. The B4-path rrrfrfrr is drawn below, it
corresponds to the ideal spanned by the root spaces of the roots (1, 3), (1, 4), (1, 5), (1, 6),
(1, 7), (2, 4), (2, 5) and (2, 6). Also note that any pair of (non-zero) elements from the
root spaces of the roots (1, 3) and (2, 4) generates this ideal.

The path rfrfrfrf gives the improper coideal containing all the roots, and the path
rrrrrrrr corresponds to the empty coideal containing no roots.

We can now state a corollary regarding the number of ad-nilpotent ideals in Bn. This
result was proved in another way by Krattenthaler, Orsina, and Papi [7].

Corollary 4. The number of Bn-paths, hence also the number of ad-nilpotent ideals in

bn, equals
(

2n
n

)

.

Proof. A Bn-path can be extended to a Bn+1-path by appending two letters on the right,
and it is clear that any Bn+1-path can be obtained this way. There are four possible
choices of what to append: rr, rf , fr, ff and each of these gives a Bn+1-path, except
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when the original word consisted of as many f ’s as r’s - in this case fr and ff violate the
condition of being a B-path (compare with the figure below where the top path rrrrrfrr

may be completed in 4 ways, but the bottom path rfrrrfff in only 2 ways, when n

increases from 4 to 5)

A Bn-path where there are an equal number of f ’s and r’s is precisely a Dyck-path of
semilength n, and there are 1

n+1

(

2n
n

)

of these (see for example Grimaldi [6]).

Assuming we have
(

2n
n

)

Bn-paths, the number of Bn+1-paths is thus given by

4

(

2n

n

)

−
2

n+ 1

(

2n

n

)

=

(

2(n + 1)

n+ 1

)

.

Hence, by induction, the proof is complete once we note that it is true for B2, and it is
easy to check that we have precisely

(

4

2

)

= 6 paths then. This completes the proof.

3 The affine algebra of type B

The situation above has an analogue when we instead of the type Bn consider the un-
twisted affine Lie algebra g̃n of type B̃n. The algebra g̃n is obtained as follows. First con-
sider the loop algebra gn⊗C[t, t−1] endowed with the bracket [x⊗tm, y⊗tn] = [x, y]⊗tm+n.
The universal central extension of the Loop algebra is explicitly, (gn⊗C[t, t−1])⊕Cc where
the bracket is modified as follows:

[x⊗ tm + λc, y ⊗ tn + µc] = [x, y]⊗ tm+n +m(x|y)δm+n,0c

where (·|·) is the Killing form of gn. The algebra g̃n is now obtained by extending the
latter by a derivation d which acts as follows [d, (x ⊗ tm)] = m(x ⊗ tm) and [d, c] =
0. The resulting Lie algebra g̃n is called the untwisted affine Kac-Moody algebra

corresponding to gn. The algebra g̃n has a triangular decomposition g̃n = ñ− ⊕ h̃ ⊕ ñ+,
where

ñ+ = Span({x⊗ 1|x ∈ n+} ∪ {x⊗ tk|x ∈ gn, k > 0})

ñ− = Span({y ⊗ 1|y ∈ n−} ∪ {y ⊗ tk|y ∈ gn, k > 0})

h̃ = Span({c, d} ∪ {h⊗ 1|h ∈ h}).

The corresponding Borel subalgebra b̃n = h̃ ⊕ ñ+ no longer contains any nontrivial
ad-nilpotent ideals, so instead we consider combinatorial ideals, that is, ideals i of
b̃n contained in ñ+ which have finite codimension and are unions of entire root spaces:
i∩ g̃α ∈ {{0}, g̃α} for each positive root α. For any combinatorial ideal i we define supp(i),
called the support of i, to be the set of positive roots whose root spaces are are contained
in i, that is, supp(i) = {α ∈ h̃∗|g̃α ⊂ i}.
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4 Root system structure in type B̃n

To increase readability we shall sometimes identify a root system with its type. Recall
that ad-nilpotent ideals in the Borel algebra for type Bn were uniquely determined by the
coideals of the poset of positive roots. Both Bn and B̃n are partially ordered with respect
to the order ≺ defined with respect to the corresponding sets of simple roots.

Let δ ∈ B̃n be the indivisible positive imaginary root. Then any imaginary root of B̃n

can be written as kδ, for k ∈ Z \ {0} and any real root of B̃n can be written as γ + kδ

for some γ ∈ Bn and some k ∈ Z. Let αmax be the maximal root in Bn and defining
α0 = δ − αmax. Then α0, α1, . . . , αn is a base for B̃n. Let D1 = {δ}, let D2 be the set of
positive roots of Bn, and let D3 be the set of roots of form δ + γ where γ is a negative
root of Bn. These three sets are disjoint, and we define D := D1 ∪D2 ∪ D3. Then the
positive roots of B̃n are the roots of form d+ kδ for d ∈ D, k ≥ 0, and the negative roots
correspond to k < 0 (except 0 which is not a root at all).

A combinatorial ideal i whose support (i.e. the set of roots α for which g̃α ⊂ i )
intersects D nontrivially is called a basic ideal. Baur and Mazorchuk [2] showed that
any combinatorial ideal can be obtained from a unique basic ideal through “translation”
in the δ-direction. The number of basic ideals is what we are going to count in the
remainder of this paper.

We now describe the poset structure of D in terms of its partition above. We have
D1 = {δ} and δ is the maximum element of the poset D. D2 is the set of positive roots
of Bn which is fully embedded into D as a poset. Thus the poset structure on D2 is
precisely as in Section 2. D3 consists of roots of form δ − α where α is a positive root
of Bn. These are ordered in the reversed way, since α ≺ β ⇔ δ − α ≻ δ − β. The roots
of D3 can be organized into a digram similarly to how we organized positive roots of Bn

but reflected with respect to the horizontal line. More explicitly, in the position (i, j) we
write δ− (n− i+1, 2n− j) whenever (n− i+1, 2n− j) is a positive root. Then for î ≤ i

and ĵ ≥ j, δ − (n − î+ 1, 2n − ĵ) ≻ δ − (n− i+ 1, 2n − j), so greater elements are again
in the north and east directions. Putting the diagrams D2 and D3 together we obtain a
diagram which is illustrated below in the case n = 4.

