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Abstract

An analytical approach is developed to obtain the exact expressions for the two-point resistance,
and the total effective resistance of the complete graph minus N edges of the opposite vertices.
These expressions are written in terms of certain numbers that we introduced which we call the
Bejaia and the Pisa numbers, these numbers are the natural generalizations of the bisected Fi-
bonacci and Lucas numbers. The correspondence between random walks and the resistor networks
is then used to obtain the exact expressions for the the first passage and mean first passage times
on this graph.
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1 Introduction

A random walk on an undirected connected graph G is a process that starts at some vertex of G,
and at each time step moves to one of the neighbors of the current vertex, each of them chosen
with equal probability. The basic quantity relevant to random walks is the first passage time (
FPT ), or the hitting time, this is the expected time to hit a target node for the first time for a
walker starting from a source node. This quantity is an indicator that characterize the transport
efficiency and carries much information of random walks. It has been shown that the escape
probability, the (FPT) and the commute time (the random round tripe between two nodes) of
random walks are related to the effective resistance [1, 2, 3]. Therefore, the effective resistance
provides an alternative way to compute the (FPT). A nice interpretation of the two-point resistance
Rij between nodes i and j was given by Klein and Randic [4], as a measure of how close these
nodes are: for unit conductances, Rij is small when there are many paths between the nodes i and
j , and large when there are few paths, between the nodes i and j. With this interpretation in
mind, the two-point resistance sometimes is called the resistance distance between nodes i and j,
i.e., the two-point resistance enjoys the properties of a distance function. An interesting quantity
related to the two-point resistance in a resistor network (undirected graph G = (V,E) with vertex
set V and edge set E, with unit resistors as edges) is the total resistance distances of the graph
G, denoted by R(G). Recently, this quantity was shown to be equal to the network criticality [5]:
a measure for robustness of a network to changes in traffic, topology, and community of interest.
The computation of the two-point resistance of graphs are usually difficult to obtain in a closed
form, however, for certain graphs with symmetries like the undirected circulant graphs, this may
be possible. The undirected circulant graph [6], is a graph whose vertices can be ordered so that
the adjacency matrix is a symmetric circulant matrix, the N -cycle and the complete graphs are
examples of the circulant graphs. Chau and Basu [7], derived recently a formula to compute the
(FPT) of the random walk on the N -cycle graph with 2p neighbors, i.e., the undirected circulant
graph of the type CN (1, 2, · · · , p) . Their formula is based on Lovasz’s formula for the expected
hitting time of random walk on a finite graph [8]. Wu in his paper [9], on the theory of resistor
network, derived a formula to compute the two-point resistance between any two nodes in terms
of the eigenvalues and the eigenvectors of the Laplacian matrix associated with the finite electrical
network. By using his formula, he obtained two-point resistance of the complete and the cycle
graphs. By diagonalizing the Laplacian matrix associated with the N -cycle graph with 2p nearest
neighbors and usingWu’s formula we obtain a formula to compute the two-point resistance between
any two vertices of this graph. Then it is not difficult to show that this formula when multiplied
by the number of edges |E| is identical to the (FPT) given in [7]. This is expected, since we are
dealing with the undirected circulant graphs that enjoy rotational symmetry, each vertex of these
graphs is a vertex-transitive, i.e., looks the same from any vertex, then the first passage time is
symmetric under the exchange of the vertices. Therefore, we may as well consider that the random
walk has started at vertex 0, and after some steps reaches a given vertex say l. Using the commute
time formula given by Chandra et al. [3], Cij = 2|E|Rij , then the first passage time H0l may be
written as H0,l = |E|R0,l. For example, the two-point resistance between the vertex 0 and any
other vertex l of the N -cycle is R0,l = l(1− l/N), and since the number of edges is |E| = N , then
the expression for the (FPT) of the random walk on the N -cycle gives H0,l = l(N − l). This result
was derived previously using probabilistic techniques on graphs [10]. In this paper, we give the
exact expression for the two-point resistance between any two vertices of the of the complete graph
minus N edges of the opposite vertices, N is assumed to be odd, this graph is denoted by K−N

N .
If N is even, then, the complete graph minus N/2 edges of the opposite vertices is known as the
cocktail-party graph [6], in this case the the two-point resistance computations are straightforward
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unlike in this paper. The general formula to compute the two-point resistance of the graph K−N
N

turns out to be given by trigonometrical power sums. To obtain the exact two-point resistance,
an extra care is needed to use a formula by Schwatt [11] on trigonometrical power sums, since the
latter does not give the right answer when the powers are congruent to N . Therefore, we have
to solve this problem first before doing our computations. As a consequence, computing the two-
point resistance is not direct and is done in steps, once the right formula for the trigonometrical
power sum is obtained, we use the binomial coefficients representation by residues, and the linearity
property of the residue operator. This property played an important role in our paper, that enabled

us to avoid carrying out certain sum of binomials like
∑[j/N ]

p=1 (−1)pN
(

2j
j−pN

)

