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Abstract

We find the joint distribution of three simple statistics on lattice paths of n

upsteps and n downsteps leading to a triple sum identity for the central binomial

coefficient 2n-choose-n. We explain why one of the constituent double sums counts

the irreducible pairs of compositions considered by Bender et al., and we evaluate

some of the other sums.

1 Introduction A Grand-Dyck path is a lattice path consisting of an equal

number of upsteps U = (1, 1) and downsteps D = (1,−1). The horizontal line joining the

endpoints is called ground level. The number of upsteps is the semilength of a Grand-Dyck

path, also known as its size. The number of Grand-Dyck paths of size n is obviously the

central binomial coefficient
(
2n

n

)
—choose locations for the upsteps among the 2n steps. A

Dyck path is a Grand-Dyck path that never goes below ground level, and it is primitive

if it is nonempty and its only vertices at ground level are its endpoints. The vertices at

ground level of a nonempty Grand-Dyck path split it into components, each of which is a

primitive Dyck path or an inverted primitive Dyck path. A peak in a Grand-Dyck path

is an occurrence of UD and a low peak is one that starts at ground level. A low peak is,

in particular, a component of the path.
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A Grand-Dyck path of semilength 10, with 1 low peak, 2 components
above ground level, and 4 components altogether

The generating function for Dyck paths counted by size is well known to be

C(x) =
1−

√
1− 4x

2x
.
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In Section 2, we find the 4-variable generating function for Grand-Dyck paths counted

by size, number of low peaks, number of components above ground level, and total number

of components, and in Section 3, we find a closed formula for the joint distribution of

these four statistics. In Section 4, we observe that the irreducible pairs of compositions

considered by Bender et al. [1] are equinumerous with low-peak-free Grand-Dyck paths,

and we give a bijective explanation.

2 A generating function Let F (x, y, z, w) denote the generating function

for Grand-Dyck paths where x marks size, y marks number of low peaks, z marks number

of components above ground level, and w marks total number of components. The first

return to ground level partitions nonempty Grand-Dyck paths into the 3 classes illustrated

below, where A denotes a Dyck path, A an inverted Dyck path, and B a Grand-Dyck

path.
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A first return decomposition for nonempty Grand-Dyck paths
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From this decomposition, we see that

F = 1 [for the empty path] + xyzwF + x(C(x)− 1)zwF + xC(x)wF,

an equation with solution

F (x, y, z, w) =
2

2 + 2wxz(1− y)− w(1 + z)(1 −
√
1− 4x)

. (1)

In particular, the generating function to count Grand-Dyck paths with no low peaks is

F (x, 0, 1, 1) =
1

x+
√
1− 4x

, (2)

and the generating function to count Grand-Dyck paths by number of components above

ground level is

F (x, 1, z, 1) =
2

(z + 1)
√
1− 4x− z + 1

(3)

3 An explicit count To obtain an explicit expression for the number

u(n, i, j, k) of Grand-Dyck paths of size n with i low peaks, j components above ground
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level, and k components altogether, first observe that there are
(
k

i

)
ways to place the

low peaks among the components. This reduces the problem to finding an expression for

v(n, j, k), the number of Grand-Dyck paths of size n with no low peaks, j components

above ground level, and k − j components below ground level. There are
(
k

j

)
ways to

arrange the above- and below-ground level components, so we may assume all components

above ground level precede those below ground level. Each component above ground level

has the form UUPDQD where P andQ are (possibly empty) Dyck paths; each component

below ground level has the form DRU where R is a Dyck path R flipped over. Make the

reversible transformations UUPDQD → UPDUQD and DRU → URD. Thus we see

that the Grand-Dyck paths in question are equinumerous with Dyck paths of size n and

2j + (k − j) = j + k components. It is well known that the number of Dyck paths of size

n with k components is the generalized Catalan number k
2n−k

(
2n−k

n−k

)
(arising as a k-fold

convolution of Catalan numbers). Hence,

v(n, j, k) =

(
k

j

)
j + k

2n− j − k

(
2n− j − k

n− j − k

)
,

and, as noted above, u(n, i, j, k) =
(
k

i

)
v(n− i, j − i, k − i), yielding

u(n, i, j, k) =

(
k

i

)(
k − i

j − i

)
k − 2i+ j

2n− j − k

(
2n− j − k

n− i

)
.