δ − (4, 4)

δ − (3, 5) // δ − (3, 4) //

OO

δ − (3, 3)

δ − (2, 6) // δ − (2, 5) //

OO

δ − (2, 4) //

OO

δ − (2, 3) //

OO

δ − (2, 2)

δ − (1, 7) // δ − (1, 6) //

OO

δ − (1, 5) //

OO

δ − (1, 4) //

OO

δ − (1, 3) //

OO

δ − (1, 2) //

OO

δ − (1, 1)

(1, 1) // (1, 2) // (1, 3) // (1, 4) // (1, 5) // (1, 6) // (1, 7)

(2, 2) //

OO

(2, 3) //

OO

(2, 4) //

OO

(2, 5) //

OO

(2, 6)

OO

(3, 3) //

OO

(3, 4) //

OO

(3, 5)

OO

(4, 4)

OO

However, we have yet to consider ≺-relations between D2 and D3 in the diagram.
Because of the α0-coordinate, a root in the upper part can not be ≺-smaller than a root
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in the lower part. The following lemma specifies precisely when a root in the lower part
is ≺-smaller than a root in the upper part.

Lemma 5. For i > 1 we have (i, j) ≺ δ − (̂i, ĵ) if and only if ĵ ≤ 2n − j, while (1, j) ≺
δ − (̂i, ĵ) if and only if ĵ ≤ 2n− j and î > 1.

Proof. We have (i, j) ≺ δ − (̂i, ĵ) ⇔ (i, j) + (̂i, ĵ) ≺ α0 + αmax ⇔ (i, j) + (̂i, ĵ) ≺ αmax

(note that (i, j) + (̂i, ĵ) does not have to be a root). Thus, for a given root (i, j), we need
only consider which roots (̂i, ĵ) can be added such that the sum is still ≺-smaller than
αmax = α1 + 2α2 + 2α3 + · · · + 2αn = (1, 2, 2, . . . , 2, 2). First, if j ≥ n, both (i, j) and
(̂i, ĵ) have the form (0, 0, . . . , 0, 0, 1, 1, . . . , 1, 1, 2, 2, . . . , 2, 2) in the basis of simple roots.
Moreover, for (i, j) the number of 2’s at the end equals j−n. The sum (i, j)+ (̂i, ĵ) is not
allowed to have any coordinates equal to 3, which implies ĵ ≤ n− (j − n) ⇔ ĵ ≤ 2n − j.
If j ≤ n, the root (i, j) has the form (0, 0, . . . , 0, 0, 1, 1, . . . , 1, 1, 0, 0, . . . , 0, 0) where the
number of 0’s in the end equals n− j, so similar arguments imply that (̂i, ĵ) can have at
most n− j coordinates equal to 2 at the end, or equivalently ĵ ≤ n+(n− j) ⇔ ĵ ≤ 2n− j.

Thus a necessary condition for (i, j) ≺ δ − (̂i, ĵ) is that ĵ ≤ 2n − j. This is also
sufficient except for the special case when i = 1. In that case, since the α1-coefficient in
αmax and (i, j) is 1, we can not have î = 1. Taken together, this proves the claim.

Let us translate this result to our diagram above. Since the (i, j)’th position in the
upper part contains the root δ−(n− i+1, 2n−j), any element in the j’th column (except
the one in the first row) at the lower part is ≺-smaller than all elements in the j’th column
in the upper part. The root (1, j) in the first row and j’th column is ≺-smaller than all
elements in the j’th column above, except for the one in the bottom row. For example,
our B̃4 diagram is now completed as follows:

δ − (4, 4)

δ − (3, 5) // δ − (3, 4) //

OO

δ − (3, 3)

δ − (2, 6) // δ − (2, 5) //

OO

δ − (2, 4) //

OO

δ − (2, 3) //

OO

δ − (2, 2)

δ − (1, 7) // δ − (1, 6) //

OO

δ − (1, 5) //

OO

δ − (1, 4) //

OO

δ − (1, 3) //

OO

δ − (1, 2) //

OO

δ − (1, 1)

(1, 1) // (1, 2) //

KK

(1, 3) //

KK

(1, 4) //

KK

(1, 5) //

KK

(1, 6) //

KK

(1, 7)

(2, 2) //

OO

SS

(2, 3) //

OO

SS

(2, 4) //

OO

SS

(2, 5) //

OO

SS

(2, 6)

OO

SS

(3, 3) //

OO

(3, 4) //

OO

(3, 5)

OO

(4, 4)

OO

Here again, a root is ≺-smaller than another root if and only if there is a path of arrows
from the first one to the second one. Note that the top row of the bottom part is linked
to the second to bottom row in the upper part and vice versa.

Our goal is now the express the number of coideals in such a poset (for an arbitrary
n) in terms of pairs of paths. To this end, construct again a rectangle in R

2, this time
with the northwest corner in (0, n + 1) and the southeast corner in (2n − 1,−n), where

7



1 × 1-blocks correspond to roots of D \ {δ}. The rectangle contains the two triangles in
a natural way as illustrated below in the case n = 4.

(1)

(2)

We have drawn two paths in the picture, a red one and a blue one. These paths together
specify a coideal of the poset in the following way: we take all roots corresponding to boxes
to the northeast of the blue path together with all roots corresponding to boxes from the
lower triangle to the northeast of the red path. Every coideal can be obtained this way,
but the converse is not true, some choices of paths do not correspond to coideals. For
example, in the above diagram, since the red path specifies that the root in box marked
by (1) belongs to the coideal, the root in the box marked by (2) in the top triangle should
be in the coideal as well. Thus the blue path can not be taken “too high” given the red
path. The choice in the picture above indeed does corresponds to a coideal. A pair of
paths which do correspond to a coideal will be called an admissible pair of paths.

