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We extend the classification of mixed states of quantum systems composed of arbitrary number of
subsystems of arbitrary dimensions. This extended classification is complete in the sense of partial
separability and gives 1 + 18 + 1 partial separability classes in the tripartite case contrary to a
former 1 + 8 + 1. Then we give necessary and sufficient criteria for these classes, which make it
possible to determine to which class a mixed state belongs. These criteria are given by convex roof
extensions of functions defined on pure states. In the special case of three-qubit systems, we define a
different set of such functions with the help of the Freudenthal triple system approach of three-qubit
entanglement.
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I. INTRODUCTION

The notion of entanglement [1, 2] was regarded by
Schrödinger [3, 4] to be the characteristic trait of quan-
tum mechanics. It serves as a resource for Quantum In-
formation Theory [5], a relatively new field of research
dealing with the properties, characterization and appli-
cations (mostly in quantum computation [5]) of the non-
local behavior of entangled quantum states.
For a multipartite quantum system being in a pure

state, it is easy to decide, in general, which subsystems
are entangled with some of the others or, equivalently,
which subsystems can be separated from the others. For
a multipartite quantum system being in a mixed state,
however, this partial separability problem has not been
considered in the full detail yet. This problem is twofold.
Even if we have the definitions of the different classes,
which is not self-evident at all for more-than-two-partite
systems, deciding to which class a given state belongs is
also a nontrivial task. In this paper, we work out solu-
tions for both parts of this problem. Considering the first
part of this problem, we extend the classification based
on k-separability and αk-separability given by Seevinck
and Uffink [6], which is the extension of the classification
dealing only with αk-separability given by Dür and Cirac
[7, 8]. We discuss in detail the tripartite case, then give
the definitions for systems of arbitrary number of subsys-
tems. Before we outline our solution for the second part
of the problem, we take a short detour.
If in the tripartite case we restrict ourselves to qubits,

which is a relatively well-understood chapter of the the-
ory of quantum entanglement, some interesting results
are known from the literature. From the point of view
of the present work, the most important ones are the
following three. First, (i) this is the system where the
nontrivial structure of entanglement manifested itself for
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the first time and it came to light that “there are differ-
ent kinds of entanglement” of pure states [9]. Then, (ii)
these different kinds of pure-state entanglement [9] give
rise to classes of mixed state entanglement [10]. On the
other hand, (iii) recently a beautiful correspondence was
found between the three-qubit Hilbert space and a par-
ticular FTS (Freudenthal Triple System), a correspon-
dence which is “compatible” with the entanglement of
pure three-qubit states [11]. Apart from these three, for
the sake of completeness, we have to make mention of (iv)
the famous phenomenon of monogamy of qubit systems,
which was revealed first for three-qubit systems [12] then
shown for multiqubit systems [13], and (v) the interest-
ing twistor-geometric approach of the entanglement of
three-qubit systems [14].

Item (iii) above gives us a hint of an answer to the sec-
ond part of the problem for three-qubit systems. In the
FTS approach of three-qubit entanglement some special
quantities have appeared, from which we gain real val-
ued functions on pure states. These functions have very
useful vanishing properties, which enable their convex
roof extensions [15–17] to identify all the classes that our
extended classification deals with. On the other hand,
it will be possible to define suitable functions for the
identification of the classes in general, for subsystems
of arbitrary dimensions—moreover, for arbitrary num-
ber of subsystems—in another way than was done with
the FTS approach working only for three qubits. How-
ever, we will keep the considerations coming from the
FTS approach, because these considerations have given
us the main ideas, they have advantages for the case of
three-qubits, and, besides these, they are beautiful and
interesting in themselves.

In the bipartite case, a state—either pure or mixed—
can be either separable or entangled [18], and the vanish-
ing of the convex roof extension of local entropies of pure
states is a necessary and sufficient criterion of separabil-
ity. For us, this is the archetype of the general method
of the detection of convex subsets by convex roof exten-
sions. However, for more-than-two-partite systems, the
partial separability properties have a complicated struc-
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ture, and, to our knowledge, this method was not used.
Instead of that, the usual approach was the use of witness
operators, as was done originally for three-qubit systems
[10], or other necessary but not sufficient criteria for the
detection of convex subsets [1, 2, 19, 20].

Before starting, we review the classification schemes
of states of multipartite quantum systems. One of the
main concepts here was the use of LOCC (Local Oper-
ations assisted by Classical Communication [21]) either
with certainty or with possibility, for the purpose of clas-
sification. This concept has turned out to be useful in
the restricted case when the input and output states are
both pure. First we recall the classification schemes deal-
ing with LOCC. For mixed states, only coarse-grained
classifications are worked out, which are recalled as well.