, this turns out to be

an open mathematical problem in combinatorics 1, the only known closed formula for this sum is
for N = 1, 2, 3. Then, using the Chebyshev polynomial of the first kind, and introducing certain
numbers which we call the Bejaia and the Pisa numbers, the two-point resistance is obtained. We
find that the names Bejaia and Pisa fit nicely, here, simply because Fibonacci started thinking
about his famous numbers while he was in bejaia and wrote them when he went back to Pisa.
These numbers, have nice properties like the Fibonacci and the Lucas numbers. More precisely,
these numbers are the natural generalizations of the bisected Fibonacci and Lucas numbers, that

is, F2n = 1√
5

(

3+
√
5

2

)n

− 1√
5

(

3−
√
5

2

)n

, and L2n =

(

3+
√
5

2

)n

+

(

3−
√
5

2

)n

respectively. The total

effective resistance, and the important parameters of random walks on this graph such as the
(FPT), and the mean first passage times (MFPT) are also given by exact expressions. It is
interesting to note that for regular graphs, we obtained the (MFPT) expression through a very
simple formula in terms of The total effective resistance, and the degree of the graph..

2 The two-point resistance of the complete graph minus N edges

In this section, exact formula for the two-point resistance of the complete graph minus N edges
of the opposite vertices is obtained, here, N is assumed to be odd, this graph is denoted by K−N

N .
Our computations are done in steps and somehow similar to the computations of the two-point
resistance of the N -cycle with four nearest neighbors carried out recently by the author [12]. Our
computations of the two-point resistance is based on a theorem by Wu [9], which states that for a
resistor network with unit resistance, the the two point resistance between any two nodes α and
β is given by

Rα,β =

N−1
∑

n=1

|ψnα − ψnβ|2
λn

, (1)

where 1 ≤ α, β ≤ N and λn, ψn are the eigenvalues and the eigenvectors of the Laplacian L
associated with the resistor network having unit resistance, that is, graphs. The Laplacian matrix
L associated with the graph G = (V,E) is L = D −A, where D is the diagonal matrix of degrees
and A is the adjacency matrix representing the edge set E. Now, let us give a suitable method
for obtaining the eigenvalues for certain circulant graphs and in particular The eigenvalues of the
graph K−N

N . The complete graph minus N edges is a circulant graph [6], that is, a graph whose
vertices can be ordered so that the adjacency matrix A is a circulant matrix, mathematically, this
means that the iith row is a cyclic shift of the zeroth row by i, ai,j = a0,j−i, i, j = 0, 1, · · · , N−1, so
that the vertices N and 0 are identical, here, note that the subscripts are reduced modulo N . The
graph K−N

N is an undirected graph with no self-loops, i.e., ai,j = aji and aii = 0 respectively. Our

1The author would like to thank W. H. Gould and R. Sprugnol for correspondence on this problem.
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graph belongs to the the undirected circulant graphs denoted by CN (1, 2, · · · , p), where p < N/2, if
N is even, and p < N−1

2 , if N is odd, here, each vertex i is adjacent to 2p vertices i±1, i±2, · · · , i±p
mod N . In particular, if p = 1, this is the N -cycle graph in which each vertex is adjacent to two
vertces, and if p = N/2, p = N−1

2 , then, one obtains a complete graph whose number of vertices N
is even, odd respectively. Therefore, if N is odd, the complete graph minus N edges as a circulant
graph is CN (1, 2, · · · , N−1

2 − 1), so that each vertex is adjacent to N − 3 vertices. The matrix
elements of the Laplacian matrix L of the graph G, may be written as

Lmn =







d if m = n,
−1 if if m and n are adjacents
0 otherwise,

(2)

where d, is the degree of the graph that is, the number of unit resistors connected to ith vertex.
In order to obtain the eigenvalues of the Laplacian of the graph, it is more convenient to read the
matrix elements of the adjacency matrix A using circulant graphs. For example, the Laplacian
for the N -cycle graph, the N -cycle with four nearest neighbors, and the complete graph minus N
edges for N odd, may be written as

Lmn = 2δm,n − (δm,n+1 + δm,n−1), (3)

Lmn = 4δm,n − (δm,n+1 + δm,n−1)− (δm,n+2 + δm,n−2), (4)

and
Lmn = (N − 3)δm,n − (δm,n+1 + δm,n−1)− · · · − (δm,n+(N−1

2
−1) + δm,n−(N−1

2
−1)), (5)

respectively. We should note that row and column labels of δm,n±k are to be considered modulo
N . Since the matrix Ψ with elements ψn,k = 1√

N
exp(2πinkN ) is a unitary transformation, this is a

consequence of the identity (Ψ∗Ψ)mn = 1
N

∑N
k=1 exp[−2πik(m−n)/N ] = δm,n, then, the hermitian

Laplacian matrix L may be diagonalized using the matrix Ψ. The matrix elements δm,n+k may
be considered as matrix elements of the kth power of the rotation matrix R of finite closed lattice
[13], i.e, (Rk)mn = δm,n+k. As a consequence using Ψ, δm,n+k may be written as

(Rk)mn = (Ψ∗RkΨ)mn =
1

N

∑

j,l

δj,l+k exp[2πi(ln − jm)/N ]

= exp[−2πikm/N ]
1

N

∑

l

exp[2πi(n −m)/N ]

= δm,n exp[−2πikm/N ], (6)

similarly, (R−k)mn = δm,n exp[2πikm/N ]. Now, this representation may be used to obtain the
eigenvalues of the laplacian of any N -cycle graph with 2p nearest neighbors, for example the eigen-
values for theN -cycle graph, theN -cycle graph with four nearest neighbors are λn = 4 sin2(nπ/N),
λn = 4 sin2(nπ/N) + 4 sin2(2nπ/N) respectively. In general, the eigenvalues of the N -cycle with
2p nearest neighbors are

λn = 4

p
∑

m=1

sin2(nmπ/N).

