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Abstract

We consider structural equation models in which variables can be written as a function of their par-
ents and noise terms, which are assumed to be jointly independent. Corresponding to each structural
equation model, there is a directed acyclic graph describing the relationships between the variables.
In Gaussian structural equation models with linear functions, the graph can be identified from the
joint distribution only up to Markov equivalence classes, assuming faithfulness. In this work, we
prove full identifiability if all noise variables have the same variances: the directed acyclic graph
can be recovered from the joint Gaussian distribution. Our result has direct implications for causal
inference: if the data follow a Gaussian structural equation model with equal error variances and
assuming that all variables are observed, the causal structure can be inferred from observational data
only. We propose a statistical method and an algorithm that exploit our theoretical findings.

1 Introduction

1.1 Graphical and structural equation models

For random variables X1, . . . , Xp, we define a graphical model as a pair {G,L(X)}, where L(X) =
L(X1, . . . , Xp) is a joint probability distribution that is Markov with respect to a directed acyclic graph
G [Lauritzen, 1996, Chapter 3.2]. Structural equation models, also referred to as a functional models, are
related to graphical models. They are specified by a collection S = {S1, . . . , Sp} of p equations

Sj : Xj = fj(XPAj
, Nj) (j = 1, . . . , p) (1)

and a joint distribution L(N) = L(N1, . . . , Np) of the noise variables. Here, PAj ⊂ {1, . . . , p} \ {j}
denotes the parents of j. We require the noise terms to be jointly independent, so L(N) is a product
distribution. The graph G of a structural equation model is obtained by drawing directed edges from
each variable Xk, k ∈ PAj , occurring on the right-hand side of equation (1) to Xj . The graph G is
required to be acyclic. Furthermore, given a structural equation model, the joint distribution L(X) is
fully determined and L(X) is Markov with respect to the graph G [Pearl, 2009, Theorem 1.4.1].

1.2 Identifiability from the distribution

We address the following problem. Given the joint distribution L(X) = L(X1, . . . , Xp) from a graphical
model or from a structural equation model with directed acyclic graph G0, can we recover the graph G0?
By first considering graphical models one can easily see that the answer is negative: the joint distribution
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L(X) is Markov with respect to different directed acyclic graphs, e.g., to all fully connected directed
acyclic graphs. Thus, there are many possible graphical models {G,L(X)} for the same distribution
L(X). Similarly, there are structural equation models with different structures that could have generated
the distribution L(X). By making additional assumptions one obtains restricted graphical models and
restricted structural equation models for which the graph is identifiable from the joint distribution. It is
precisely here that the difference between graphical and functional models becomes apparent.

Given a graphical model, the distribution L(X) is faithful with respect to the directed acyclic graph G0
if each conditional independence found in L(X) is implied by the Markov condition. If faithfulness holds,
one can obtain the Markov equivalence graph of the true directed acyclic graph G0 [Spirtes et al., 2000].
But the Markov equivalence class may still be large [cf. Andersson et al., 1997] and the directed acyclic
graph G0 is not identifiable. Furthermore, faithfulness in its full generality cannot be tested from data
[Zhang and Spirtes, 2008]. Since both the Markov condition and faithfulness only restrict the conditional
independences in the joint distribution, it is not surprising that two graphs entailing the same conditional
independences cannot be distinguished.

Structural equation models enable us to exploit a different type of restriction. First, a general Gaussian
structural equation model is equivalent to a Gaussian graphical model {G0,L(X)}, so the structure G0
is not identifiable from L(X). Recently, however, it has been shown that this case is exceptional: (i)
if we consider linear functions and non-Gaussian noise, one can identify the underlying directed acyclic
graph G0 [Shimizu et al., 2006]; (ii) if one restricts the functions to be additive in the noise component
and excludes the linear Gaussian case, as well as a few other pathological function-noise combinations,
one can show that G0 is identifiable from L(X) [Hoyer et al., 2009, Peters et al., 2011]. In this work, we
prove that there is a third way to deviate from the general linear Gaussian case: (iii) Gaussian structural
equation models where all functions are linear, but the normally distributed noise variables have equal
variances σ2, are again identifiable. The identifiability results (i) and (ii) require a condition called causal
minimality. In its original form, Zhang and Spirtes [2008] define causal minimality as follows: for the
true causal graph G0, L(X) is not Markov to any proper subgraph of G0. Causal minimality is therefore
a weak form of faithfulness. Remark 3 shows that for proving (iii) we assume causal minimality.

