General combinatorical structure of truth tables of bracketed formulae connected by implication.

Volkan Yildiz

vo1kan@hotmail.co.uk
Or
ah05146@qmul.ac.uk

Abstract

In this paper we investigate the general combinatorical structure of the truth tables of all bracketed formulae with n distinct variables connected by the binary connective of implication, an m-implication.

Keywords: Propositional logic, implication, Catalan numbers, parity, asymptotic. AMS classification: 05A15, 05A16, 03B05, 11B75

C. Chaplin

Contents

1 Preface 3
2 Introduction 4
3 General Structure 4
4 Counting true entries in truth tables of bracketed formulae connected by im- plication 5
4.1 Case 4 5
4.2 Case 3 6
4.3 Case 2 7
4.4 Case 1 8
5 Asymptotic Estimate 1 11
6 Counting true entries in truth tables of bracketed formulae connected by mod- ified implication 13
6.1 Type 1 13
6.1.1 Case 4 14
6.1.2 Case 3 15
6.1.3 Case 2 16
6.1.4 Case 1 16
6.2 Type 2 17
6.2.1 Case 4 18
6.2.2 Case 3 18
6.2.3 Case 2 19
6.2.4 Case 1 20
6.3 Type 3 21
7 Asymptotic Estimate 2 22
7.1 Asymptotic for Type 1 and 3 22
7.2 Asymptotic for Type 2 24
8 Parity 25

Notation

(1) $p_{1}, p_{2}, \ldots, p_{n}$ and ϕ, ψ are propositional variables.
(2) 'True' will be denoted by 1
(3) 'False' will be denoted by 0
(4) Set of counting numbers is denoted by $\mathbb{N}=\{1,2,3,4, \ldots\}$
(5) Set of even counting numbers is denoted by \mathbb{E}
(6) Set of odd counting numbers is denoted by \mathbb{O}
(7) : such that
(8) ν is the valuation function : $\quad \nu(\phi)=1$ if ϕ is true, and $\nu(\phi)=0$ if ϕ is false.
(9) \wedge the conjunction
(10) \vee the disjunction
(11) \rightarrow the binary connective of implication
(12) \neg the negation operator
(13) $\# c$ denotes the case number in $t_{n}^{\# c}$, where $c=1,2,3$.
\star is for QED.

1 Preface

This project begun with the following question: Can we count the number of true entries in truth tables of bracketed formulae connected by implication, and modified-implication rules? The primitive answer is to get the number of false entries then subtract it from the total number of entries. But this calculation is not precise enough to see the fruitfulness of the truth tables of these kind. In this project we have underlined that 'unlike the false entries in the truth tables that are connected by the binary connective of implication or by m-implication, true entries are not homogeneous structures'. The cover picture on the title page is designed to give an intuitive background for this inhomogeneous structure.

By reading this project the reader will encounter eight Catalan like sequences, and their asymptotics. We have started this project by counting the total number of entries (or rows), in all truth tables for bracketed implication. Then in section 3, we used the recurrence relation of the total number of rows and we worked backwards to find out the general structure of the truth tables. Alas, we showed that the structure of the recurrence relation of the true, or false entries is inherited from the structure of the recurrence relation of the total number of entries. In section 4 and 6 we counted the true entries first in using ordinary implication, and later in modified binary connective of implication. In section 5 and 7 we dealt with asymptotic of the sequences that we have seen in section 4 and 6 respectively. In the last section we showed that the sequences that are in section 4 and 6 preserve the parity of Catalan numbers.

2 Introduction

In [2] and [7] we have mentioned that the total number of rows in all truth tables of bracketed implications with n distinct variables is g_{n} and it has the following generating function and the explicit formula respectively:

$$
G(x)=\frac{1-\sqrt{1-8 x}}{2}, \quad \text { and } \quad g_{n}=2^{n} C_{n}
$$

where C_{n} is the nth Catalan number and $\quad C_{n}=\frac{1}{n}\binom{2 n-2}{n-1}$.
By using the explicit formula it is straightforward to calculate the values of g_{n}. The table below illustrates this up to $n=12$.

n	0	1	2	3	4	5	6	7	8	9	10	11	12
g_{n}	0	2	4	16	80	448	2688	16896	109824	732160	4978688	34398208	240787456

Proposition 2.1 Let g_{n} be the total number of rows in all truth tables for bracketed implication with n distinct variables p_{1}, \ldots, p_{n}. Then

$$
\begin{equation*}
g_{n}=\sum_{i=1}^{n-1} g_{i} g_{n-i}, \quad \text { with } \quad g_{1}=2 \tag{1}
\end{equation*}
$$

Proof [First Proof]

For $p_{1} \rightarrow \ldots \rightarrow p_{n}$ there are 2^{n} rows and C_{n} columns, hence there are $2^{n} C_{n}$ rows altogether.

$$
g_{n}=2^{n} C_{n}=2^{n} \sum_{i=1}^{n-1} C_{i} C_{n-i}=\sum_{i=1}^{n-1}\left(2^{i} C_{i}\right)\left(2^{n-i} C_{n-i}\right)=\sum_{i=1}^{n-i} g_{i} g_{n-i}, \text { with } g_{1}=2 . \star
$$

[Second proof, 'intuitive']
Consider n distinct propositions p_{1}, \ldots, p_{n}, for $i \geq 1$:

$$
\underbrace{p_{1} \rightarrow \ldots \rightarrow p_{i}}_{g_{i} \text { rows }} \rightarrow \underbrace{p_{i+1} \rightarrow \ldots \rightarrow p_{n}}_{g_{n-i} \text { rows }}
$$

There are g_{i} rows for $p_{1} \rightarrow \ldots \rightarrow p_{i}$, and there are g_{n-i} rows for $p_{i+1} \rightarrow \ldots \rightarrow p_{n}$, and the number of choices is given the recurrence relation (11).

3 General Structure

To see the combinatorical structure of the truth tables of bracketed formulae connected by implication, we need to make use of the method of working backwards. This method allows us to avoid unnecessary choices altogether. In ancient Greek it was mentioned by the mathematician Pappus and in recent times the method of working backwards has been discussed G. Polya. Recall that

$$
g_{n}=\sum_{i=1}^{n-1} g_{i} g_{n-i}
$$

Since each table consists of false and true rows, we let $g_{i}=t_{i}+f_{i}$, where t_{i}, f_{i} is the corresponding number of 'true', 'false' rows in g_{i} respectively. Then

$$
g_{n}=\sum_{i=1}^{n-1}\left(t_{i}+f_{i}\right)\left(t_{n-i}+f_{n-i}\right)
$$

If we expand the right hand side:

$$
\begin{equation*}
g_{n}=\underbrace{\sum_{i=1}^{n-1} t_{i} t_{n-i}}_{\text {case } 1}+\underbrace{\sum_{i=1}^{n-1} f_{i} t_{n-i}}_{\text {case 2 }}+\underbrace{\sum_{i=1}^{n-1} f_{i} f_{n-i}}_{\text {case 3 }}+\underbrace{\sum_{i=1}^{n-1} t_{i} f_{n-i}}_{\text {case } 4} \tag{2}
\end{equation*}
$$

We can now partition the right hand side into more tangible cases and explain what each of these summands mean. Let ψ and ϕ be propositional variables, and let ν be the valuation function, then

$$
\nu(\psi \rightarrow \phi)=1 \Longleftrightarrow(\nu(\psi)=0 \vee \nu(\phi)=1)
$$

Therefore there are three cases to consider here:

$$
\underbrace{(\nu(\psi)=1 \wedge \nu(\phi)=1)}_{\text {case } 1} \vee \underbrace{(\nu(\psi)=0 \wedge \nu(\phi)=1)}_{\text {case } 2} \vee \underbrace{(\nu(\psi)=0 \wedge \nu(\phi)=0)}_{\text {case } 3}
$$

Addition to the three cases in above there is also the fourth case, known as the 'disastrous combination' :

$$
\nu(\psi \rightarrow \phi)=0 \Longleftrightarrow \underbrace{(\nu(\psi)=1 \wedge \nu(\phi)=0)}_{\text {case } 4}
$$

The four cases in equation (2) coincide with the four cases in the penultimate lines respectively, and we get the following theorem:

Theorem 3.1 Let g_{n} be the total number of rows in all truth tables of bracketed implications with n distinct variables. Then for $n \geq 2, g_{n}$ can be partition into four cases as below

$$
\begin{gathered}
g_{n}=t_{n}^{\# 1}+t_{n}^{\# 2}+t_{n}^{\# 3}+f_{n}, \text { where } \\
t_{n}^{\# 1}=\sum_{i=1}^{n-1} t_{i} t_{n-i}, \quad t_{n}^{\# 2}=\sum_{i=1}^{n-1} f_{i} t_{n-i}, \quad t_{n}^{\# 3}=\sum_{i=1}^{n-1} f_{i} f_{n-i}, \text { and } \quad f_{n}=\sum_{i=1}^{n-1} t_{i} f_{n-i}
\end{gathered}
$$

with

$$
0=t_{1}^{\# 1}=t_{1}^{\# 2}=t_{1}^{\# 3}, \quad \text { and } \quad f_{1}=1
$$

In coming parts of this paper we will investigate each of the above cases in more detail.

4 Counting true entries in truth tables of bracketed formulae connected by implication

4.1 Case 4

Let ψ and ϕ be propositional variables, then

$$
\nu(\psi \rightarrow \phi)=0 \quad: \quad(\nu(\psi)=1 \wedge \nu(\phi)=0)
$$

This case has been discussed already in [2]; we had the following results.

Theorem 4.1 Let f_{n} be the number of rows with the value "false" in the truth tables of all bracketed formulae with n distinct propositions p_{1}, \ldots, p_{n} connected by the binary connective of implication. Then

$$
\begin{equation*}
f_{n}=\sum_{i=1}^{n-1}\left(2^{i} C_{i}-f_{i}\right) f_{n-i}, \text { with } f_{1}=1 \tag{3}
\end{equation*}
$$

and for large $n, f_{n} \sim\left(\frac{3-\sqrt{3}}{6}\right) \frac{2^{3 n-2}}{\sqrt{\pi n^{3}}}$. Where C_{i} is the ith Catalan number.
If we look closely to the recurrence relation (3), since $t_{i}=\left(2^{i} C_{i}-f_{i}\right)$ we obtain the 'case 4 ' in equation (3):

$$
f_{n}=\sum_{i=1}^{n-1}\left(2^{i} C_{i}-f_{i}\right) f_{n-i}=\sum_{i=1}^{n-1} t_{i} f_{n-i}, \text { with } f_{1}=1
$$

First ten terms of $\left\{f_{n}\right\}_{n>0}$ are,

$$
1,1,4,19,104,614,3816,24595,162896,1101922, \ldots
$$

We have also shown in [2] that f_{n} has the following generating function:

$$
F(x)=\frac{-1-\sqrt{1-8 x}+\sqrt{2+2 \sqrt{1-8 x}+8 x}}{4} .
$$

We have also shown in [8] that the sequence $\left\{f_{n}\right\}_{n \geq 1}$ preserves the parity of Catalan numbers.

