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POLYNOMIALS WITH ONLY REAL ZEROS AND THE

EULERIAN POLYNOMIALS OF TYPE D

SHI-MEI MA

Abstract. A remarkable identity involving the Eulerian polynomials of type
D was obtained by Stembridge (Adv. Math. 106 (1994), p. 280, Lemma 9.1).
In this paper we explore an equivalent form of this identity. We prove Brenti’s
real-rootedness conjecture for the Eulerian polynomials of type D.

1. Introduction

Let Sn denote the symmetric group of all permutations of [n], where [n] =
{1, 2, . . . , n}. For a permutation π ∈ Sn, we define a descent to be a position i such
that π(i) > π(i+ 1). Denote by des (π) the number of descents of π. Let

An(x) =
∑

π∈Sn

xdes (π)+1 =

n∑

k=1

A(n, k)xk.

The polynomial An(x) is called an Eulerian polynomial, while A(n, k) is called
an Eulerian number. Denote by Bn the Coxeter group of type B. Elements π
of Bn are signed permutations of ±[n] such that π(−i) = −π(i) for all i, where
±[n] = {±1,±2, . . . ,±n}. Let

Bn(x) =
∑

π∈Bn

xdesB(π) =

n∑

k=0

B(n, k)xk,

where desB = |{i ∈ [n] : π(i− 1) > π(i)}| with π(0) = 0. The polynomial Bn(x) is
called an Eulerian polynomial of type B, while B(n, k) is called an Eulerian number

of type B. Denote by Dn the Coxeter group of type D. The Coxeter group Dn is
the subgroup of Bn consisting of signed permutations π = π(1)π(2) · · · π(n) with
an even number of negative entries. Let

Dn(x) =
∑

π∈Dn

xdesD(π) =

n∑

k=0

D(n, k)xk,

where desD = |{i ∈ [n] : π(i − 1) > π(i)}| with π(0) = −π(2). The polynomial
Dn(x) is called an Eulerian polynomial of type D, whileD(n, k) is called an Eulerian

number of type D (see [17, A066094] for details). Below are the polynomials Dn(x)
for n ≤ 3:

D0(x) = 1, D1(x) = 1, D2(x) = 1 + 2x+ x2, D3(x) = 1 + 11x+ 11x2 + x3.
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In 1994, Stembridge [18, Lemma 9.1] obtained the following remarkable identity:

(1.1) Dn(x) = Bn(x) − n2n−1An−1(x) for n ≥ 2.

Let Pn(x) = An(x)/x. It is well known that

∞∑

n=0

Pn(−1)
xn

n!
= 1 + tanh(x)

and
∞∑

n=0

Bn(−1)
xn

n!
= sech (2x)

(see [13] for instance). For n ≥ 3, Chow [6, Corollary 6.10] obtained that

(1.2) sgnDn(−1) =

{
0 if n is odd,

(−1)
n

2 if n is even.

This paper is organized as follows. Section 2 is devoted to an equivalent form of
the identity (1.1). In Section 3, we prove Brenti’s [2, Conjecture 5.1] real-rootedness
conjecture for the Eulerian polynomials of type D.

2. Derivative polynomials

In 1995, Hoffman [14] introduced the derivative polynomials for tangent and
secant:

dn

dθn
tan θ = Pn(tan θ) and

dn

dθn
sec θ = sec θ ·Qn(tan θ).

Various refinements of the polynomials Pn(u) and Qn(u) have been pursued by
several authors (see [8, 9, 11, 16] for instance). The derivative polynomials for
hyperbolic tangent and secant are defined by

dn

dθn
tanh θ = P̃n(tanh θ) and

dn

dθn
sech θ = sech θ · Q̃n(tanh θ).

It follows from tanh θ = i tan(θ/i) and sech θ = sec(θ/i) that

P̃n(x) = in−1Pn(ix) and Q̃n(x) = inQn(ix).