It may come as a surprise that for a class of Gaussian structural equation models the underlying di-
rected acyclic graph is identifiable. The assumption of equal error variances seems natural for applications
with variables from a similar domain and is commonly used in time series models.

1.3 Causal interpretation

Our result has implications for causal inference. If G0 is interpreted as the causal graph of the data
generating process for X1, . . . , Xp, the problem considered here is to infer the causal structure from the
joint distribution. This is particularly interesting when the causal graph is of interest but interventional
experiments are too expensive, unethical or even impossible to perform. In the causal setting, our result
reads as follows. If the observational data are generated by a Gaussian structural equation model that
represents the causal relationships and has equal error variances, then the causal graph is identifiable
from the joint distribution. Despite the potentially important application in causal inference, we present
the main statement and its proof without causal terminology; in particular, equations (1) and (2) can be
interpreted as holding in distribution.

2 Identifiability for Gaussian models with equal error variances

We first introduce some notation. The index set J = {1, . . . , p} corresponds to a set of vertices in a
graph. Associated with j ∈ J are random variables Xj from X = (X1, . . . , Xp). Given a directed acyclic

graph G, we denote the parents of a node j by PAGj , the children by CHGj , the descendants by DEGj and

the non-descendants by NDGj .
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Figure 1: The situation dealt with in the second part of case (ii) of the proof of Theorem 1, with
S = {S1, S2} and D = ∅. It contains the proof’s main argument.

We consider a structural equation model with directed acyclic graph G0 of the form

Xj =
∑

k∈PA
G0
j

βjkXk +Nj (j = 1, . . . , p) , (2)

where all Nj are independent and identically distributed according to N (0, σ2) with σ2 > 0. Additionally,

for each j ∈ {1, . . . , p} we require βjk 6= 0 for all k ∈ PAG0j .

Theorem 1 Let L(X) be generated from model (2). Then G0 is identifiable from L(X) and the coeffi-
cients βjk can be reconstructed for all j and k ∈ PAG0j .

Problem 2 The idea of the proof is to assume that there are two structural equation models with distinct
graphs G and G′ that lead to the same joint distribution. We exploit the Markov condition and causal
minimality, see Remark 3, in order to find variables L and Y that have the same set of parents S =
{S1, S2} in both graphs, but reversed edges between each other in G and G′, as shown in Fig. 1. Defining
L∗ = L | S=s for some value s ∈ R2, we can use the equal error variances to show that L∗ has different
variances in both graphs. This leads to a contradiction.

Problem 3 Theorem 1 assumes that the coefficients βjk 6= 0 do not vanish for any k ∈ PAG0j . Lemma 8
below and Proposition 2 in Peters et al. [2011] show that this condition implies causal minimality. From
our point of view, causal minimality is a natural condition and in accordance with the intuitive under-
standing of a causal influence between variables.

Problem 4 Theorem 1 can be generalized to the case where the error covariance matrix has the form
Cov(N1, . . . , Np) = σ2diag(α1, . . . , αp) with pre-specified α1, . . . , αp and unknown σ2.

3 Penalized maximum likelihood estimator

Consider data which are independent and identically distributed realizations of X(1), . . . ,X(n) from model
(2) with true coefficients β0

jk. The representation in vector form is X = BX + N, where B is the p × p
matrix with entries Bjk = βjk. To make the manuscript easier to read we write B or β whenever we
think of a matrix or a vector of parameters, respectively. As estimator for the coefficients B0 = (β0

jk)j,k
and the error variance σ2, we consider

{β̂(λ), σ̂2(λ)} = argmin
β∈B,σ2∈R+

−`(β, σ2;X(1), . . . ,X(n)) + λ‖β‖0 , (3)

