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Abstract

We study Hankel transforms of sequences, where the transform elements are mem-

bers of the set {−1, 0, 1}. We relate these Hankel transforms to special continued

fraction expansions. In particular, we posit a conjecture relating the distribution of

non-zero terms in the Hankel transform to the distribution of powers of the variable in

the defining continued fractions.

1 Introduction

Given a sequence an, we denote by hn the general term of the sequence with hn = |ai+j|0≤i,j≤n.
The sequence hn is called the Hankel transform of an [2]. For a given sequence an, it can be
shown that the sequence

n
∑

k=0

(

n

k

)

rn−kak

will also have the same Hankel transform. Similarly, if the sequence an has generating
function f(x), where f(0) 6= 0, then the sequence with generating function f(x)

1−rxf(x)
will

also have same Hankel transform. In both cases, r ∈ R is arbitrary. Thus many sequences
may have the same Hankel transform, and therefore the problem of inverting the Hankel
transform is not an elementary one. In this note, we show, subject to a deep conjecture,
that in one instance, the relationship between a sequence hn and its pre-image is more easily
determined.

Although in the sequel we will exhibit Hankel transforms with ostensibly more than one
pre-image, we introduce the notion of element multiplicity to confer a degree of uniqueness
in the transform.

In the sequel, we will work with integer sequences. We will refer to some known sequences
by their “Annnnnn” number in the On-Line Encyclopedia of Integer Sequences [4].

1

http://arxiv.org/abs/1205.2565v1


2 A conjecture concerning special continued fractions

Conjecture 1. Consider a sequence of natural numbers pn, where p0 = 1 and the sequence

bn defined by

bn =

⌊n

2
⌋

∑

k=0

pn−2k −
1 + (−1)n

2
(1)

is non-negative and non-decreasing, with bn ∈ N0, b0 = 0, b1 6= 0. Then the sequence an with

generating function expressed as the continued fraction

1

1±
xp0

1±
xp1

1±
xp2

1± · · ·
has a Hankel transform consisting solely of the numbers −1, 0, and 1. Moreover, the non-zero

terms occur at locations indexed by the sequence bn.
Conversely, given a sequence of numbers bn ∈ N0, b0 = 0, b1 6= 0, b2, b3, . . . with bi ≤ bi+1,

then the sequence whose generating function is given by the above continued fraction where

the sequence pn is given by
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1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 0 1 0 0 0 . . .
0 −1 0 1 0 0 . . .
0 0 −1 0 1 0 . . .
0 0 0 −1 0 1 . . .
...

...
...

...
...

...
. . .
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has a {−1, 0, 1} Hankel transform whose non-zero elements are indexed by the sequence bn.

Equation (1) can be visualized in the following way.
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0 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 0 1 0 0 0 . . .
0 1 0 1 0 0 . . .
0 0 1 0 1 0 . . .
0 1 0 1 0 1 . . .
...

...
...

...
...

...
. . .
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p1
p2
p3
p4
p5
...























,

where column k of the above matrix (except for column 0) has generating function xk

1−x2 . The

sequence of numbers given by
∑⌊n

2
⌋

k=0 pn−2k corresponds to the degrees of the denominator
polynomials in the partial continued fractions.
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In the case that bi = bi+1 = · · · = bi+r we say that the corresponding non-zero term
occurs with multiplicity r + 1.

We shall call the sequence of powers {pn} in the continued fraction the CF power sequence

and we shall call the indexing sequence bn the Hankel pattern sequence. It specifies the
pattern of occurrence of the non-zero terms in the Hankel transform. If we let P (x) denote
the generating function of the sequence pn, and B(x) denote the generating function of bn,
then we have the relations

B(x) =
1

1− x2
P (x)− 1

1− x2
, (2)

and
P (x) = (1− x2)B(x)− 1. (3)

Note that in the continued fraction above, the ± indicates that an arbitrary choice of
“+” or “−” is possible at each stage. Note also that the conjecture is silent on the matter
of the distribution of the minus signs in the transform.

