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PERFECT CUBOIDS AND MULTISYMMETRIC POLYNOMIALS.

Ruslan Sharipov

Abstract. A perfect Euler cuboid is a rectangular parallelepiped with integer edges
and integer face diagonals whose space diagonal is also integer. The problem of find-
ing such parallelepipeds or proving their non-existence is an old unsolved mathemat-
ical problem. The Diophantine equations of a perfect Euler cuboid have an explicit
S3 symmetry. In this paper the cuboid equations are factorized with respect to their
S3 symmetry in terms of multisymmetric polynomials. Some factor equations are
calculated explicitly.

1. Introduction.

The search for perfect cuboids has the long history since 1719 (see [1–39]). This
history is presented as an adventure story in [37]. Let x1, x2, x3 be the edges of a
cuboid and let d1, d2, d3 be its face diagonals. Then we have the equations

(x1)
2 + (x2)

2 − (d3)
2 = 0, (d3)

2 + (x3)
2 − L2 = 0,

(x2)
2 + (x3)

2 − (d1)
2 = 0, (d1)

2 + (x1)
2 − L2 = 0, (1.1)

(x3)
2 + (x1)

2 − (d2)
2 = 0, (d2)

2 + (x2)
2 − L2 = 0,

where L is the space diagonal of the cuboid. In the case of a perfect Euler cuboid the
equations (1.1) constitute a system of Diophantine equations with respect to seven
variables x1, x2, x3, d1, d2, d3, and L. In [40] the equations (1.1) were reduced to a
single Diophantine equation with respect to four especially introduced parameters
a, b, c, and u. On the base of this equation in [41] three cuboid conjectures were
formulated. These conjectures are studied (but not yet proved) in [42–44].

In the present paper we apply a quite different approach to the equations (1.1).
The equations (1.1) possess a natural S3 symmetry. Indeed, the symmetric group
S3 is composed by transformations of the set of three numbers {1, 2, 3}:

σ =

(
1 2 3
↓ ↓ ↓
σ1 σ2 σ3

)

. (1.2)

The transformation (1.2) is applied to the equations (1.1) as follows:

σ(xi) = xσi, σ(di) = dσi, σ(L) = L. (1.3)
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Looking at (1.1) and (1.3), one can easily see that the system of equations (1.1) in
whole is invariant with respect to the transformations σ ∈ S3.

The main goal of this paper is to factorize the equations (1.1) with respect to the
S3 symmetry (1.3). We reach this goal by deriving some new equations from (1.1).
These new equations are written in terms of the values of so-called multisymmetric
polynomials (they generalize well-known symmetric polynomials).

2. Multisymmetric polynomials.

Multisymmetric polynomials, which are also known as vector symmetric polyno-
mials, diagonally symmetric polynomials, McMahon polynomials etc, were initially
studied in [45–51] (see also later publications [52–65]). Let’s consider a set of vari-
ables arranged into some m× n matrix as follows:

M =

∥
∥
∥
∥
∥
∥

x11 . . . x1n

...
. . .

...
xm1 . . . xmn

∥
∥
∥
∥
∥
∥

(2.1)

The symmetric group Sn acts upon the matrix (2.1) by permuting its columns:

σ(xij) = xiσj . (2.2)

Definition 2.1. A polynomial p ∈ Q[x11, . . . , xmn] is called multisymmetric if it
is invariant with respect to the action (2.2) of the symmetric group Sn, i. e. if

p(x1σ1, . . . , xmσn) = p(x11, . . . , xmn) for all σ ∈ Sn.

Let q(x) = q(x11, . . . , xmn) be an arbitrary polynomial of the variables com-
posing the matrix (2.1). Then we can produce a multisymmetric polynomial by
applying the symmetrization operator S to the polynomial q(x11, . . . , xmn):

S(q(x11, . . . , xmn)) =
1

n!