where
−`(β, σ2;X(1), . . . ,X(n)) =

np

2
log(2πσ2) +

n

2σ2
tr{(I −B)T (I −B)Σ̂} ,

with sample covariance matrix Σ̂, is the negative log-likelihood assuming equal error variances σ2 and
‖β‖0 = |{j, k : βjk 6= 0}|. Furthermore, B = {B ∈ Rp×p : Adj(B) has only zero eigenvalues} contains
only those coefficient matrices whose corresponding graphs do not have cycles [Cvetković et al., 1995,
p.81]. Here, Adj(B)jk = 1βjk 6=0 is the adjacency matrix. Minimizing over all β ∈ B includes optimizing
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over all directed acyclic graphs, see Section 4. The induced directed acyclic graph from β̂(λ) is denoted
by Ĝ. For λ = log(n)/2 the objective function in equation (3) is the bic score.

The convergence rate and consistency of the penalized maximum likelihood estimator for the true
coefficients β0

jk and the true structure G0 follow from an analysis in van de Geer and Bühlmann [2013,
Theorem 5.1], under regularity conditions. More precisely, for λn = log(n)/2 we have∑p

j,k=1{β̂jk(λn)− β0
jk}2 = OP {log(n)n−1} (n→∞) ,

pr(Ĝn = G0)→ 1 (n→∞) .

The results in van de Geer and Bühlmann [2013, Section 5] also cover the high-dimensional sparse setting
where p = pn = O{n/ log(n)}.

One could use a combination of the PC-algorithm and minimization of the penalized likelihood in
equation (3): the former, which is computationally very efficient, could be used for estimating the Markov
equivalence class and the latter for orienting remaining undirected edges. A related approach has been
suggested by Tillman et al. [2010]. For consistency in the first step one necessarily requires a version of
the strong faithfulness assumption, which can be very restrictive [Uhler et al., 2013]. Penalized maximum
likelihood estimation does not need such an assumption [van de Geer and Bühlmann, 2013] but pays a
price in terms of computational complexity.

4 Greedy search algorithm

Because the optimization in equation (3) is over the space of all directed acyclic graphs, the estimator
is hard to compute. Already for p = 20, there are 2.3 × 1072 directed acyclic graphs [OEIS Foundation
Inc., 2011], which makes an exhaustive search infeasible. Instead, we propose a greedy procedure that
we call greedy directed acyclic graph search with equal error variance. At each iteration t we are given
a directed acyclic graph Gt and move to the neighbouring directed acyclic graph with the largest drop in
the bic score. If all neighbours have a higher bic score in equation (3) than Gt, the algorithm terminates.
Here, we say that two directed acyclic graphs are neighbours if they can be transformed into each other
by one edge addition, removal or reversal. Chickering [2002] proposes a similar search strategy but with
the search done in the space of Markov equivalence classes rather than over directed acyclic graphs.

In order to shorten the runtime, we randomly search through neighbouring directed acyclic graphs
until we find a directed acyclic graph with a better score than Gt and use this directed acyclic graph
for Gt+1. We consider at least k neighbours; if there are several directed acyclic graphs among the
first k with better scores than Gt, we take the best one. The whole procedure further improves if we
increase the probability of changing edges pointing into nodes whose residuals have a high variance.
This modification and the score function are the only parts of the algorithm that make use of the equal
error variances. Additionally, we restart the method five times starting from a random sparse graph
with k = p, k = 2p, k = 3p, k = 5p and k = 300. This choice is ad hoc but works well in practice,
as it decreases the risk of getting stuck in a local optimum. R code for this method is available as
Supplementary Material.