LOCC classification: Two states are equivalent under
LOCC—they are in the same LOCC class—by definition
if they can be transformed to each other with certainty
by the use of LOCC. For pure states, it turned out that
two states are equivalent under LOCC if and only if they
can be transformed into each other by LU (Local Uni-
tary) transformations [21]. So, for pure states, this gives
the most fine-grained classification scheme imaginable.
Many continuous and discrete parameters are required
to label the LOCC classes [22–26]. From the point of
view of quantum computational purposes, two LOCC-
equivalent pure states can be used for exactly the same
task. However, to our knowledge, there is no such prac-
tical criterion of LOCC equivalence for mixed states as
the LU equivalence was for pure states.

SLOCC classification: A coarse-grained classification
can be defined if we demand only the possibility of
the transformation. Two states are equivalent un-
der SLOCC (Stochastic LOCC)—they are in the same
SLOCC class—by definition if they can be transformed
into each other with non-zero probability by the use of
LOCC. For pure states, it turned out that two states are
equivalent under SLOCC if and only if they can be trans-
formed into each other by LGL (Local General Linear)
transformations [9]. (Sometimes that was called ILO,
stands for Invertible Local Operation [9], but we prefer
the uniform naming after the corresponding Lie groups.)
So this gives a coarse-grained classification scheme for
pure states. In some cases, including the three-qubit case,
only countable finite SLOCC classes arise [9]. From the
point of view of quantum computational purposes, two
SLOCC-equivalent pure states can be used for the same
task but with a different probability of success. Again,
to our knowledge, there is no such practical criterion of
SLOCC equivalence for mixed states as the LGL equiva-
lence was for pure states.

PS classification (Partial Separability): A more
coarse-grained classification involves only the partial-
separability properties. This works for both pure and
mixed states and gives only countably finite classes in
both cases. We elaborate this classification in detail in
this paper for mixed states. This classification deals with
all the possible kinds of partial separability, which are of

finite number, whose special cases are the subsets of k-
separability and αk-separability [6]. From the point of
view of quantum computational purposes, however, this
classification is a bit too coarse grained, since it does not
make distinction among pure states contained in differ-
ent SLOCC classes but having the same PS properties,
although these states may be suitable for different tasks.

PSS classification (Partial Separability extended by
pure-state SLOCC classes): A cure for the problem above
is another means of classification, which was given by
Aćın et. al. [10] only for three-qubit states. Here, the
starting point is the pure-state SLOCC classes which are
of finite number, and the only difference between the par-
tial separability classes and SLOCC classes is the split of
the three-qubit entangled class into two classes [9]. The
PSS classes arising from these classes for mixed states are
the same for biseparability, and only the tripartite entan-
gled set is divided into two classes. This classification has
the advantage of differentiating among different SLOCC
classes of pure states, and also among mixed states de-
pending on which kind of pure entanglement is needed for
the preparation of the state. However, in the majority of
the cases there are continuously infinite SLOCC classes
of pure states labeled by more than one continuous pa-
rameter [9, 27, 28], in which case it is not clear how this
classification can be carried out, if it can be at all.

The organization of this paper is as follows. In the
first half of the paper, we work out the main concepts
on three-qubit states. In Sec. II, we review the SLOCC
classification of pure three-qubit states. We recall the
conventional LU invariants (in Sec. II A) and the LSL
tensors (Local Special Linear) of the FTS approach (in
Sec. II B) by which the SLOCC classes can be identified.
Then we obtain a new set of LU invariants (in Sec. II C)
being necessary later for mixed states. In Sec. III, we
elaborate the PSS classification (which contains also the
PS classification) for mixed three-qubit states. We de-
fine the PS(S) subsets (in Sec. III A) and PS(S) classes
(in Sec. III B). Then we give the functions for the iden-
tification of the PS(S) classes (in Sec. III C). In Sec. IV,
we demonstrate the nonemptiness of some of the new
classes for the three-qubit case by explicit examples. In
Sec. V, we generalize the functions for the case of three
subsystems of arbitrary dimensions. First we see how
far the method coming from the FTS approach can go
(in Sec. VA); then we formulate a more general set of
functions working without limitations (in Sec. VB). In
Sec. VI, we generalize the construction for the case of
arbitrary number of subsystems of arbitrary dimensions.
We work out the labeling of the PS subsets (in Sec. VIA)
along with the PS classes and give a general conjecture
about their nonemptiness (in Sec. VIB). Then we con-
struct the functions identifying the PS subsets and classes
with the minimal requirements (in Sec. VIC), as well
as with stronger requirements leading to entanglement-
monotone functions (in Sec. VID). In Sec. VII, we give
a summary, some remarks, and open questions. Some
technicalities about the new set of three-qubit LU invari-
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ants and proofs of some statements about the general
construction are left to Appendixes A and B.