Example 2. The Jacobsthal numbers Jn = 2n

3
− (−1)n

3
A001045 give the sequence of numbers

0, 1, 1, 3, 5, 11, 21, 43, . . . .

We seek to find a sequence an whose Hankel transform is composed of the numbers −1, 0 and
1, where the distribution of the non-zero terms is governed (or indexed) by the Jacobsthal
numbers. Thus we want a Hankel transform of the form

α, β, 0, γ, 0, δ, 0, 0, 0, 0, 0, ǫ, 0, 0, 0, 0, 0, 0, 0, 0, 0, ζ, 0, 0, . . .

where α, β, . . . ∈ {−1, 1}. As it is not immediately obvious how to deal with the duplicated
1 (J1 = J2 = 1), we shall ignore this for the moment and assume that the sequence is

0, 1, 3, 5, 11, 21, 43, . . . .

We look for the sequence of powers of x to be used in the defining continued fraction.
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1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 0 1 0 0 0 . . .
0 −1 0 1 0 0 . . .
0 0 −1 0 1 0 . . .
0 0 0 −1 0 1 . . .
...

...
...

...
...

...
. . .
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1
3
4
8
16
...
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This leads us to consider the sequence an with generating function

1

1−
x

1−
x

1−
x3

1−
x4

1−
x8

1−
x16

1− · · ·

.

Thus an begins

1, 1, 2, 4, 8, 17, 36, 76, 161, 342, 726, 1541, 3272, 6948, 14753, . . .

with the desired Hankel transform

1, 1, 0,−1, 0, 1, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, . . . .

Now let us see what happens when we retain both J1 and J2. We look for the sequence of
powers of x to be used in the defining continued fraction.
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1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 0 1 0 0 0 . . .
0 −1 0 1 0 0 . . .
0 0 −1 0 1 0 . . .
0 0 0 −1 0 1 . . .
...

...
...

...
...

...
. . .
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1
1
2
4
8
...























This leads us to consider the new sequence a∗n with generating function

1

1−
x

1−
x

1−
x

1−
x2

1−
x4

1−
x8

1− · · ·

.

We obtain the sequence that starts

1, 1, 2, 5, 13, 35, 95, 259, 707, 1932, 5281, 14438, 39475, 107933, 295115, 806922, 2206342, . . . ,
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and which has Hankel transform

1, 1, 0,−1, 0, 1, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, . . . .

Thus both sequences an and an∗ have the same Hankel transform. However, the Hankel
transform of an corresponds to the pattern sequence 0, 1, 3, 5, 11, . . . while that of an∗ has
distribution 0, 1, 1, 3, 5, 11, . . .. To distinguish the Hankel transforms, we could accompany
each “continued-fraction-derived” {−1, 0, 1} Hankel transform with its Hankel pattern se-
quence (or equivalently its CF power sequence). Using the Hankel pattern sequence for
this purpose is equivalent to assigning multiplicities to the non-zero elements of the Hankel
transform. Thus in the case of the Hankel transform of an∗, we assign a multiplicity of two
to the second 1 in the Hankel transform, corresponding to the repetition of element J1 = J2.
To emphasize this, we sometimes write this Hankel transform as

1, 12, 0,−1, 0, 1, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, . . . ,

where un-indexed numbers have multiplicity 1.

In subsequent examples we allow for repeated elements in the Hankel pattern sequence.
The next case is an extreme case, where all elements (bar the first) are duplicated.

Example 3. The Catalan numbers Cn = 1
n+1

(

2n
n

)

A000108 with generating function c(x)
given by

c(x) =
1−

√
1− 4x

2x
=

1

1−
x

1−
x

1−
x

1− · · ·
is well known to have Hankel transform 1, 1, 1, . . . [1]; that is, each element hn = 1. The CF
power sequence for Cn is also 1, 1, 1, . . .. This means that the Hankel pattern for Cn is the
sequence

0, 1, 1, 2, 2, 3, 3, 4, 4, . . .

with general term ⌊n+1
2
⌋. Thus the first term h0 = 1 has multiplicity 1 while all the other

terms hn = 1 have multiplicity 2. Using the index notation, we could thus write the Hankel
transform of Cn as

1, 12, 12, 12, 12, 12, 12, 12, 12, 12, . . . .