Thus, the eigenvalues of the Laplacian of the complete graph minus N edges are

λn = 4

N−1

2
−1

∑

m=1

sin2(nmπ/N), (7)

3



by using the identity

4

N−1

2
∑

m=1

sin2(nmπ/N) = N, (8)

it follows that the even and the odd eigenvalues are

λ2n = N − 4 sin2(nπ/N)

and
λ2n−1 = N − 4 cos2((2n − 1)π/2N)

respectively. Substituting the expressions for the eigenvalues λn of the Lapacian in Eq. (1), then
the two point resistance of the graph K−N

N may be written as

Rαβ = R(|α− β|) = R(l)

=
1

N

N−1
∑

n=1

4 sin2(nlπ/N)

N − 4 sin2(N−1
2 nπ/N)

=
4

N2

N−1

2
∑

n=1

sin2(2nlπ/N)

1− 4
N sin2(nπ/N)

+
4

N2

N−1

2
∑

n=1

sin2((2n − 1)lπ/N)

1− 4
N cos2((2n − 1)π/2N)

. (9)

Therefore, to compute the two-point resistance we need to compute the last two sum that we
denote by R1(l) and R2(l) respectively. The first term may be expanded to give

R1(l) =
4

N2

N−1

2
∑

n=1

sin2(2nlπ/N)

1− 4
N sin2(nπ/N)

=
2

N2

∞
∑

j=0

(4/N)j

(

sin2j(nπ/2N)

l
∑

s=1

(−1)s+1 l

l + s

(

l + s

l − s

)

22s

N−1

2
∑

n=1

sin2s(2nπ/N)

)

=
1

N2

∞
∑

j=0

(4/N)j

(

l
∑

s=1

(−1)s+1 l

l + s

(

l + s

l − s

)

24s
s
∑

m=0

(−1)m
(

s

m

)N−1
∑

n=1

sin2(s+j+m)(nπ/N)

)

.

(10)

In obtaining the last two lines of the above equation we have used the trigonometrical identity

cos 2(2lnπ/N) =

l
∑

s=0

(−1)s
l

l + s

(

l + s

l − s

)

22s sin2s(2nπ/N),

and the symmetry sin2J nπ/N = sin2J(N − 1)nπ/N for 1 ≤ n ≤ N − 1. As it was explained in
our recent paper [12], that the suitable formula for the sum over n is a slight deformation of the
formula given by Schwatt [11]. The suitable formula that we need is

N−1
∑

n=1

sin2(s+j+m)(nπ/N) =
N

22(s+j+m)

(

2(j + s+m)

j + s+m

)

+
N

22(j+s+m)−1

[(j+s+m)/N ]
∑

p=1

(−1)p
(

2(j + s+m)

j − pN

)

. (11)
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Therefore, the computation of R1(l) splits into two parts R1(l)
′

and R1(l)
′′

, where

R1(l)
′

=
1

N

l
∑

s=1

(−1)s+1 l

l + s

(

l + s

l − s

)

(4N)s
s
∑

m=0

(−1)m
(

s

m

)

(N/4)m

×
( ∞
∑

J=0

(1/N)J
(

2J

J

)

−
s+m−1
∑

J=0

(1/N)J
(

2J

J

)

)

(12)

and

R1(l)
′′

=
1

N

l
∑

s=1

(−1)s+1 2l

l + s

(

l + s

l − s

)

(4N)s
s
∑

m=0

(−1)m
(

s

m

)

(N/4)m

×
( ∞
∑

J=0

(1/N)J
[J/N ]
∑

p=1

(−1)p
(

2J

J − pN

)

−
s+m−1
∑

J=0

(1/N)J
[J/N ]
∑

p=1

(−1)p
(

2J

J − pN

)

)

, (13)

where J = j + s. The next thing to do is to evaluate the sum over J , to do so we use the
representation of the binomial coefficients by residue [14]. First, let us recall the definition of the
residue operator, if G(w) =

∑∞
k=0 akw

k is a generating function for a sequence {ak}. Then the
k-th coefficient of G(w) may be represented by the formal residue as follows

ak = reswG(w)w
−k−1.

In particular, the generating function of the binomial coefficient sequence
(n
k

)

for a fixed n is given
by

G(w) =

n
∑

k=0

(

n

k

)

wk = (1 + w)n,

and hence
(

n

k

)

= resw(1 + w)nw−k−1.

The other binomial coefficient that we need is the one that in which n takes all integer values, like
the first sum over J given in Eq. (12), this particular binomial coefficient is given by

(

2n

n

)

= resw(1− 4w)−1/2w−n−1.