II. PURE THREE-QUBIT STATES

Before starting, we set some conventions that are very
convenient for the tripartite case. The labels of the sub-
systems are the numbers 1, 2, and 3, while the letters
a, b, and c are variables taking their values in the set of
labels {1, 2, 3}. When a, b, and c appear together in a
formula, they form a partition of {1, 2, 3}, so they take al-
ways different values, and the formula is understood for
all the different values of these variables automatically.
(However, sometimes a formula is symmetric under the
interchange of two such variables in which case we keep
only one of the identical formulas.)
The Hilbert space of a three-qubit system is H = H1⊗

H2⊗H3, where, after the choice of an orthonormal basis
{|0〉, |1〉} ⊂ Ha, Ha ∼= C2. The |ψ〉 ∈ H state vectors
are not required to be normalized in this section, so the
0 ∈ H zero vector is also allowed. (The physical states
arise, however, from normalized vectors.)

A. SLOCC classification by LU-invariants

It is a well-known and celebrated result of Dür, Vidal,
and Cirac [9] that “three qubits can be entangled in two
inequivalent ways.” More fully, there are 1 + 1+ 3+ 1+
1 three-qubit SLOCC classes, that is, subsets invariant
under LGL transformations.

• VNull (class Null): The zero-vector of H.

• V1|2|3 (class 1|2|3): These vectors are fully separa-
ble, which are of the form |ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉.

• Va|bc (three biseparable classes a|bc), for example,
|ψ1〉⊗ |ψ23〉 ∈ V1|23, where |ψ23〉 6= |ψ2〉⊗ |ψ3〉. For
such |ψ23〉, a representative element is the standard
B (Bell) state,

|B〉 = 1√
2

(
|00〉+ |11〉

)
. (1a)

• VW (Class W): This is the first class of genuine tri-
partite entanglement, when no subsystem can be
separated from the others. A representative ele-
ment is the standard W state,

|W〉 = 1√
3

(
|100〉+ |010〉+ |001〉

)
. (1b)

• VGHZ (Class GHZ): This is the second class
of genuine tripartite entanglement, the class
of Greenberger-Horne-Zeilinger-type entanglement.

Class n(ψ) s1(ψ) s2(ψ) s3(ψ) τ (ψ)

VNull = 0 = 0 = 0 = 0 = 0

V1|2|3 > 0 = 0 = 0 = 0 = 0

V1|23 > 0 = 0 > 0 > 0 = 0

V2|13 > 0 > 0 = 0 > 0 = 0

V3|12 > 0 > 0 > 0 = 0 = 0

VW > 0 > 0 > 0 > 0 = 0

VGHZ > 0 > 0 > 0 > 0 > 0

TABLE I. SLOCC classes of three-qubit state vectors identi-
fied by the vanishing of LU-invariants (2).

A representative element is the standard GHZ
state,

|GHZ〉 = 1√
2

(
|000〉+ |111〉

)
. (1c)

Formally speaking, these classes define disjoint, LGL-
invariant subsets of H, and cover H entirely: H =
VNull ∪ V1|2|3 ∪ V1|23 ∪ V2|13 ∪ V3|12 ∪ VW ∪ VGHZ. Ex-
cept VNull, these classes are not closed. For the partial
separability issues, we define V123 = VW ∪ VGHZ.
For any |ψ〉 ∈ H, it can be determined to which class

|ψ〉 belongs by the vanishing of the following quantities:
the norm,

n(ψ) = ‖ψ‖2, (2a)

the local entropies,

sa(ψ) = 4 det
[
trbc

(
|ψ〉〈ψ|

)]
, (2b)

[here we use a normalized quantum-Tsallis entropy of pa-
rameter 2 (see in Sec. VA), although every entropy does
the job, since they vanish only for pure density matrices]
and the three-tangle,

τ(ψ) = 4|Det(ψ)|, (2c)

which is given by Cayley’s hyperdeterminant Det(ψ)
[12, 29, 30]. All of these quantities are LU invariants,
[which is U(2)×3 in this case,] moreover, n is invari-
ant under the larger group U(8) and τ under