4.2 Case 3

Let ψ and ϕ be propositional variables, then

$$
\nu(\psi \rightarrow \phi)=1 \quad: \quad(\nu(\psi)=0=\nu(\phi))
$$

In this case we are interested in formulae obtained from $p_{1} \rightarrow \ldots \rightarrow p_{n}$ by inserting brackets so that the valuation of the first i bracketing and the rest $(n-i)$ bracketing both give 0 , 'false'. The table 1 below shows the truth tables, (merged into one), for the two bracketed implications in $n=3$ variables. The corresponding case 3 truth values are denoted in green.

Proposition 4.2 Let $t_{n}^{\# 3}$ be the number of rows with the value "true" in the truth tables of all bracketed formulae with n distinct propositions p_{1}, \ldots, p_{n} connected by the binary connective of implication such that the valuation of the first i bracketing and the rest $(n-i)$ bracketing both give 0, 'false'. Then

$$
\begin{equation*}
t_{n}^{\# 3}=\sum_{i=1}^{n-1} f_{i} f_{n-i} \text { where }\left\{f_{i}\right\}_{i \geq 1} \text { is the sequence in equation (3). } \tag{4}
\end{equation*}
$$

Proof A row with the value 1, 'true', comes from an expression $\psi \rightarrow \phi$, where $\nu(\psi)=0$ and $\nu(\phi)=0$. If ψ contains i variables, then ϕ contains $(n-i)$ variables, and the number of choices is given by the summand in the proposition.

Table 1: $n=3$

p_{1}	p_{2}	p_{3}	$p_{1} \rightarrow\left(p_{2} \rightarrow p_{3}\right)$	$\left(p_{1} \rightarrow p_{2}\right) \rightarrow p_{3}$
1	1	1	1	1
1	1	0	0	0
1	0	1	1	1
1	0	0	1	1
0	1	1	1	1
0	1	0	1	0
0	0	1	1	1
0	0	0	1	0

It is now very easy to find out the generating function of $t_{n}^{\# 3}$ by using the relation (4). Let $T_{3}(x)=\sum_{n \geq 1} t_{n}^{\# 3} x^{n}$ then $T_{3}(x)=F(x)^{2}$, and hence we get the following proposition:
Proposition 4.3 The generating function for the sequence $\left\{t_{n}^{\# 3}\right\}_{n \geq 0}$ is given by

$$
T_{3}(x)=\frac{2+2 \sqrt{1-8 x}-\sqrt{2+2 \sqrt{1-8 x}+8 x}-\sqrt{1-8 x} \sqrt{2+2 \sqrt{1-8 x}+8 x}}{8}
$$

By using Maple we find the first 21 terms of this sequence:

$$
\begin{aligned}
\left\{t_{n}^{\# 3}\right\}_{n>1}= & 1,2,9,46,262,1588,10053,65686,439658,2999116 \\
& 20774154,145726348,1033125004,7390626280,53281906861, \\
& 386732675046,2823690230850,20725376703324, \\
& 152833785130398,1131770853856100,8412813651862868, \ldots
\end{aligned}
$$

We will discuss the asymptotic and number theoretical results in a separate chapter. Now we have to embark on case 2 .

4.3 Case 2

Let ψ and ϕ be propositional variables, then

$$
\nu(\psi \rightarrow \phi)=1 \quad: \quad(\nu(\psi)=0 \wedge \nu(\phi)=1) .
$$

In this case we are interested in formulae obtained from $p_{1} \rightarrow \ldots \rightarrow p_{n}$ by inserting brackets so that the valuation of the first i bracketing give 0 , 'false', and the rest ($n-i$) bracketing give 1, 'true'.

Proposition 4.4 Let $t_{n}^{\# 2}$ be the number of rows with the value "true" in the truth tables of all bracketed formulae with n distinct propositions p_{1}, \ldots, p_{n} connected by the binary connective of implication such that the valuation of the first i bracketing is 0 and and the rest $(n-i)$ bracketing gives 1. Then,

$$
\begin{equation*}
t_{n}^{\# 2}=\sum_{i=1}^{n-1} f_{i} t_{n-i} \tag{5}
\end{equation*}
$$

Proof A row with the value 1, 'true', comes from an expression $\psi \rightarrow \phi$, where $\nu(\psi)=0$ and $\nu(\phi)=1$. If ψ contains i variables, then ϕ contains $(n-i)$ variables, and the number of choices is given by the summand in the proposition.

Table 2: $n=3$

p_{1}	p_{2}	p_{3}	$p_{1} \rightarrow\left(p_{2} \rightarrow p_{3}\right)$	$\left(p_{1} \rightarrow p_{2}\right) \rightarrow p_{3}$
1	1	1	1	1
1	1	0	0	0
1	0	1	1	$\mathbf{1}$
1	0	0	1	1
0	1	1	$\mathbf{1}$	1
0	1	0	1	0
0	0	1	$\mathbf{1}$	1
0	0	0	$\mathbf{1}$	0

The table 2 above, (merged into one), for the two bracketed implications in $n=3$ variables, indicates the corresponding truth values in bold.

Corollary $4.5 t_{n}^{\# 2}=f_{n}$ for $n \geq 2$.
Proof Since $t_{n-i}=\left(2^{n-i} C_{n-i}-f_{n-i}\right)$,

$$
\begin{equation*}
t_{n}^{\# 2}=\sum_{i=1}^{n-1} f_{i}\left(2^{n-i} C_{n-i}-f_{n-i}\right) \tag{6}
\end{equation*}
$$

More explicitly,

$$
\begin{aligned}
t_{n}^{\# 2} & =f_{1}\left(2^{n-1} C_{n-1}-f_{n-1}\right)+\ldots+f_{n-2}\left(2^{2} C_{2}-f_{2}\right)+f_{n-1}\left(2^{1} C_{1}-f_{1}\right) \\
& =f_{n-1}\left(2^{1} C_{1}-f_{1}\right)+f_{n-2}\left(2^{2} C_{2}-f_{2}\right)+\ldots+f_{1}\left(2^{n-1} C_{n-1}-f_{n-1}\right) \\
& =\sum_{i=1}^{n-1}\left(2^{i} C_{i}-f_{i}\right) f_{n-i} \\
& =f_{n}
\end{aligned}
$$

Thus for $n \geq 2$, Case 2 coincides with Case 4, which we have investigated in great detail in [2], and in 8].

Proposition 4.6 The generating function for the sequence $\left\{t_{n}^{\# 2}\right\}_{n \geq 0}$ is given by

$$
T_{2}(x)=F(x)-x=\frac{-1-\sqrt{1-8 x}+\sqrt{2+2 \sqrt{1-8 x}+8 x}-4 x}{4} .
$$

4.4 Case 1

Let ψ and ϕ be propositional variables, then

$$
\nu(\psi \rightarrow \phi)=1 \quad: \quad(\nu(\psi)=1=\nu(\phi)) .
$$

In this case we are interested in formulae obtained from $p_{1} \rightarrow \ldots \rightarrow p_{n}$ by inserting brackets so that the valuation of the first i bracketing and the rest $(n-i)$ bracketing give 1 , 'true'.

Table 3, (merged into one), for the two bracketed implications in $n=3$ variables, indicates the corresponding truth values in red.

Table 3: $n=3$

p_{1}	p_{2}	p_{3}	$p_{1} \rightarrow\left(p_{2} \rightarrow p_{3}\right)$	$\left(p_{1} \rightarrow p_{2}\right) \rightarrow p_{3}$
1	1	1	1	1
1	1	0	0	0
1	0	1	1	1
1	0	0	1	1
0	1	1	1	1
0	1	0	1	0
0	0	1	1	$\mathbf{1}$
0	0	0	1	0

Proposition 4.7 Let $t_{n}^{\# 1}$ be the number of rows with the value "true" in the truth tables of all bracketed formulae with n distinct propositions p_{1}, \ldots, p_{n} connected by the binary connective of implication such that the valuation of the first i bracketing and and the rest of $(n-i)$ bracketing gives 1. Then,

$$
\begin{equation*}
t_{n}^{\# 1}=\sum_{i=1}^{n-1} t_{i} t_{n-i} \tag{7}
\end{equation*}
$$

Proof A row with the value 1, 'true', comes from an expression $\psi \rightarrow \phi$, where $\nu(\psi)=1$ and $\nu(\phi)=1$. If ψ contains i variables, then ϕ contains $(n-i)$ variables, and the number of choices is given by the summand in the proposition.

Let $T_{1}(x)=\sum_{n>1} t_{n}^{\# 1} x^{n}$, since $G(x)=F(x)+T_{1}(x)+T_{2}(x)+T_{3}(x)$ then it is easy to find that $T_{1}(x)$ has the following explicit algebraic representation:

Proposition 4.8 The generating function for the sequence $\left\{t_{n}^{\# 1}\right\}_{n \geq 0}$ is given by

$$
T_{1}(x)=\frac{6-2 \sqrt{1-8 x}-3 \sqrt{2+2 \sqrt{1-8 x}+8 x}+\sqrt{1-8 x} \sqrt{2+2 \sqrt{1-8 x}+8 x}}{8} .
$$

By using Maple we find the first 21 terms of this sequence:

$$
\begin{aligned}
\left\{t_{n}^{\# 1}\right\}_{n \geq 2}= & 1,6,33,194,1198,7676,50581,340682,2335186,16237284 \\
& 114255994,812107412,5822171548,42052209400,305714145869 \\
& 2235262899418,16426616425002,121265916776148 \\
& 898878250833358,6687497426512700,49920590244564484, \ldots
\end{aligned}
$$

The below table shows the sequences which we have discussed so far, up to $n=11$.

n	0	1	2	3	4	5	6	7	8	9	10	11
2^{n}	1	2	4	8	16	32	64	128	256	512	1024	2048
C_{n}	0	1	1	2	5	14	42	132	429	1430	4862	16796
g_{n}	0	2	4	16	80	448	2688	16896	109824	732160	4978688	34398208
f_{n}	0	1	1	4	19	104	614	3816	24595	162896	1101922	7580904
$t_{n}^{\# 1}$	0	0	1	6	33	194	1198	7676	50581	340682	2335186	16237284
$t_{n}^{\# 2}$	0	0	1	4	19	104	614	3816	24595	162896	1101922	7580904
$t_{n}^{\# 3}$	0	0	1	2	9	46	262	1588	10053	65686	439658	2999116

