POLYNOMIALS WITH ONLY REAL ZEROS AND THE EULERIAN POLYNOMIALS OF TYPE D

SHI-MEI MA

Abstract

A remarkable identity involving the Eulerian polynomials of type D was obtained by Stembridge (Adv. Math. 106 (1994), p. 280, Lemma 9.1). In this paper we explore an equivalent form of this identity. We prove Brenti's real-rootedness conjecture for the Eulerian polynomials of type D.

1. Introduction

Let \mathcal{S}_{n} denote the symmetric group of all permutations of $[n]$, where $[n]=$ $\{1,2, \ldots, n\}$. For a permutation $\pi \in \mathcal{S}_{n}$, we define a descent to be a position i such that $\pi(i)>\pi(i+1)$. Denote by des (π) the number of descents of π. Let

$$
A_{n}(x)=\sum_{\pi \in \mathcal{S}_{n}} x^{\operatorname{des}(\pi)+1}=\sum_{k=1}^{n} A(n, k) x^{k}
$$

The polynomial $A_{n}(x)$ is called an Eulerian polynomial, while $A(n, k)$ is called an Eulerian number. Denote by B_{n} the Coxeter group of type B. Elements π of B_{n} are signed permutations of $\pm[n]$ such that $\pi(-i)=-\pi(i)$ for all i, where $\pm[n]=\{ \pm 1, \pm 2, \ldots, \pm n\}$. Let

$$
B_{n}(x)=\sum_{\pi \in B_{n}} x^{\operatorname{des}_{B}(\pi)}=\sum_{k=0}^{n} B(n, k) x^{k}
$$

where $^{\operatorname{des}}{ }_{B}=|\{i \in[n]: \pi(i-1)>\pi(i)\}|$ with $\pi(0)=0$. The polynomial $B_{n}(x)$ is called an Eulerian polynomial of type B, while $B(n, k)$ is called an Eulerian number of type B. Denote by D_{n} the Coxeter group of type D. The Coxeter group D_{n} is the subgroup of B_{n} consisting of signed permutations $\pi=\pi(1) \pi(2) \cdots \pi(n)$ with an even number of negative entries. Let

$$
D_{n}(x)=\sum_{\pi \in D_{n}} x^{\operatorname{des}_{D}(\pi)}=\sum_{k=0}^{n} D(n, k) x^{k}
$$

where $\operatorname{des}_{D}=|\{i \in[n]: \pi(i-1)>\pi(i)\}|$ with $\pi(0)=-\pi(2)$. The polynomial $D_{n}(x)$ is called an Eulerian polynomial of type D, while $D(n, k)$ is called an Eulerian number of type D (see [17, A066094] for details). Below are the polynomials $D_{n}(x)$ for $n \leq 3$:

$$
D_{0}(x)=1, D_{1}(x)=1, D_{2}(x)=1+2 x+x^{2}, D_{3}(x)=1+11 x+11 x^{2}+x^{3} .
$$

[^0]In 1994, Stembridge [18, Lemma 9.1] obtained the following remarkable identity:

$$
\begin{equation*}
D_{n}(x)=B_{n}(x)-n 2^{n-1} A_{n-1}(x) \quad \text { for } \quad n \geq 2 \tag{1.1}
\end{equation*}
$$

Let $P_{n}(x)=A_{n}(x) / x$. It is well known that

$$
\sum_{n=0}^{\infty} P_{n}(-1) \frac{x^{n}}{n!}=1+\tanh (x)
$$

and

$$
\sum_{n=0}^{\infty} B_{n}(-1) \frac{x^{n}}{n!}=\operatorname{sech}(2 x)
$$

(see [13] for instance). For $n \geq 3$, Chow [6, Corollary 6.10] obtained that

$$
\operatorname{sgn} D_{n}(-1)= \begin{cases}0 & \text { if } n \text { is odd } \tag{1.2}\\ (-1)^{\frac{n}{2}} & \text { if } n \text { is even. }\end{cases}
$$

This paper is organized as follows. Section 2 is devoted to an equivalent form of the identity (1.1). In Section 3] we prove Brenti's [2, Conjecture 5.1] real-rootedness conjecture for the Eulerian polynomials of type D.