5 Admissible pairs of paths

We now formalize the correspondence between basic ideals in bn and admissible pairs of
Bn-paths by generalizing what was done in Proposition 3.

Let i be a basic ideal in bn. Let Di := D ∩ supp(i) where D = D1 ∪ D2 ∪ D3 as in
Section 4. Then Di = (D1 ∩ supp(i))∪ (D2 ∩ supp(i))∪ (D3 ∩ supp(i)). Since i is assumed
to be basic, and δ is the maximum element in the poset D, we have D1 ∩ supp(i) =
{δ} ∩ supp(i) = {δ}. So the sets D2 ∩ supp(i) and D3 ∩ supp(i) determine the basic ideal.
Now, consider again the geometric scheme discussed above in which we have a rectangle
in R

2 with northwest corner in (0, n + 1) and the southeast corner in (2n− 1,−n) which
contains 1× 1-boxes corresponding to elements of D \ {δ}. The basic ideal i corresponds
to a subset of such boxes (the empty subset in case supp(i) ∩ D = {δ}). By the same
arguments as in Proposition 3 it follows that there exists a unique pair of paths (p, q)
which has the following properties.

• p starts at (−1, 0);

• each step of p goes to the right (along (1, 0)) or down (along (0,−1));
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• p terminates at a point of the form (2n− 1− x,−x), x ∈ {0, 1, . . . , n};

• p separates all boxes corresponding to elements of D2 ∩ supp(i) from boxes corre-
sponding to elements of D2 \ supp(i).

• q starts at (2n, 1);

• each step of q goes to the left (along (−1, 0)) or up (along (0, 1));

• q terminates at a point of the form (y, y + 1), y ∈ {0, 1, . . . , n};

• q separates all boxes corresponding to elements of D3 ∩ supp(i) from boxes corre-
sponding to elements of D3 \ supp(i).

By substituting each (1, 0)-step in p with r and each (0,−1)-step in p with f we obtain
a Bn-path p(i), and by substituting each (−1, 0)-step in q with r and each (0, 1)-step in q

with f we obtain another Bn-path q(i). Thus, with the basic ideal i we have associated a
pair of Bn-paths (p(i), q(i)). It is also clear that different basic ideals give rise to different
pairs of paths.

However, as mentioned before, not every pair (p, q) corresponds to a basic ideal. All
pairs of the form (p(i), q(i)) for some basic ideal i are called admissible. For example, the
pair (rrrfrfrr, rrrrrrff) is admissible; it is precisely the pair from the previous picture.

We now specify the conditions for a pair (p, q) of Bn-paths to be admissible.
For 1 ≤ i < j ≤ 2n define Bn(i, j) as the set of all Bn-paths in which the first and the

second occurrences of f (reading the word from left to right) are at the positions i and
j. Also, for 1 ≤ i ≤ 2n let Bn(i) be the set of paths where the first occurrence of f is at
position i. For example rrrfrfff ∈ B4(4, 6) ⊂ B4(4) and rrrfff ∈ B3(4, 5) ⊂ B3(4).
Note that Bn paths also are defined for n = 1, and we have |B1(2)| = |B1(3)| = 1. We
shall also abuse notation by defining {rr · · · rr} = Bn(2n+ 1), that is, if a path contains
no f , its first f can be thought of to be one step after the last letter of the path. Similarly,
write {rr · · · rr} = Bn(2n+1, 2n+2) and rr · · · rfr · · · rr ∈ Bn(k, 2n+1) (here the only
occurrence of f is at place k).

Using the notation above we can state the following criterion for a pair of Bn-paths
(p, q) to be admissible.

Proposition 6. Let p ∈ Bn(a, b) where 3 ≤ a < b ≤ 2n. Then (p, q) is an admissible

pair of paths if and only if q ∈ Bn(i, j) where i ≥ 2n+ 4− b and j ≥ 2n+ 4− a.

Proof. Let 3 ≤ a < b ≤ 2n and p ∈ Bn(a, b). Realize (p, q) as a pair of paths in the
diagram described above. By Proposition 3, the path p specifies a coideal of the poset D2

and q specifies a coideal of the poset D3, so we need only consider ≺-arrows between the
two triangles. Such arrows originate from the two upper rows of the lower diagram. The
root corresponding to the box whose northwest corner is in (a−2, 0) is in the coideal, and
it (≺)-covers the root corresponding to the box with northwest corner in (a−2, 3), so this
latter root must also belong to the coideal. Similarly, since the root corresponding to the
box with northwest corner (b− 3,−1) is in the coideal, the root corresponding to the box
with northwest corner in (b−3, 2) must also be in the coideal. Thus, for p as above, (p, q)
is admissible if and only if the two boxes with northwest corners (a− 2, 3) and (b− 3, 2)
respectively lie to the northwest of the path q. This is equivalent to q ∈ Bn(i, j) with
i ≥ 2n+ 4− b and j ≥ 2n+ 4− a.

We illustrate the proposition above with an example.
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Example Let n = 6 and let p = rrrrfrrfrffr ∈ B6(5, 8). The path p is drawn in red
in the bottom triangle of the following picture.

(1)

(1’)

(2)

(2’)

The box marked by (1) is linked to the box marked (1′) linked via the ≺-relation, and the
box marked by (2) is linked to the box marked (2′) linked via the ≺-relation. Hence q must
be chosen such that the boxes marked (1′) and (2′) are both to the northeast of the path q.
In other words, q ∈ B6(i, j) where i ≥ 2n+4−b = 8 and j ≥ 2n+4−a = 11. The smallest
coideal allowed for this choice of the path p is of course given by q = (rrrrrrrfrrff), and
the largest ideal corresponds to when q = rrrrrrrrrrrr. All paths “between” these also
give admissible pairs (p, q). One such choice, q = rrrrrrrrfrrr, is drawn in blue color in
the picture.