Before finishing this brief summary, we should mention one important property of the residue
operator res, namely linearity. This is crucial in our computations, linearity states that given
some contants α and β, then

αreswG1(w)w
−k−1 + βreswG2(w)w

−k−1 = resw(αG1(w) + βG2(w))w
−k−1.

Therefore, the first sum over J in Eq. (12) may be written as

∞
∑

J=0

(1/N)J
(

2J

J

)

= resw(1− 4w)−1/2
∞
∑

J=0

(1/Nw)Jw−1 =

√
N√

N − 4
(14)
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As a result the first term of Eq. (12) may be written as

1

N

l
∑

s=1

(−1)s+1 l

l + s

(

l + s

l − s

)

(4N)s
s
∑

m=0

(−1)m
(

s

m

)

(N/4)m
∞
∑

J=0

(1/N)J
(

2J

J

)

=
1

2N

√
N√

N − 4

l−1
∑

k=0

(−1)l+k+1 2l

2l − k

(

2l − k

k

)(

√

N(4−N)

)2(l−k)

, (15)

where we have set l − s = k. Now, the sum over k of Eq. (15) is nothing but the normalized

Chebyshev polynomial of the first kind C2l

(

√

N(4−N)
)

without the term k = l, where

C2l(x) = 2T2l(x/2) =

l−1
∑

k=0

(−1)k
2l

2l − k

(

2l − k

k

)

x2l−2k,

is the normalized Chebyshev polynomial [15], and

T2l(x/2) =
1

2

[(

x

2
+
√

(x/2)2 − 1

)2l

+

(

x

2
−
√

(x/2)2 − 1

)2l
]

.

Therefore, equation (15) may be written as

1

2N

√
N√

N − 4

l−1
∑

k=0

(−1)l+k+1 2l

2l − k

(

2l − k

k

)(

√

N(4−N)

)2(l−k)

=
1

2N

√
N√

N − 4
(−1)l+1

(

C2l

(

√

N(4−N)− 2(−1)l
)

= −1

2

1
√

N(N − 4)

(

(N − 2 +
√

N(N − 4)

2

)2l
+
(N − 2−

√

N(N − 4)

2

)2l
− 2

)

= −1

2

√

N(N − 4)B2
l (N), (16)

where Bl(N) are Bejaia numbers that are defined below. In order to make our formulas nicer and
less complicated, we introduce certain numbers Bl(N), that we call the Bejaia numbers given by
the following expression

Bl(N) =
1

√

N(N − 4)

(

(N − 2 +
√

N(N − 4)

2

)l
−
(N − 2−

√

N(N − 4)

2

)l
)

. (17)

Then,

B2
l (N) =

1

N(N − 4)

(

(N − 2 +
√

N(N − 4)

2

)2l
+
(N − 2−

√

N(N − 4)

2

)2l
− 2

)

,

this is reminiscent of the relation F 2
l = 1

5

(

L2l − 2(−1)l
)

, where Fl and L2l are the Fibonacci and

the Lucas numbers respectively. Therefore, we may define the Bejaia’s cousin numbers Pl(N),
that we call the Pisa numbers defined by

Pl(N) =
(N − 2 +

√

N(N − 4)

2

)l
+
(N − 2−

√

N(N − 4)

2

)l
, (18)
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so that B2
l (N) = 1

N(N−4)(P2l(N)− 2). The Bejaia numbers, and the Pisa numbers are generaliza-
tions of the bisected Fibonacci and the Lucas numbers respectively. For N = 5, then the Bejaia
numbers Bl(5) are nothing but the bisection of the Fibonacci numbers, F2l, and similarly, the
Pisa numbers Pl(5), are the bisection of the Lucas numbers, that is, L2l, see sequences (A001906,
A005248) [16]. We now go to the second term of Eq. (12), this time the summation over J is a
finite sum and the suitable residue representation is

s+m−1
∑

J=0

(1/N)J
(

2J

J

)

=

s+m−1
∑

J=0

(1/N)J resw=0(1 + w)2Jw−J−1

= Nresw=0
(1 + w)2(s+m)

(Nw)s+m((1 + w)2 −Nw)
(19)

Using the above equation and summing over m, and then evaluating the residue, the second term
of Eq. (12) becomes

1

N

l
∑

s=1

(−1)s
l

l + s

(

l + s

l − s

)

(4N)s
s
∑

m=0

(−1)m
(

s

m

)

(N/4)m
s+m−1
∑

J=0

(1/N)J
(

2J

J

)

=
1

2
resw=0

1

(w − (
N−4)−

√
N(N−4)

2 )(w − (
N−4)+

√
N(N−4)

2 )

(

C2l

( i(1 −w2)

w

)

− 2(−1)l
)

=
B2l(N)

2
(20)

In order to compute the first term of Eq. (13), we first, sum over J which is done through residue
representation as follows

∞
∑

J=0

(1/N)J
[J/N ]
∑

p=1

(−1)p
(

2J

J − pN

)

= −resw

∞
∑

J=0

(1/N)J (1 + w)2Jw−J−1
( wN

1 + wN

)

= − N
√

N(N − 4)

(

N−2−
√

N(N−4)

2

)N

1 +
(

N−2−
√

N(N−4)