∑

σ∈Sn

q(x1σ1, . . . , xmσn). (2.3)

Regular symmetric polynomials (see [66]) correspond to the special case m = 1 in
the definition 2.1. Like in the case m = 1, in general case m > 1 there are elemen-
tary symmetric polynomials. However, in this general case elementary symmetric
polynomials are enumerated not by a single index, but by a multiindex:

α = [α1, . . . , αm], where αi > 0 and |α| = α1 + . . .+ αm 6 n. (2.4)

Let’s denote through xα the following monomial:

xα = x11 · . . . · x1α1
︸ ︷︷ ︸

α1

·x2α1+1 · . . . · x2α1+α2
︸ ︷︷ ︸

α2

· . . . · xmn−αm+1 · . . . · xmn
︸ ︷︷ ︸

αm

. (2.5)

The variables in the product (2.5) are taken from n consecutive columns of the
matrix (2.1). The initial group of α1 of them is taken from the first row of this
matrix, the next group of α2 of these variables is taken from the second row and so
on. The last group of αm variables is taken from the last m-th row of the matrix
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(2.1). If αi = 0, then the corresponding i-th group in (2.5) is empty and hence the
variables of i-th row do not enter the monomial (2.5) at all.

Definition 2.2. An elementary multisymmetric polynomial eα(x11, . . . , xmn) cor-
responding to the multiindex (2.4) is produced from the monomial (2.5) by means
of the symmetrization operator (2.3) according to the formula

eα(x) =
n!

α!
S(xα), where α! = α1! · . . . · αm!. (2.6)

Note that the ratio n!/α! in (2.6) is always an integer number and eα(x) is the
sum of exactly n!/α! monomials produced from the monomial (2.5) by means of the
permutations of variables (2.2). In the case of the trivial multiindex 0 = [0, . . . , 0]
the formulas (2.5) and (2.6) reduce to the following ones:

x0 = 1, e0 = 1.

Like in the case of regular symmetric polynomials, there is the following funda-
mental theorem for multisymmetric polynomials.

Theorem 2.1. The elementary multisymmetric polynomials (2.6) with multiindi-

ces 0 < |α| 6 n generate the ring of all multisymmetric polynomials, i. e. each

multisymmetric polynomial p ∈ Q[x11, . . . , xmn] can be expressed as a polynomial

with rational coefficients through these elementary multisymmetric polynomials.

The proof of the fundamental theorem 2.1 can be found in [51]. Unfortunately
the elementary multisymmetric polynomials (2.6) are not algebraically independent
over Q for m > 1 (see [60]). For this reason the expression of p as a polyno-
mial with rational coefficients through the elementary multisymmetric polynomials
eα(x), which is claimed by the fundamental theorem 2.1, is not unique.

2. Multisymmetric polynomials associated with a cuboid.

Note that the formulas (1.3) can be treated as a special case of the formulas
(2.2). Indeed, let’s compose the 2× 3 matrix

M =

∥
∥
∥
∥

x1 x2 x3

d1 d2 d3

∥
∥
∥
∥
. (3.1)

Due to (1.3) the transformations σ ∈ S3 act as permutations of columns upon the
matrix (3.1). Applying the definition 2.1 to the matrix (3.1), we get the concept
of a multisymmetric polynomial of six variables x1, x2, x3 and d1, d2, d3. Now we
calculate the elementary multisymmetric polynomials corresponding to the matrix
(3.1). The first three of these polynomials are

e[1,0] = x1 + x2 + x3,

e[2,0] = x1 x2 + x2 x3 + x3 x1, (3.2)

e[3,0] = x1 x2 x3.

It is easy to see that the polynomials (3.2) coincide with the regular symmetric
polynomials of the three variables x1, x2, x3. The next three elementary multisym-
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metric polynomials are similar to (3.2). They are

e[0,1] = d1 + d2 + d3,

e[0,2] = d1 d2 + d2 d3 + d3 d1, (3.3)

e[0,3] = d1 d2 d3.

The polynomials (3.3) coincide with the regular symmetric polynomials of the three
variables d1, d2, d3. The rest of the elementary multisymmetric polynomials are
actually multisymmetric. They include variables from both rows of the matrix M :

e[2,1] = x1 x2 d3 + x2 x3 d1 + x3 x1 d2,

e[1,1] = x1 d2 + d1 x2 + x2 d3 + d2 x3 + x3 d1 + d3 x1, (3.4)

e[1,2] = x1 d2 d3 + x2 d3 d1 + x3 d1 d2.

The polynomials (3.2), (3.3), and (3.4) constitute the complete set of elementary
multisymmetric polynomials associated with the matrix (3.1).

