OVERPSEUDOPRIMES, AND MERSENNE AND FERMAT NUMBERS AS PRIMOVER NUMBERS

VLADIMIR SHEVELEV, GILBERTO GARCÍA-PULGARÍN, JUAN MIGUEL VELÁSQUEZ-SOTO, AND JOHN H. CASTILLO

Abstract

We introduce a new class of pseudoprimes-so called "overpseudoprimes to base $b "$, which is a subclass of strong pseudoprimes to base b. Denoting via $|b|_{n}$ the multiplicative order of b modulo n, we show that a composite n is overpseudoprime if and only if $|b|_{d}$ is invariant for all divisors $d>1$ of n. In particular, we prove that all composite Mersenne numbers $2^{p}-1$, where p is prime, are overpseudoprime to base 2 and squares of Wieferich primes are overpseudoprimes to base 2. Finally, we show that some kinds of well known numbers are overpseudoprime to a base b.

1. Introduction

First and foremost, we recall some definitions and fix some notation. Let b an integer greater than 1 and N a positive integer relatively prime to b. Throughout, we denote by $|b|_{N}$ the multiplicative order of b modulo N. For a prime $p, \nu_{p}(N)$ means the greatest exponent of p in the prime factorization of N.

Fermat's little theorem implies that $2^{p-1} \equiv 1(\bmod p)$, where p is an odd prime p. An odd prime p, is called a Wieferich prime if $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$,

We recall that a Poulet number, also known as Fermat pseudoprime to base 2 , is a composite number n such that $2^{n-1} \equiv 1(\bmod n)$. A Poulet number n which verifies that d divides $2^{d}-2$ for each divisor d of n, is called a Super-Poulet pseudoprime.

Sometimes the numbers $M_{n}=2^{n}-1, n=1,2, \ldots$, are called Mersenne numbers, although this name is usually reserved for numbers of the form

$$
\begin{equation*}
M_{p}=2^{p}-1 \tag{1.1}
\end{equation*}
$$

where p is prime. In this form numbers M_{p}, at the first time, were studied by Marin Mersenne (1588-1648) around 1644; see Guy [5, §A3] and a large bibliography there.

In the next section, we introduce a new class of pseudoprimes and we prove that it just contains the odd numbers n such that $|2|_{d}$ is invariant for

[^0]all divisors greater than 1 of n. In particular, we show that it contains all composite Mersenne numbers and, at least, squares of all Wieferich primes. In the fourth section, we give a generalization of this concept to arbitrary bases $b>1$ as well. In the final section, we put forward some of its consequences.

We note that, the concept of overpseudoprime to base b was found in two independent ways. The first one in 2008, by Shevelev [9 and the second one, by Castillo et al. [2], using consequences of the Midy's property, where overpseudoprimes numbers are denominated Midy pseudoprimes.

The first sections of the present work is a revisited version of Shevelev [9. In the last section, we present a review of Shevelev [10], using results from Castillo et al. [2].

The sequences A141232, A141350 and A141390 in [11, are result of the earlier work of Shevelev.

2. A Class of pseudoprimes

Let $n>1$ be an odd number. When we multiply by 2 the set of integers modulo n, we split it in different sets called cyclotomic cosets. The cyclotomic coset containing $s \neq 0$ consists of $C_{s}=\left\{s, 2 s, 2^{2} s, \ldots, 2^{m_{s}-1} s\right\}$, where m_{s} is the smallest positive number such that $2^{m_{s}} \cdot s \equiv s(\bmod n)$. Actually, it is easy to see that $m_{s}=|2|_{\frac{n}{\operatorname{gcd}(n, s)}}$. For instance the cyclotomic cosets modulo 15 are

$$
\begin{aligned}
C_{1} & =\{1,2,4,8\}, \\
C_{3} & =\{3,6,12,9\}, \\
C_{5} & =\{5,10\}, \text { and } \\
C_{7} & =\{7,14,13,11\} .
\end{aligned}
$$

Denote by $r=r(n)$, the number of distinct cyclotomic cosets of 2 modulo n. From the above example, $r(15)=4$.