Corollary 7. For p ∈ Bn(a, b) where 3 ≤ a < b ≤ 2n, the number of q’s such that (p, q)
is admissible is given by

∑

i≥2n+4−b

∑

j≥2n+4−a

|Bn(i, j)|.

Comparing with the picture of the poset though, we note that the argument above
does not make sense when a = 2 or when b = 2n+1, so unfortunately we need to consider
a few special cases as well.

6 Counting paths

In this section we prove Theorem 1. We start with the following lemma.
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Lemma 8. For n ≥ 2 and 2 ≤ i < j ≤ 2n+ 1 we have

|Bn(i, j)| = |Bn−1(j − 2)|.

Proof. For such i, j and n, define a map φ : Bn(i, j) → Bn−1(j − 2) which just deletes
the first (leftmost) r and the first f from a given path. It is easy to check that φ(p) ∈
Bn−1(j− 2) and that φ is a bijection (its inverse just appends an r to the left and inserts
an f at position i). Hence the sets have the same cardinality.

The numbers |Bn(i)| are given explicitly by the following lemma.

Lemma 9. For n ≥ 2 and 1 ≤ i ≤ 2n we have

|Bn(i)| =























n−1
∑

k=1

2k

(

(

2n− i− k − 1

n− i

)

−

(

2n− i− k − 1

n− i− k

)

)

, if i ≤ n;

22n−i, if i > n.

Proof. Each path of Bn(i) can be specified by first choosing a Dyck-path starting with
ri−1f , and then replacing its tail consisting of some number of f ’s by any sequence of
r and f of the same length. Baur and Mazorchuk [2, Proposition 13] showed that the
number of Dyck-paths of semilength n with the first peak at height i and the last peak
at height k is given by the expression

(

2n− i− k − 2

n− i− 1

)

−

(

2n− i− k − 2

n− i− k − 1

)

.

Since a Dyck-path having the last peak at height k ends with fk, it gives rise to 2k possible
B-paths. Summing over k we obtain the number of all such B-paths. When i > n, this
argument degenerates, but a path starting with ri−1f with i > n can clearly be completed
by choosing the remaining symbols arbitrarily, which gives 22n−i possibilities. Here is a
geometric illustration.

The red path above corresponds to the Dyck-path rfrrrfrfff . It can be modified to a
B-path by replacing the three f ’s at the end by any three letter word on {r, f}. There
are 23 such choices, the choice rfr gives the B-path rfrrrfrrfr which is displayed as a
dashed path in the figure.

To proceed we need a number of lemmas.
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6.1 Lemmata

Lemma 10. For integers n ≥ 0 we have

n
∑

k=0

k2n−k = 2n+1 − n− 2

Proof. Induction on n.

Lemma 11. For integers n ≥ 0 we have

n
∑

k=0

k22n−k = 6 · 2n − n2 − 4n − 6

Proof. Induction on n.

Lemma 12. For integers 0 ≤ m ≤ n we have

n
∑

s=m

(

s

m

)

=

(

n+ 1

m+ 1

)

Proof. This follows from Pascal’s rule.

Lemma 13. For all positive integers A and B with A ≥ B, we have

A−B
∑

ℓ=0

2ℓ
(

A− ℓ

B

)

=

A−B
∑

s=0

(

A+ 1

s

)

Proof. We first convert the sum on the left into standard hypergeometric notation, as
given by

pFq

[

a1, . . . , ap
b1, . . . , bq

; z

]

=

∞
∑

ℓ=0

(a1)ℓ, . . . , (ap)ℓ
ℓ!(b1)ℓ, . . . , (bq)ℓ

zℓ,

where the Pochhammer symbol (α)ℓ is defined by

(α)ℓ := α(α+ 1) · · · (α+ ℓ− 1)

for ℓ ≥ 1, and (α)0 := 1.
In this notation we have

A−B
∑

ℓ=0

2ℓ
(

A− ℓ

B

)

=

(

A

B

)

2F1

[

1,−A+B

−A
; 2

]

.

We now apply the following transformation formula for hypergeometric functions, see
Slater [9, (1.8.10)].

2F1

[

a,−N

c
; z

]

= (1− z)N
(a)N
(c)N

2F1

[

−N, c− a

1− a−N
;

1

1− z

]

,

where N is a nonnegative integer.
Choosing a = 1 + ε, N = A−B, c = −A+ ε and z = 2 gives the formula

2F1

[

1,−A+B

−A
; 2

]

= (−1)A−B lim
ε→0

(1 + ε)A−B

(−A+ ε)A−B
2F1

[

−A+B,−A− 1
−A+B − ε

;−1

]

.

Applying this formula to our previous expression we obtain
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A−B
∑

ℓ=0

2ℓ
(

A− ℓ

B

)

=

(

A

B

)

lim
ε→0

(1 + ε)A−B

(B + 1− ε)A−B
2F1

[

−A+B,−A− 1
−A+B − ε

;−1

]

=

A−B
∑

s=0

(−A− 1)s
s!

(−1)s

=

A−B
∑

s=0

(

A+ 1

s

)

.

We are now ready to prove Theorem 1. The proof will occupy the remainder of the
paper, so we shall divide it into a number of parts.

Layout of the proof: The number b̃n equals the number of admissible pairs of Bn-
paths. We shall count these by counting the numbers of admissible pairs (p, q) where
p ∈ B(a, b) and q ∈ B(i, j) and then taking the sum over all relevant such integer
quadruples (a, b, i, j). We partition these quadruples into four disjoint classes and we
proceed by separately computing the number of admissible pairs belonging to each class.
The rest of the proof is a simplification of the obtained expression.