Table 4: The below truth tables, (merged into one), for the five bracketed implications in $n=4$ variables. Where Case 1 is in red, case 2 in black, case 3 in green and case 4 is indicated in blue.

p_{1}	p_{2}	p_{3}	p_{4}	$p_{1} \rightarrow\left(p_{2} \rightarrow\left(p_{3} \rightarrow p_{4}\right)\right)$	$p_{1} \rightarrow\left(\left(p_{2} \rightarrow p_{3}\right) \rightarrow p_{4}\right)$	$\left(p_{1} \rightarrow\left(p_{2} \rightarrow p_{3}\right)\right) \rightarrow p_{4}$	$\left(\left(p_{1} \rightarrow p_{2}\right) \rightarrow p_{3}\right) \rightarrow p_{4}$	$\left(p_{1} \rightarrow p_{2}\right) \rightarrow\left(p_{3} \rightarrow p_{4}\right)$
1	1	1	1	1	1	1	1	1
1	1	1	0	0	0	0	0	0
1	1	0	1	1	1	1	1	1
1	1	0	0	1	1	1	1	1
1	0	1	1	1	1	1	1	1
1	0	1	0	1	0	0	0	1
1	0	0	1	1	1	1	1	1
1	0	0	0	1	0	0	0	1
0	1	1	1	1	1	1	1	1
0	1	1	0	1	1	0	0	0
0	1	0	1	1	1	1	1	1
0	1	0	0	1	1	0	1	1
0	0	1	1	1	1	1	1	1
0	0	1	0	1	1	0	0	0
0	0	0	1	1	1	1	1	1
0	0	0	0	1	1	1	1	1

5 Asymptotic Estimate 1

In this chapter we will mainly make use of the asymptotic techniques that we have mentioned in [7, pg 6-7], and in [2, pg 6-7]. In [2] we have shown that the following asymptotic results for the sequence $\left\{f_{n}\right\}_{n \geq 1}$ are true:

Theorem 5.1 Let f_{n} be number of rows with the value false in the truth tables of all the bracketed implications with n variables. Then

$$
f_{n} \sim\left(\frac{3-\sqrt{3}}{6}\right) \frac{2^{3 n-2}}{\sqrt{\pi n^{3}}} .
$$

Corollary 5.2 Let g_{n} be the total number of rows in all truth tables for bracketed implications with n variables, and f_{n} the number of rows with the value "false". Then $\lim _{n \rightarrow \infty} f_{n} / g_{n}=(3-\sqrt{3}) / 6$.

Theorem 5.3 Let $t_{n}^{\# 3}$ be number of rows with the value true in the truth tables of all the bracketed implications with n variables, case 3. Then

$$
t_{n}^{\# 3} \sim\left(\frac{2 \sqrt{3}-3}{6}\right) \frac{2^{3 n-2}}{\sqrt{\pi n^{3}}}
$$

Proof Recall that

$$
T_{3}(x)=\frac{2+2 \sqrt{1-8 x}-\sqrt{2+2 \sqrt{1-8 x}+8 x}-\sqrt{1-8 x} \sqrt{2+2 \sqrt{1-8 x}+8 x}}{8} .
$$

By using the asymptotic techniques which we have discussed in [2] and [7, we found that $r=\frac{1}{8}$, $f(x)=\sqrt{1-8 x}$ and $T_{3}\left(\frac{1}{8}\right)=\frac{2-\sqrt{3}}{8} \neq 0$. Let $A(x)=T_{3}(x)-T_{3}\left(\frac{1}{8}\right)$

$$
\lim _{x \rightarrow 1 / 8} \frac{A(x)}{f(x)}=\lim _{x \rightarrow 1 / 8} \frac{2 \sqrt{1-8 x}-\sqrt{2+2 \sqrt{1-8 x}+8 x}-\sqrt{1-8 x} \sqrt{2+2 \sqrt{1-8 x}+8 x}+\sqrt{3}}{8 \sqrt{1-8 x}} .
$$

Let $v=\sqrt{1-8 x}$. Then

$$
\begin{aligned}
L & =\lim _{v \rightarrow 0} \frac{2 v-\sqrt{(1+v)(3-v)}-v \sqrt{(1+v)(3-v)}+\sqrt{3}}{8 v} \\
& =\lim _{v \rightarrow 0} \frac{2 v-\sqrt{3+2 v-v^{2}}-v \sqrt{3+2 v-v^{2}}+\sqrt{3}}{8 v} \\
& =\lim _{v \rightarrow 0} \frac{2\left(\sqrt{-(v+1)(v-3)}-2-v+v^{2}\right)}{8 \sqrt{-(v+1)(v-3)}} \\
& =-\frac{2 \sqrt{3}-3}{12},
\end{aligned}
$$

where we have used l'Hôpital's Rule in the penultimate line.
Finally,

$$
t_{n}^{\# 3} \sim-\frac{2 \sqrt{3}-3}{12}\binom{n-\frac{3}{2}}{n}\left(\frac{1}{8}\right)^{-n} \sim\left(\frac{2 \sqrt{3}-3}{6}\right) \frac{2^{3 n-2}}{\sqrt{\pi n^{3}}},
$$

and the proof is finished.

Recall that

$$
T_{2}(x)=F(x)-x=\frac{-1-\sqrt{1-8 x}+\sqrt{2+2 \sqrt{1-8 x}+8 x}-4 x}{4} .
$$

Theorem 5.4 Let $t_{n}^{\# 2}$ be number of rows with the value true in the truth tables of all the bracketed implications with n variables, case 2. Then

$$
t_{n}^{\# 2} \sim\left(\frac{3-\sqrt{3}}{6}\right) \frac{2^{3 n-2}}{\sqrt{\pi n^{3}}} .
$$

Proof Same as for f_{n}, see [2].
Theorem 5.5 Let $t_{n}^{\# 1}$ be number of rows with the value true in the truth tables of all the bracketed implications with n variables, case 1 . Then

$$
t_{n}^{\# 1} \sim\left(\frac{1}{2}\right) \frac{2^{3 n-2}}{\sqrt{\pi n^{3}}}
$$

Proof Recall that

$$
T_{1}(x)=\frac{6-2 \sqrt{1-8 x}-3 \sqrt{2+2 \sqrt{1-8 x}+8 x}+\sqrt{1-8 x} \sqrt{2+2 \sqrt{1-8 x}+8 x}}{8}
$$

By using the asymptotic techniques which we have discussed in [2] and [7, we found that $r=\frac{1}{8}$, $f(x)=\sqrt{1-8 x}$ and $T_{1}\left(\frac{1}{8}\right)=\frac{6-3 \sqrt{3}}{8} \neq 0$. Let $A(x)=T_{1}(x)-T_{1}\left(\frac{1}{8}\right)$, then

$$
\lim _{x \rightarrow 1 / 8} \frac{A(x)}{f(x)}=\lim _{x \rightarrow 1 / 8} \frac{-2 \sqrt{1-8 x}-3 \sqrt{2+2 \sqrt{1-8 x}+8 x}+\sqrt{1-8 x} \sqrt{2+2 \sqrt{1-8 x}+8 x}+3 \sqrt{3}}{8 \sqrt{1-8 x}} .
$$

Let $v=\sqrt{1-8 x}$. Then

$$
\begin{aligned}
L & =\lim _{v \rightarrow 0} \frac{-2 v-3 \sqrt{(1+v)(3-v)}+v \sqrt{(1+v)(3-v)}+3 \sqrt{3}}{8 v} \\
& =\lim _{v \rightarrow 0} \frac{-2 v-3 \sqrt{3+2 v-v^{2}}+v \sqrt{3+2 v-v^{2}}+\sqrt{3}}{8 v} \\
& =\lim _{v \rightarrow 0}-\frac{2\left(\sqrt{-(v+1)(v-3)}-3 v+v^{2}\right)}{8 \sqrt{-(v+1)(v-3)}} \\
& =-\frac{1}{4},
\end{aligned}
$$

where we have used l'Hôpital's Rule in the penultimate line. Finally,

$$
t_{n}^{\# 1} \sim-\frac{1}{4}\binom{n-\frac{3}{2}}{n}\left(\frac{1}{8}\right)^{-n} \sim\left(\frac{1}{2}\right) \frac{2^{3 n-2}}{\sqrt{\pi n^{3}}},
$$

and the proof is finished. *
The importance of the constants $\frac{2 \sqrt{3}-3}{6}=0.077350269189, \frac{3-\sqrt{3}}{6}=0.211324865404$ and $\frac{1}{2}=0.5$ lies in the following fact:

Corollary 5.6 Let g_{n} be the total number of rows in all truth tables for bracketed implications with n variables, then

$$
\lim _{n \rightarrow \infty} \frac{t_{n}^{\# 3}}{g_{n}}=\frac{2 \sqrt{3}-3}{6}, \quad \lim _{n \rightarrow \infty} \frac{f_{n}}{g_{n}}=\lim _{n \rightarrow \infty} \frac{t_{n}^{\# 2}}{g_{n}}=\frac{3-\sqrt{3}}{6}, \quad \lim _{n \rightarrow \infty} \frac{t_{n}^{\# 1}}{g_{n}}=\frac{1}{2}
$$

The table below illustrates the convergence :

n	$f_{n}=t_{n}^{\# 2}$		g_{n}	$t_{n}^{\# 2} / g_{n}$		$t_{n}^{\# 1}$	$t_{n}^{\# 1} / g_{n}$
$t_{n}^{\# 3}$	$t_{n}^{\# 3} / g_{n}$						
1	1	-	2	0.5	-	-	-
-	-						
2	2	4	0.25	1	0.25	1	0.25
3	4	16	0.25	6	0.375	2	0.125
4	19	80	0.2375	33	0.4125	9	0.1125
5	104	428	0.2321428571	194	0.433035714	46	0.102678571
6	614	2688	0.228422619	1198	0.445684524	262	0.0974702381
7	3816	16896	0.2258522727	7676	0.454308712	1588	0.0939867424
8	424595	109824	0.2239492279	50581	0.460564175	10053	0.0915373689
9	162896	732160	0.2224868881	340682	0.465310861	65686	0.0897153628
10	1101922	4978688	0.2213277876	2335186	0.469036421	439658	0.0883080040
100	-	-	0.212290865	-	0.497093847	-	0.0783244229