[
U(1) ×

SL(2,C)
]×3 ∼= U(1) × SL(2,C)×3. It follows from the

invariance properties and other observations [9] that the
SLOCC classes of pure three-qubit states can be deter-
mined by the vanishing of these quantities in the way
which can be seen in Table I.
Our aim is the characterization of the mixed states by

the vanishing of some quantities, in a similar way that
the conditions in Table I for the quantities in (2) charac-
terize the pure states. To obtain such a characterization
scheme, we need, on the one hand, the generalization of
classes defined somehow, and, on the other hand, a suit-
able set of quantities which are vanishing for some classes
determined somehow and nonvanishing for the others.
These two issues are strongly related, and it will turn
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out that we can define a set of quantities which suits well
the classification given by Seevinck and Uffink [6], but a
“more complete” set of quantities suits well an extended
but still relevant classification, which are elaborated in
Sec. III.

B. SLOCC classification by LSL-covariants

In [11], Borsten et. al. revealed a very elegant corre-
spondence between the three-qubit Hilbert space H ∼=
C2 ⊗ C2 ⊗ C2 and the FTS (Freudenthal Triple Sys-
tem) M(J ) ∼= C ⊕ C ⊕ J ⊕ J over the cubic Jordan
algebra J ∼= C ⊕ C ⊕ C. The fundamental point of
this correspondence is that the automorphism group of
this FTS is Aut[M(C ⊕ C ⊕ C)] = SL(2,C)×3, which
is just the relevant LSL subgroup of GL(2,C)×3, the
LGL-group of SLOCC equivalence for three-qubit pure
states. (This group-theoretical coincidence arises only in
the three-qubit case.) It has been shown [11] that the
vectors of different SLOCC classes of entanglement in
the three-qubit Hilbert space are in one-to-one correspon-
dence with the elements of different rank in the FTS. The
rank of an element of an FTS is characterized by the van-
ishing of some associated elements, which are covariant—
maybe invariant—under the action of the automorphism
group, resulting in conditions for the SLOCC classes in
the Hilbert-space by the vanishing or non vanishing of
SL(2,C)×3 tensors. Hence, this classification is man-
ifestly invariant under SLOCC equivalence [11], which
cannot be seen directly in the conventional classification,
since the sa local entropies are scalars only under U(2)×3.
(However, the invariance of the vanishing of the functions
sa follows easily from the fact that the local rank is in-
variant under invertible transformations [9].)

Let the three-qubit state |ψ〉 ∈ H be expressed in the
computational basis {|ijk〉 = |i〉 ⊗ |j〉 ⊗ |k〉} as

|ψ〉 =
1∑

i,j,k=0

ψijk|ijk〉.

We can assign an element ψ ∈ M(C⊕ C⊕ C) to this
and calculate some associated quantities needed for the
identification of its rank. Here we list these quantities in

Class ψ Υφ(ψ) γ1(ψ) γ2(ψ) γ3(ψ) T (ψ,ψ, ψ) q(ψ)

VNull = 0 = 0,∀φ = 0 = 0 = 0 = 0 = 0

V1|2|3 6= 0 = 0,∀φ = 0 = 0 = 0 = 0 = 0

V1|23 6= 0 6= 0,∃φ 6= 0 = 0 = 0 = 0 = 0

V2|13 6= 0 6= 0,∃φ = 0 6= 0 = 0 = 0 = 0

V3|12 6= 0 6= 0,∃φ = 0 = 0 6= 0 = 0 = 0

VW 6= 0 6= 0,∃φ 6= 0 6= 0 6= 0 6= 0 = 0

VGHZ 6= 0 6= 0,∃φ 6= 0 6= 0 6= 0 6= 0 6= 0

TABLE II. SLOCC classes of three-qubit state vectors iden-
tified by the vanishing of LSL-covariants (3).

the form in which we use them:

[Υφ(ψ)]
ijk =− εll′εmm′εnn′ψimnψlm′n′

φl
′jk

− εmm′εnn′εll′ψ
ljnψl′mn′

φim
′k

− εnn′εll′εmm′ψlmkψl′m′nφijn
′

,

(3a)

[γ1(ψ)]
ii′ = εjj′εkk′ψijkψi′j′k′

, (3b)

[γ2(ψ)]
jj′ = εkk′εii′ψ

ijkψi′j′k′

, (3c)

[γ3(ψ)]
kk′

= εii′εjj′ψ
ijkψi′j′k′

, (3d)