6.2 Case I

Consider those (a, b, i, j) where a ≥ 3, 4 ≤ b ≤ 2n and i ≤ 2n+1. This is the most general
case. For each such a and b, we have |Bn(a, b)| = |Bn−1(b − 2)| choices for p, and for
each such choice we choose j between (2n+4−a) and 2n+1, and for such a, b, j we have
(b + j − 2n − 4) ways to choose i, and then |Bn(i, j)| = |Bn−1(j − 2)| ways to complete
the path. So for this case, the number of admissible paths can be written

s1 =

2n
∑

b=4

|Bn−1(b− 2)|

b−1
∑

a=3

2n+1
∑

j=2n+4−a

(b+ j − 2n − 4)|Bn−1(j − 2)|.

Here is an attempt of illustration: when n = 4, the p’s for which the number of (p, q) are
counted in this case are all drawn on top of each other in the picture below.

6.3 Case II

Next consider the case when a ≥ 3, b = 2n + 1 and i ≤ 2n + 1, that is, the case when p

only contains one f . The path p is then determined by the choice of a, and the path q

can be chosen as in Case I, except that there are now less restriction on i: any number
2 ≤ i ≤ j − 1 will do, so there are (j − 2) choices.
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s2 =
2n
∑

a=3

2n+1
∑

j=2n+4−a

(j − 2)|Bn−1(j − 2)|

Again, an illustration for n = 4:

6.4 Case III

Next consider the case when a = 2, b ≤ 2n and i ≤ 2n+1 (which corresponds to the paths
p starting with rf). When b is chosen, and the number of p is counted, the possibilities
for q are very restricted. We have one choice for j, and (b− 3) choices for i, that is

s3 =

2n
∑

b=4

|Bn−1(b− 2)|(b − 3).

This is illustrated by the following picture.

6.5 Case IV

This case considers all remaining admissible pairs of paths. When a = 2, b = 2n+ 1 and
i ≤ 2n+ 1, the path p is fixed and q is determined by its parameter i for which there are
(2n − 1) choices.

Everything up to now has been restricted by the condition i ≤ 2n + 1. It remains to
consider the case when q = rr · · · rr. In this case we have

(

2n
n

)

possibilities for p.

Similarly, we have to consider the case p = rr · · · rr, where we also have
(

2n
n

)

possibil-
ities for q. Here the single case (p, q) = (rr · · · rr, rr · · · rr) has to be subtracted though,
in order not to count it twice.

s4 = (2n − 1) +

(

2n

n

)

+

(

2n

n

)

− 1
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6.6 Simplification of the total sum

All in all, in summing up we have b̃n = s1 + s2 + s3 + s4 or explicitly

b̃n =
2n
∑

b=4

|Bn−1(b− 2)|
b−1
∑

a=3

2n+1
∑

j=2n+4−a

(b+ j − 2n− 4)|Bn−1(j − 2)|

+
2n
∑

a=3

2n+1
∑

j=2n+4−a

(j − 2)|Bn−1(j − 2)|

+

2n
∑

b=4

|Bn−1(b− 2)|(b− 3)

+ 2

(

2n

n

)

+ (2n − 2).

In the first and second term (row) the variable a only determines the index of a sum,
so we can eliminate this variable.

b̃n =
2n
∑

b=4

|Bn−1(b− 2)|
2n+1
∑

j=2n−b+5

(b+ j − 2n− 4)2|Bn−1(j − 2)|

+

2n+1
∑

j=4

(j − 3)(j − 2)|Bn−1(j − 2)|

+
2n
∑

b=4

|Bn−1(b− 2)|(b − 3)

+ 2

(

2n

n

)

+ (2n− 2).

We next replace j by j − 2n+ b− 3 as index variable in the first expression, and the
third and first terms are factored together. This gives

b̃n =

2n
∑

b=4

|Bn−1(b− 2)|

(

(b− 3) +

b−2
∑

j=2

(j − 1)2|Bn−1(j + 2n− b+ 1)|

)

+

(

2n+1
∑

j=4

(j − 3)(j − 2)|Bn−1(j − 2)|

)

+ 2

(

2n

n

)

+ (2n − 2).

In the sum going from j = 2 to b − 2 we can sum from 1 instead since the new first
term will be 0. The last term is (b− 3)2, and (b− 3)2 + (b− 3) = (b− 3)(b− 2) so

b̃n =

2n
∑

b=4

|Bn−1(b− 2)|

(

(b− 3)(b− 2) +

b−3
∑

j=1

(j − 1)2|Bn−1(j + 2n− b+ 1)|

)

+

(

2n+1
∑

j=4

(j − 3)(j − 2)|Bn−1(j − 2)|

)

+ 2

(

2n

n

)

+ (2n − 2).

Similarly we take out the last term of the last sum and write
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b̃n =

2n
∑

b=4

|Bn−1(b− 2)|

(

(b− 3)(b − 2) +

b−3
∑

j=1

(j − 1)2|Bn−1(j + 2n− b+ 1)|

)

+

(

2n
∑

j=4

(j − 3)(j − 2)|Bn−1(j − 2)|

)

+ (2n − 2)(2n − 1) + 2

(

2n

n

)

+ (2n − 2).

Now the last sum over j can be absorbed into the first term, and we can factor two
terms at the end to obtain

b̃n =

2n
∑

b=4

|Bn−1(b− 2)|

(

2(b− 3)(b− 2) +

b−3
∑

j=1

(j − 1)2|Bn−1(j + 2n − b+ 1)|

)

+ 4n(n− 1) + 2

(

2n

n

)

.