Corollary 5.7 Let $\mathcal{P}^{\# 1}=\frac{t_{n}^{\# 1}}{g_{n}}, \mathcal{P}^{\# 2}=\frac{t_{n}^{\# 2}}{g_{n}}, \mathcal{P}{ }^{\# 3}=\frac{t_{n}^{\# 3}}{g_{n}}$, and $\mathcal{P}^{\# 4}=\frac{f_{n}}{g_{n}}$, then for $n>2$,

$$
\mathcal{P}^{\# 1}>\left(\mathcal{P}^{\# 2}=\mathcal{P}^{\# 4}\right)>\mathcal{P}^{\# 3}
$$

Corollary 5.8

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{t_{n}^{\# 3}}{t_{n}^{\# 2}}=\frac{\sqrt{3}-1}{2}, \quad \lim _{n \rightarrow \infty} \frac{t_{n}^{\# 2}}{t_{n}^{\# 3}}=1+\sqrt{3}, \quad \lim _{n \rightarrow \infty} \frac{t_{n}^{\# 3}}{t_{n}^{\# 1}}=\frac{2 \sqrt{3}-3}{3} \\
& \lim _{n \rightarrow \infty} \frac{t_{n}^{\# 1}}{t_{n}^{\# 3}}=3+2 \sqrt{3}, \quad \lim _{n \rightarrow \infty} \frac{t_{n}^{\# 2}}{t_{n}^{\# 1}}=\frac{3-\sqrt{3}}{3}, \quad \lim _{n \rightarrow \infty} \frac{t_{n}^{\# 1}}{t_{n}^{\# 2}}=\frac{3+\sqrt{3}}{2} .
\end{aligned}
$$

6 Counting true entries in truth tables of bracketed formulae connected by modified implication

A number of new enumerative problems arise if we modify the binary connective of implication as in below.

6.1 Type 1

Definition 6.1 Let ψ, and ϕ be propositional variables then

$$
\psi \rightharpoonup \phi \equiv \psi \rightarrow \neg \phi
$$

Thus for any valuation ν,

$$
\begin{gathered}
\nu(\psi \rightharpoonup \phi)= \begin{cases}0 & \text { if } \nu(\psi)=1 \text { and } \nu(\phi)=1 \\
1 & \text { otherwise }\end{cases} \\
\nu(\psi \rightharpoonup \phi)=1 \quad: \quad(\nu(\psi)=0 \vee \nu(\phi)=0)
\end{gathered}
$$

Therefore there are three cases to consider here:

$$
\underbrace{(\nu(\psi)=0 \wedge \nu(\phi)=0)}_{\text {case } 1} \vee \underbrace{(\nu(\psi)=0 \wedge \nu(\phi)=1)}_{\text {case } 2} \vee \underbrace{(\nu(\psi)=1 \wedge \nu(\phi)=0)}_{\text {case } 3}
$$

Addition to the three cases in above there is also the fourth case, known as the disastrous combination :

$$
\nu(\psi \rightharpoonup \phi)=0 \Longleftrightarrow \underbrace{(\nu(\psi)=1 \wedge \nu(\phi)=1)}_{\text {case } 4}
$$

Let y_{n}, and d_{n} be the number of rows with the value "false" and "true" in the truth tables of all bracketed formulae with n distinct propositions p_{1}, \ldots, p_{n} connected by the binary connective of m-implication, type 1 , respectively. Then using theorem 3.1,

$$
g_{n}=\sum_{i=1}^{n-1}\left(y_{i}+d_{i}\right)\left(y_{n-i}+d_{n-i}\right)
$$

Thus if we expand the right hand side

$$
\begin{equation*}
g_{n}=\underbrace{\sum_{i=1}^{n-1} y_{i} y_{n-i}}_{\text {case 1 }}+\underbrace{\sum_{i=1}^{n-1} y_{i} d_{n-i}}_{\text {case 2 }}+\underbrace{\sum_{i=1}^{n-1} d_{i} y_{n-i}}_{\text {case 3 }}+\underbrace{\sum_{i=1}^{n-1} d_{i} d_{n-i}}_{\text {case } 4} \tag{8}
\end{equation*}
$$

The four cases in equation (8) coincide with the four cases in the penultimate lines respectively. Let

$$
d_{n}^{\# 1}=\sum_{i=1}^{n-1} y_{i} y_{n-i}, \quad d_{n}^{\# 2}=\sum_{i=1}^{n-1} y_{i} d_{n-i}, \quad d_{n}^{\# 3}=\sum_{i=1}^{n-1} d_{i} y_{n-i}, \quad y_{n}=\sum_{i=1}^{n-1} d_{i} d_{n-i}
$$

Where

$$
0=d_{1}^{\# 1}=d_{1}^{\# 2}=d_{1}^{\# 3}, \quad \text { and } \quad y_{1}=1
$$

6.1.1 Case 4

This case has been manifested in [7], and in summary we had the following results:
Theorem 6.2 Let y_{n} be the number of rows with the value "false" in the truth tables of all bracketed formulae with n distinct propositions p_{1}, \ldots, p_{n} connected by the binary connective of m-implication, type 1, case 4. Then

$$
\begin{equation*}
y_{n}=\sum_{i=1}^{n-1}\left(\left(2^{i} C_{i}-y_{i}\right)\left(2^{n-i} C_{n-i}-y_{n-i}\right)\right), \text { with } y_{0}=0, y_{1}=1 \tag{9}
\end{equation*}
$$

and for large $n, y_{n} \sim\left(\frac{10-2 \sqrt{10}}{20}\right) \frac{2^{3 n-2}}{\sqrt{\pi n^{3}}}$. Where C_{i} is the ith Catalan number.
If we look closely to the recurrence relation (9), since $d_{i}=\left(2^{i} C_{i}-y_{i}\right)$ we obtain the 'case 4' in equation (8):

$$
y_{n}=\sum_{i=1}^{n-1} d_{i} d_{n-i}, \quad \text { with } y_{1}=1
$$

The first ten terms of the sequence $\left\{y_{n}\right\}_{n \geq 1}$ are:

$$
1,1,6,29,162,978,6156,40061,267338,819238, \ldots
$$

We have also shown in [7] that y_{n} has the following generating function

$$
Y(x)=\frac{2-\sqrt{1-8 x}-\sqrt{3-4 x-2 \sqrt{1-8 x}}}{2}
$$

We have also shown in [7] that the sequence $\left\{y_{n}\right\}_{n \geq 1}$ preserves the parity of Catalan numbers.

Table 5: $n=3$

p_{1}	p_{2}	p_{3}	$p_{1} \rightharpoonup\left(p_{2} \rightharpoonup p_{3}\right)$	$\left(p_{1} \rightharpoonup p_{2}\right) \rightharpoonup p_{3}$
1	1	1	1	$\mathbf{1}$
1	1	0	$\mathbf{0}$	$\mathbf{1}$
1	0	1	$\mathbf{0}$	$\mathbf{0}$
1	0	0	$\mathbf{0}$	1
0	1	1	$\mathbf{1}$	$\mathbf{0}$
0	1	0	$\mathbf{1}$	$\mathbf{1}$
0	0	1	$\mathbf{1}$	$\mathbf{0}$
0	0	0	$\mathbf{1}$	$\mathbf{1}$

6.1.2 Case 3

Let ψ and ϕ be propositional variables, then

$$
\nu(\psi \rightharpoonup \phi)=1 \quad: \quad(\nu(\psi)=1 \wedge \nu(\phi)=0) .
$$

In this case we are interested in formulae obtained from $p_{1} \rightharpoonup \ldots \rightharpoonup p_{n}$ by inserting brackets so that the valuation of the first i bracketing give 1 and the rest $(n-i)$ bracketing give 0 . The table 5 below shows the truth tables, (merged into one), for the two bracketed implications in $n=3$ variables; where the corresponding case 3 truth values are denoted in green.
Proposition 6.3 Let $d_{n}^{\# 3}$ be the number of rows with the value "true" in the truth tables of all bracketed formulae with n distinct propositions p_{1}, \ldots, p_{n} connected by the binary connective of m-implication, type 1, such that the valuation of the first i bracketing gives 1 and the rest of $(n-i)$ bracketing gives 0. Then,

$$
\begin{equation*}
d_{n}^{\# 3}=\sum_{i=1}^{n-1} d_{i} y_{n-i} \text {, where }\left\{y_{i}\right\} \text { is defined in equation (9). } \tag{10}
\end{equation*}
$$

Since $d_{i}=\left(2^{i} C_{i}-y_{i}\right)$,

$$
d_{n}^{\# 3}=\sum_{i=1}^{n-1}\left(2^{i} C_{i}-y_{i}\right) y_{n-i}
$$

Proof A row with the value 1, 'true', comes from an expression $\psi \rightharpoonup \phi$, where $\nu(\psi)=1$ and $\nu(\phi)=0$. If ψ contains i variables, then ϕ contains $(n-i)$ variables, and the number of choices is given by the summand in the proposition.

Let $D_{3}(x)=\sum_{n>1} d_{n}^{\# 3} x^{n}$, then $D_{3}(x)=\sum_{n \geq 1} \sum_{i=1}^{n-1}\left(2^{i} C_{i}-y_{i}\right) y_{n-i} x^{n}$, which gives us $D_{3}(x)=$ $(G(x)-Y(x)) Y(x)$, writing this more explicitly gives us the following proposition:
Proposition 6.4 The generating function for the sequence $\left\{d_{n}^{\# 3}\right\}_{n \geq 0}$ is given by

$$
D_{3}(x)=\frac{-5+3 \sqrt{1-8 x}+3 \sqrt{3-4 x-2 \sqrt{1-8 x}}+4 x-\sqrt{1-8 x} \sqrt{3-4 x-2 \sqrt{1-8 x}}}{4}
$$

By using Maple we find the first 25 terms of this sequence:

$$
\begin{aligned}
\left\{d_{n}^{\# 3}\right\}_{n \geq 2}= & 1,4,19,108,646,4056,26355,175628,1193906,8246856, \\
& 57716798,408391736,13+2916689516,20997741104,152218453443, \\
& 1110202813836,8140864778810,59981252880360,443834410644618, \\
& 3296876425605992,24575508928455572,183773880824034512, \\
& 1378248141659861486,10364040821146016568 \ldots
\end{aligned}
$$

6.1.3 Case 2

Let ψ and ϕ be propositional variables, then

$$
\nu(\psi \rightharpoonup \phi)=1 \quad: \quad(\nu(\psi)=0 \wedge \nu(\phi)=1) .
$$

In this case we are interested in formulae obtained from $p_{1} \rightharpoonup \ldots \rightharpoonup p_{n}$ by inserting brackets so that the valuation of the first i bracketing gives 0 and the rest ($n-i$) bracketing give 1 . The table 5 above shows the truth tables, (merged into one), for the two bracketed implications in $n=3$ variables; where the corresponding case 3 truth values are denoted in red.