5 Experiments

5.1 Existing methods

We compare our method against the PC-algorithm [Spirtes et al., 2000] and greedy equivalence search
[Chickering, 2002]. The latter approximates the BIC-regularized maximum likelihood estimator for non-
restricted Gaussian structural equation models. Both methods can only recover the Markov equivalence
class, see Section 1.2, and therefore leave some arrows undirected. The Markov equivalence class can be
represented by a completed partially directed acyclic graph. In the experiments, we report the structural
Hamming distance between the true and estimated partially directed acyclic graphs; this assigns a distance
of two for each pair of reversed edges, for example,→ in the true and← in the estimated graph; all other
edge mistakes count as one.
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5.2 Random graphs

For varying n and p we compare the three methods. For a given value p, we randomly choose an ordering
of the variables with respect to the uniform distribution and include each of the p(p − 1)/2 possible
edges with a probability of pedge. All noise variances are set to 1 since scaling all noise variables with a

common factor yields exactly the same estimates β̂ and Ĝ. The coefficients β0
jk are uniformly chosen from

[−1,−0.1] ∪ [0.1, 1]. We consider a sparse setting with pedge = 3/(2p − 2), which results in an expected
number of 3p/4 edges, and a dense setting with pedge = 0.3. Table 5.2 shows the average structural
Hamming distance to the true directed acyclic graph and to the true completed partially directed acyclic
graph over 100 simulations for the sparse setting. Except for p = 40 and n = 100, the graphs estimated
by the proposed method are closer to the true directed acyclic graph than the resulting graphs from
state of the art methods, who can only recover the true Markov equivalence class; greedy directed acyclic
graph search also performs better when comparing the distance to the true completed partially directed
acyclic graph. Table 5.2 shows the analogous results for the dense setting, in which the improvement
with greedy directed acyclic graph search with equal error variances is even larger.

n = 100 n = 500 n = 1000
p gdseev pc ges gdseev pc ges gdseev pc ges

5
dag 1.5 3.9 3.6 0.5 2.9 2.8 0.4 3.0 2.5

cpdag 1.5 2.9 2.3 0.5 1.4 1.2 0.3 1.0 0.7

20
dag 12.2 14.1 18.0 4.5 11.1 10.3 2.7 10.1 8.7

cpdag 13.9 10.9 17.0 5.2 7.7 7.6 3.0 6.9 5.6

40
dag 44.7 29.6 53.0 15.7 22.6 26.1 10.7 20.1 21.9

cpdag 50.0 24.4 53.1 18.9 15.9 23.4 13.4 13.3 17.5

Table 1: Structural Hamming distance between estimated and true directed acyclic graph and estimated
and true Markov equivalence class, for sparse graphs with p nodes and sample size n. dag, directed
acyclic graph; cpdag, completed partially directed acyclic graph; gdseev, greedy directed acyclic graph
search with equal error variances; pc, PC-algorithm; ges, greedy equivalence search.

n = 100 n = 500 n = 1000
p gdseev pc ges gdseev pc ges gdseev pc ges

5
dag 1.2 2.9 3.0 0.6 2.4 2.2 0.3 2.1 2.1

cpdag 1.3 2.1 1.9 0.5 1.2 0.7 0.2 0.8 0.5

20
dag 30.0 56.6 63.9 12.5 55.7 66.3 8.2 57.6 69.1

cpdag 31.0 56.1 63.2 13.1 55.5 66.2 8.8 57.5 68.5

40
dag 216.1 242.8 323.1 185.2 247.2 430.4 172.0 248.9 470.6

cpdag 217.1 242.4 323.0 185.7 247.0 430.1 172.2 248.5 470.4

Table 2: Structural Hamming distance between estimated and true directed acyclic graph and estimated
and true Markov equivalence class, for dense graphs with p nodes and sample size n. dag, directed
acyclic graph; cpdag, completed partially directed acyclic graph; gdsEEV, greedy directed acyclic graph
search with equal error variances; pc, PC-algorithm; ges, greedy equivalence search.

As a proof of concept, we also simulate data with n = 500 from a non-faithful distribution: X1 = N1,
X2 = −X1 + N2 and X3 = X1 + X2 + N3. As stated by the theory, the PC-algorithm and greedy
equivalent search fail here: in all 100 experiments, they output X1 → X2 ← X3, which is not the correct
Markov equivalence class. Greedy directed acyclic graph search always identified the correct directed
acyclic graph.