2. Derivative polynomials

In 1995, Hoffman [14] introduced the derivative polynomials for tangent and secant:

$$
\frac{d^{n}}{d \theta^{n}} \tan \theta=P_{n}(\tan \theta) \quad \text { and } \quad \frac{d^{n}}{d \theta^{n}} \sec \theta=\sec \theta \cdot Q_{n}(\tan \theta)
$$

Various refinements of the polynomials $P_{n}(u)$ and $Q_{n}(u)$ have been pursued by several authors (see [8, 9, 11, 16] for instance). The derivative polynomials for hyperbolic tangent and secant are defined by

$$
\frac{d^{n}}{d \theta^{n}} \tanh \theta=\widetilde{P}_{n}(\tanh \theta) \quad \text { and } \quad \frac{d^{n}}{d \theta^{n}} \operatorname{sech} \theta=\operatorname{sech} \theta \cdot \widetilde{Q}_{n}(\tanh \theta)
$$

It follows from $\tanh \theta=\mathrm{i} \tan (\theta / i)$ and $\operatorname{sech} \theta=\sec (\theta / i)$ that

$$
\widetilde{P}_{n}(x)=\mathrm{i}^{n-1} P_{n}(\mathrm{i} x) \quad \text { and } \quad \widetilde{Q}_{n}(x)=\mathrm{i}^{n} Q_{n}(\mathrm{i} x)
$$

From the chain rule it follows that the polynomials $\widetilde{P}_{n}(x)$ satisfy

$$
\begin{equation*}
\widetilde{P}_{n+1}(x)=\left(1-x^{2}\right) \widetilde{P}_{n}^{\prime}(x) \tag{2.1}
\end{equation*}
$$

with initial values $\widetilde{P}_{0}(x)=x$. Similarly, $\widetilde{Q}_{0}(x)=1$ and

$$
\begin{equation*}
\widetilde{Q}_{n+1}(x)=\left(1-x^{2}\right) \widetilde{Q}_{n}^{\prime}(x)-x \widetilde{Q}_{n}(x) \tag{2.2}
\end{equation*}
$$

Let

$$
\tan ^{k}(x)=\sum_{n \geq k} T(n, k) \frac{x^{n}}{n!}
$$

and

$$
\sec (x) \tan ^{k}(x)=\sum_{n \geq k} S(n, k) \frac{x^{n}}{n!}
$$

The numbers $T(n, k)$ and $S(n, k)$ are respectively called the tangent numbers of order k (see [3, p. 428]) and the secant numbers of order k ((see [4, p. 305])). The numbers $T(n, 1)$ are sometimes called the tangent numbers and $S(n, 0)$ are called

POLYNOMIALS WITH ONLY REAL ZEROS AND THE EULERIAN POLYNOMIALS OF TYPE B
the Euler numbers. Note that the tangent is an odd function and the secant is an even function. Then

$$
T(2 n, 1)=S(2 n+1,0)=0, \quad T(2 n+1,1) \neq 0 \quad \text { and } \quad S(2 n, 0) \neq 0
$$

Recently, Cvijović [8, Theorem 2] showed that

$$
\widetilde{P}_{n}(x)=(-1)^{\frac{n-1}{2}} T(n, 1)+\sum_{k=1}^{n+1} \frac{(-1)^{\frac{n+k-1}{2}}}{k} T(n+1, k) x^{k}
$$

and

$$
\widetilde{Q}_{n}(x)=\sum_{k=0}^{n}(-1)^{\frac{n+k}{2}} S(n, k) x^{k} .
$$

In particular, we have

$$
\begin{equation*}
\widetilde{P}_{2 n-1}(0)=(-1)^{n-1} T(2 n-1,1) \quad \text { and } \quad \widetilde{Q}_{2 n}(0)=(-1)^{n} S(2 n, 0) \tag{2.3}
\end{equation*}
$$

The first few of the polynomials $\widetilde{P}_{n}(x)$ and $\widetilde{Q}_{n}(x)$ are respectively given as follows:
$\widetilde{P}_{1}(x)=-x^{2}+1, \widetilde{P}_{2}(x)=2 x^{3}-2 x, \widetilde{P}_{3}(x)=-6 x^{4}+8 x^{2}-2, \widetilde{P}_{4}(x)=24 x^{5}-40 x^{3}+16 x$;
$\widetilde{Q}_{1}(x)=-x, \widetilde{Q}_{2}(x)=2 x^{2}-1, \widetilde{Q}_{3}(x)=-6 x^{3}+5 x, \widetilde{Q}_{4}(x)=24 x^{4}-28 x^{2}+5$.
For $n \geq 2$, we define

$$
a_{n}(x)=(x+1)^{n+1} A_{n}\left(\frac{x-1}{x+1}\right), \quad b_{n}(x)=(x+1)^{n} B_{n}\left(\frac{x-1}{x+1}\right)
$$

and

$$
\begin{equation*}
d_{n}(x)=\left(\frac{x+1}{2}\right)^{n} D_{n}\left(\frac{x-1}{x+1}\right) . \tag{2.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
2^{n} d_{n}(x)=b_{n}(x)-n 2^{n-1} a_{n-1}(x) \quad \text { for } \quad n \geq 2 \tag{2.5}
\end{equation*}
$$