2

)N
, (21)

in obtaining Eq. ( 21), we allowed the sum over p to go to infinity, since for p > [J/N ], the
binomial is identically zero and subtracted the p = 0 term from the infinite geometrical series
∑∞

p=0(−1)p(wN )p, |w| < 1. Then, the sum of the first term in Eq. (13) reads

1

N

l
∑

s=1

(−1)s+1 2l

l + s

(

l + s

l − s

)

(4N)s
s
∑

m=0

(−1)m
(

s

m

)

(N/4)m
∞
∑

J=0

(1/N)J
[J/N ]
∑

p=1

(−1)p
(

2J

J − pN

)

=
√

N(N − 4)

(

N−2−
√

N(N−4)

2

)N

1 +
(

N−2−
√

N(N−4)

2

)N
B2
l (N). (22)

Finally, we come to the last computation of the first part of the the two-point resistance, that is,
the second term in Eq. (13). This time the sum over J is finite and one has

s+m−1
∑

J=0

(1/N)J
[J/N ]
∑

p=1

(−1)p
(

2J

J − pN

)

=
wN

1 + wN
resw=0

(1 + w)2(s+m)

(Nw − (1 + w2))(Nw)s+m
. (23)
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In the above equation we have discarded a term whose residue at w = N − 2−
√
N2 − 4N do not

contribute and has a vanishing residue at w = 0. Summing over m, then, the residue computation
at the pole w = 0 of order 2l −N gives

1

N

l
∑

s=1

(−1)s
2l

l + s

(

l + s

l − s

)

(4N)s
s
∑

m=0

(−1)m
(

s

m

)

(N/4)m
s+m−1
∑

J=0

(1/N)J
[J/N ]
∑

p=1

(−1)p
(

2J

J − pN

)

= −B2l−N (N). (24)

It is interesting to note that this term contributes only for l ≥ (N +1)/2. As a result, now, adding
the different contributions given by equations (16), (20), and (24), then, the first term R1(l) of the
two-point resistance of the graph K−N

N has the following closed formula

R1(l) =
4

N

N−1

2
∑

n=1

sin2(2nlπ/N)

N − 4 sin2(nπ/N)
=

B2l(N)

2
−
√

N(N − 4)

2
B2
l (N)

1−
(

(N−2−
√

N(N−4)

2

)N

1 +
(

N−2−
√

N(N−4)

2

)N
(25)

The computations of the second term of the two-point resistance R(l), namely, R2(l), are to a
certain extent similar to those of R1(l), the details of these computations will be given in appendix
A . Although, not all the contributions are the same as in R1(l), the total contribution give exactly
the same results obtained for R1(l), then, the second term R2(l) is

R2(l) =
4

N

N−1

2
∑

n=1

sin2((2n − 1)lπ/N)

N − 4 cos2((2n − 1)π/2N)

=
B2l(N)

2
−
√

N(N − 4)

2
B2
l (N)

1 −
(

(N−2−
√

N(N−4)

2

)N

1 +
(

N−2−
√

N(N−4)

2

)N
. (26)

Therefore, the final expression for the two-point resistance of the graph K−N
N , reads;

R(l) =
1

N

N−1
∑

n=1

4 sin2(nlπ/N)

N − 4 sin2(N−1
2 nπ/N)

=

= B2l(N)−
√

N(N − 4)B2
l (N)

1−
(

(N−2−
√

N(N−4)

2

)N

1 +
(

N−2−
√

N(N−4)

2

)N
, (27)

Where N > 4, and l < N+1
2 .

3 The total effective resistance, and the simple random walk on

the complete graph minus N edges

Effective resistances in electrical networks, have been known to have far reaching implications in
a variety of problems. Recurrence and transience in random walks in infinite networks Doyle and
Snell [1], and the covering and commute times of random walks in graphs [2, 3] can be determined
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by the effective resistance. A simple random walk, on a graph is conveniently represented by its
transition probability Pij = 1

d(i) , if i, j are adjacent vertices and 0 otherwise (where d(i) is the

degree of i). This is the probability the walk move from vertex i to vertex j, given that we are
at vertex i. There are important parameters associated with random walks on graphs such as the
(FPT) and and commute time that may be written in terms of the effective resistance. The (FPT)
Hij is the expected number of steps it takes a walk that starts at i to reach j. The commute
time Cij is the expected number of steps that it takes a walk to go from i to j and back to i so
Cij = Hij +Hji. It has been proved by Chandra et al. [3] that the commute time Cij is equal to
2|E|Rij , and from the total resistance distance of the graph G, introduced by Klein and Randic
[4] R(G) =

∑

i<j Rij, then

R(G) =
1

2|E|
∑

i<j

(Hij +Hji) =
1

2|E|
∑

ij

Hij (28)

that, is, the total effective resistance of a graph is proportional to the expected commute time
averaged over all pairs of vertices. Given a closed form expression for the effective resistance, then
the total effective resistance R(G, the (FPT), and (MFPT), may be obtained in closed forms. The
expression for (FPT) of the simple random walk on he complete graph minus N edges, may be
written as H0,l = |E|R(l), since the graph is regular and has a rotational symmetry. Now, the

total number of edges in this graph is N(N−3)
2 , therefore, the exact expression for the (FPT) of the

simple random walk on the graph K−N
N , reads

H0,l =
N(N − 3)