Proposition 6.5 Let $d_{n}^{\# 2}$ be the number of rows with the value "true" in the truth tables of all bracketed formulae with n distinct propositions p_{1}, \ldots, p_{n} connected by the binary connective of m-implication, type 1, such that the valuation of the first i bracketing gives 0 and the rest of ($n-i$) bracketing gives 1. Then,

$$
\begin{equation*}
d_{n}^{\# 2}=\sum_{i=1}^{n-1} y_{i} d_{n-i} \text {, where }\left\{y_{i}\right\} \text { is defined in equation (9). } \tag{11}
\end{equation*}
$$

Since $d_{i}=\left(2^{i} C_{i}-y_{i}\right)$,

$$
d_{n}^{\# 2}=\sum_{i=1}^{n-1} y_{i}\left(2^{n-i} C_{n-i}-y_{n-i}\right) .
$$

Proof A row with the value 1, 'true', comes from an expression $\psi \rightharpoonup \phi$, where $\nu(\psi)=0$ and $\nu(\phi)=1$. If ψ contains i variables, then ϕ contains $(n-i)$ variables, and the number of choices is given by the summand in the proposition.

Let $D_{2}(x)=\sum_{n \geq 1} d_{n}^{\# 2} x^{n}$, then $D_{2}(x)=\sum_{n \geq 1} \sum_{i=1}^{n-1} y_{i}\left(2^{n-i} C_{n-i}-y_{n-i}\right) x^{n}$, which gives us $D_{2}(x)=Y(x)(G(x)-Y(x))$, thus Case 2 coincides with Case 3 . Writing this more explicitly gives us the following proposition:

Proposition 6.6 The generating function for the sequence $\left\{d_{n}^{\# 2}\right\}_{n \geq 0}$ is given by

$$
D_{2}(x)=\frac{-5+3 \sqrt{1-8 x}+3 \sqrt{3-4 x-2 \sqrt{1-8 x}}+4 x-\sqrt{1-8 x} \sqrt{3-4 x-2 \sqrt{1-8 x}}}{4} .
$$

6.1.4 Case 1

Let ψ and ϕ be propositional variables, then

$$
\nu(\psi \rightharpoonup \phi)=1 \quad: \quad(\nu(\psi)=0 \wedge \nu(\phi)=0) .
$$

In this case we are interested in formulae obtained from $p_{1} \rightharpoonup \ldots \rightharpoonup p_{n}$ by inserting brackets so that the valuation of the first i bracketing gives 0 and the rest $(n-i)$ bracketing gives 0 . The table 5 above shows the truth tables, (merged into one), for the two bracketed implications in $n=3$ variables; where the corresponding case 3 truth values are denoted in black.

Proposition 6.7 Let $d_{n}^{\# 1}$ be the number of rows with the value "true" in the truth tables of all bracketed formulae with n distinct propositions p_{1}, \ldots, p_{n} connected by the binary connective of m-implication, type 1, such that the valuation of the first i bracketing gives 0 and the rest of $(n-i)$ bracketing gives 0. Then,

$$
\begin{equation*}
d_{n}^{\# 1}=\sum_{i=1}^{n-1} y_{i} y_{n-i} \text {, where }\left\{y_{i}\right\} \text { is defined in equation (9). } \tag{12}
\end{equation*}
$$

Proof A row with the value 1, 'true', comes from an expression $\psi \rightharpoonup \phi$, where $\nu(\psi)=0$ and $\nu(\phi)=0$. If ψ contains i variables, then ϕ contains $(n-i)$ variables, and the number of choices is given by the summand in the proposition.

Let $D_{1}(x)=\sum_{n \geq 1} d_{n}^{\# 1} x^{n}$, then $D_{1}(x)=\sum_{n \geq 1} \sum_{i=1}^{n-1} y_{i} y_{n-i} x^{n}$, which gives us $D_{2}(x)=Y(x)^{2}$. Writing this more explicitly gives us the following proposition:

Proposition 6.8 The generating function for the sequence $\left\{d_{n}^{\# 1}\right\}_{n \geq 0}$ is given by

$$
D_{1}(x)=\frac{4-3 \sqrt{1-8 x}-2 \sqrt{3-4 x-2 \sqrt{1-8 x}}-6 x+\sqrt{1-8 x} \sqrt{3-4 x-2 \sqrt{1-8 x}}}{2}
$$

By using Maple we find the first 25 terms of this sequence:

$$
\begin{aligned}
\left\{d_{n}^{\# 1}\right\}_{n \geq 2}= & 1,2,13,70,418,2628,17053,113566,771638,5327804,37274482,263669500 \\
& 1882630692,13550468360,98212733277,716195167502,5250931034798 \\
& 8683418448780,286206574421222,2125766544922612,15844332066531484 \\
& 3118472460044221368,888436633672089842,6680306733514013388, \ldots
\end{aligned}
$$

6.2 Type 2

Definition 6.9 Let ψ, and ϕ be propositional variables then

$$
\psi \leftharpoonup \phi \equiv \neg \psi \rightarrow \phi
$$

For any valuation ν,

$$
\nu(\psi \rightharpoonup \phi)= \begin{cases}0 & \text { if } \nu(\psi)=0 \text { and } \nu(\phi)=0 \\ 1 & \text { otherwise }\end{cases}
$$

Let k_{n}, h_{n} be the number of rows with the value "true", and "false" in the truth tables of all bracketed formulae with n distinct propositions p_{1}, \ldots, p_{n} connected by the binary connective of m-implication, in the type (ii), respectively. Then using theorem 3.1,

$$
g_{n}=\sum_{i=1}^{n-1}\left(h_{i}+k_{i}\right)\left(h_{n-1}+k_{n-i}\right)
$$

Thus if we expand the right hand side

$$
\begin{equation*}
g_{n}=\underbrace{\sum_{i=1}^{n-1} h_{i} h_{n-i}}_{\text {case 4 }}+\underbrace{\sum_{i=1}^{n-1} h_{i} k_{n-i}}_{\text {case 3 }}+\underbrace{\sum_{i=1}^{n-1} k_{i} h_{n-i}}_{\text {case 2 }}+\underbrace{\sum_{i=1}^{n-1} k_{i} k_{n-i}}_{\text {case } 1} . \tag{13}
\end{equation*}
$$

Let

$$
k_{n}^{\# 1}=\sum_{i=1}^{n-1} k_{i} k_{n-i}, \quad k_{n}^{\# 2}=\sum_{i=1}^{n-1} k_{i} h_{n-i}, \quad k_{n}^{\# 3}=\sum_{i=1}^{n-1} h_{i} k_{n-i}, \quad h_{n}=\sum_{i=1}^{n-1} h_{i} h_{n-i}
$$

Where

$$
0=k_{1}^{\# 1}=k_{1}^{\# 2}=k_{1}^{\# 3}, \quad \text { and } \quad h_{1}=1
$$

6.2.1 Case 4

This case has already been discussed in [7] and we had the following results:
Proposition 6.10 Let h_{n} be the number of rows with the value "false" in the truth tables of all bracketed formulae with n distinct propositions p_{1}, \ldots, p_{n} connected by the binary connective of m-implication, type 2, such that the valuation of the first i bracketing gives 0 and the rest of ($n-i$) bracketing gives 0. Then,

$$
\begin{equation*}
h_{n}=\sum_{i=1}^{n-1} h_{i} h_{n-i}, \text { where } h_{0}=0, h_{1}=1 . \tag{14}
\end{equation*}
$$

The recurrence relation (14) is very well known; it is the recurrence relation for Catalan numbers. The Catalan numbers has the following generating function, and the explicit formula:

$$
H(x)=\frac{1-\sqrt{1-4 x}}{2}, \quad h_{n}=\frac{1}{n}\binom{2 n-2}{n-1} .
$$

Corollary 6.11 Suppose we have all possible well-formed formulae obtained from $p_{1} \leftharpoonup p_{2} \leftharpoonup \ldots \leftharpoonup$ p_{n} by inserting brackets, where p_{1}, \ldots, p_{n} are distinct propositions. Then each formula defines the same truth table, (provided that we do not distinguish the 1s by their case type).

Here are the truth tables, (merged into one), for the bracketed m-implications, in $n=3$ variables. Where the corresponding false entries are denoted in blue:

Table 6: $n=3$

p_{1}	p_{2}	p_{3}	$p_{1} \leftharpoonup\left(p_{2} \leftharpoonup p_{3}\right)$	$\left(p_{1} \leftharpoonup p_{2}\right) \leftharpoonup p_{3}$
1	1	1	$\mathbf{1}$	$\mathbf{1}$
1	1	0	$\mathbf{1}$	1
1	0	1	$\mathbf{1}$	$\mathbf{1}$
1	0	0	1	1
0	1	1	$\mathbf{1}$	$\mathbf{1}$
0	1	0	$\mathbf{1}$	$\mathbf{1}$
0	0	1	$\mathbf{1}$	$\mathbf{1}$
0	0	0	$\mathbf{0}$	$\mathbf{0}$

6.2.2 Case 3

Let ψ and ϕ be propositional variables, then

$$
\nu(\psi \leftharpoonup \phi)=1 \quad: \quad(\nu(\psi)=0 \wedge \nu(\phi)=1) .
$$

In this case we are interested in formulae obtained from $p_{1} \leftharpoonup p_{2} \leftharpoonup \ldots \leftharpoonup p_{n}$ by inserting brackets so that the valuation of the first i bracketing gives 0 and the rest ($n-i$) bracketing gives 0 . The table 6 above shows the truth tables, (merged into one), for the two bracketed implications in $n=3$ variables. The corresponding case 3 truth values are denoted in red.

Proposition 6.12 Let $k_{n}^{\# 3}$ be the number of rows with the value "true" in the truth tables of all bracketed formulae with n distinct propositions p_{1}, \ldots, p_{n} connected by the binary connective of m-implication, type 2, such that the valuation of the first i bracketing gives 0 and the rest of $(n-i)$ bracketing gives 1. Then,

$$
\begin{equation*}
k_{n}^{\# 3}=\sum_{i=1}^{n-1} h_{i} k_{n-i} \text {, where }\left\{h_{i}\right\} \text { is defined in equation (14). } \tag{15}
\end{equation*}
$$

Proof A row with the value 1, 'true', comes from an expression $\psi \rightharpoonup \phi$, where $\nu(\psi)=0$ and $\nu(\phi)=1$. If ψ contains i variables, then ϕ contains $(n-i)$ variables, and the number of choices is given by the summand in the proposition.