From 11, Theorem 5, Theorem 6], we obtain

$$
\begin{equation*}
a_{n}(x)=(-1)^{n} \widetilde{P}_{n}(x) \quad \text { and } \quad b_{n}(x)=(-1)^{n} 2^{n} \widetilde{Q}_{n}(x) . \tag{2.6}
\end{equation*}
$$

Therefore, the polynomials $a_{n}(x)$ satisfy the recurrence relation

$$
\begin{equation*}
a_{n+1}(x)=\left(x^{2}-1\right) a_{n}^{\prime}(x) \tag{2.7}
\end{equation*}
$$

with initial values $a_{0}(x)=x$. The polynomials $b_{n}(x)$ satisfy the recurrence relation

$$
\begin{equation*}
b_{n+1}(x)=2\left(x^{2}-1\right) b_{n}^{\prime}(x)+2 x b_{n}(x) \tag{2.8}
\end{equation*}
$$

with initial values $b_{0}(x)=1$. From (1.1), we get the following result.
Proposition 2.1. For $n \geq 2$, we have

$$
\begin{equation*}
2 d_{n}(x)=(-1)^{n}\left(n \widetilde{P}_{n-1}(x)+2 \widetilde{Q}_{n}(x)\right) . \tag{2.9}
\end{equation*}
$$

The first few terms of $d_{n}(x)$ can be computed directly as follows:

$$
\begin{aligned}
& d_{2}(x)=x^{2} \\
& d_{3}(x)=3 x^{3}-2 x, \\
& d_{4}(x)=12 x^{4}-12 x^{2}+1, \\
& d_{5}(x)=60 x^{5}-80 x^{3}+21 x, \\
& d_{6}(x)=360 x^{6}-600 x^{4}+254 x^{2}-13 .
\end{aligned}
$$

It follows from (2.1) and (2.2) that $d_{n}(-1)=(-1)^{n}$ for $n \geq 2$.
Corollary 2.2. For $n \geq 1$, we have $D_{2 n-1}(-1)=0$ and

$$
D_{2 n}(-1)=(-4)^{n}(S(2 n, 0)-n T(2 n-1,1))
$$

where $T(n, 1)$ are the tangent numbers and $S(n, 0)$ are the Euler numbers.
Proof. Note that $D_{2 n-1}(-1)=2^{2 n-1} d_{2 n-1}(0)$. It is easy to verify that $\widetilde{P}_{2 n-2}(0)=$ $\widetilde{Q}_{2 n-1}(0)=0, \widetilde{P}_{2 n-1}(0)=(-1)^{n-1} T(2 n-1,1)$ and $\widetilde{Q}_{2 n}(0)=(-1)^{n} S(2 n, 0)$. Then $D_{2 n-1}(-1)=0$. By (2.4), we obtain $D_{2 n}(-1)=4^{n} d_{2 n}(0)$. From (2.9), we obtain $d_{2 n}(0)=n \widetilde{P}_{2 n-1}(0)+\widetilde{Q}_{2 n}(0)$. Then by (2.3), we get the desired result.

3. Main Results

Polynomials with only real zeros arise often in combinatorics, algebra and geometry. We refer the reader to [1, 5, 6, 10, 15, 19, for various results involving zeros of the polynomials $A_{n}(x), B_{n}(x)$ and $D_{n}(x)$. This Section is devoted to prove Brenti's [2, Conjecture 5.1] real-rootedness conjecture for the Eulerian polynomials of type D.

Let RZ denote the set of real polynomials with only real zeros. Denote by RZ (I) the set of such polynomials all whose zeros are in the interval I. Suppose that $f, F \in$ RZ. Let $\left\{s_{i}\right\}$ and $\left\{r_{j}\right\}$ be all zeros of F and f in nonincreasing order respectively. Following [7], we say that F interleaves f, denoted by $f \preceq F$, if $\operatorname{deg} f \leq \operatorname{deg} F \leq \operatorname{deg} f+1$ and

$$
\begin{equation*}
s_{1} \geq r_{1} \geq s_{2} \geq r_{2} \geq s_{3} \geq r_{3} \geq \cdots \tag{3.1}
\end{equation*}
$$

If no equality sign occurs in (3.1), then we say that F strictly interleaves f. Let $f \prec F$ denote F strictly interleaves f.