4. The first four factor equations.

Note that the variables x1, x2, x3 and d1, d2, d3 in the matrix (3.1) are not in-
dependent. They are related to each other by means of the polynomial equations
(1.1). For this reason the elementary multisymmetric polynomials (3.2), (3.3), and
(3.4) produced from the variables x1, x2, x3 and d1, d2, d3 gain more algebraic rela-
tions in addition to those present in the case of independent variables x1, x2, x3 and
d1, d2, d3 (see comments to fundamental theorem 2.1). These algebraic relations
are written as polynomial equations with coefficients in Q:

p(e[1,0], e[2,0], e[3,0], e[0,1], e[0,2], e[0,3], e[2,1], e[1,1], e[1,2], L) = 0. (4.1)

The polynomial equations of the form (4.1) derived from (1.1) as well as those
fulfilled identically due to (3.2), (3.3), and (3.4) are called factor equations of the
cuboid equations (1.1) with respect to their S3 symmetry. Our present goal is to
reveal some of these factor equations explicitly.

The equations (1.1) are quadratic with respect to their variables. For this reason
it is quite likely that there are no linear relationships between multisymmetric
polynomials (3.2), (3.3), and (3.4). As for higher order relationships, they do
actually exist. In order to reveal them we need to consider squares, cubes, fourth
powers etc, and various mutual products of the multisymmetric polynomials (3.2),
(3.3), and (3.4). For the square (e[1,0])

2 we have

(e[1,0])
2 = x2

1 + x2
2 + x2

3 + 2 (x1 x2 + x3 x1 + x3 x2). (4.2)

On the other hand, from the cuboid equations (1.1) we derive

x2
1 + x2

2 + x2
3 = L2. (4.3)

Applying (4.3) to (4.2) and comparing the result with (3.2), we derive

(e[1,0])
2 − 2 e[2,0] − L2 = 0. (4.4)



PERFECT CUBOIDS AND MULTISYMMETRIC POLYNOMIALS. 5

The equation (4.4) is the first and the most simple factor equation produced from
the cuboid equations (1.1).

The polynomial e[0,1] in (3.3) is very similar to e[1,0]. For its square we have

(e[1,0])
2 = d2

1 + d2
2 + d2

3 + 2 (d1 d2 + d3 d1 + d3 d2). (4.5)

On the other hand, from the cuboid equations (1.1) we derive

d2
1 + d2

2 + d2
3 = 2L2. (4.6)

Applying (4.6) to (4.5) and comparing the result with (3.3), we derive

(e[0,1])
2 − 2 e[0,2] − 2L2 = 0. (4.7)

The equation (4.7) is the second factor equation produced from the cuboid equations
(1.1). It is equally simple as the equation (4.4).

In order to derive the third factor equation from the cuboid equations (1.1) we
consider the cube (e[1,0])

3 and apply the formula (3.2):

(e[1,0])
3 = x3

1 + x3
2 + x3

3 + 3 x1 (x
2
2 + x2

3)+

+ 3 x2 (x
2
3 + x2

1) + 3 x3(x
2
1 + x2

2) + 6 x1 x2 x3.
(4.8)

Using the cuboid equations (1.1), we derive the following formulas:

x2
1 = L2 − d2

1 , x3
1 = L2 x1 − d2

1 x1,

x2
2 = L2 − d2

2 , x3
2 = L2 x2 − d2

2 x2, (4.9)

x2
3 = L2 − d2

3 , x3
3 = L2 x3 − d2

3 x3.

Substituting (4.9) into the equality (4.8), we obtain the formula

(e[1,0])
3 = −(x1 d

2
1 + x2 d

2
2 + x3 d

2
3 ) + 7L2 (x1 + x2 + x3)−

− 3 x1 (d
2
2 + d2

3 )− 3 x2 (d
2
3 + d2

1 )− 3 x3 (d
2
1 + d2

2 ) + 6 x1 x2 x3.
(4.10)

The right hand side of the formula (4.10) is a multisymmetric polynomial. For this
reason we can apply the theorem 2.1 to it. As a result we get

(e[1,0])
3 = 2 e[1,2] + 6 e[3,0] + 4 e[0,2] e[1,0] −

− 2 e[0,1] e[1,1] − e[1,0] e
2
[0,1] + 7 e[1,0] L

2.
(4.11)

Note that the equation (4.7) can be resolved with respect to e[0,2]:

e[0,2] =
e2
[0,1]

2
− L2. (4.12)

Applying (4.12) to (4.11), we can write (4.11) as follows:

2 e[1,2] + 6 e[3,0] − 2 e[0,1] e[1,1] + e[1,0] e
2
[0,1]

+ 3 e[1,0] L
2 − e3

[1,0]
= 0. (4.13)
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The equation (4.13) is the third factor equation derived from the cuboid equations
(1.1). It is more complicated than (4.4) and (4.7).