Next we want to apply Lemma 9 to rewrite the functions B in a more explicit form.
Since B is a piecewise defined function, we first split up our sums in a corresponding way.

b̃n =
n+1
∑

b=4

|Bn−1(b− 2)|

(

2(b− 3)(b− 2) +
b−3
∑

j=1

(j − 1)2|Bn−1(j + 2n − b+ 1)|

)

+
2n
∑

b=n+2

|Bn−1(b− 2)|

(

2(b− 3)(b− 2) +
b−3
∑

j=1

(j − 1)2|Bn−1(j + 2n − b+ 1)|

)

+ 4n(n− 1) + 2

(

2n

n

)

=

n+1
∑

b=4

|Bn−1(b− 2)|

(

2(b− 3)(b− 2) +

b−3
∑

j=1

(j − 1)2|Bn−1(j + 2n − b+ 1)|

)

+

2n
∑

b=n+2

|Bn−1(b− 2)|

(

2(b− 3)(b− 2) +

( b−n−2
∑

j=1

(j − 1)2|Bn−1(j + 2n− b+ 1)|

+

b−3
∑

j=b−n−1

(j − 1)2|Bn−1(j + 2n− b+ 1)|

)

)

+ 4n(n− 1) + 2

(

2n

n

)

Now the sums are partitioned properly and we can apply Lemma 9. To avoid using a lot
of binomial coefficients we temporarily introduce the notation

D(n, i, j) :=

(

2n− i− j − 2

n− i− 1

)

−

(

2n − i− j − 2

n− i− j − 1

)

.

Lemma 9 now gives
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b̃n =

n+1
∑

b=4

n−2
∑

k=1

2kD(n− 1, b− 3, k)

(

2(b− 3)(b − 2) +

b−3
∑

j=1

(j − 1)22b−j−3

)

+

2n
∑

b=n+2

22n−b

(

2(b− 3)(b− 2) +

( b−n−2
∑

j=1

(j − 1)2
n−2
∑

k=1

2kD(n− 1, 2n + j − b, k)

+

b−3
∑

j=b−n−1

(j − 1)22b−j−3

)

)

+ 4n(n− 1) + 2

(

2n

n

)

Changing summation variables such that both sums over b goes up to n− 2 we obtain

b̃n =
n−2
∑

b=1

n−2
∑

k=1

2kD(n− 1, b, k)

(

2b(b+ 1) +
b
∑

j=1

(j − 1)22b−j

)

+
n−2
∑

b=0

2n−b−2

(

2(b+ n− 1)(b+ n) +

( b
∑

j=1

(j − 1)2
n−2
∑

k=1

2kD(n− 1, n+ j − b− 2, k)

+

b+n−1
∑

j=b+1

(j − 1)22b+n−j−1

)

)

+ 4n(n− 1) + 2

(

2n

n

)

Using Lemma 11 (and changing variables) we can simplify the following two expres-
sions.

b
∑

j=1

(j − 1)22b−j = 3 · 2b − b2 − 2b− 3

b+n−1
∑

j=b+1

(j − 1)22b+n−j−1 = 2n−1(b2 + 2b+ 3)− n2 − b2 − 2bn− 2

Inserting this into our expression for b̃n we have

b̃n =

n−2
∑

b=1

n−2
∑

k=1

2kD(n− 1, b, k)(3 · 2b + b2 − 3)

+
n−2
∑

b=0

2n−b−2

(

2(b+ n− 1)(b+ n) +

( b
∑

j=1

(j − 1)2
n−2
∑

k=1

2kD(n− 1, n+ j − b− 2, k)

+ 2n−1(b2 + 2b+ 3)− n2 − b2 − 2bn− 2

)

)

+ 4n(n− 1) + 2

(

2n

n

)
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This can be rewritten as

b̃n =
n−2
∑

b=1

n−2
∑

k=1

2kD(n− 1, b, k)(3 · 2b + b2 − 3)

+

n−2
∑

b=0

2n−b−2

(

b
∑

j=1

(j − 1)2
n−2
∑

k=1

2kD(n− 1, n+ j − b− 2, k)

)

+
n−2
∑

b=0

(

22n−b−3(b2 + 2b+ 3) + 2n−b−2(n2 + b2 + 2bn− 2b− 2n − 2)
)

+ 4n(n− 1) + 2

(

2n

n

)

Here the last sum over b equals 22n+1 − 2n(n + 3) − 4n(n− 1) which is easily proved
by application of Lemma 10 and Lemma 11. Canceling the term 4n(n− 1) we have

b̃n =

n−2
∑

b=1

n−2
∑

k=1

2kD(n− 1, b, k)(3 · 2b + b2 − 3)

+

n−2
∑

b=0

2n−b−2

(

b
∑

j=1

(j − 1)2
n−2
∑

k=1

2kD(n− 1, n + j − b− 2, k)

)

+ 22n+1 − 2n(n+ 3) + 2

(

2n

n

)

Expanding our function D we more explicitly have

b̃n =

n−2
∑

b=1

n−2
∑

k=1

2k
((

2n− b− k − 4

n− b− 2

)

−

(

2n− b− k − 4

n− b− k − 2

))

(3 · 2b + b2 − 3)

+
n−2
∑

b=0

2n−b−2

(

b
∑

j=1

(j − 1)2
n−2
∑

k=1

2k
((

n+ b− j − k − 2

b− j

)

−

(

n+ b− j − k − 2

b− j − k

))

)

+ 22n+1 − 2n(n+ 3) + 2

(

2n

n

)

Changing order of summation to merge the two sums over k, and rewriting some
binomial coefficients we obtain

b̃n =

n−2
∑

k=1

2k
n−2
∑

b=1

(

(3 · 2b + b2 − 3)

((

2n− b− k − 4

n− b− 2

)

−

(

2n− b− k − 4

n− 2

))

(1)

+ 2n−b−2

b
∑

j=1

(j − 1)2
((

n+ b− j − k − 2

n− k − 2

)

−

(

n+ b− j − k − 2

n− 2

))

)

− 2n(n+ 3) + 22n+1 + 2

(

2n

n

)
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6.7 Further simplification

The remaining simplification of the above expression, including the proof of Lemma 13
above, is due to Christian Krattenthaler.