Note that, if C_{1}, \ldots, C_{r} are the different cyclotomic cosets of 2 modulo n, then

$$
\begin{equation*}
\bigcup_{j=1}^{r} C_{j}=\{1,2, \ldots, n-1\} \text { and } C_{j_{1}} \cap C_{j_{2}}=\varnothing, \quad j_{1} \neq j_{2} . \tag{2.1}
\end{equation*}
$$

We can demonstrate that

$$
\begin{equation*}
|2|_{n}=\operatorname{lcm}\left(\left|C_{1}\right|, \ldots,\left|C_{r}\right|\right) . \tag{2.2}
\end{equation*}
$$

If p is an odd prime the cyclotomic cosets have the same number of elements, because for each $s \neq 0$ we have $m_{s}=\left|C_{s}\right|=|2|_{\frac{p}{\operatorname{gcd}(p, s)}}=|2|_{p}$. So

$$
\begin{equation*}
\left|C_{1}\right|=\cdots=\left|C_{r}\right| . \tag{2.3}
\end{equation*}
$$

Therefore, when p is an odd prime, we obtain

$$
\begin{equation*}
p=r(p)|2|_{p}+1 . \tag{2.4}
\end{equation*}
$$

This leave us to study composite numbers such that the equation (2.4) holds.
Definition 1. We say that an odd composite number n is an overpseudoprime to base 2, if

$$
\begin{equation*}
n=r(n)|2|_{n}+1 \tag{2.5}
\end{equation*}
$$

Note that if n is an overpseudoprime to base 2 , then $2^{n-1}=2^{r(n)|2|_{n}} \equiv 1$ $(\bmod n)$. Thus, the set of overpseudoprimes to base 2 is a subset of the set of Poulet pseudoprimes to base 2.
Theorem 2. Let $n=p_{1}^{l_{1}} \cdots p_{k}^{l_{k}}$ be an odd composite number. Then n is an overpseudoprime to base 2 if and only if

$$
\begin{equation*}
|2|_{n}=|2|_{d}, \tag{2.6}
\end{equation*}
$$

for each divisor $d>1$ of n.
Proof. Let s, different from zero, be an arbitrary element of \mathbb{Z}_{n}. Take $u_{s}=$ $\operatorname{gcd}(n, s)$ and $v_{s}=\frac{n}{u_{s}}$. Then $s=a u_{s}$, for some integer a relatively prime with n. As we said before, $\left|C_{s}\right|=|2|_{v_{s}}$.

Note that when s runs through a set of coset representatives modulo n, v_{s} runs through the set of divisors of n. So the value of $\left|C_{s}\right|$ is constant if and only if $|2|_{d}$ is invariant for each divisor $d>1$ of n, which proves the theorem.

A direct consequence of the last theorem is the following.
Corollary 3. Two overpseudoprimes to base $2, N_{1}$ and N_{2} such that $|2|_{N_{1}} \neq$ $|2|_{N_{2}}$, are relatively primes.
Corollary 4. For a prime $p, M_{p}=2^{p}-1$ is either a prime or an overpseudoprime to base 2.

Proof. Assume that M_{p} is not prime. Let $d>1$ be any divisor of M_{p}. Then $|2|_{d}$ divides p and thus $|2|_{d}=p$.

Corollary 5. Every overpseudoprime to base 2 is a Super-Poulet pseudoprime.

Proof. Let n be an overpseudoprime to base 2 and take d an arbitrary divisor of n. By Theorem 2, d is either prime or overpseudoprime to base 2 . In any case, we have $2^{d-1} \equiv 1(\bmod d)$.