Since $k_{i}=\left(2^{i} C_{i}-h_{i}\right)$, from equation we get,

$$
k_{n}^{\# 3}=\sum_{i=1}^{n-1} h_{i}\left(2^{n-i} C_{n-i}-h_{n-i}\right) .
$$

Let $K_{3}(x)=\sum_{i \geq 1} k_{n}^{\# 3} x^{n}$, then we get $K_{3}(x)=H(x)(G(x)-H(x))$, writing the right hand side more explicitly gives the following proposition:

Proposition 6.13 The generating function for the sequence $\left\{k_{n}^{\# 3}\right\}_{n \geq 0}$ is given by

$$
K_{3}(x)=\frac{-1-\sqrt{1-8 x}+\sqrt{1-8 x} \sqrt{1-4 x}+\sqrt{1-4 x}+4 x}{4}
$$

By using Maple we find the first 25 terms of this sequence:

$$
\begin{aligned}
\left\{k_{n}^{\# 3}\right\}_{n \geq 2}= & 1,4,19,100,566,3384,21107,136084,900674,6087496 \\
& 41850366,291766952,2057964492,14659421040,105305580483,761981900724 \\
& 5548736343434,0632122219688,299017702596554,2210275626304248 \\
& 16403005547059508,122169144755555088,912887876722311406,684174390763667239, \ldots
\end{aligned}
$$

6.2.3 Case 2

Let ψ and ϕ be propositional variables, then

$$
\nu(\psi \leftharpoonup \phi)=1 \quad: \quad(\nu(\psi)=1 \wedge \nu(\phi)=0)
$$

In this case we are interested in formulae obtained from $p_{1} \leftharpoonup p_{2} \leftharpoonup \ldots \leftharpoonup p_{n}$ by inserting brackets so that the valuation of the first i bracketing gives 1 and the rest $(n-i)$ bracketing gives 0 . The table 6 above shows the truth tables, (merged into one), for the two bracketed implications in $n=3$ variables. The corresponding case 3 truth values are denoted in green.

Proposition 6.14 Let $k_{n}^{\# 2}$ be the number of rows with the value "true" in the truth tables of all bracketed formulae with n distinct propositions p_{1}, \ldots, p_{n} connected by the binary connective of m-implication, type 2, such that the valuation of the first i bracketing gives 1 and the rest of $(n-i)$ bracketing gives 0. Then,

$$
\begin{equation*}
k_{n}^{\# 2}=\sum_{i=1}^{n-1} k_{i} h_{n-i}, \text { where }\left\{h_{i}\right\} \text { is defined in equation } 14 \text {. } \tag{16}
\end{equation*}
$$

Proof A row with the value 1, 'true', comes from an expression $\psi \rightharpoonup \phi$, where $\nu(\psi)=1$ and $\nu(\phi)=0$. If ψ contains i variables, then ϕ contains $(n-i)$ variables, and the number of choices is given by the summand in the proposition.

Since $k_{i}=\left(2^{i} C_{i}-h_{i}\right)$, from equation we get,

$$
k_{n}^{\# 2}=\sum_{i=1}^{n-1}\left(2^{i} C_{i}-h_{i}\right) h_{n-i} .
$$

Let $K_{2}(x)=\sum_{i \geq 1} k_{n}^{\# 2} x^{n}$, then we get $K_{2}(x)=(G(x)-H(x)) H(x)$, writing the right hand side more explicitly gives the following proposition:

Proposition 6.15 The generating function for the sequence $\left\{k_{n}^{\# 2}\right\}_{n \geq 0}$ is given by

$$
K_{2}(x)=\frac{-1-\sqrt{1-8 x}+\sqrt{1-8 x} \sqrt{1-4 x}+\sqrt{1-4 x}+4 x}{4}
$$

6.2.4 Case 1

Let ψ and ϕ be propositional variables, then

$$
\nu(\psi \leftharpoonup \phi)=1 \quad: \quad(\nu(\psi)=1 \wedge \nu(\phi)=1)
$$

In this case we are interested in formulae obtained from $p_{1} \leftharpoonup p_{2} \leftharpoonup \ldots \leftharpoonup p_{n}$ by inserting brackets so that the valuation of the first i bracketing gives 1 and the rest $(n-i)$ bracketing gives 1. The table 6 above shows the truth tables, (merged into one), for the two bracketed implications in $n=3$ variables. The corresponding case 3 truth values are denoted in black.

Proposition 6.16 Let $k_{n}^{\# 1}$ be the number of rows with the value "true" in the truth tables of all bracketed formulae with n distinct propositions p_{1}, \ldots, p_{n} connected by the binary connective of m-implication, type 2, such that the valuation of the first i bracketing gives 1 and the rest of $(n-i)$ bracketing gives 1. Then,

$$
\begin{equation*}
k_{n}^{\# 1}=\sum_{i=1}^{n-1} k_{i} k_{n-i} \tag{17}
\end{equation*}
$$

Proof A row with the value 1, 'true', comes from an expression $\psi \rightharpoonup \phi$, where $\nu(\psi)=1$ and $\nu(\phi)=1$. If ψ contains i variables, then ϕ contains $(n-i)$ variables, and the number of choices is given by the summand in the proposition.

Since $k_{i}=\left(2^{i} C_{i}-h_{i}\right)$, from equation 15 we get,

$$
k_{n}^{\# 2}=\sum_{i=1}^{n-1}\left(2^{i} C_{i}-h_{i}\right)\left(2^{n-i} C_{n-i}-h_{n-i}\right), \quad \text { where } h_{i} \text { is the sequence in 14). }
$$

Let $K_{1}(x)=\sum_{i \geq 1} k_{n}^{\# 1} x^{n}$, then we get $K_{2}(x)=(G(x)-H(x))^{2}$, writing the right hand side more explicitly gives the following proposition:

Proposition 6.17 The generating function for the sequence $\left\{k_{n}^{\# 1}\right\}_{n \geq 0}$ is given by

$$
K_{1}(x)=\frac{1-6 x-\sqrt{1-4 x} \sqrt{1-8 x}}{2}
$$

By using Maple we find the first 25 terms of this sequence:

$$
\begin{aligned}
\left\{k_{n}^{\# 1}\right\}_{n \geq 2}= & 1,6,37,234,514,9996,67181,458562,3172478,22206420, \\
& 157027938,1120292388,8055001716,58314533400,424740506109,3110401363122, \\
& 22888001498102,169155516667524,1255072594261142,9345400450314924, \\
& 69812926066668044,523072984217339304,3929809142578361938,29598511892723647860, \ldots
\end{aligned}
$$

6.3 Type 3

Definition 6.18 Let ψ, and ϕ be propositional variables then

$$
\psi \rightleftharpoons \phi \equiv \neg \psi \rightarrow \neg \phi
$$

For any valuation ν,

$$
\nu(\psi \rightleftharpoons \phi)= \begin{cases}0 & \text { if } \nu(\psi)=0 \text { and } \nu(\phi)=1 \\ 1 & \text { otherwise }\end{cases}
$$

Let b_{n}, s_{n} be the number of rows with the value "true", and "false" in the truth tables of all bracketed formulae with n distinct propositions p_{1}, \ldots, p_{n} connected by the binary connective of m-implication, in the type (iii), respectively. Then using theorem 3.1,

$$
g_{n}=\sum_{i=1}^{n-1}\left(b_{i}+s_{i}\right)\left(b_{n-i}+s_{n-i}\right)
$$

Thus if we expand the right hand side

$$
\begin{equation*}
g_{n}=\underbrace{\sum_{i=1}^{n-1} b_{i} b_{n-i}}_{\text {case 1 }}+\underbrace{\sum_{i=1}^{n-1} b_{i} s_{n-i}}_{\text {case 2 }}+\underbrace{\sum_{i=1}^{n-1} s_{i} b_{n-i}}_{\text {case 4 }}+\underbrace{\sum_{i=1}^{n-1} s_{i} s_{n-i}}_{\text {case 3 }} \tag{18}
\end{equation*}
$$

Let

$$
b_{n}^{\# 1}=\sum_{i=1}^{n-1} b_{i} b_{n-i}, \quad b_{n}^{\# 2}=\sum_{i=1}^{n-1} b_{i} s_{n-i}, \quad b_{n}^{\# 3}=\sum_{i=1}^{n-1} s_{i} s_{n-i}, \quad s_{n}=\sum_{i=1}^{n-1} s_{i} b_{n-i}
$$

Where

$$
0=b_{1}^{\# 1}=b_{1}^{\# 2}=b_{1}^{\# 3}, \quad \text { and } \quad s_{1}=1
$$

Proposition 6.19 Let $s_{n}^{\# 3}$ be the number of rows with the value "false" in the truth tables of all bracketed formulae with n distinct propositions p_{1}, \ldots, p_{n} connected by the binary connective of m-implication, type 3, such that the valuation of the first i bracketing gives 0 and the rest of $(n-i)$ bracketing gives 1. Then,

$$
\begin{equation*}
s_{n}=\sum_{i=1}^{n-1} s_{i} b_{n-i}, \text { where } s_{0}=0, s_{1}=1 \tag{19}
\end{equation*}
$$

Since $b_{i}=2^{i} C_{i}-s_{i}$,

$$
s_{n}=\sum_{i=1}^{n-1} s_{i}\left(2^{n-i} C_{n-i}-s_{n-i}\right)
$$

Proof A row with the value 1, 'true', comes from an expression $\psi \rightleftharpoons \phi$, where $\nu(\psi)=0$ and $\nu(\phi)=1$. If ψ contains i variables, then ϕ contains $(n-i)$ variables, and the number of choices is given by the summand in the proposition.

Since the recurrence relation $\sqrt[19]{1}$, is equivalent to the recurrence relation for the sequence $\left\{f_{n}\right\}_{n \geq 1}$, the four generating function in section 3 , (starting from page 5), and the corresponding asymptotics, (starting from page 11), will appear again. Thus the reader is suggested to work these cases on his-own.

7 Asymptotic Estimate 2

7.1 Asymptotic for Type 1 and 3

In [7] we have shown that the following asymptotic results are true for the sequence $\left\{y_{n}\right\}_{n \geq 1}$:
Theorem 7.1 Let y_{n} be number of rows with the value false in the truth tables of all the bracketed m-implications, case(i), with n distinct variables. Then

$$
y_{n} \sim\left(\frac{10-2 \sqrt{10}}{10}\right) \frac{2^{3 n-2}}{\sqrt{\pi n^{3}}} .
$$

Corollary 7.2 Let g_{n} be the total number of rows in all truth tables for bracketed m-implications, case(i), with n distinct variables, and y_{n} the number of rows with the value "false". Then $\lim _{n \rightarrow \infty} y_{n} / g_{n}=$ $\frac{10-2 \sqrt{10}}{10}$.