There is another way for transforming the cube (e[1,0])
3 given by the formula

(4.8). Indeed, we can resolve the left column of the equations (1.1) with respect to
(x1)

2, (x2)
2, and (x3)

2. As a result we get

x2
1 =

d2
2 + d2

3 − d2
1

2
, x2

2 =
d2
3 + d2

1 − d2
2

2
, x2

3 =
d2
1 + d2

2 − d2
3

2
. (4.14)

The formulas (4.14) can be used instead of the formulas in the left column of (4.9).
Applying these formulas to (4.8), we can get an expression analogous to (4.10)
and then we can continue transforming it in a way similar to (4.11) and (4.12),
expecting to get some new equation similar to (4.13). But actually we get the
equation coinciding with (4.13).

Now let’s consider the cube (e[0,1])
3. It is given by the following formula:

(e[0,1])
3 = d3

1 + d3
2 + d3

3 + 3 d1 (d
2
2 + d2

3 )+

+ 3 d2 (d
2
3 + d2

1 ) + 3 d3 (d
2
1 + d2

2 ) + 6 d1 d2 d3.
(4.15)

Note that the equations of the left column of (1.1) can be resolved with respect to
(d1)

2, (d2)
2, and (d3)

2. They yield the equalities

d2
1 = x2

2 + x2
3, d3

1 = x2
2 d1 + x2

3 d1,

d2
2 = x2

3 + x2
1, d3

2 = x2
3 d2 + x2

1 d2, (4.16)

d2
3 = x2

1 + x2
2, d3

3 = x2
1 d3 + x2

2 d3.

Substituting (4.16) into the equality (4.15), we obtain the formula

(e[0,1])
3 = 6 d1 x

2
1 + 6 d2 x

2
2 + 6 d3 x

2
3 + 6 d1 d2 d3 +

+ 4 d1 (x
2
2 + x2

3) + 4 d2 (x
2
3 + x2

1) + 4 d3 (x
2
1 + x2

2).
(4.17)

The formula (4.17) is analogous to the formula (4.10). Its right hand side is a
multisymmetric polynomial. For this reason we can apply the theorem 2.1 and get

(e[0,1])
3 = 2 e[2,1] + 6 e[0,3] − 2 e[1,0] e[1,1] − 10 e[2,0] e[0,1] + 6 e[0,1] e

2
[1,0]

. (4.18)

Note that the equation (4.4) can be resolved with respect to e[2,0]:

e[2,0] =
1

2
e2[1,0] −

1

2
L2. (4.19)

Applying (4.19) to (4.18), we can write the equality (4.18) as follows:

2 e[2,1] + 6 e[0,3] − 2 e[1,0] e[1,1] + e[0,1] e
2
[1,0]

+ 5 e[0,1] L
2 − e3

[0,1]
= 0. (4.20)

The equation (4.20) is the fourth factor equation derived from the cuboid equations
(1.1). It is similar to the equation (4.13).
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The equations of the second column in (1.1) can also be resolved with respect to
(d1)

2, (d2)
2, and (d3)

2. Using them, we can write the formulas

d2
1 = L2 − x2

1, d3
1 = d1 L

2 − d1 x
2
1,

d2
2 = L2 − x2

2, d3
2 = d2 L

2 − d2 x
2
2, (4.21)

d2
3 = L2 − x2

3, d3
3 = d3 L

2 − d3 x
2
3.

The formulas (4.21) can be used instead of the equations (4.16). As a result we
get another sequence of equations. However, the ultimate result appears to be
coinciding with the equation (4.20).