5.3 Deviation from equal error variances

When the data are generated by a Gaussian structural equation model with different error variances, the
method is not guaranteed to find the correct directed acyclic graph or the correct Markov equivalence
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Figure 2: Box plots for the structural Hamming distance of greedy directed acyclic graph search (white),
greedy equivalence search (light grey), PC-algorithm (grey) and a best-score method (dark grey) to
the true directed acyclic graph, DAG, (top) and to the true partially directed acyclic graph, CPDAG,
(bottom). The graph shows various values of a measuring perturbation a of equal error variances; only
a = 0 corresponds to equal error variances.

class. When the true data generating process follows such a Gaussian structural equation model with
different variances, we can always represent it as a model with equal error variances if we apply a fine-
tuned rescaling of the variables Xi 7→ aiXi with ai equal to the inverse of the standard deviation of
the error in the ith structural equation. Of course, such a rescaling is only possible when knowing the
error variances, hence the word fine-tuned. In the hypothetical case where the data would be scaled with
such a deceptive fine-tuned standardization, the graph identified by our method would belong to the
correct Markov equivalence class. We emphasize, however, that this is for an artificial scenario which is
different from having raw data from a Gaussian structural equation model with different error variances.
An important question is how sensitive our method is to deviations from the assumption of equal error
variances. We investigate this empirically. For p = 10 and n = 500, we sample the noise variances
uniformly from [1 − a, 1 + a] and vary a between 0 and 0.9. Theorem 1 establishes identifiability of
the graph only for a = 0. As before, the coefficients β0

jk are uniformly chosen from [−1,−0.1] ∪ [0.1, 1].
The parameter pedge is chosen to be 2/(p − 1), on average resulting in p edges; this is in between the
sparse and the dense setting. Figure 5.3 shows that the performance of greedy directed acyclic graph
search is relatively robust as the parameter a changes. Even for large values of a, the method does
not perform worse than the PC-algorithm. The best-score method reports the result of greedy directed
acyclic graph search or greedy equivalence search depending on which method obtained the better score.
Greedy directed acyclic graph search was chosen in 100%, 100%, 88%, 36%, 7%, 1%, 2%, 0%, 0% and
0% of the cases, for a ranging between 0 and 0.9, respectively.

5.4 Real data

We now apply the greedy equivalence search and greedy directed acyclic graph search to seven data sets
containing microarray data, described by Dettling and Bühlmann [2003] and Bühlmann et al. [2013], and
compare their bic scores. When greedy equivalence search obtains the better score, this indicates that
the assumption of equal error variances is not justified. In Figure 5.3 we have seen that even then it might

6



sometimes be useful to look at the greedy directed acyclic graph search solution. If, on the other hand,
greedy directed acyclic graph search obtains a better score than greedy equivalence search, we prefer the
solution obtained by greedy directed acyclic graph search, which furthermore is a graph rather than a
Markov equivalence class. To avoid a high-dimensional setting with p > n, we always chose the 0.8n
genes with the highest variance. Table 5.4 shows that in two out of the seven data sets, greedy directed
acyclic graph search obtained a better score than greedy equivalence search. For the Colon example,

Prostate Lymphoma Riboflavin Leukemia Brain Cancer Colon
ges 4095 4560 2711 5456 1411 5891 3224
gdseev 6057 5404 3236 5481 1343 6288 3201

Table 3: bic scores of greedy equivalent search and greedy directed acyclic graph search on different type
of microarray data; smaller is better. ges, greedy equivalence search; gdsEEV, greedy directed acyclic
graph search with equal error variances.

greedy directed acyclic graph search proposes a directed acyclic graph with 192 edges, greedy equivalence
search a graph with 217 edges. There are 91 edges in both solutions, 61 with the same orientation. The
graphs therefore differ on roughly half of the edges.
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Appendix

Some lemmata

In the following two sections we consider different subsets of the set of variables X: to simplify notation
we do not distinguish between indices and variables, since the context should clarify the meaning. This
way, we can also speak of the parents PAGB of a variable B ∈ X. We also consider sets of variables S ⊂ X
to be a single multivariate variable.

The following four statements are all plausible and their proofs mostly involve technicalities. The
reader may skip to the next section and use the lemmata whenever needed.