The key ingredient of our proof is the following result due to Hetyei [12].
Lemma 3.1 ([12, Proposition 6.5, Theorem 8.6]). For $n \geq 1$, we have $\widetilde{P}_{n}(x) \in$ $\mathrm{RZ}[-1,1], \widetilde{Q}_{n}(x) \in \mathrm{RZ}(-1,1)$ and $\widetilde{Q}_{n}(x) \prec \widetilde{P}_{n}(x)$. Moreover, $\widetilde{P}_{n-1}(x) \preceq \widetilde{P}_{n}(x)$ and $\widetilde{Q}_{n-1}(x) \preceq \widetilde{Q}_{n}(x)$ for $n \geq 2$.

By Lemma 3.1 we obtain $a_{n-1}(x) \preceq a_{n}(x), b_{n-1}(x) \preceq b_{n}(x)$ and $b_{n}(x) \prec a_{n}(x)$. Let sgn denote the sign function defined on \mathbb{R} by

$$
\operatorname{sgn} x= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -1 & \text { if } x<0\end{cases}
$$

We now present the main result of this paper.
Theorem 3.2. For $n \geq 2$, we have $D_{n}(x) \in \mathrm{RZ}(-\infty, 0)$.
Proof. Clearly, $D_{n}(x) \in \mathrm{RZ}(-\infty, 0)$ if and only if $d_{n}(x) \in \mathrm{RZ}(-1,1)$. Since $d_{2}(x)=$ x^{2} and $d_{3}(x)=3 x^{3}-2 x$, it suffices to consider the case $n \geq 4$.

Note that the polynomials $a_{n}(x)$ and $b_{n}(x)$ have the following expressions:

$$
a_{n}(x)=\sum_{k=0}^{\lfloor(n+1) / 2\rfloor}(-1)^{k} p(n, n-2 k+1) x^{n-2 k+1}
$$

$$
b_{n}(x)=\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} q(n, n-2 k) x^{n-2 k} .
$$

Using Lemma 3.1, we write

$$
\begin{aligned}
a_{2 n-1}(x) & =(2 n-1)!\prod_{i=1}^{n}\left(x-s_{i}\right)\left(x+s_{i}\right), \\
a_{2 n}(x) & =(2 n)!x \prod_{i=1}^{n}\left(x-a_{i}\right)\left(x+a_{i}\right), \\
b_{2 n}(x) & =(2 n)!4^{n} \prod_{j=1}^{n}\left(x-r_{j}\right)\left(x+r_{j}\right),
\end{aligned}
$$

and

$$
b_{2 n+1}(x)=(2 n+1)!2^{2 n+1} x \prod_{j=1}^{n}\left(x-b_{j}\right)\left(x+b_{j}\right)
$$

where

$$
\begin{equation*}
1=s_{1}>r_{1}>s_{2}>r_{2}>\cdots>r_{n-1}>s_{n}>r_{n}>0 \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
1=a_{1}>b_{1}>a_{2}>b_{2}>\cdots b_{n-1}>a_{n}>b_{n}>0 \tag{3.3}
\end{equation*}
$$

Using (2.7) and (2.8), the inequalities (3.2) and (3.3) for zeros can be easily proved by induction on n. We omit the proof of this for brevity.

By (2.5), we get

$$
d_{2 n}(x)=\frac{b_{2 n}(x)}{4^{n}}-n a_{2 n-1}(x)
$$

Let $F(x)=\prod_{i=1}^{n}\left(x-s_{i}\right)$ and $f(x)=\prod_{j=1}^{n}\left(x-r_{j}\right)$. Then

$$
d_{2 n}(x)=(2 n-1)!(-1)^{n} n\{2 f(x) f(-x)-F(x) F(-x)\} .
$$

Note that $\operatorname{sgn} d_{2 n}\left(s_{j+1}\right)=(-1)^{j}$ and $\operatorname{sgn} d_{2 n}\left(r_{j}\right)=(-1)^{j+1}$, where $1 \leq j \leq n-1$. . Therefore, $d_{2 n}(x)$ has precisely one zero in each of $2 n-2$ intervals $\left(s_{j+1}, r_{j}\right)$ and $\left(-r_{j},-s_{j+1}\right)$ Note that $\operatorname{sgn} d_{2 n}\left(r_{n}\right)=(-1)^{n-1}$ and $\operatorname{sgn} d_{2 n}\left(-r_{n}\right)=(-1)^{n+1}$. It follows from (1.2) that $\operatorname{sgn} d_{2 n}(0)=(-1)^{n}$. Therefore, $d_{2 n}(x)$ has precisely one zero in each of the intervals $\left(-r_{n}, 0\right)$ and $\left(0, r_{n}\right)$. Thus $d_{2 n}(x) \in \operatorname{RZ}(-1,1)$.