5. More factor equations.

In the next step we consider the square (e[2,0])
2. Using the formulas (3.2), we

get the following explicit expression for this square:

(e[2,0])
2 = x2

1 x
2
2 + x2

2 x
2
3 + x2

3 x
2
1 + 2 x2

1 x2 x3 + 2 x2
2 x3 x1 + 2 x2

3 x1 x2. (5.1)

In order to transform (5.1) we use the formulas (4.9). This yields

(e[2,0])
2 = d2

1 d
2
2 + d2

2 d
2
3 + d2

3 d
2
1 − 2L2 (d21 + d22 + d23)− 2 (x1 x2 d

2
3 +

+ x2 x3 d
2
1 + x3 x1 d

2
2 ) + 2L2 (x1 x2 + x2 x3 + x3 x1) + 3L4.

(5.2)

The right hand side of the formula (5.2) is a multisymmetric polynomial. For this
reason we can apply the theorem 2.1 to it. As a result we get

(e[2,0])
2 = −2 e[0,1] e[0,3] +

2

3
e[1,0] e[1,2] −

4

3
e[0,1] e[2,1] −

2

3
e2[1,1] +

+
2

3
e[0,1] e[1,1] e[1,0] +

8

3
e[2,0] e[0,2] −

2

3
e2[0,1] e[2,0] + 2 e[2,0] L

2−

−
2

3
e2[1,0] e[0,2] + e2[0,2] + 4 e[0,2] L

2 − 2 e2[0,1] L
2 + 3L4.

(5.3)

Note that we can use the equation (4.20) in order to express e[0,3] through the other
elementary multisymmetric polynomials in (4.20):

e[0,3] = −
1

3
e[2,1] +

1

3
e[1,0] e[1,1] +

1

6
e3[0,1] −

1

6
e[0,1] e

2
[1,0] −

5

6
e[0,1] L

2. (5.4)

Apart from (5.4), we apply the formulas (4.12) and (4.19) to (5.3). Then we get

8 e[1,0] e[1,2] − 8 e[0,1] e[2,1] − 8 e2
[1,1]

+ 4 e2
[0,1]

e2
[1,0]

−

− e4[0,1] − 3 e4[1,0] + 10 e2[1,0] L
2 + 4 e2[0,1] L

2 + L4 = 0.
(5.5)

The equation (5.5) is the fifth factor equation derived from the cuboid equations
(1.1). It is more complicated than all of the previous factor equations.

Now let’s consider the other square (e[0,2])
2. Using the formulas (3.3), we get the

following explicit expression for this square:

(e[0,2])
2 = d2

1 d
2
2 + d2

2 d
2
3 + d2

3 d
2
1 + 2 d2

1 d2 d3 + 2 d2
2 d3 d1 + 2 d2

3 d1 d2. (5.6)
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In order to transform (5.6) we use the formulas (4.21). This yields

(e[0,2])
2 = x2

1 x
2
2 + x2

2 x
2
3 + x2

3 x
2
1 − 2L2 (x2

1 + x2
2 + x2

3)− 2 (d1 d2 x
2
3 +

+ d2 d3 x
2
1 + d3 d1 x

2
2) + 2L2 (d1 d2 + d2 d3 + d3 d1) + 3L4.

(5.7)

The right hand side of the formula (5.7) is a multisymmetric polynomial. For this
reason we can apply the theorem 2.1 to it. As a result we get

(e[0,2])
2 = −2 e[1,0] e[3,0] −

4

3
e[1,0] e[1,2] +

2

3
e[0,1] e[2,1] −

2

3
e2[1,1] +

+
2

3
e[1,0] e[0,1] e[1,1] +

8

3
e[2,0] e[0,2] −

2

3
e2
[0,1]

e[2,0] + 4 e[2,0] L
2 +

−
2

3
e2
[1,0]

e[0,2] + e2
[2,0]

+ 2 e[0,2] L
2 − 2 e2

[1,0]
L2 + 3L4.