Example 6. Consider the super-Poulet pseudoprime, see A178997 in [1], $96916279=167 \cdot 499 \cdot 1163$. We know that, cf. A002326 in [11], $|2|_{167}=$ $83,|2|_{499}=166$ and $|2|_{1163}=166$. Thus the reciprocal of the above corollary is not true.

Assume that p_{1} and p_{2} are primes such that $|2|_{p_{1}}=|2|_{p_{2}}$. Then $|2|_{p_{1} p_{2}}=$ $\operatorname{lcm}\left(|2|_{p_{1}},|2|_{p_{2}}\right)$. In consequence, $n=p_{1} p_{2}$ is an overpseudoprime to base 2 . With the same objective, we get the following.

Theorem 7. Let p_{1}, \ldots, p_{k} be different primes such that $|2|_{p_{i}}=|2|_{p_{j}}$, when $i \neq j$. Assume that $p_{i}^{l_{i}}$ is an overpseudoprime to base 2 , where l_{i} are positive integers, for each $i=1, \ldots, k$. Then $n=p_{1}^{l_{1}} \cdots p_{k}^{l_{k}}$ is an overpseudoprime to base 2.

3. The $(w+1)$-th power of Wieferich prime of order w is OVERPSEUDOPRIME TO BASE 2

Knauer and Richstein [6, proved that 1093 and 3511 are the only Wieferich primes less than 1.25×10^{15}. More recently, Dorais and Klyve [3] extend this interval to 6.7×10^{15}.

We say that a prime p is a Wieferich prime of order $w \geq 1$, if $\nu_{p}\left(2^{p-1}-1\right)=$ $w+1$.

The following result, from Nathanson [8, Thm. 3.6], give us a method to calculate $|b|_{p^{t}}$ from $|b|_{p}$.
Theorem 8. Let p be an odd prime not divisor of $b, m=\nu_{p}\left(b^{|b|_{p}}-1\right)$ and t a positive integer, then

$$
|b|_{p^{t}}= \begin{cases}|b|_{p}, & \text { if } t \leq m \\ p^{t-m}|b|_{p}, & \text { if } t>m\end{cases}
$$

Theorem 9. A prime p is a Wieferich prime of order greater than or equal to w if and only if p^{w+1} is an overpseudoprime to base 2.
Proof. Suppose that p is a Wieferich prime of order greater than or equal to w. Then $p^{w+1} \mid 2^{p-1}-1$ and thus $|2|_{p^{w+1}}$ is a divisor of $p-1$.

By Theorem [8, $|2|_{p^{w+1}}=p^{r}|2|_{p}$ for some non-negative integer r. So, $r=0$. Therefore, p^{w+1} is an overpseudoprime to base 2 . The reciprocal is clear.

Theorem 10. Let n be an overpseudoprime to base 2. If n is not the multiple of the square of a Wieferich prime, then n is squarefree.
Proof. Let $n=p_{1}^{l_{1}} \ldots p_{k}^{l_{k}}$ and, say, $l_{1} \geq 2$. If p_{1} is not a Wieferich prime, then $|2|_{p_{1}^{2}}$ divides $p_{1}\left(p_{1}-1\right)$ but does not divide $p_{1}-1$. Thus, $|2|_{p_{1}^{2}} \geq p_{1}$. Since $|2|_{p_{1}} \leq p_{1}-1$, then $|2|_{p_{1}^{2}}>|2|_{p_{1}}$ and by Theorem 2, n is not an overpseudoprime to base 2 .

4. Overpseudoprime to base b

Take b a positive integer greater than 1. Denote by $r=r_{b}(n)$ the number of cyclotomic cosets of b modulo n. If C_{1}, \ldots, C_{r} are the different cyclotomic cosets of b modulo n, then $C_{j_{1}} \cap C_{j_{2}}=\varnothing, \quad j_{1} \neq j_{2}$ and $\bigcup_{j=1}^{r} C_{j}=\{1,2, \ldots, n-1\}$.

Let p be a prime which does not divide $b(b-1)$. Once again, we get $r_{b}(p)|b|_{p}=p-1$.