2

(

B2l(N)−
√

N(N − 4)B2
l (N)

1 −
(

(N−2−
√

N(N−4)

2

)N

1 +
(

N−2−
√

N(N−4)

2

)N

)

. (29)

In order to compute the (MFPT), we need an expression for the total effective resistance of this
graph, this may be seen as follows,

H0,l =
1

N

N−1
∑

l=1

H0,l =
2|E|
N2

N−1
∑

l=1

N

2
R(l) =

d

N
R(G), (30)

where we have used the formula 2|E| = Nd for regular graphs, here, the degree of the graph is
d = N − 1. The expression of the total effective resistance may be obtained in a closed form by
using the expressions for the sums

∑N−1
l=1 B2l(N) and

∑N−1
l=1 B2

l (N) evaluated in AppendixB.1. As
a consequence, the total resistance may be computed to give

R(K−N
N ) = N

N−1

2
∑

l=1

R(l)

= N

(

PN (N)− (N − 2)

N(N − 4)
− BN (N)−N
√

N(N − 4)

1−
(

(N−2−
√

N(N−4)

2

)N

1 +
(

N−2−
√

N(N−4)

2

)N

)

, (31)

in obtaining the above formula for the total resistance we used the fact that B1(N) = 1, and
P1(N) = N − 2. Thus, the (MFPT) of the simple random walk on K−N

N , is

H0,l = (N − 1)

(

PN (N)− (N − 2)

N(N − 4)
− BN (N)−N
√

N(N − 4)

1−
(

(N−2−
√

N(N−4)

2

)N

1 +
(

N−2−
√

N(N−4)

2

)N

)

. (32)
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It has been shown in [4], that the total effective resistance of a connected graph G with N vertices
may be written in terms of the Laplacian eigenvalues as R(G) = N

∑N−1
n=1

1
λn

, therefore, the

equivalent formula for the (MFPT) of the simple random walk on the graph K−N
N , is

H0,l = (N − 1)

N−1
∑

n=1

(

4

N−1

2
−1

∑

m=1

sin2mnπ/N
)−1

(33)

Comparison with eq. (32) entitles us to draw the conclusion that we should have the following
identity

N−1
∑

n=1

(

4

N−1

2
−1

∑

m=1

sin2mnπ/N
)−1

=

(

PN (N)− (N − 2)

N(N − 4)
− BN (N)−N
√

N(N − 4)

1−
(

(N−2−
√

N(N−4)

2

)N

1 +
(

N−2−
√

N(N−4)

2

)N

)

.

(34)

For example, we may check the above identity for the graph K−7
7 , i.e., the 7−cycle graph in which

every vertex is adjacent to 4 nearest neighbors. In this case the Bejaia and the Pisa numbers are
B7(7) = 12649, and P7(7) = 57965 respectively, see Appendix B, then, computing both sides of
Eq. (34) give the value 1.3846153.

4 Conclusion

To conclude, in this work, we were able to obtain the exact formula for the two-point resistance,
the total effective resistance, the (FPT) and the (MFPT) of the simple random walk on the the
complete graph minus N edges of the opposite vertices K−N

N . These formulas are written in terms
of certain numbers that we called the Bejaia, and the Pisa numbers that are generalizations of the
bisected Fibonacci and the Lucas numbers. By uncovering the properties of the Bejaia, and the
Pisa numbers, then the exact two-point resistance may be obtained for any number of vertices N of
the graph K−N

N . These numbers were shown to be related to each other through some identities,
similar to the relations between the Fibonacci and the Lucas numbers. Using these identities, then
the sum of the Bejaia and the Pisa numbers and their powers were possible and given in closed
forms which played a crucial role in obtaining the exact formulas for the total effective resistance,
the (FPT), and the (MFPT) of the simple random walk on the the graph K−N

N . The connection
between the random walk and the bisected Fibonacci numbers have been already noticed in the
literatures [17], If, one consider a particle executing random walk on the line that starts at the
point 1 and arrives eventually at the point 5 in a total of 4 + 2l probable unit steps, l of which
are in the negative direction. Then, the number of distinct walks satisfying these restrictions
is given by the bisection of the Fibonacci numbers (alternate Fibonacci numbers) . The same
random walk is generated by computing the two-point correlators (intersection numbers) on the
moduli space of holomorphic maps, of a fixed degree d, from a sphere into the Grassmannian of
2-planes in C

5[18]. In a recent work [12], the exact two-point resistance of the exact expression
for the two-point resistance of the square of the N -cycle graph, CN (1, 2), in which every vertex
is connected to its two neighbors and neighbor’s neighbors, in which it was shown to be written
in terms of two-point resistance of the N -cycle graph CN , the square of the Fibonacci numbers,
and the bisected Fibonacci numbers. Therefore, the two-point resistance of the graph K−N

N , in
this paper generalizes naturally the two-point resistance of the graph CN (1, 2). In general, the
important parameters of random walks on circulant graphs are related to the Fibonacci numbers
and their generalizations.
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A The explicit computation of the sum R2(l)

Here, we will show that the sun R2(l) given in Eq. (35) is exactly equal to R1(l), see Eq. (25. The
expression for R2(l) may be written as