From the chain rule it follows that the polynomials P̃n(x) satisfy

(2.1) P̃n+1(x) = (1− x2)P̃ ′
n(x)

with initial values P̃0(x) = x. Similarly, Q̃0(x) = 1 and

(2.2) Q̃n+1(x) = (1− x2)Q̃′
n(x)− xQ̃n(x).

Let

tank(x) =
∑

n≥k

T (n, k)
xn

n!

and

sec(x) tank(x) =
∑

n≥k

S(n, k)
xn

n!
.

The numbers T (n, k) and S(n, k) are respectively called the tangent numbers of

order k (see [3, p. 428]) and the secant numbers of order k ((see [4, p. 305])). The
numbers T (n, 1) are sometimes called the tangent numbers and S(n, 0) are called
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the Euler numbers. Note that the tangent is an odd function and the secant is an
even function. Then

T (2n, 1) = S(2n+ 1, 0) = 0, T (2n+ 1, 1) 6= 0 and S(2n, 0) 6= 0.

Recently, Cvijović [8, Theorem 2] showed that

P̃n(x) = (−1)
n−1

2 T (n, 1) +

n+1∑

k=1

(−1)
n+k−1

2

k
T (n+ 1, k)xk

and

Q̃n(x) =

n∑

k=0

(−1)
n+k

2 S(n, k)xk.

In particular, we have

(2.3) P̃2n−1(0) = (−1)n−1T (2n− 1, 1) and Q̃2n(0) = (−1)nS(2n, 0).

The first few of the polynomials P̃n(x) and Q̃n(x) are respectively given as follows:

P̃1(x) = −x2+1, P̃2(x) = 2x3−2x, P̃3(x) = −6x4+8x2−2, P̃4(x) = 24x5−40x3+16x;

Q̃1(x) = −x, Q̃2(x) = 2x2 − 1, Q̃3(x) = −6x3 + 5x, Q̃4(x) = 24x4 − 28x2 + 5.

For n ≥ 2, we define

an(x) = (x+ 1)n+1An

(
x− 1

x+ 1

)
, bn(x) = (x+ 1)nBn

(
x− 1

x+ 1

)

and

(2.4) dn(x) =

(
x+ 1

2

)n

Dn

(
x− 1

x+ 1

)
.

Then

(2.5) 2ndn(x) = bn(x)− n2n−1an−1(x) for n ≥ 2.

From [11, Theorem 5, Theorem 6 ], we obtain

(2.6) an(x) = (−1)nP̃n(x) and bn(x) = (−1)n2nQ̃n(x).

Therefore, the polynomials an(x) satisfy the recurrence relation

(2.7) an+1(x) = (x2 − 1)a′n(x)

with initial values a0(x) = x. The polynomials bn(x) satisfy the recurrence relation

(2.8) bn+1(x) = 2(x2 − 1)b′n(x) + 2xbn(x)

with initial values b0(x) = 1. From (1.1), we get the following result.

Proposition 2.1. For n ≥ 2, we have

(2.9) 2dn(x) = (−1)n(nP̃n−1(x) + 2Q̃n(x)).

The first few terms of dn(x) can be computed directly as follows:

d2(x) = x2,

d3(x) = 3x3 − 2x,

d4(x) = 12x4 − 12x2 + 1,

d5(x) = 60x5 − 80x3 + 21x,

d6(x) = 360x6 − 600x4 + 254x2 − 13.
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It follows from (2.1) and (2.2) that dn(−1) = (−1)n for n ≥ 2.

Corollary 2.2. For n ≥ 1, we have D2n−1(−1) = 0 and

D2n(−1) = (−4)n(S(2n, 0)− nT (2n− 1, 1)),

where T (n, 1) are the tangent numbers and S(n, 0) are the Euler numbers.