Definition 11. We say that a composite number n, relatively prime to b, is an overpseudoprime to base b, if it satisfies

$$
\begin{equation*}
n=r_{b}(n)|b|_{n}+1 \tag{4.1}
\end{equation*}
$$

The proof of the next theorem follows similarly as in Theorem 2,
Theorem 12. Let n be a composite number such that $\operatorname{gcd}(n, b)=1$. Then n is an overpseudoprime to base b if and only if $|b|_{n}=|b|_{d}$, for each divisor $d>1$ of n.

Definition 13. A prime p is said a Wieferich prime in base b if $b^{p-1} \equiv 1$ $\left(\bmod p^{2}\right)$. A Wieferich prime to base b is of order $w \geq 1$, if $\nu_{p}\left(b^{p-1}-1\right)=$ $w+1$.

With this definition in our hands, we can generalize Theorems 9 and 10 . The respective proofs, are similar to that ones.

Theorem 14. A prime p is a Wieferich prime in base b of order greater than or equal to w if and only if p^{w+1} is an overpseudoprime to base b.

Theorem 15. If n is overpseudoprime to base b and is not a multiple of a square of a Wieferich prime to base b, then n is squarefree.

Let us remember that an odd composite N such that $N-1=2^{r} s$ with s an odd integer and $(b, N)=1$, is a strong pseudoprime to base b if either $b^{s} \equiv 1(\bmod N)$ or $b^{2^{i} s} \equiv-1 \quad(\bmod N)$, for some $0 \leq i<r$. The following result shows us, that the overpseudoprimes do not appear more frequently than the strong pseudoprimes.

Theorem 16. If n is an overpseudoprime to base b, then n is a strong pseudoprime to the same base.

Proof. Let n be an overpseudoprime to base b. Suppose that $n-1=2^{r} s$ and $|b|_{n}=2^{t} s_{1}$, for some odd integer s, s_{1} and nonnegative integers r, t. Since n is an overpseudoprime, then $|b|_{n} \mid n-1$. Thus $t \leq r$ and s_{1} divides s. Assume $t=0$. So $|b|_{n}$ is a divisor of s and thus

$$
b^{s} \equiv 1 \quad(\bmod n)
$$

Then n is a strong pseudoprime to base b.
On the other side, assume that $t \geq 1$ and write $A=b^{s_{1}}=b^{\frac{|b|_{n}}{2^{t}}}$. Note that

$$
(A-1)(A+1)\left(A^{2}+1\right)\left(A^{2^{2}}+1\right) \cdots\left(A^{2^{t-1}}+1\right)=A^{2^{t}}-1 \equiv 0 \quad(\bmod n)
$$

We claim that for any $i<t-1$ the greatest common divisor $\operatorname{gcd}\left(n, A^{2^{i}}+1\right)$ is 1 . Indeed, assume that $d>1$ divides both n and $A^{2^{i}}+1$. Since n is an overpseudoprime to base b, we have $|b|_{d}=|b|_{n}$ and the congruence $A^{2^{i}}=b^{2^{i} s_{1}} \equiv-1(\bmod d)$, leave us to a contradiction with the definition of $|b|_{d}$. Thus, $\operatorname{gcd}\left(A^{2^{i}}+1, n\right)=1$. Similarly $\operatorname{gcd}(A-1, n)=1$ and we obtain

$$
A^{2^{t-1}}+1 \equiv 0 \quad(\bmod n)
$$

Consequently, $b^{2^{t-1} s} \equiv-1(\bmod n)$. Therefore, n is a strong pseudoprime to base b.

Note that there are strong pseudoprimes to base b such that $|b|_{n}=2^{t} s_{1}$ and $b^{2^{i} s_{1}} \not \equiv-1(\bmod n)$ for $i<t-1$, but n is not an overpseudoprime to base b. For example $n=74415361$ and $b=13$.