(5.8)

Note that we can use the equation (4.13) in order to express e[3,0] through the other
elementary multisymmetric polynomials in (4.13):

e[3,0] = −
1

3
e[1,2] +

1

3
e[0,1] e[1,1] +

1

6
e3[1,0] −

1

6
e[1,0] e

2
[0,1] −

1

2
e[1,0] L

2. (5.9)

We apply the formulas (5.9), (4.12), and (4.19) to (5.8). As a result we get

−8 e[1,0] e[1,2] + 8 e[0,1] e[2,1] − 8 e2
[1,1]

+ 4 e2
[0,1]

e2
[1,0]

−

− e4[1,0] − 3 e4[0,1] + 20 e2[0,1] L
2 − 2 e2[1,0] L

2 − 5L4 = 0.
(5.10)

The equation (5.10) is the sixth factor equation derived from the cuboid equations
(1.1). It is similar to the equation (5.5).

The terms e[1,2], e[2,1], and e[1,1] are mixed in (5.5) and (5.10). We can separate
e[1,2] and e[2,1] from e[1,1] in the following two equations:

8 e[1,0] e[1,2] − 8 e[0,1] e[2,1] + e4[0,1] − e4[1,0] −

− 8 e2[0,1] L
2 + 6 e2[1,0] L

2 + 3L4 = 0.
(5.11)

4 e2[1,1] − 2 e2[0,1] e
2
[1,0] + e4[0,1] + e4[1,0] −

− 6 e2
[0,1]

L2 − 2 e2
[1,0]

L2 + L4 = 0.
(5.12)

The above equations (5.11) and (5.12) are just linear combinations of the fifth and
the sixth factor equations (5.5) and (5.10).

In order to derive the next factor equation we consider the product e[2,0] e[3,0].
Using the formulas (3.2), we get the following explicit expression for this product:

e[2,0] e[3,0] = x1 x
2
2 x

2
3 + x2 x

2
3 x

2
1 + x3 x

2
1 x

2
2. (5.13)

In order to transform (5.13) we use the formulas (4.9). This yields

e[2,0] e[3,0] = x1 d
2
2 d

2
3 + x2 d

2
3 d

2
1 + x3 d

2
1 d

2
2 − L2 x1 (d

2
2 + d2

3 )−

−L2 x2 (d
2
3 + d2

1 )− L2 x3 (d
2
1 + d2

2 ) + L4 (x1 + x2 + x3).
(5.14)
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The right hand side of the formula (5.14) is a multisymmetric polynomial. For this
reason it can be expressed through elementary multisymmetric polynomials:

e[2,0] e[3,0] = −e[1,1] e[0,3] + e[1,2] e[0,2] + e[1,2] L
2 +

+ e[0,2] e[1,0] L
2 − e[1,1] e[0,1] L

2 + e[1,0] L
4.

(5.15)

Now we transform (5.15) with the use of the formulas (5.9), (5.4), (4.19), and (4.12):

−4 e[1,0] e
2
[1,1]

+ 4 e[1,1] e[2,1] − 2 e[1,1] e
3
[0,1]

+ 6 e[1,2] e
2
[0,1]

+

+2 e[1,2] e
2
[1,0]

+ e3
[1,0]

e2
[0,1]

− e5
[1,0]

− 2 e[1,2] L
2+

+5 e[1,0] e
2
[0,1] L

2 + 4 e3[1,0] L
2 − 3 e[1,0] L

4 = 0.

(5.16)

Then we apply (5.12) to (5.16) in order to eliminate the term with the square e2
[1,1]

:

4 e[1,1] e[2,1] − 2 e[1,1] e
3
[0,1]

+ 6 e[1,2] e
2
[0,1]

+

+2 e[1,2] e
2
[1,0] − e3[1,0] e

2
[0,1] + e[1,0] e

4
[0,1] − 2 e[1,2] L

2−

− e[1,0] e
2
[0,1] L

2 + 2 e3[1,0] L
2 − 2 e[1,0] L

4 = 0.

(5.17)

The equation (5.17) is the seventh factor equation derived from the cuboid equations
(1.1). Its order is higher than the order of the equations (5.5) and (5.10).