We continue by simplifying the sum over j in (1). For this purpose we write

(j−1)2 = (n+b−j−k)(n+b−j−k−1)−(n+b−j−k−1)(2n+2b−2k−3)+(n+b−k−2)2

and use this to simplify the binomial coefficients. Thus the sum over j becomes

(n− k)(n− k − 1)

b
∑

j=1

(

n+ b− j − k

n− k

)

− n(n− 1)

b
∑

j=1

(

n+ b− j − k

n

)

− (2n+ 2b− 2k − 3)
(

(n− k − 1)

b
∑

j=1

(

n+ b− j − k − 1

n− k − 1

)

− (n− 1)

b
∑

j=1

(

n+ b− j − k − 1

n− 1

)

)

+ (n+ b− k − 2)2
(

b
∑

j=1

(

n+ b− j − k − 2

n− k − 2

)

−

b
∑

j=1

(

n+ b− j − k − 2

n− 2

)

)

.

Changing variables in each sum and then removing zero-terms we obtain

(n− k)(n − k − 1)

n+b−k−1
∑

j=n−k

(

j

n− k

)

− n(n− 1)

n+b−k−1
∑

j=n−k

(

j

n

)

−(2n + 2b− 2k − 3)
(

(n− k − 1)
n+b−k−2
∑

j=n−k−1

(

j

n− k − 1

)

− (n− 1)
n+b−k−2
∑

j=n−k−1

(

j

n− 1

)

)

+(n+ b− k − 2)2
(

n+b−k−3
∑

j=n−k−2

(

j

n− k − 2

)

−

n+b−k−3
∑

j=n−k−2

(

j

n− 2

)

)

= (n− k)(n − k − 1)

n+b−k−1
∑

j=n−k

(

j

n− k

)

− n(n− 1)

n+b−k−1
∑

j=n

(

j

n

)

−(2n + 2b− 2k − 3)
(

(n− k − 1)
n+b−k−2
∑

j=n−k−1

(

j

n− k − 1

)

− (n− 1)
n+b−k−2
∑

j=n−1

(

j

n− 1

)

)

+(n+ b− k − 2)2
(

n+b−k−3
∑

j=n−k−2

(

j

n− k − 2

)

−

n+b−k−3
∑

j=n−2

(

j

n− 2

)

)

to which we apply Lemma 12 six times. This gives
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(n− k)(n − k − 1)

(

n+ b− k

n− k + 1

)

− n(n− 1)

(

n+ b− k

n+ 1

)

− (2n+ 2b− 2k − 3)

(

(n− k − 1)

(

n+ b− k − 1

n− k

)

− (n− 1)

(

n+ b− k − 1

n

)

)

+ (n+ b− k − 2)2

(

(

n+ b− k − 2

n− k − 1

)

−

(

n+ b− k − 2

n− 1

)

)

which simplifies to

(

n+ b− k − 1

n− k + 1

)

+

(

n+ b− k − 2

n− k + 1

)

−

(

n+ b− k − 1

n+ 1

)

−

(

n+ b− k − 2

n+ 1

)

. (2)

So inserting (2) back into (1) we now have

b̃n =

n−2
∑

k=1

2k
n−2
∑

b=1

(

(3 · 2b + b2 − 3)(

(

2n− b− k − 4

n− b− 2

)

−

(

2n− b− k − 4

n− 2

)

)

+ 2n−b−2
(

(

n+ b− k − 1

n− k + 1

)

+

(

n+ b− k − 2

n− k + 1

)

−

(

n+ b− k − 1

n+ 1

)

−

(

n+ b− k − 2

n+ 1

)

)

)

− 2n(n+ 3) + 22n+1 + 2

(

2n

n

)

. (3)

On the second line we reverse the order of the b-summation, that is, we replace b by
n− 1− b which yields

b̃n =
n−2
∑

k=1

2k
n−2
∑

b=1

(

(3 · 2b + b2 − 3)(

(

2n− b− k − 4

n− b− 2

)

−

(

2n− b− k − 4

n− 2

)

)

+ 2b−1
(

(

2n− b− k − 2

n− k + 1

)

+

(

2n− b− k − 3

n− k + 1

)

−

(

2n− b− k − 2

n+ 1

)

−

(

2n− b− k − 3

n+ 1

)

)

)

− 2n(n+ 3) + 22n+1 + 2

(

2n

n

)

.

Introducing a new summation variable ℓ = b+ k we can write this as
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b̃n =
n−2
∑

k=1

2k
n−2
∑

b=1

(b2 − 3)(

(

2n− b− k − 4

n− k − 2

)

−

(

2n− b− k − 4

n− 2

)

)

+

n−2
∑

k=1

2n−2
∑

ℓ=k+1

2ℓ

(

3

(

2n− ℓ− 4

n− k − 2

)

+ 3

(

2n− ℓ− 4

n− 2

)

+
1

2

(

(

2n− ℓ− 2

n− k + 1

)

+

(

2n− ℓ− 3

n− k + 1

)

−

(

2n− ℓ− 2

n+ 1

)

−

(

2n− ℓ− 3

n+ 1

)

)

)

− 2n(n+ 3) + 22n+1 + 2

(

2n

n

)

.

Next we apply Lemma 13 to all the sums over ℓ. This gives

b̃n =

n−2
∑

k=1

2k
n−2
∑

b=1

(b2 − 3)(

(

2n− b− k − 4

n− k − 2

)

−

(

2n− b− k − 4

n− 2

)

)

+ 3
n−2
∑

k=1

2k+1

n−3
∑

s=0

(

2n− k − 4

s

)

− 3
n−2
∑

k=1

2k+1

n−k−3
∑

s=0

(

2n − k − 4

s

)

+
n−2
∑

k=1

2k
n−4
∑

s=0

(

2n− k − 2

s

)

+
n−2
∑

k=1

2k
n−5
∑

s=0

(

2n − k − 3

s

)

−

n−2
∑

k=1

2k
n−k−4
∑

s=0

(

2n − k − 2

s

)

−

n−2
∑

k=1

2k
n−k−5
∑

s=0

(

2n− k − 3

s

)

− 2n(n+ 3) + 22n+1 + 2

(

2n

n

)

. (4)

To simplify (4) we first note that

(1 + 1)2n−k−2 =
2n−k−2
∑

s=0

(

2n − k − 2

s

)

=
n+1
∑

s=0

(

2n − k − 2

s

)

+
2n−k−2
∑

s=n+2

(

2n− k − 2

s

)

=
n+1
∑

s=0

(

2n− k − 2

s

)

+
n−k−4
∑

s=0

(

2n− k − 2

n− k − 4− s

)

=
n+1
∑

s=0

(

2n− k − 2

s

)

+
n−k−4
∑

s=0

(

2n− k − 2

s

)

so
n−k−4
∑

s=0

(

2n− k − 2

s

)

= 22n−k−2 −

n+1
∑

s=0

(

2n− k − 2

s

)

.