As before, where we have proved that every overpseudoprime to base 2 is super-Poulet pseudoprime, using Theorem 12 we can prove the following statement.

Theorem 17. Every overpseudoprime n to base b is a superpseudoprime, that is

$$
\begin{equation*}
b^{d-1} \equiv 1 \quad(\bmod d), \tag{4.2}
\end{equation*}
$$

for each divisor $d>1$ of n.
Theorem 18. If n is an overpseudoprime to base b, then for every two divisors $d_{1}<d_{2}$ of n, including 1 and n, we have

$$
\begin{equation*}
|b|_{n} \mid d_{2}-d_{1} \tag{4.3}
\end{equation*}
$$

Proof. By the equation (4.2), we have $|b|_{d_{i}}=|b|_{n}$ divides $d_{i}-1$, for $i=1,2$, and thus (4.3) follows.

5. Primoverization Process

Note that, if n is an overpseudoprime to base b, a divisor of n is either prime or overpseudoprime to base b. In this section we study some kinds of numbers which satisfy this property.

In the sequel, we denote by $\Phi_{n}(x)$ the n-th cyclotomic polynomial. We recall the following theorems from Castillo et al. [2].

Theorem 19. A composite number N with $\operatorname{gcd}\left(N,|b|_{N}\right)=1$, is an overpseudoprime to base b if and only if $\Phi_{|b|_{N}}(b) \equiv 0(\bmod N)$ and $|b|_{N}>1$.
Theorem 20. Let $N>2$ and $P_{N}(b)=\frac{\Phi_{N}(b)}{\operatorname{gcd}\left(N, \Phi_{N}(b)\right)}$. If $P_{N}(b)$ is composite, then $P_{N}(b)$ is an overpseudoprime to base b.

The last theorem leave us to the next definition.
Definition 21. A positive integer is called primover to base b if it is either prime or an overpseudoprime to base b.

By Theorem 12, we know that each divisor greater than 1 , of a overpseudoprime to base b is primover to the same base b. By Corollary 2.1, M_{p} is primover to base 2 .

Theorem 20 suggests that we need to know the value of $\operatorname{gcd}\left(N, \Phi_{N}(b)\right)$. To that objective, we recall a result from Motose [7, Th. 2].

Theorem 22. We set $n \geq 2, a \geq 2$. Then p is a prime divisor of $\Phi_{n}(b)$ if and only if $\operatorname{gcd}(b, p)=1$ and $n=p^{\gamma}|b|_{p}$ where $\gamma \geq 0$. A prime divisor p of $\Phi_{n}(b)$ for $n \geq 3$ has the property such that $n=|a|_{p}$ or $\nu_{p}\left(\Phi_{n}(b)\right)=1$ as $\gamma=0$ or not.

Let p be the greatest prime divisor of N. We claim that either $\operatorname{gcd}\left(N, \Phi_{N}(b)\right)=$ 1 or p. Indeed, assume that there is a prime $q<p$ divisor of N and $\Phi_{N}(b)$. Thus, Theorem 22 implies that $N=q^{\gamma}|b|_{q}$. But as p divides N, we obtain a contradiction. So $\operatorname{gcd}\left(N, \Phi_{N}(b)\right)$, is either 1 or a power of p. If $\operatorname{gcd}\left(N, \Phi_{N}(b)\right)>1$, then $N=p^{l}|b|_{p}$. Since $l>0$, Theorem 22 implies that p^{2} does not divide $\Phi_{N}(b)$. Therefore, we get the following corollary.

Corollary 23. Let $N>1$ and p the greatest prime divisor of N. Then $\operatorname{gcd}\left(N, \Phi_{N}(b)\right)=1$ or p.

In the sequel, we prove that some known kinds of numbers are primovers to some base b.