The eighth factor equation is derived similarly. In order to derive it we consider
the product e[0,2] e[0,3]. Applying the formulas (3.3) to this product, we get

e[0,2] e[0,3] = d1 d
2
2 d

2
3 + d2 d

2
3 d

2
1 + d3 d

2
1 d

2
2 . (5.18)

In order to transform (5.18) we use the formulas (4.21). This yields

e[0,2] e[0,3] = d1 x
2
2 x

2
3 + d2 x

2
3 x

2
1 + d3 x

2
1 x

2
2 − L2 d1 (x

2
2 + x2

3)−

−L2 d2 (x
2
3 + x2

1)− L2 d3 (x
2
1 + x2

2) + L4 (d1 + d2 + d3).
(5.19)

The right hand side of the formula (5.19) is a multisymmetric polynomial. For this
reason it can be expressed through elementary multisymmetric polynomials:

e[0,2] e[0,3] = −e[1,1] e[3,0] + e[2,1] e[2,0] + e[2,1] L
2 +

+ e[2,0] e[0,1] L
2 − e[1,1] e[1,0] L

2 + e[0,1] L
4.

(5.20)

Transforming (5.20) with the use of the formulas (5.9), (5.4), (4.19), (4.12), we get

−4 e[0,1] e
2
[1,1] + 4 e[1,1] e[1,2] − 2 e[1,1] e

3
[1,0] + 6 e[2,1] e

2
[1,0] +

+2 e[2,1] e
2
[0,1] + e3[0,1] e

2
[1,0] − e5[0,1] + 2 e[2,1] L

2−

− 2 e[1,1] e[1,0] L
2 + 4 e[0,1] e

2
[1,0]

L2 + 7 e3
[0,1]

L2 − 4 e[0,1] L
4 = 0.

(5.21)

Then we apply (5.12) to (5.21) in order to eliminate the term with the square e2[1,1]:

4 e[1,1] e[1,2] − 2 e[1,1] e
3
[1,0] + 6 e[2,1] e

2
[1,0] +

+2 e[2,1] e
2
[0,1] − e3[0,1] e

2
[1,0] + e[0,1] e

4
[1,0] + 2 e[2,1] L

2−

− 2 e[1,1] e[1,0] L
2 + 2 e[0,1] e

2
[1,0]

L2 + e3
[0,1]

L2 − 3 e[0,1] L
4 = 0.

(5.22)
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The equation (5.22) is the eighth factor equation derived from the cuboid equations
(1.1). It is similar to the equation (5.17).

6. Concluding remarks.

One can continue deriving factor equation more and more. In order to reasonably
terminate this process we need some theoretical considerations. Note that the left
hand sides of the factor equations are polynomials from the ring

Q[e[1,0], e[2,0], e[3,0], e[0,1], e[0,2], e[0,3], e[2,1], e[1,1], e[1,2], L], (6.1)

where e[1,0], e[2,0], e[3,0], e[0,1], e[0,2], e[0,3], e[2,1], e[1,1], e[1,2], and L are treated as
independent variables. If we continue deriving factor equation endlessly, their left
hand sides would generate a certain ideal J in the ring (6.1). By means of the
formulas (3.2), (3.3), and (3.4) this ideal J is mapped onto some certain ideal Isym
of the ring of multisymmetric polynomials SymQ[x1, x2, x2, d1, d2, d3, L]. The ideal
Isym is produced as the intersection

Isym = I ∩ SymQ[x1, x2, x2, d1, d2, d3, L], (6.2)

where I is the ideal of the polynomial ring Q[x1, x2, x2, d1, d2, d3, L] generated by
the left hand sides of the cuboid equations (1.1). Calculating the intersection (6.2)
is an algorithmically solvable computational problem. It will be considered in a
separate paper.
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multisymmetric polynomials?, Beiträge zur Algebra und Geom. 45 (2004), no. 2, 353–368.
64. Rota G.-C., Stein J. A., A problem of Cayley from 1857 and how he could have solved it,

Linear Algebra and its Applications (special issue on determinants and the legacy of Sir
Thomas Muir) 411 (2005), 167–253.

65. Briand E., Rosas M. H., Milne’s volume function and vector symmetric polynomials, Journ.
Symbolic Comput. 44 (2009), no. 5, 583–590.

66. Symmetric polynomial, Wikipedia, Wikimedia Foundation Inc., San Francisco, USA.

Bashkir State University, 32 Zaki Validi street, 450074 Ufa, Russia

E-mail address: r-sharipov@mail.ru

http://arxiv.org/abs/math/0205233
http://arXiv.org
http://en.wikipedia.org/wiki/Symmetric_
mailto:r-sharipov@mail.ru