Proof. Note that D2n−1(−1) = 22n−1d2n−1(0). It is easy to verify that P̃2n−2(0) =

Q̃2n−1(0) = 0, P̃2n−1(0) = (−1)n−1T (2n−1, 1) and Q̃2n(0) = (−1)nS(2n, 0). Then
D2n−1(−1) = 0. By (2.4), we obtain D2n(−1) = 4nd2n(0). From (2.9), we obtain

d2n(0) = nP̃2n−1(0) + Q̃2n(0). Then by (2.3), we get the desired result. �

3. Main results

Polynomials with only real zeros arise often in combinatorics, algebra and ge-
ometry. We refer the reader to [1, 5, 6, 10, 15, 19] for various results involving
zeros of the polynomials An(x), Bn(x) and Dn(x). This Section is devoted to prove
Brenti’s [2, Conjecture 5.1] real-rootedness conjecture for the Eulerian polynomials
of type D.

Let RZ denote the set of real polynomials with only real zeros. Denote by RZ(I)
the set of such polynomials all whose zeros are in the interval I. Suppose that
f, F ∈ RZ. Let {si} and {rj} be all zeros of F and f in nonincreasing order
respectively. Following [7], we say that F interleaves f , denoted by f � F , if
deg f ≤ degF ≤ deg f + 1 and

(3.1) s1 ≥ r1 ≥ s2 ≥ r2 ≥ s3 ≥ r3 ≥ · · · .

If no equality sign occurs in (3.1), then we say that F strictly interleaves f . Let
f ≺ F denote F strictly interleaves f .

The key ingredient of our proof is the following result due to Hetyei [12].

Lemma 3.1 ([12, Proposition 6.5, Theorem 8.6]). For n ≥ 1, we have P̃n(x) ∈

RZ[−1, 1], Q̃n(x) ∈ RZ(−1, 1) and Q̃n(x) ≺ P̃n(x). Moreover, P̃n−1(x) � P̃n(x)

and Q̃n−1(x) � Q̃n(x) for n ≥ 2.

By Lemma 3.1, we obtain an−1(x) � an(x), bn−1(x) � bn(x) and bn(x) ≺ an(x).
Let sgn denote the sign function defined on R by

sgnx =





1 if x > 0,

0 if x = 0,

−1 if x < 0.

We now present the main result of this paper.

Theorem 3.2. For n ≥ 2, we have Dn(x) ∈ RZ(−∞, 0).

Proof. Clearly, Dn(x) ∈ RZ(−∞, 0) if and only if dn(x) ∈ RZ(−1, 1). Since d2(x) =
x2 and d3(x) = 3x3 − 2x, it suffices to consider the case n ≥ 4.

Note that the polynomials an(x) and bn(x) have the following expressions:

an(x) =

⌊(n+1)/2⌋∑

k=0

(−1)kp(n, n− 2k + 1)xn−2k+1,
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bn(x) =

⌊n/2⌋∑

k=0

(−1)kq(n, n− 2k)xn−2k.

Using Lemma 3.1, we write

a2n−1(x) = (2n− 1)!

n∏

i=1

(x− si)(x+ si),

a2n(x) = (2n)!x

n∏

i=1

(x− ai)(x+ ai),

b2n(x) = (2n)!4n
n∏

j=1

(x− rj)(x+ rj),

and

b2n+1(x) = (2n+ 1)!22n+1x
n∏

j=1

(x− bj)(x+ bj),

where

(3.2) 1 = s1 > r1 > s2 > r2 > · · · > rn−1 > sn > rn > 0

and

(3.3) 1 = a1 > b1 > a2 > b2 > · · · bn−1 > an > bn > 0.

Using (2.7) and (2.8), the inequalities (3.2) and (3.3) for zeros can be easily proved
by induction on n. We omit the proof of this for brevity.

By (2.5), we get

d2n(x) =
b2n(x)

4n
− na2n−1(x).

Let F (x) =
∏n

i=1(x− si) and f(x) =
∏n

j=1(x− rj). Then

d2n(x) = (2n− 1)!(−1)nn{2f(x)f(−x)− F (x)F (−x)}.

Note that sgn d2n(sj+1) = (−1)j and sgnd2n(rj) = (−1)j+1, where 1 ≤ j ≤ n− 1.
. Therefore, d2n(x) has precisely one zero in each of 2n− 2 intervals (sj+1, rj) and
(−rj ,−sj+1) Note that sgn d2n(rn) = (−1)n−1 and sgnd2n(−rn) = (−1)n+1. It
follows from (1.2) that sgnd2n(0) = (−1)n. Therefore, d2n(x) has precisely one
zero in each of the intervals (−rn, 0) and (0, rn). Thus d2n(x) ∈ RZ(−1, 1).