Theorem 24. A generalized Fermat number, $F_{n}(b)=b^{2^{n}}+1$, with $n a$ positive integer and b even; is primover to base b.
Proof. It is well known that if p is prime, then $\Phi_{p^{r}}(x)=\frac{x^{p^{r}}-1}{x^{p^{r-1}}-1}$, see Bamunoba [1, Thm. 3.4.6] or Gallot [4, Thm. 1.1]. Since gcd $\left(2^{n+1}, \Phi_{2^{n+1}}(b)\right)=$ 1, we have $P_{2^{n+1}}(b)=F_{n}(b)$ and the result follows from Theorem 20,
Theorem 25. A generalized Mersenne number, $M_{p}(b)=\frac{b^{p}-1}{b-1}$, with p a prime such that $\operatorname{gcd}(p, b-1)=1$, is primover to base b.
Proof. Note that $\Phi_{p}(b)=M_{p}(b)$ and $\operatorname{gcd}\left(p, \Phi_{p}(b)\right)=1$. So $P_{p}(b)=M_{p}(b)$ and the result follows from Theorem 20.

By Theorems 18 and 25, once again, we can prove that the numbers $M_{p}(b)$ satisfy a similar property of the Mersenne numbers M_{p}.

Corollary 26. If $\operatorname{gcd}(p, b-1)=1$, then for every pair of divisors $d_{1}<d_{2}$ of $M_{p}(b)$, including trivial divisors 1 and $M_{p}(b)$, we have

$$
\begin{equation*}
p \mid d_{2}-d_{1} \tag{5.1}
\end{equation*}
$$

The following corollary give us an interesting property of $M_{r}(b)$.
Corollary 27. Let r be a prime with $\operatorname{gcd}(r, b-1)=1$. Then $M_{r}(b)$ is prime if and only if the progression $(1+r x)_{x \geq 0}$ contains just one prime p such that $|b|_{p}=r$.

Proof. Assume that $M_{r}(b)$ is prime. If there exists a prime p, such that $|b|_{p}=r$, then $p=M_{r}(b)$. Since $r \mid p-1$, i.e., p is the unique prime in the progression $(1+r x)_{x \geq 0}$.

Conversely, assume that there exists only one prime of the form $p=1+r x$, with $x \geq 0$, such that $|b|_{p}=r$. So p divides $M_{r}(b)$. If $M_{r}(b)$ is composite,
then it is overpseudoprime to base b and thus to other prime divisor q of $M_{r}(b)$ we obtain $|b|_{q}=r$. This contradicts our assumption.

The next result shows that Fermat numbers to base 2 are the only ones, of the form $2^{m}+1$, which are primover to base 2 .

Theorem 28. The following properties hold.
(1) Assume that b is even. Then $P_{m}(b)=b^{m}+1$ is primover to base b if and only if m is a power of 2 .
(2) Suppose that $\operatorname{gcd}(n, b-1)=1$. Then $M_{n}(b)=\frac{b^{n}-1}{b-1}$ is primover to base b if and only if n is prime.

Proof. Sufficient conditions were proved in Theorems 24 and 25.
Now assume that m has an odd prime divisor. So $b+1$ is a divisor of $P_{m}(b)$ and thereby it is not a prime. Since, $|b|_{b+1}=2$ and $|b|_{b^{m}+1}=2 m$; also it is not an overpseudoprime to base b.

To prove the necessity of the second part, suppose that n is not prime. Thus for a prime p divisor of n, we have $M_{n}(b)$ is composite and $b^{p}-1$ is one of its proper divisors. As $|b|_{b^{p}-1}=p$ and $|b|_{M_{n}(b)}=n$, we get that $M_{n}(b)$ is not an overpseudoprime to base b.

We note that, for p and q primes with $q<p,|b|_{\Phi_{p q}(b)}=p q$.
Theorem 29. If $q<p$ are primes, then

$$
N=\frac{(b-1)\left(b^{p q}-1\right)}{\left(b^{p}-1\right)\left(b^{q}-1\right)}
$$

is primover to base b if and only if N is not multiple of p.
Proof. It is clear that, $N=\Phi_{p q}(b)$. Assume that N is not a multiple of p. Corollary 23 implies that $\operatorname{gcd}\left(p q, \Phi_{p q}(b)\right)=1$ and the result follows from Theorem 20.