Lemma 5 Let (A1, . . . , Am) ∼ N{(µ1, . . . , µm)T ,Σ} with strictly positive definite Σ and define A∗1 =
A1 | (A2,...,Am)=(a2,...,am), in distribution. Then var(A∗1) ≤ var(A1) for all (a2, . . . , am) ∈ Rm−1.

We use the notation of conditional variables rather than conditional distributions to improve readability.
Proof . Let us decompose Σ into

Σ =

(
σ2
1 ΣT12

Σ12 Σ22

)
with an (m− 1)× 1 vector Σ12. Since Σ−122 is positive definite, var(A∗1) = σ2

1 − ΣT12Σ−122 Σ12 ≤ σ2
1 . �

Lemma 6 [Peters et al., 2011] Let Y,N,Q and R be random variables taking values in Y,N ,Q and
R, respectively, whose joint distribution is absolutely continuous with respect to some product measure;
we denote the densities by pY,Q,R,N (y, q, r, n). The variables Q and R can be multivariate. Let f :
Y×Q×N → R be a measurable function. If N ⊥⊥ (Y,Q,R) then for all q ∈ Q, r ∈ R with pQ,R(q, r) > 0:
f(Y,Q,N) |Q=q,R=r = f(Y |Q=q,R=r, q,N), in distribution.

Lemma 7 (Peters et al. [2011]) Let L(X) be generated by a structural equation model as in (2) with
corresponding directed acyclic graph G and consider a variable X ∈ X. If S ⊆ NDGX then NX ⊥⊥ S.
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L

W Y Z

part of G

L

D Z

EY

part of G′

Figure 3: Nodes adjacent to L in G and G′

Lemma 8 Let L(X) be generated from a structural equation model as in (2) with directed acyclic graph
G. Consider a variable B ∈ X and one of its parents A ∈ PAGB. For all sets S with PAGB \ {A} ⊆ S ⊆
NDGB \ {A} we have B 6⊥⊥ A | S.

Proof . Define Q = PAGB \ {A} such that we have S = (Q,R) for some R. Using Lemma 6 we obtain:

B|Q=q,R=r = f(q) + βA|Q=q,R=r +NB ,

in distribution, with NB ⊥⊥ A|Q=q,R=r. But since β 6= 0, A|Q=q,R=r 6⊥⊥ B|Q=q,R=r . �

Proof of Theorem 1.

If we assumed faithfulness, we could recover the correct Markov equivalence class, which itself implies the
existence of an L and Y shown in Remark 2 [Chickering, 1995, Theorem 2]. Since we are not assuming
faithfulness, proving existence of a situation similar to that in Fig. 1 requires more work. This part of
the proof, due to not assuming faithfulness, is taken from Peters et al. [2011] and remains almost the
same. The difference to Peters et al. [2011] is that we can prove causal minimality and need not assume
it. New are also Lemmata 5 and 8, as well as the proof’s main argument given in the second part of case
(ii).

Proof . We assume that there are two structural equation models as in equation (2) that both induce
L(X), one with graph G, the other with graph G′. We will show that G = G′. Since directed acyclic graphs
do not contain any cycles, we always find nodes that have no descendants. To see this start a directed
path at some node; after at most #X−1 steps we reach a node without a child. Eliminating such a node
from the graph leads to a directed acyclic graph, again; we can discard further nodes without children
in the new graph. We repeat this process for all nodes that have no children in both G and G′ and have
the same parents in both graphs. If we end up with no nodes left, the two graphs are identical and the
result is proved. Otherwise, we end up with a smaller set of variables that we again call X, two smaller

graphs that we again call G and G′ and a node L that has no children in G and either PAGL 6= PAG
′

L or

CHG
′

L 6= ∅. We will show that this leads to a contradiction. Importantly, because of the Markov property
of the distribution with respect to G, all other nodes are independent of L given PAGL:

L ⊥⊥ X \ (PAGL ∪ {L}) | PAGL . (4)