Example 4. We consider the CF power sequence {pn} given by 1, 1, 2, 2, 2, 2, 2, . . .. This
corresponds to the Hankel pattern

0, 1, 2, 3, 4, 5, 6, . . . .

5
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The sequence an with generating function

1

1−
x

1−
x

1−
x2

1−
x2

1−
x2

1− · · ·
has Hankel transform 1, 1, 1, 1, . . . where each “1” has multiplicity 1. Thus we could have
written this Hankel transform as

11, 11, 11, 11, 11, 11, 11, 11, . . . .

The sequence an begins

1, 1, 2, 4, 9, 20, 46, 105, 243, 560, 1299, 3006, . . . ,

The generating function of this sequence is

1

1−
x

1− xc(x2)

.

Example 5. It is not the case that every {−1, 0, 1} sequence is the Hankel transform of an
integer sequence. For example, the sequence

1, 0, 1, 0, 1, 0, 1, 0, 1, . . .

is not the Hankel transform of any integer (or real) sequence.

Proof. (Somos) Assume that the sequence α, β, γ, δ, ǫ, . . . has Hankel transform 1, 0, 1, 0, . . ..
We have h0 = α and hence α = 1.
Then h1 = γ − β2 = 0 and so γ = β2, and so the sequence would start 1, β, β2, δ, . . ..
Then h2 = β6 + 2β3δ − δ2, and so we must have

β6 + 2β3δ − δ2 = 1.

The solution of this quadratic in δ is

δ = β3 − i or δ = β3 + i.
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Example 6. Consider the CF power sequence pn given by 1, 1, 3, 3, 3, 3, 3, . . .. This gives us
the Hankel pattern sequence

0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, . . . .

The corresponding sequence begins

1, 1, 2, 4, 8, 17, 36, 76, 162, 345, 734, 1565, 3336, 7109, 15158, 32318, 68898, . . .

with generating function
1

1−
x

1− xc(x3)

.

Its Hankel transform is equal to the periodic sequence

1, 1, 0,−1,−1, 0, 1, 1, 0,−1,−1, 0, . . . .

Here, the non-zero terms all have multiplicity one.

3 A number theoretic example

We let the Hankel pattern sequence be the sequence bn =
(

n+1
2

)

of the triangular numbers.
We find that the corresponding CF power sequence is the sequence

1, 1, 3, 5, 7, 9, 11, . . .

of extended odd numbers. The sequence generated by the continued fraction defined by the
power sequence begins

1, 1, 2, 4, 8, 17, 36, 76, 161, 341, 723, 1533, 3250, 6891, 14611, 30980, 65688, 139281, . . .

and has a Hankel hn transform that begins

1, 1, 0,−1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,−1, 0, . . .

In this case, the quantity

en =

n
∑

k=0

(−1)n−khnhn−k

is of interest. This is the convolution of hn with (−1)nhn. The sequence e2n begins

1,−1, 2, 1, 0, 2, 1, 0, 0, 2, 1, 2, . . .

and is related to the so-called “eta quotients”.
If we now take the CF power sequence pn = ⌊n+1

2
⌋ + 0n, or 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, . . .,

we obtain the Hankel pattern sequence

0, 1, 1, 3, 3, 6, 6, 10, 10, 15, 15, . . .
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The sequence an now begins

1, 1, 2, 5, 13, 35, 95, 260, 713, 1959, 5386, 14815, 40759, 112151, 308609, 849240, 2337009, 6431246, . . .

and has Hankel transform

1, 1, 0,−1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, . . .

Here, apart from the first term, the non-zero terms have multiplicity two.