Using this, and similar identities, we transform the expression (4) to
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b̃n =
n−2
∑

k=1

2k
n−2
∑

b=1

(b2 − 3)(

(

2n− b− k − 4

n− k − 2

)

−

(

2n− b− k − 4

n− 2

)

)

+ 3
n−2
∑

k=1

2k+1

n−3
∑

s=0

(

2n − k − 4

s

)

− 3(n − 2)22n−3 + 3
n−2
∑

k=1

2k+1

n−2
∑

s=0

(

2n− k − 4

s

)

+

n−2
∑

k=1

2k
n−4
∑

s=0

(

2n− k − 2

s

)

+

n−2
∑

k=1

2k
n−5
∑

s=0

(

2n− k − 3

s

)

− (n− 2)22n−2 +

n−2
∑

k=1

2k
n+1
∑

s=0

(

2n− k − 2

s

)

− (n − 2)22n−3 +

n−2
∑

k=1

2k
n+1
∑

s=0

(

2n− k − 3

s

)

− 2n(n+ 3) + 22n+1 + 2

(

2n

n

)

. (5)

In the second, third and fourth line we can interchange summations over k and s and
apply Lemma 13 again. However, one has to be a bit careful since the sums over k are
in fact shorter than required by the lemma. For example, the first of these sums can be
simplified as follows.

3

n−2
∑

k=1

2k+1

n−3
∑

s=0

(

2n− k − 4

s

)

= 3

n−3
∑

s=0

n−2
∑

k=1

2k+1

(

2n− k − 4

s

)

= 3

n−3
∑

s=0

(

2n−s−4
∑

k=1

2k+1

(

2n− k − 4

s

)

−

2n−s−4
∑

k=n−1

2k+1

(

2n− k − 4

s

)

)

= 3

n−3
∑

s=0

(

4

2n−s−5
∑

k=0

(

2n− 4

k

)

− 2n
n−s−3
∑

k=0

(

n− 2

k

)

)

= 12

n−3
∑

k=0

(n − 2)

(

2n− 4

k

)

+ 12

n−3
∑

k=0

(n− k − 2)

(

2n− 4

n+ k − 2

)

− 3 · 2n
n−3
∑

k=0

(n− k − 2)

(

n− 2

k

)

= 6(n − 2)
(

22n−4 −

(

2n− 4

n− 2

)

)

+ 6(n− 2)22n−4 − 3 · 2n(n− 2)2n−3

= 3(n − 2)22n−3 − 6(n− 2)

(

2n− 4

n− 2

)

.

We treat the other double sums over k and s in (5) similarly, and after many, many
calculations we arrive at the expression

b̃n =

n−2
∑

k=1

2k
n−2
∑

b=1

(b2 − 3)(

(

2n− b− k − 4

n− k − 2

)

−

(

2n− b− k − 4

n− 2

)

)

+ (3n+ 5)22n−2 + (n2 − 1)2n−1 − 4(1− 7n+ 7n2 + 3n3)
(2n− 3)!

(n − 2)!(n + 1)!
. (6)

Now we turn to the sum over b. By expressing

b2 = (2n− b− k − 2)(2n − b− k − 3)− (4n − 2k − 5)(2n − b− k − 3) + (2n − k − 3)2
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and proceeding by application of Lemma 12 as in the beginning of this section, and then
rewriting the binomial coefficients we obtain

n−2
∑

b=1

(b2 − 3)(

(

2n− b− k − 4

n− k − 2

)

−

(

2n− b− k − 4

n− 2

)

)

=(n− k)(n− k − 1)

(

2n− k − 2

n− k + 1

)

− n(n− 1)

(

2n − k − 2

n+ 1

)

− (4n− 2k − 5)(n − k − 1)

(

2n− k − 3

n− k

)

+ (4n− 2k − 5)(n − 1)

(

2n− k − 3

n

)

+ ((2n − k − 3)2 − 3)

(

2n− k − 4

n− k − 1

)

− ((2n − k − 3)2 − 3)

(

2n− k − 4

n− 1

)

=− 2n2

(

2n− k − 2

n+ 1

)

+ (2n2 − 1)

(

2n− k − 3

n

)

− 3

(

2n− k − 4

n− 3

)

+ 3

(

2n− k − 4

n− 1

)

+ (2n− 5)

(

2n− k − 3

n− 3

)

− 2(n− 2)2
(

2n − k − 3

n− 2

)

− 2(n− 1)(n − 2)

(

2n− k − 3

n− 1

)

+ 2(n+ 1)(n − 1)

(

2n− k − 3

n+ 1

)

+ 2

(

2n− k − 2

n− 3

)

− 2(n − 2)

(

2n− k − 2

n− 2

)

+ 2(n − 2)(n − 1)

(

2n− k − 2

n− 1

)

.

Inserting this into (6) we can apply Lemma 13 again to all the sums over k. After
considerable simplification we arrive at

b̃n = (3n+ 5)22n−2 − 2(3n − 1)

(

2n− 2

n− 1

)

.

This concludes the proof.

7 The resulting sequence

The above formula yields the integer sequence {b̃n}n≥2, which could not be found in
OEIS [10]. Its first entries are

n 2 3 4 5 6 7 8 9 10

b̃n 24 128 648 3160 14984 69536 317264 1427912 6355080.
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