Theorem 7.3 Let $d_{n}^{\# 3}$ be number of rows with the value true in the truth tables of all the bracketed implications with n variables, type 1, case 3. Then

$$
d_{n}^{\# 3} \sim\left(\frac{11 \sqrt{10}-30}{20}\right) \frac{2^{3 n-2}}{\sqrt{\pi n^{3}}} .
$$

Proof Recall that

$$
D_{3}(x)=\frac{-5+3 \sqrt{1-8 x}+3 \sqrt{3-4 x-2 \sqrt{1-8 x}}+4 x-\sqrt{1-8 x} \sqrt{3-4 x-2 \sqrt{1-8 x}}}{4} .
$$

By using the asymptotic techniques which we have discussed in [2] and [7], we found that $r=\frac{1}{8}$, $f(x)=\sqrt{1-8 x}$ and $D_{3}\left(\frac{1}{8}\right)=\frac{-9+3 \sqrt{10}}{8} \neq 0$. Let $A(x)=D_{3}(x)-D_{3}\left(\frac{1}{8}\right)$
$\lim _{x \rightarrow 1 / 8} \frac{A(x)}{f(x)}=\lim _{x \rightarrow 1 / 8} \frac{-1+6 \sqrt{1-8 x}+6 \sqrt{2-4 x-2 \sqrt{1-8 x}}-2 \sqrt{1-8 x} \sqrt{2-4 x-2 \sqrt{1-8 x}}+8 x-3 \sqrt{10}}{8 \sqrt{1-8 x}}$.
Let $v=\sqrt{1-8 x}$. Then

$$
\begin{aligned}
L & =\lim _{v \rightarrow 0} \frac{6 v+3 \sqrt{2} \sqrt{5-4 v+v^{2}}-\sqrt{2} v \sqrt{5-4 v+v^{2}}-v^{2}-3 \sqrt{10}}{8 v} \\
& =\lim _{v \rightarrow 0}-\frac{-6 \sqrt{5-4 v+v^{2}}+11 \sqrt{2}-9 \sqrt{2} v^{2}+2 v \sqrt{5-4 v-v^{2}}}{8 \sqrt{5-4 v-v^{2}}} \\
& =-\frac{\sqrt{5}(-6 \sqrt{5}+11 \sqrt{2})}{40} \\
& =-\frac{11 \sqrt{10}-30}{40},
\end{aligned}
$$

where we have used l'Hôpital's Rule in the penultimate line.
Finally,

$$
t_{n}^{\# 3} \sim-\frac{11 \sqrt{10}-30}{40}\binom{n-\frac{3}{2}}{n}\left(\frac{1}{8}\right)^{-n} \sim\left(\frac{11 \sqrt{10}-30}{20}\right) \frac{2^{3 n-2}}{\sqrt{\pi n^{3}}}
$$

and the proof is finished. *

Theorem 7.4 Let $d_{n}^{\# 2}$ be number of rows with the value true in the truth tables of all the bracketed implications with n variables, type 1, case 2. Then

$$
d_{n}^{\# 2} \sim\left(\frac{11 \sqrt{10}-30}{20}\right) \frac{2^{3 n-2}}{\sqrt{\pi n^{3}}}
$$

Theorem 7.5 Let $d_{n}^{\# 1}$ be number of rows with the value true in the truth tables of all the bracketed implications with n variables, type 1, case 1. Then

$$
d_{n}^{\# 1} \sim\left(\frac{20-9 \sqrt{10}}{10}\right) \frac{2^{3 n-2}}{\sqrt{\pi n^{3}}}
$$

Proof Recall that

$$
D_{1}(x)=\frac{4-3 \sqrt{1-8 x}-2 \sqrt{3-4 x-2 \sqrt{1-8 x}}-6 x+\sqrt{1-8 x} \sqrt{3-4 x-2 \sqrt{1-8 x}}}{2}
$$

By using the asymptotic techniques which we have discussed in [2] and [7], we found that $r=\frac{1}{8}$, $f(x)=\sqrt{1-8 x}$ and $D_{1}\left(\frac{1}{8}\right)=\frac{13-4 \sqrt{10}}{8} \neq 0$. Let $A(x)=D_{1}(x)-D_{1}\left(\frac{1}{8}\right)$
$\lim _{x \rightarrow 1 / 8} \frac{A(x)}{f(x)}=\lim _{x \rightarrow 1 / 8} \frac{3-12 \sqrt{1-8 x}-8 \sqrt{2-4 x-2 \sqrt{1-8 x}}-24 x+4 \sqrt{1-8 x} \sqrt{2-4 x-2 \sqrt{1-8 x}}+4 \sqrt{10}}{8 \sqrt{1-8 x}}$.
Let $v=\sqrt{1-8 x}$. Then

$$
\begin{aligned}
L & =\lim _{v \rightarrow 0} \frac{-12 v-4 \sqrt{2} \sqrt{v^{2}-4 v+5}+3 v^{2}+2 \sqrt{2} v \sqrt{v^{2}-4 v+5}+4 \sqrt{10}}{8 v} \\
& =\lim _{v \rightarrow 0}-\frac{1}{4} \frac{-6 \sqrt{v^{2}-4 v+5}-8 \sqrt{2} v+9 \sqrt{2}+3 v \sqrt{v^{2}-4 v+5}+2 \sqrt{2} x^{2}}{\sqrt{v^{2}-4 v+5}} \\
& =-\frac{\sqrt{5}(-12 \sqrt{5}+18 \sqrt{2})}{40} \\
& =-\frac{30-9 \sqrt{10}}{20}
\end{aligned}
$$

where we have used l'Hôpital's Rule in the penultimate line.
Finally,

$$
d_{n}^{\# 1} \sim-\frac{30-9 \sqrt{10}}{20}\binom{n-\frac{3}{2}}{n}\left(\frac{1}{8}\right)^{-n} \sim\left(\frac{30-9 \sqrt{10}}{10}\right) \frac{2^{3 n-2}}{\sqrt{\pi n^{3}}}
$$

and the proof is finished. $\quad \star$
Corollary 7.6 Let g_{n} be the total number of rows in all truth tables for bracketed implications with n variables, then

$$
\lim _{n \rightarrow \infty} \frac{d_{n}^{\# 1}}{g_{n}}=\frac{30-9 \sqrt{10}}{10}, \quad \lim _{n \rightarrow \infty} \frac{d_{n}^{\# 3}}{g_{n}}=\lim _{n \rightarrow \infty} \frac{d_{n}^{\# 2}}{g_{n}}=\frac{11 \sqrt{10}-30}{20}, \quad \lim _{n \rightarrow \infty} \frac{y_{n}}{g_{n}}=\frac{10-2 \sqrt{10}}{10}
$$

Corollary 7.7

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{d_{n}^{\# 1}}{d_{n}^{\# 3}}=\frac{12 \sqrt{10}-18}{31}, \quad \lim _{n \rightarrow \infty} \frac{d_{n}^{\# 3}}{d_{n}^{\# 1}}=\frac{2 \sqrt{10}+3}{6}, \quad \lim _{n \rightarrow \infty} \frac{d_{n}^{\# 1}}{y}=\frac{4-\sqrt{10}}{2} \\
& \lim _{n \rightarrow \infty} \frac{y}{d_{n}^{\# 1}}=\frac{4+\sqrt{10}}{3}, \quad \lim _{n \rightarrow \infty} \frac{y}{d_{n}^{\# 3}}=\frac{16+10 \sqrt{10}}{31}, \quad \lim _{n \rightarrow \infty} \frac{d_{n}^{\# 3}}{y}=\frac{5 \sqrt{10}-8}{12} .
\end{aligned}
$$

7.2 Asymptotic for Type 2

In [7] we have shown that the following asymptotic results are true for the sequence $\left\{h_{n}\right\}_{n \geq 1}$:
Theorem 7.8 Let h_{n} be number of rows with the value false in the truth tables of all the bracketed m-implications, case(i), with n distinct variables. Then

$$
h_{n} \sim \frac{2^{2 n}}{\sqrt{\pi n^{3}}}
$$

Corollary 7.9 Let g_{n} be the total number of rows in all truth tables for bracketed m-implications, case(i), with n distinct variables, and y_{n} the number of rows with the value "false', in type 2". Then $\lim _{n \rightarrow \infty} h_{n} / g_{n}=0$.

Proof

$$
\lim _{n \rightarrow \infty} \frac{h_{n}}{g_{n}}=\lim _{n \rightarrow \infty} \frac{1}{2^{n-2}}=0
$$

Theorem 7.10 Let $k_{n}^{\# 1}$ be number of rows with the value true in the truth tables of all the bracketed implications with n variables, type 1, case 1. Then

$$
k_{n}^{\# 3} \sim\left(\frac{\sqrt{2}}{2}\right) \frac{2^{3 n-2}}{\sqrt{\pi n^{3}}}
$$

Proof Recall that

$$
K_{1}(x)=\frac{1-6 x-\sqrt{1-4 x} \sqrt{1-8 x}}{2}
$$

By using the asymptotic techniques which we have discussed in [2] and [7], we found that $r=\frac{1}{8}$, $f(x)=\sqrt{1-8 x}$ and $K_{1}\left(\frac{1}{8}\right)=\frac{1}{8} \neq 0$. Let $A(x)=K_{1}(x)-K_{1}\left(\frac{1}{8}\right)$

$$
\lim _{x \rightarrow 1 / 8} \frac{A(x)}{f(x)}=\lim _{x \rightarrow 1 / 8} \frac{3-24 x-4 \sqrt{1-8 x} \sqrt{1-4 x}}{8 \sqrt{1-8 x}}
$$

Let $v=\sqrt{1-8 x}$. Then

$$
\begin{aligned}
L & =\lim _{v \rightarrow 0} \frac{3 v^{2}-2 \sqrt{2} v \sqrt{1+v^{2}}}{8 v} \\
& =\lim _{v \rightarrow 0}-\frac{2\left(-3 v \sqrt{1+v^{2}}+\sqrt{2}+2 \sqrt{2} v^{2}\right)}{1+\sqrt{v^{2}}} \\
& =-\frac{\sqrt{2}}{4}
\end{aligned}
$$

where we have used l'Hôpital's Rule in the penultimate line.
Finally,

$$
k_{n}^{\# 1} \sim-\frac{\sqrt{2}}{4}\binom{n-\frac{3}{2}}{n}\left(\frac{1}{8}\right)^{-n} \sim\left(\frac{\sqrt{2}}{2}\right) \frac{2^{3 n-2}}{\sqrt{\pi n^{3}}}
$$

and the proof is finished. \star

Corollary 7.11 Let g_{n} be the total number of rows in all truth tables for bracketed m-implications, case(i), with n distinct variables, and $k_{n}^{\# 1}$ be the number of rows with the value 'true', in type 2. Then $\lim _{n \rightarrow \infty} k_{n}^{\# 1} / g_{n}=\frac{\sqrt{2}}{2}$.