Along the same lines, by (2.5), we get

d2n+1(x) =
b2n+1(x)

22n+1
−

1

2
(2n+ 1)a2n(x).

Let G(x) =
∏n

i=1(x − ai) and g(x) =
∏n

j=1(x − bj). Then

d2n+1(x) = (2n+ 1)!(−1)nx{g(x)g(−x) −
1

2
G(x)G(−x)}.

Note that sgn d2n+1(aj+1) = (−1)j and sgn d2n+1(bj) = (−1)j+1, where 1 ≤ j ≤ n−
1. Therefore, d2n+1(x) has precisely one zero in each of 2n−2 intervals (aj+1, bj) and
(−bj,−aj+1). Note that sgn d2n+1(bn) = (−1)n+1 and sgnd2n+1(−bn) = (−1)n. It
follows from (2.9) that

sgn lim
x→0

d2n+1(x)

x
= (−1)n.
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Hence

sgn lim
x→0−

d2n+1(x) = (−1)n+1 and sgn lim
x→0+

d2n+1(x) = (−1)n.

Therefore, d2n+1(x) has precisely one zero in each of the intervals (−bn, 0) and
(0, bn). Moreover, d2n+1(x) has a simple zero x = 0. Thus d2n+1(x) ∈ RZ(−1, 1).

In conclusion, we define

d2n(x) =
(2n)!

2

n∏

i=1

(x− ci)(x+ ci)

and

d2n+1(x) =
(2n+ 1)!

2
x

n∏

i=1

(x− di)(x+ di),

where c1 > c2 > · · · > cn−1 > cn and d1 > d2 > · · · > dn−1 > dn. Then

(3.4) r1 > c1 > s2 > r2 > c2 > s3 > · · · > rn−1 > cn−1 > sn > rn > cn > 0

and

(3.5) b1 > d1 > a2 > b2 > d2 > a3 > · · · > bn−1 > dn−1 > an > bn > dn > 0.

This completes the proof. �

We say that the polynomials f1(x), . . . , fk(x) are compatible if for all nonnegative

real numbers c1, c2, . . . , ck, we have
∑k

i=1 cifi(x) ∈ RZ. Let f(x), g(x) ∈ RZ. A
common interleaver for f(x) and g(x) is a polynomial that interleaves f(x) and
g(x) simultaneously. Denote by nf (x) the number of real zeros of a polynomial
f(x) that lie in the interval [x,∞) (counted with their multiplicities). Chudnovsky
and Seymour [7] established the following two lemmas.

Lemma 3.3 ([7, 3.5]). Let f(x), g(x) ∈ RZ. Then f(x) and g(x) have a common

interleaver if and only if |nf (x)− ng(x)| ≤ 1 for all x ∈ R.

Lemma 3.4 ([7, 3.6]). Let f1(x), f2(x), . . . , fk(x) be polynomials with positive lead-

ing coefficients and all zeros real. Then following three statements are equivalent:

(a) f1(x), f2(x), . . . , fk(x) are pairwise compatible,

(b) for all s, t such that 1 ≤ s < t ≤ k, the polynomials fs, ft have a common

interleaver,

(c) f1(x), f2(x), . . . , fk(x) are compatible.

By (3.4) and (3.5), we obtain

|nan−1
(x)− nbn(x)| ≤ 1, |nan−1

(x) − ndn
(x)| ≤ 1

and

|ndn
(x)− nbn(x)| ≤ 1

for all x ∈ R. Combining Lemma 3.3 and Lemma 3.4, we get the following result.

Theorem 3.5. For n ≥ 2, the polynomials an−1(x), bn(x) and dn(x) are compati-

ble. Equivalently, the polynomials An−1(x), Bn(x) and Dn(x) are compatible.
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