4 More variations on 1, 3, 5, . . .

We start this section by noting that the sequence defined by the CF power sequence 1, 3, 5, 7, . . .
is A143951, which counts the number of Dyck paths such that the area between the x-axis
and the path is n (Emeric Deutsch). The Hankel transform of this sequence begins

1, 0, 0,−1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,−1, . . . ,

with Hankel pattern sequence

bn = (n2 + 3n+ 1 + (−1)n)/2,

which is essentially A176222. The sequence bn thus begins

0, 3, 5, 10, 14, 21, 27, 36, 44, 55, 65, . . . .

For the CF power sequence 1, 1, 3, 3, 5, 5, 7, 7, . . . we find that the sequence bn, which
begins

0, 1, 3, 4, 8, 9, 15, 16, 24, 25, 35, . . . ,

satisfies
bn = (2n2 + 6n+ 1 + (2n− 1)(−1)n)/8.

The corresponding sequence an begins

1, 1, 2, 4, 8, 17, 36, 76, 162, 345, 734, 1564, 3332, . . .

with Hankel transform

1, 1, 0,−1,−1, 0, 0, 0,−1,−1, 0, 0, 0, 0, 0, 1, 1, 0, 0, . . . .

For the CF power sequence 1, 1, 1, 3, 3, 3, 5, 5, 5, 7, 7, 7, . . . we find that the sequence bn,
which begins

0, 1, 1, 3, 3, 5, 6, 8, 9, 12, 13, 16, . . . ,

has generating function
x(1 + x2 − x3)

(1− x)3(1 + 2x+ 2x2 + x3)
.
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The corresponding sequence an begins

1, 1, 2, 5, 13, 34, 90, 239, 635, 1689, 4494, 11958, 31823, 84692, 225396, . . .

and has Hankel transform

1, 1, 0, 0,−1, 0, 0, 1, 0,−1, 0, 0, 1, 0,−1, 0, . . . .

Some slight variations on this last example are also of interest. For instance, the CF power
sequence

1, 2, 3, 3, 3, 5, 5, 5, 7, 7, 7, 9, 9, 9, 11, . . .

corresponds to the Hankel pattern sequence bn which begins

0, 2, 3, 5, 6, 10, 11, 15, 18, 22, 25, 31, 34, 40, 45, . . . ,

with generating function
x(2 + x− 2x3 + x4)

(1− x)3(1 + 2x+ 2x2 + x3)
.

The Hankel transform of an is then

1, 0,−1,−1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, . . . .

5 A pattern avoiding example

The CF power sequence

1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, . . .

corresponds to the Hankel pattern sequence

0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13, . . .

which gives a {−1, 0, 1} Hankel transform where odd indexed non-zero terms have multi-
plicity two, and the even-indexed non-zero terms have multiplicity one. The corresponding
sequence is A054391 [3]. It begins

1, 1, 2, 5, 14, 41, 123, 374, 1147, 3538, 10958, 34042, 105997, . . .

and has Hankel transform consisting of all 1’s (with the multiplicities above). Thus we could
write the Hankel transform as

1, 12, 1, 12, 1, 12, 1, . . . .

We note that the generating function of this sequence is given by

1

1−
x

1− xu

,

9
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where u satisfies the equation

u =
1

1−
x

1−
x

1− x2u

.

Solving, we find that the generating function is equal to

1− 3x−
√
1− 2x− 3x2

1− 3x+ 2x2 +
√
1− 2x− 3x2

,

confirming that this sequence is the same as A054391.

6 The Motzkin numbers

We consider the CF power sequence

1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, . . . .

This corresponds to the Hankel pattern sequence

0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, . . .

so once again we obtain a sequence with an all 1’s Hankel transform, but with the multiplic-
ities indicated. Thus we get the Hankel transform

1, 1, 12, 1, 12, 1, 12, 1, . . . .

The generating function u = g(x) satisfies the equation

u =
1

1−
x

1−
x

1− x2u

,

which solves to give

g(x) =
1− x−

√
1− 2x− 3x2

2x2
,

which coincides with the g.f. of the Motzkin numbers A001006.