Theorem 7.12 Let $k_{n}^{\# 3,2}$ be number of rows with the value true in the truth tables of all the bracketed implications with n variables, type 1, case 1. Then

$$
k_{n}^{\# 3,2} \sim\left(\frac{2-\sqrt{2}}{4}\right) \frac{2^{3 n-2}}{\sqrt{\pi n^{3}}}
$$

Proof Since the total probability has to add up to 1 , and $K_{2}(x)$ and $K_{3}(x)$ both have the same generating function:

$$
\frac{1-\frac{\sqrt{2}}{2}}{2}=\frac{2-\sqrt{2}}{4}
$$

Corollary 7.13 Let g_{n} be the total number of rows in all truth tables for bracketed implications with n variables, then

$$
\lim _{n \rightarrow \infty} \frac{k_{n}^{\# 2}}{g_{n}}=\lim _{n \rightarrow \infty} \frac{k_{n}^{\# 3}}{g_{n}}=\frac{2-\sqrt{2}}{4}, \quad \lim _{n \rightarrow \infty} \frac{k_{n}^{\# 1}}{g_{n}}=\frac{\sqrt{2}}{2}, \quad \lim _{n \rightarrow \infty} \frac{h_{n}}{g_{n}}=0
$$

Corollary 7.14

$$
\lim _{n \rightarrow \infty} \frac{k_{n}^{\# 2}}{k_{n}^{\# 1}}=\frac{\sqrt{2}-1}{2}, \quad \lim _{n \rightarrow \infty} \frac{k_{n}^{\# 1}}{k_{n}^{\# 2}}=2 \sqrt{2}+2
$$

8 Parity

Recall the recurrence relation of g_{n}

$$
g_{n}=\sum_{i=1}^{n-1} g_{i} g_{n-i}
$$

Let a_{i} and b_{i} be the corresponding number of false, and truth entries in the considered truth table then:

$$
\begin{equation*}
g_{n}=\sum_{i=1}^{n-1}\left(a_{i}+b_{i}\right)\left(a_{n-i}+b_{n-i}\right)=\sum_{i=1}^{n-1} a_{i} a_{n-i}+\sum_{i=1}^{n-1} a_{i} b_{n-i}+\sum_{i=1}^{n-1} b_{i} a_{n-i}+\sum_{i=1}^{n-1} b_{i} b_{n-i} \tag{20}
\end{equation*}
$$

Let

$$
z_{n}^{\# 1}=\sum_{i=1}^{n-1} a_{i} a_{n-i}, \quad z_{n}^{\# 2}=\sum_{i=1}^{n-1} a_{i} b_{n-i}, \quad z_{n}^{\# 3}=\sum_{i=1}^{n-1} b_{i} a_{n-i}, \quad z_{n}^{\# 4}=\sum_{i=1}^{n-1} b_{i} b_{n-i}
$$

Theorem 8.1 For $i=1,2,3,4$ each sequence $z_{n}^{\# i}$ preserves the parity of Catalan numbers.
Proof Since $a_{i}=\left(2^{i} C_{i}-b_{i}\right)$ then

$$
\begin{aligned}
z_{n}^{\# 1}=\sum_{i=1}^{n-1}\left(2^{i} C_{i}-b_{i}\right)\left(2^{n-i} C_{n-i}-b_{n-i}\right), & z_{n}^{\# 2}
\end{aligned}=\sum_{i=1}^{n-1}\left(2^{i} C_{i}-b_{i}\right) b_{n-i}, ~=z_{n}^{\# 4}=\sum_{i=1}^{n-1} b_{i} b_{n-i} .
$$

If an additive partition of $z_{n}^{\# 1}$, is odd, then it comes as a pair; i.e.

$$
\left(2^{i} C_{i}-b_{i}\right)\left(2^{n-i} C_{n-i}-b_{n-i}\right) \in \mathbb{O} \Longleftrightarrow b_{i}, b_{n-i} \in \mathbb{O} .
$$

Hence, $\left(\left(2^{i} C_{i}-b_{i}\right)\left(2^{n-i} C_{n-i}-b_{n-i}\right)+\left(2^{n-i} C_{n-i}-b_{n-i}\right)\left(2^{i} C_{i}-b_{i}\right)\right) \in \mathbb{E}$.
Thus, $z_{n}^{\# 1}$ can be expressed as a piecewise function depending on the parity of n :

$$
z_{n}^{\# 1}= \begin{cases}2 \sum_{i=1}^{\frac{n-1}{2}}\left(\left(2^{i} C_{i}-b_{i}\right)\left(2^{n-i} C_{n-i}-b_{n-i}\right)\right) & \text { if } n \in \mathbb{O}, \\ \left(2 \sum_{i=1}^{\frac{n-2}{2}}\left(\left(2^{i} C_{i}-b_{i}\right)\left(2^{n-i} C_{n-i}-b_{n-i}\right)\right)+\left(2^{\frac{n}{2}} C_{\frac{n}{2}}-b_{\frac{n}{2}}\right)^{2}\right. & \text { if } n \in \mathbb{E} .\end{cases}
$$

Finally,

$$
z_{n}^{\# 1} \in \mathbb{O} \Longleftrightarrow\left(2^{\frac{n}{2}} C_{\frac{n}{2}}-b_{\frac{n}{2}}\right)^{2} \in \mathbb{O} \Longleftrightarrow b_{\frac{n}{2}} \in \mathbb{O} \Longleftrightarrow n=2^{i}, \forall i \in \mathbb{N} .
$$

Similarly, if an additive partition of $z_{n}^{\# 2}$, is odd, then it comes as a pair; i.e.

$$
\left(2^{i} C_{i}-b_{i}\right) b_{n-i} \in \mathbb{O} \Longleftrightarrow b_{i}, b_{n-i} \in \mathbb{O} \Longleftrightarrow\left(2^{n-i} C_{n-i}-b_{n-i}\right) b_{i} \in \mathbb{O} .
$$

Hence, $\left(\left(2^{i} C_{i}-b_{i}\right) f_{n-i}+\left(2^{n-i} C_{n-i}-b_{n-i}\right) b_{i}\right) \in \mathbb{E}$.
Thus, $z_{n}^{\not{ }^{2} n} n$ can be expressed as a piecewise function depending on the parity of n :

$$
z_{n}^{\# 2}= \begin{cases}\sum_{i=1}^{\frac{n-1}{2}}\left(\left(2^{i} C_{i}-b_{i}\right) b_{n-i}+\left(2^{n-i} C_{n-i}-b_{n-i}\right) b_{i}\right) & \text { if } n \in \mathbb{O}, \\ \left(\sum_{i=1}^{\frac{n-2}{2}}\left(\left(2^{i} C_{i}-b_{i}\right) b_{n-i}+\left(2^{n-i} C_{n-i}-b_{n-i}\right) b_{i}\right)\right)+\left(2^{\frac{n}{2}} C_{\frac{n}{2}}-b_{\frac{n}{2}}\right) b_{\frac{n}{2}} & \text { if } n \in \mathbb{E} .\end{cases}
$$

Finally,

$$
z_{n}^{\# 2} \in \mathbb{O} \Longleftrightarrow\left(2^{\frac{n}{2}} C_{\frac{n}{2}}-b_{\frac{n}{2}}\right) b_{\frac{n}{2}} \in \mathbb{O} \Longleftrightarrow b_{\frac{n}{2}} \in \mathbb{O} \Longleftrightarrow n=2^{i}, \forall i \in \mathbb{N} .
$$

The sequences $z_{n}^{\# 3}$ preserves the parity of Catalan numbers, observe that

$$
z_{n}^{\# 3}=\sum_{i=1}^{n-1} b_{i}\left(2^{n-1} C_{n-i}-b_{n-i}\right)=\sum_{i=1}^{n-1}\left(2^{i} C_{i}-b_{i}\right) b_{n-i}=z_{n}^{\# 2}
$$

The sequence $z_{n}^{\# 4}$ preserves the parity of the Catalan numbers, since

$$
z_{n}^{\# 4}= \begin{cases}2\left(b_{1} b_{n-1}+b_{2} b_{n-2}+\ldots+b_{\frac{n-1}{2}} b_{\frac{n+1}{2}}\right) & \text { if } n \in \mathbb{O} \\ 2\left(b_{1} b_{n-1}+b_{2} b_{n-2}+\ldots+b_{\frac{n-2}{2}} b_{\frac{n+2}{2}}\right)+b_{\frac{n}{2}}^{2} & \text { if } n \in \mathbb{E} .\end{cases}
$$

For $n \geq 2$

$$
z_{n}^{\# 4} \in \mathbb{O} \Longleftrightarrow b_{\frac{n}{2}}^{2} \in \mathbb{O} \Longleftrightarrow b_{\frac{n}{2}} \in \mathbb{O} \Longleftrightarrow n=2^{i} \forall i \in \mathbb{N} .
$$

References

[1] E. A. Bender and S. G. Williamson, Foundations of Applied Combinatorics, Addison-Wesley Publishing Company, Reading, MA, 1991.
[2] P. J. Cameron and V. Yildiz, Counting false entries in truth tables of bracketed formulae connected by implication, Preprint, (arxiv.org/abs/1106.4443).
[3] P. J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, London, 1994.
[4] T. Koshy, Catalan Numbers with Applications, Oxford University Press, New York, 2009.
[5] D. Makinson, Topics in Modern Logic, Methuen \& Co Ltd, London, 1972.
[6] N. J. A. Sloane, The Online Encyclopedia of Integer Sequences, http://oeis.org/.
[7] V. Yildiz, Counting false entries in truth tables of bracketed formulae connected by mimplication, Preprint, (http://arxiv.org/pdf/1203.4645.pdf).
[8] V. Yildiz, Catalan tree \& Parity of some Sequences which are related to Catalan numbers. Preprint, (http://arxiv.org/abs/1106.5187).

Ne yazık, pişmiş ekmek çig̃lerin elinde;
Ne yazık, çeşmeler cimrilerin elinde.
O canım güzeller güzeli kömür gözleriyle, Çakaların, ug̃ruların, eg̃rilerin elinde.

> Ö. Hayyam