Along the same lines, by (2.5), we get

$$
d_{2 n+1}(x)=\frac{b_{2 n+1}(x)}{2^{2 n+1}}-\frac{1}{2}(2 n+1) a_{2 n}(x)
$$

Let $G(x)=\prod_{i=1}^{n}\left(x-a_{i}\right)$ and $g(x)=\prod_{j=1}^{n}\left(x-b_{j}\right)$. Then

$$
d_{2 n+1}(x)=(2 n+1)!(-1)^{n} x\left\{g(x) g(-x)-\frac{1}{2} G(x) G(-x)\right\} .
$$

Note that sgn $d_{2 n+1}\left(a_{j+1}\right)=(-1)^{j}$ and $\operatorname{sgn} d_{2 n+1}\left(b_{j}\right)=(-1)^{j+1}$, where $1 \leq j \leq n-$ 1. Therefore, $d_{2 n+1}(x)$ has precisely one zero in each of $2 n-2$ intervals $\left(a_{j+1}, b_{j}\right)$ and $\left(-b_{j},-a_{j+1}\right)$. Note that $\operatorname{sgn} d_{2 n+1}\left(b_{n}\right)=(-1)^{n+1}$ and $\operatorname{sgn} d_{2 n+1}\left(-b_{n}\right)=(-1)^{n}$. It follows from (2.9) that

$$
\operatorname{sgn} \lim _{x \rightarrow 0} \frac{d_{2 n+1}(x)}{x}=(-1)^{n}
$$

Hence

$$
\operatorname{sgn} \lim _{x \rightarrow 0^{-}} d_{2 n+1}(x)=(-1)^{n+1} \quad \text { and } \quad \operatorname{sgn} \quad \lim _{x \rightarrow 0^{+}} d_{2 n+1}(x)=(-1)^{n}
$$

Therefore, $d_{2 n+1}(x)$ has precisely one zero in each of the intervals $\left(-b_{n}, 0\right)$ and $\left(0, b_{n}\right)$. Moreover, $d_{2 n+1}(x)$ has a simple zero $x=0$. Thus $d_{2 n+1}(x) \in \operatorname{RZ}(-1,1)$.

In conclusion, we define

$$
d_{2 n}(x)=\frac{(2 n)!}{2} \prod_{i=1}^{n}\left(x-c_{i}\right)\left(x+c_{i}\right)
$$

and

$$
d_{2 n+1}(x)=\frac{(2 n+1)!}{2} x \prod_{i=1}^{n}\left(x-d_{i}\right)\left(x+d_{i}\right)
$$

where $c_{1}>c_{2}>\cdots>c_{n-1}>c_{n}$ and $d_{1}>d_{2}>\cdots>d_{n-1}>d_{n}$. Then

$$
\begin{equation*}
r_{1}>c_{1}>s_{2}>r_{2}>c_{2}>s_{3}>\cdots>r_{n-1}>c_{n-1}>s_{n}>r_{n}>c_{n}>0 \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{1}>d_{1}>a_{2}>b_{2}>d_{2}>a_{3}>\cdots>b_{n-1}>d_{n-1}>a_{n}>b_{n}>d_{n}>0 \tag{3.5}
\end{equation*}
$$

This completes the proof.
We say that the polynomials $f_{1}(x), \ldots, f_{k}(x)$ are compatible if for all nonnegative real numbers $c_{1}, c_{2}, \ldots, c_{k}$, we have $\sum_{i=1}^{k} c_{i} f_{i}(x) \in$ RZ. Let $f(x), g(x) \in \mathrm{RZ}$. A common interleaver for $f(x)$ and $g(x)$ is a polynomial that interleaves $f(x)$ and $g(x)$ simultaneously. Denote by $n_{f}(x)$ the number of real zeros of a polynomial $f(x)$ that lie in the interval $[x, \infty)$ (counted with their multiplicities). Chudnovsky and Seymour [7] established the following two lemmas.