7 Euler pentagonal numbers

In this section, we take the Euler pentagonal numbers A001318 [5] as the basis of the CF
power sequence. Thus we define

pn =
6n2 + 6n+ 1

16
− (2n+ 1)(−1)n

16
+ 0n

10

http://oeis.org/A054391
http://oeis.org/A001006
http://oeis.org/A001318


which begins
1, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, . . . .

The corresponding Hankel pattern sequence is given by

bn =
1

2
⌊n + 1

2
⌋⌊n+ 2

2
⌋⌊n + 3

2
⌋,

which is A028724. This begins

0, 1, 2, 6, 9, 18, 24, 40, 50, 75, 90, . . . .

The resulting sequence begins

1, 1, 2, 4, 9, 20, 45, 101, 227, 511, 1150, 2589, 5828, 13120, 29536, 66492, 149690, . . . ,

and has Hankel transform

1, 1, 1, 0, 0, 0, 1, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, . . .

Note that if in the continued fraction we take the pattern of signs−,−,+,+,−,−,+,+, . . .
then the resulting sequence begins

1, 1, 2, 4, 7, 12, 21, 37, 65, 115, 204, 361, 638, 1128, 1994, 3524, 6230, . . .

and has a Hankel transform that begins

1, 1,−1, 0, 0, 0,−1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, . . .

8 A Fibonacci distribution

It is of interest to find a sequence whose Hankel transform has a {−1, 0, 1} distribution that
follows the Fibonacci numbers A000045. Corresponding to the CF power sequence

1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

we get the Hankel pattern sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

The sequence defined by the corresponding continued fraction begins

1, 1, 2, 5, 14, 41, 123, 373, 1137, 3475, 10634, 32562, 99738, 305546, 936108, 2868084, . . .

and it has a Hankel transform that starts

1, 1, 1, 1, 0,−1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, . . . .
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9 A gap Hankel transform

Consider the CF power sequence

1, 3, 4, 2, 2, 2, 2, 2, . . . .

The corresponding Hankel pattern sequence is

0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . . .

Thus there will be a ’gap’ at positions 1 and 2 (filled by zeros). In fact, the sequence an
corresponding to this CF power sequence begins

1, 1, 1, 1, 2, 3, 4, 6, 10, 15, 23, 36, 58, 90, 145, 230, 377, 601, 1000, . . .

and has Hankel transform hn given by

1, 0, 0,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1, . . . .

The sequence an has some interesting Hankel properties. The sequence an+1 has Hankel
transform given by

1, 0,−1, 0, 1, 0,−1, 0, 1, 0, . . . .

The twice shifted sequence an+2 has Hankel transform

1, 1,−1,−1,−2,−2,−3,−3,−4,−4, . . . ,

while the three-times shifted sequence an+3 has Hankel transform

1,−1,−1, 1, 4,−1,−9, 1, 16, . . . .

If we prepend 1, 1 to the sequence then the new sequence has a Hankel transform of

1, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, . . . .

Other sequences with “gap” Hankel transforms can be built using the template

1, r, r + 1, 2, 2, 2, 2, 2, 2, 2, . . .

for the CF power sequence, since this maps to the pattern sequence

0, r, r + 1, r + 2, r + 3, r + 4, r + 5, r + 6, r + 7, r + 8, r + 9, . . . .

10 Conclusion

The foregoing shows that {−1, 0, 1} Hankel transforms are objects worthy of study. The no-
tion of multiplicity seems important, particularly as a way of further characterizing certain
sequences that would otherwise have the “same” Hankel transforms. Thus the Catalan num-
bers Cn have Hankel transform 1, 1, 1, 1, . . . but with pattern sequence 0, 1, 1, 2, 2, 3, 3, . . . ,
while the Motzkin numbers Mn also have Hankel transform 1, 1, 1, 1, . . . but with pattern
sequence 0, 1, 2, 2, 3, 4, 4, . . ..
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