Conversely assume that N is primover to base b and p divides N. Thereby, $|b|_{p}$ divides q and as $|b|_{N}=p q$, we get a contradiction.
Corollary 30. With the above notation, if p divides N, then $\frac{N}{p}$ is primover to base b.

Once again, using Corollary 23 and Theorem 20 we can prove the following theorems.

Theorem 31. If p is prime, then

$$
N=\frac{b^{p^{n}}-1}{b^{p^{n-1}}-1}
$$

is primover to base b if and only if N is not multiple of p.

Theorem 32. Let $n=p_{1} p_{2} \cdots p_{t}$, where $p_{1}<p_{2}<\cdots<p_{t}$ are primes and let

$$
N=\prod_{e \mid n}\left(b^{e}-1\right)^{\mu(e) \mu(n)}
$$

If $\operatorname{gcd}\left(N, p_{t}\right)=1$, then N is primover to base b. In other case, $\frac{N}{p_{t}}$ is primover to base b.

References

[1] A. S. Bamunoba. Cyclotomic polynomials. Thesis master of science in the African Institute for Mathematical Sciences. Stellenbosch University, South Africa, http://users.aims.ac.za/~bamunoba/bamunoba.pdf (2010).
[2] J. H. Castillo, G. García-Pulgarín, and J. M. Velásquez-Soto, Pseudoprimes stronger than strong pseudoprimes, preprint, arXiv:1202.3428v2 [math.NT] (2012). (Manuscript submitted for publication)
[3] F. G. Dorais and D. Klyve, A Wieferich prime search up to 6.7×10^{15}, J. Integer Seq. 14 (2011), Article 11.9.2.
[4] Y. Gallot, Cyclotomic polynomials and prime numbers, preprint, http://yves.gallot.pagesperso-orange.fr/papers/cyclotomic.pdf
[5] R. K. Guy, Unsolved Problems in Number Theory, third ed., Problem Books in Mathematics, Springer-Verlag, 2004.
[6] J. Knauer and J. Richstein, The continuing search for Wieferich primes, Math. Comp. 74 (2005), no. 251, 1559-1563 (electronic).
[7] K. Motose, On values of cyclotomic polynomials. II, Math. J. Okayama Univ. 37 (1995), 27-36 (1996).
[8] M. B. Nathanson, Elementary Methods in Number Theory, Graduate Texts in Mathematics, vol. 195, Springer-Verlag, 2000.
[9] V. Shevelev, Overpseudoprimes, Mersenne Numbers and Wieferich primes, preprint, arXiv:0806.3412v7 [math.NT] (2008).
[10] V. Shevelev, Process of primoverization of numbers of the form $a^{n}-1$, preprint, arXiv:0807.2332v2 [math.NT] (2008).
[11] N. J. A. Sloane, The on-line encyclopedia of integer sequences, published electronically at http://oeis.org

Vladimir Shevelev, Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

E-mail address: shevelev@bgu.ac.il
Gilberto García-Pulgarín, Universidad de Antioquia, Medellín-Colombia
E-mail address: gigarcia@ciencias.udea.edu.co
Juan Miguel Velásquez-Soto, Departamento de Matemáticas, Universidad del Valle, Cali-Colombia

E-mail address: jumiveso@univalle.edu.co
John H. Castillo, Departamento de Matemáticas y Estadística, Universidad de Nariño, San Juan de Pasto-Colombia

E-mail address: jhcastillo@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 11A51; Secondary 11A41, 11A07.
 Key words and phrases. Mersenne numbers, cyclotomic cosets of 2 modulo n, order of 2 modulo n, Poulet pseudoprime, super-Poulet pseudoprime, overpseudoprime, Wieferich prime.