To make the arguments easier to understand, we introduce the following notation, see also Fig. 3. We
partition G-parents of L into Y,Z and W. Here, Z are also G′-parents of L, Y are G′-children of L and
W are not adjacent to L in G′. Let D be the G′-parents of L that are not adjacent to L in G and by E

the G′-children of L that are not adjacent to L in G. Thus: PAGL = Y∪Z∪W, CHGL = ∅, PAG
′

L = Z∪D,

CHG
′

L = Y ∪E. Consider T = W ∪Y. We distinguish two cases.
Case (i): T = ∅. Then there must be a node D ∈ D or a node E ∈ E, otherwise L would have been

discarded. If there is a D ∈ D then (4) implies L ⊥⊥ D | S for S = Z ∪ D \ {D}, which contradicts

Lemma 8 applied to G′. If D = ∅ and there is E ∈ E then E ⊥⊥ L | S holds for S = Z ∪ PAG
′

E \ {L},
which also contradicts Lemma 8; to avoid cycles it is necessary that Z ⊆ NDG

′

E .
Case (ii): T 6= ∅. Then T contains a G′-youngest node with the property that there is no directed

G′-path from this node to any other node in T. This node may not be unique.
Suppose that W ∈W is such a youngest node. Consider the directed acyclic graph G̃′ that equals G′

with additional edges Y →W and W ′ →W for all Y ∈ Y and W ′ ∈W \ {W}. In G̃′, L and W are not

8



adjacent. Thus we find a set S̃ such that S̃ d-separates L and W in G̃′; indeed, one can take S̃ = PAG̃
′

L

if W /∈ DEG̃
′

L and S̃ = PAG̃
′

W if L /∈ DEG̃
′

W . Then S = S̃ ∪ {Y,Z,W \ {W}} d-separates L and W in G̃′.
We now prove this claim. All Y ∈ Y are already in S̃ in order to block L→ Y →W . Suppose there is

a G̃′-path that is blocked by S̃ and unblocked if we add Z and W ′ nodes to S̃. How can we unblock a path
by including more nodes? The path L · · ·V1 · · ·U1 · · ·W , see Fig. 4, must contain a collider V1 that is an
ancestor of a Z with V1, . . . , Vm, Z /∈ S̃ and corresponding nodes Ui for a W ′ node. Choose V1 and U1 on
the given path so close to each other such that there is no such collider in between. If there is no V1, choose
U1 close to L, if there is no U1, choose V1 close to W . Now the path L ← Z · · ·V1 · · ·U1 · · ·W ′ → W is
unblocked given S̃, which contradicts the fact that S̃ d-separates L and W . This ends the claim’s proof.

The set S d-separates L and W also in G′ because G′ contains less paths. We have L ⊥⊥W | S which
contradicts Lemma 8 applied to G. Summarizing, W ∈W cannot be the G′-youngest node.

L WV1

V2

VmZ

U1

U2

Ur W ′

L L L L

L

L

L

L

L L

Figure 4: Assume the path L · · ·V1 · · ·U1 · · ·W is blocked by S̃, but unblocked if we include Z and W ′.
Then the dashed path is unblocked given S̃.

Therefore, the G′-youngest node in T must be some Y ∈ Y. It holds that

σ2
G = σ2

G′ = min
X∈X

var(X) = σ2 . (5)

We define S = PAGL \ {Y } ∪D. Clearly, S ⊆ NDGL since L does not have any descendants in G. Define
Q = PAGL \ {Y } and take any s = (q, d). Define L∗ = L | S=s, in distribution, and Y ∗ = Y | S=s, in
distribution. Then, from G and using Lemma 6 we find L∗ = fL(q, Y ∗) + NL = f(q) + β · Y ∗ + NL, in
distribution, with NL ⊥⊥ Y | S=s. The independence holds because S ⊆ NDGL. Then, we have

var(L∗) = β2var(Y ∗) + σ2 > σ2 . (6)

Since PAG
′

L ⊆ S we find from G′ and Lemma 5 that

var(L∗) ≤ σ2 . (7)

since det{cov(X)} 6= 0. Equations (6) and (7) contradict each other.
To prove Remark 4, replace var(X) by var(X)/αX in (5) and σ2 by σ2αX in (6) and (7). �
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