R2(l) =
4

N

N−1

2
∑

n=1

sin2((2n − 1)lπ/N)

N − 4 cos2((2n − 1)π/2N)

=
2

N2

∞
∑

j=0

(4/N)j
l
∑

s=1

(−1)s+1 l

l + s

(

l + s

l − s

)

24s

×
(

s
∑

m=0

(−1)m
(

s

m

)

N−1

2
∑

n=1

cos2(s+j+m)((2n − 1)π/2N)

)

. (35)

Using the following identity

N−1

2
∑

n=1

cos2(s+j+m)((2n − 1)π/2N) =
1

2

N−1
∑

n=1

cos2(s+j+m)(nπ/2N)

+
1

2

N−1
∑

n=1

(−1)n−1 cos2(s+j+m)(nπ/2N), (36)

one can show that the suitable formula for the power sums in Eq. (36), that take into account
that j may be congruent to N , is

N−1

2
∑

n=1

cos2(s+j+m)((2n − 1)lπ/N)) =
N

22(s+j+m)+1

(

2(j + s+m)

j + s+m

)

+
N

22(j+s+m)

[(j+s+m)/2N ]
∑

p=1

(

2(j + s+m)

j − 2pN

)

− N

22(j+s+m)

[(j+s+m)/2N ]
∑

p=1

(

2(j + s+m)

j − (2p − 1)N

)

. (37)

The terms on the right hand of Eq. (37) are similar to those on the right of Eq. (11), the only
difference is that this time we have sums over even and odd p without the alternating factor (−1)p.
Therefore, the corresponding sums over J may be computed to give

∞
∑

J=0

(1/N)J
[J/2N ]
∑

p=1

(

2J

J − 2pN

)

= resw

∞
∑

J=0

(1/N)J (1 + w)2Jw−J−1
( w2N

1− w2N

)

=
N

√

N(N − 4)

(

N−2−
√

N(N−4)

2

)2N

1−
(

N−2−
√

N(N−4)

2

)2N
, (38)
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and

∞
∑

J=0

(1/N)J
[J/2N ]
∑

p=1

(

2J

J − (2p − 1)N

)

= resw

∞
∑

J=0

(1/N)J (1 + w)2Jw−J−1
( wN

1−w2N

)

=
N

√

N(N − 4)

(

N−2−
√

N(N−4)

2

)N

1−
(

N−2−
√

N(N−4)

2

)2N
, (39)

respectively. The first sum over J in Eq. (35) is exactly R1(l)
′

, this was already computed, that
is, the sum of the two contributions given by Eqs. (16) and (20) respectively. The second and the
third sums over J may be computed using the previous computations and the last two equations,
to obtain

1

N

l
∑

s=1

(−1)s+1 2l

l + s

(

l + s

l − s

)

(4N)s
s
∑

m=0

(−1)m
(

s

m

)

(N/4)m
∞
∑

J=0

(1/N)J
[J/2N ]
∑

p=1

(

2J

J − pN

)

=

−
√

N(N − 4)

(

N−2−
√

N(N−4)

2

)2N

1−
(

N−2−
√

N(N−4)

2

)2N
B2
l (N), (40)

and

1

N

l
∑

s=1

(−1)s
2l

l + s

(

l + s

l − s

)

(4N)s
s
∑

m=0

(−1)m
(

s

m

)

(N/4)m
∞
∑

J=0

(1/N)J
[J/2N ]
∑

p=1

(

2J

J − (2p− 1)N

)

=

√

N(N − 4)

(

N−2−
√

N(N−4)

2

)N

1−
(

N−2−
√

N(N−4)

2

)2N
B2
l (N), (41)

respectively. Note that in obtaining the second and the third sums given by Eqs. (40), (41)
respectively, we used the fact that

s+m−1
∑

J=0

(1/N)J
[J/2N ]
∑

p=1

(

2J

J − 2pN

)

= resw

∞
∑

J=0

(1/N)J (1 + w)2Jw−J−1
( w2N

1−w2N

)

,

does not contribute to the residue, whereas the sum

s+m−1
∑

J=0

(1/N)J
[J/2N ]
∑

p=1

(

2J

J − (2p − 1)N

)

= resw

∞
∑

J=0

(1/N)J (1 + w)2Jw−J−1
( wN

1− w2N

)

,

does contribute to the residue and hence to the third sum provided l ≥ (N + 1)/2. The result of
this computation coincides with the one obtained earlier see Eq. (24), that is,

1

N

l
∑

s=1

(−1)s
2l

l + s

(

l + s

l − s

)

(4N)s
s
∑

m=0

(−1)m
(

s

m

)

(N/4)m

×
s+m−1
∑

J=0

(1/N)J
[J/2N ]
∑

p=1

(

2J

J − (2p− 1)N

)

= −
√

N(N − 4)B(2l−N)(N). (42)
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Finally, adding all the contributions given by equations (16), (20), (40), and (41), then, the second
term of the two-point resistance R2(l) of the graph K

−N
N may be written in a closed form as follows

R2(l) =
4

N

N−1

2
∑

n=1

sin2((2n − 1)lπ/N)

N − 4 cos2((2n − 1)π/2N)

=
B2l(N)

2
−
√

N(N − 4)

2
B2
l (N)

1 −
(

(N−2−
√

N(N−4)

2

)N

1 +
(

N−2−
√

N(N−4)

2

)N
. (43)

Therefore, the sums R1(l), and R2(l) are identical.