When i = n, as for the “sawtooth” path (UD)n, we have j = k = n and the expression

for u(n, i, j, k) is indeterminate; we must interpret it as 1.

Summing over i, j, k, we have the identity
(
2n

n

)
= 1 +

∑

i,j,k

0≤i≤j≤k≤n

j+k<2n

(
k

i

)(
k − i

j − i

)
k − 2i+ j

2n− j − k

(
2n− j − k

n− i

)
. (4)

4 Irreducible pairs of compositions Bender et al. [1] made

the following definition.

Let n = b1 + · · · + bk = b′1 + · · · + b′k be a pair of compositions of n into k positive

parts. We say this pair is irreducible if there is no positive j < k for which b1 + · · ·+ bj =

b′1 + · · ·+ b′j .

They showed that the number f(n) of irreducible ordered pairs of compositions of n

into the same (unspecified) number of parts has the generating function

∑

n≥0

f(n+ 1)xn =
1

x+
√
1− 4x

. (5)
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The generating functions in (2) and (5) are the same, which implies that irreducible

pairs of compositions of n+ 1 are equinumerous with low-peak-free Grand-Dyck paths of

size n. It is not too hard to show this bijectively using a lattice path representation of

compositions as illustrated below. Each entry ai in a composition (a1, . . . , ak) contributes

ai − 1 North steps followed by 1 East step.

b
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b b

b

b b

b
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b b b
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b b
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b
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b

b

b
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b b b

The lattice path of the
composition (3 1 2 2 3)

The paths for the irreducible pair(
(3 1 2 2 3), (1 1 6 1 2)

)
omitting the

last steps, necessarily East

The diagram on the right above represents an irreducible ordered pair of compositions.

By definition of irreducible, no East step in the first (blue) path coincides with an East

step in the second (red) path. The vertices common to both paths split the diagram

into path pairs that form parallelogram polyominoes, possibly the degenerate polyomino

consisting of 2 coincident North steps. There are several bijections [2, Ex. 6.19 ℓ] from

parallelogram polyominoes of size (semiperimeter) k to Dyck paths of size k − 1. By

elevating the resulting Dyck path (prepend an upstep, append a downstep), we get a size-

preserving bijection from parallelogram polyominoes to primitive Dyck paths. So apply

this bijection to each parallelogram polyomino to get a primitive Dyck path and use the

color of the upper path to determine whether to flip it over. The degenerate polyomino

corresponds to the Dyck path UD and we always flip this over because we don’t want

any low peaks. Lastly, concatenate the Dyck paths to obtain a low-peak-free Grand-Dyck

path. This is the desired bijection from irreducible pairs of compositions of n + 1 to

low-peak-free Grand-Dyck paths of size n.

Emanuele Munarini notes in the OEIS [3] entry for the sequence A081696 that the

number of irreducible pairs of compositions of n+1 can be expressed as
∑n

j=0

3j+1

n+j+1

(
2n−j

n−2j

)
.

In fact, our results can be used to get the following counts.

1. The number of low-peak-free Grand-Dyck paths with j components above ground

level is Munarini’s summand 3j+1

n+j+1

(
2n−j

n−2j

)
.
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2. The number of low-peak-free Grand-Dyck paths with j components above ground

level and k components altogether is j+k

2n−j−k

(
2n−j−k

n−j−k

)(
k

j

)
.

3. The number of unrestricted Grand-Dyck paths with j components above ground

level is 2j+1

2n+1

(
2n+1

n−j

)
.

4. The number of unrestricted Grand-Dyck paths with j components above ground

level and k components altogether is k
2n−k

(
2n−k

n−k

)(
k

j

)
.

5. The number of unrestricted Grand-Dyck paths with j big components above ground

level is 2j+1

n+1

(
2n+2

n−2j

)
(a big component is one of size ≥ 2).

Are there bijective proofs?
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