Lemma 3.3 ([7, 3.5]). Let $f(x), g(x) \in$ RZ. Then $f(x)$ and $g(x)$ have a common interleaver if and only if $\left|n_{f}(x)-n_{g}(x)\right| \leq 1$ for all $x \in \mathbb{R}$.

Lemma $3.4([7,3.6])$. Let $f_{1}(x), f_{2}(x), \ldots, f_{k}(x)$ be polynomials with positive leading coefficients and all zeros real. Then following three statements are equivalent:
(a) $f_{1}(x), f_{2}(x), \ldots, f_{k}(x)$ are pairwise compatible,
(b) for all s, t such that $1 \leq s<t \leq k$, the polynomials f_{s}, f_{t} have a common interleaver,
(c) $f_{1}(x), f_{2}(x), \ldots, f_{k}(x)$ are compatible.

By (3.4) and (3.5), we obtain

$$
\left|n_{a_{n-1}}(x)-n_{b_{n}}(x)\right| \leq 1, \quad\left|n_{a_{n-1}}(x)-n_{d_{n}}(x)\right| \leq 1
$$

and

$$
\left|n_{d_{n}}(x)-n_{b_{n}}(x)\right| \leq 1
$$

for all $x \in \mathbb{R}$. Combining Lemma 3.3 and Lemma 3.4 we get the following result.
Theorem 3.5. For $n \geq 2$, the polynomials $a_{n-1}(x), b_{n}(x)$ and $d_{n}(x)$ are compatible. Equivalently, the polynomials $A_{n-1}(x), B_{n}(x)$ and $D_{n}(x)$ are compatible.

References

1. P. Brändén, On linear transformations preserving the Pólya frequency property, Trans. Amer. Math. Soc. 358 (2006), 3697-3716.
2. F. Brenti, q-Eulerian polynomials arising from Coxeter groups, European J. Combin. 15 (1994), 417-441.
3. L. Carlitz and R. Scoville, Tangent numbers and operators, Duke Math. J. 39 (1972), 413-429.
4. L. Carlitz, Permutations, sequences and special functions, SIAM Review, 17 (1975), 298-322.
5. C.-O. Chow, On the Eulerian polynomials of type D, European J. Combin. 24 (2003), 391-408.
6. C.-O. Chow, On certain combinatorial expansions of the Eulerian polynomials, Adv. in Appl. Math. 41 (2008), 133-157.
7. M. Chudnovsky, P. Seymour, The roots of the independence polynomial of a clawfree graph, J. Combin. Theory Ser. B 97 (2007), 350-357.
8. D. Cvijović, Derivative polynomials and closed-form higher derivative formulae, Appl. Math. Comput. 215 (2009), 3002-3006.
9. D. Cvijović, The Lerch zeta and related functions of non-positive integer order, Proc. Amer. Math. Soc. 138 (2010), 827-836.
10. K. Dilks, T.K. Petersen, J.R. Stembridge, Affine descents and the Steinberg torus, Adv Appl. Math. 42 (2009), 423-444.
11. G.R. Franssens, Functions with derivatives given by polynomials in the function itself or a related function, Anal. Math. 33 (2007), 17-36.
12. G. Hetyei, Tchebyshev triangulations of stable simplicial complexes, J. Combin. Theory Ser. A 115 (2008), 569-592.
13. F. Hirzebruch, Eulerian polynomials, Münster J. of Math. 1 (2008), 9-14.
14. M.E. Hoffman, Derivative polynomials for tangent and secant, Amer. Math. Monthly 102 (1995), 23-30.
15. L. Liu and Y. Wang, A unified approach to polynomial sequences with only real zeros, Adv. in Appl. Math. 38 (2007), 542-560.
16. S.-M. Ma, An explicit formula for the number of permutations with a given number of alternating runs, J. Combin. Theory Ser. A 119 (2012), 1660-1664.
17. N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
18. J.R. Stembridge, Some permutation representations of Weyl groups associated with the cohomology of toric varieties, Adv. Math. 106 (1994), 244-301.
19. M. Visontai, N. Williams, Stable multivariate W-Eulerian polynomials, arXiv:1203.0791v1.

School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Hebei 066004, China

E-mail address: shimeima@yahoo.com.cn(S.-M. Ma)

[^0]: 2000 Mathematics Subject Classification. Primary 05A05; Secondary 26C10.
 Key words and phrases. Eulerian polynomials, Derivative polynomials, Real zeros.
 This work is supported by NSFC (11126217) and the Fundamental Research Funds for the Central Universities (N100323013).