B The general properties of the Bejaia and the Pisa numbers

The Bejaia numbers may be shown to satisfy the following recursion, Bl(N) = (N − 2)Bl−1(N)−
Bl−2(N), l ≥ 2, therefore, for any N ≥ 5, one has, B0(N) = 0, B1(N) = 1, B2(N) = N − 2,
B3(N) = (N−2)2−1, etc. Similarly, the Pisa numbers satisfy Pl(N) = (N−2)Pl−1(N)−Pl−2(N),
l ≥ 2, then, for any N ≥ 5, one has P0(N) = 2, P1(N) = N − 2, P2(N) = (N − 2)2 − 2,
P3(N) = (N−2)3−3(N −2), etc. As a consequence, we have an infinity number of the Bejaia and
the Pisa sequences and the two-point resistance may be evaluated for any N , and l. The left hand
of the above trigonometrical sum enjoys the transparent symmetry R(l) = R(N − l), whereas, on
the right hand side this symmetry is not manifest. This symmetry, is checked explicitly by taking
into account Eq. (24), for l ≥ (N + 1)/2. This in turn implies that the Bejaia numbers satisfies
the following identity

B2(N−l)(N)− B2l(N)− 2B(N−2l)(N) =
√

N(N − 4)
1−

(

(N−2−
√

N(N−4)

2

)N

1 +
(

N−2−
√

N(N−4)

2

)N

(

B2
N−l(N)− B2

l (N)
)

.

(44)
This is checked to be correct using simply the definition of Bl(N) given in Eq. (17).

B.1 Closed formulas for
∑N−1

l=1 Bl(N) and
∑N−1

l=1 B2
l (N)

In order to obtain the expression of the total effective resistance in a closed form, we need to
evaluate the following sums

∑N−1
l=1 Bl(N) and

∑N−1
l=1 B2

l (N). This turns out to be possible through
certain identities satisfied by the Bejaia and the Pisa numbers, these identities are the analog of
the Fibonacci and the Lucas numbers. From the expressions for the Bejaia and Pisa numbers, one
obtains the following identities;

Bl(N) =
1

N(N − 4)

(

Pl+1(N)− Pl−1(N)
)

,

and
Pl(N) = Bl+1(N)− Bl−1(N),

from these idntities, we find

n
∑

l=1

B2
l (N) =

1

N(N − 4)

(

B2n+1(N)− B1(N)− 2n
)

, (45)
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and
n
∑

l=1

B2l(N) =
1

N(N − 4)

(

P2n+1(N)− P1(N)
)

. (46)

14



References

[1] P.G. Doyle, J.L. Snell, Random Walks and Electrical Networks, The Mathematical Association
of America, Washington, DC, 1984

[2] P. Tetali, (1991). Journal of Theoretical Probability, 4, 101 (1991)

[3] A.K Chandra, P. R Raghavan, W.L Ruzzo, R.Smolensky and P. Tiwari, P. Proceedings of the
Twenty First Annual ACM Symposium on Theory of Computing, Seattle, Washington, pp.
574586 (1989)

[4] D. J. Klein and M. Randic, Journal of Mathematical Chemistry. 12, 81 (1993)

[5] A. Tizghadam and A. Leon-Garcia, IEEE Network 24, 10 (2010).

[6] N. Biggs, Algebraic Graph Theory, second edition, Cambridge University Press, (1996)

[7] C-K Chau, and P. Basu, IEEE/ACM TRANSACTIONS ON NETWORKING. 19, 4, ( 2011)

[8] L.Lovasz, Random walk on graphs: A survey. combinatorics, 2 1 (1993)

[9] F. Y. Wu, J. Phys. A: Math. Gen. 37 6653 (2004).

[10] D.J Aldous, J.Fill, 2012. Reversible Markov chains and random walks on graphs. Available
in: http://www.stat.berkeley.edu/∼aldous/RWG/book.html

[11] I. J. Schwatt, An Introduction to the Operations with Series. Philadelphia, press of the uni-
versity of Pennsylvania, (1924).

[12] Noureddine Chair, submitted

[13] K.B. Wolf, Integral transforms in science and engineering New York and London Plenum press
(1979)

[14] G. P. Egorychev.Integral representation and the computation of combinatorial sums American
Mathematical Soc, 1984.

[15] T. J Rivlin. Chebyshev Polynomials. New York: Wiley, 1990

[16] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org

[17] C.J. Everrett, P.R. Stein, One-dimensional random walk with absorbing barriers, Discrete
Math. 17 27 (1977)

[18] Noureddine Chair, Journal of Geometry and Physics 38 170 2001

15

http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://oeis.org

	1 Introduction
	2 The two-point resistance of the complete graph minus N edges
	3 The total effective resistance, and the simple random walk on the complete graph minus N edges 
	4 Conclusion
	A The explicit computation of the sum R2(l)
	B The general properties of the Bejaia and the Pisa numbers
	B.1 Closed formulas for  l=1N-1Bl(N) and  l=1N-1Bl2(N)