[T (ψ, ψ, ψ)]ijk =− εll′εmm′εnn′ψimnψlm′n′

ψl′jk

=− εmm′εnn′εll′ψ
ljnψl′mn′

ψim′k

=− εnn′εll′εmm′ψlmkψl′m′nψijn′

,

(3e)

q(ψ) = εii′εjj′εkk′εll′εmm′εnn′

× ψiklψjk′l′ψi′mnψj′m′n′

.
(3f)

(For the basic definitions of Jordan algebras, Freudenthal
triple systems and the operations and maps defined on
them, see in [11] and in the references therein.) Here the
summation for the pairs of indices occurring upstairs and
downstairs are understood, and

εii′ =

[

0 1

−1 0

]

is the matrix of the Sp(1) ∼= SL(2)-invariant non-
degenerate antisymmetric bilinear form: Since M tεM =
ε det(M), index contraction by ε is invariant under
SL(2,C) transformations. This shows that if we regard
ψ and φ as tensors that transform as a (2,2,2) un-
der SL(2,C)×3, then so do Υφ(ψ) and T (ψ, ψ, ψ), while
γ1(ψ), γ2(ψ), and γ3(ψ), being symmetric, transform as
(3,1,1), (1,3,1), and (1,1,3), respectively, and q(ψ)
transforms as (1,1,1); that is, it is scalar. [Note that
for any 2 × 2 matrix M , the determinant 2 det(M) =

εii′εjj′M
ijM i′j′ , so 2 det[γa(ψ)] = q(ψ).]

The main result of [11] is that the conditions for the
SLOCC classes can be formulated by the vanishing of
these tensors in the way which can be seen in Table II.
In the light of the conditions by the norm and the four
determinants, (see in Table I), this scheme constructed
by seven quantities seems to be redundant. Indeed, it is
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redundant for pure states, but it will turn out that this
way leads to the generalization for mixed states.

C. SLOCC classification by a new set of

LU-invariants

To follow this way, we need quantities which can be
extended from pure states to mixed states by the convex
roof construction [15–17]. There is no natural ordering
on the tensors of (3) so convex roof construction does not
work directly for them, but we can form quantities from
them taking values in the field of real numbers. During
this, we lose the covariance under SL(2,C)×3, but gain
the invariance under the group U(2)×3.
Returning from the FTS language to the Hilbert space

language, we have “state vectors”

|Υφ(ψ)〉 =
1∑

i,j,k=0

[Υφ(ψ)]
ijk|ijk〉 ∈ H,

|T (ψ, ψ, ψ)〉 =
1∑

i,j,k=0

[T (ψ, ψ, ψ)]ijk|ijk〉 ∈ H,

and “local operators”

γ1(ψ)ε =

1∑

i,i′=0

[γ1(ψ)ε]
i
i′ |i〉〈i′| ∈ Lin(H1),

γ2(ψ)ε =
1∑

j,j′=0

[γ2(ψ)ε]
j
j′ |j〉〈j′| ∈ Lin(H2),

γ3(ψ)ε =

1∑

k,k′=0

[γ3(ψ)ε]
k
k′ |k〉〈k′| ∈ Lin(H3),

associated with |ψ〉 ∈ H through (3). These are just com-
putational auxiliaries, not state vectors and local opera-
tors in the ordinary sense, because they depend nonlin-
early on the state vector |ψ〉. [Note that ε ∈ Ha∗⊗Ha∗ ∼=
Lin(Ha → Ha∗) ∼= BiLin(Ha ×Ha → C), while γa(ψ) ∈
Ha⊗Ha ∼= Lin(Ha∗ → Ha), so γa(ψ)ε ∈ Lin(Ha → Ha).]
Now, the vanishing conditions of the tensors (3) in Ta-

ble II can be reformulated. Clearly, ψ = 0 if and only if
‖ψ‖2 = 0. Taking a look at Υφ(ψ) in (3a) it turns out
that Υφ(ψ) can be written in the Hilbert space language
as

|Υφ(ψ)〉 = Y (ψ)|φ〉

with the “operator”

Y (ψ) = −γ1(ψ)ε⊗ I⊗ I− I⊗ γ2(ψ)ε⊗ I− I⊗ I⊗ γ3(ψ)ε.

Using this, the vanishing condition of Υφ(ψ) for all φ,

|Υφ(ψ)〉 = 0 ∀|φ〉 ⇐⇒ Y (ψ)|φ〉 = 0 ∀|φ〉
⇐⇒ Y (ψ) = 0

⇐⇒ ‖Y (ψ)‖2 = 0 for any norm,

so we can eliminate the quantors and φ from the condi-
tion. Using the usual complex matrix 2-norm ‖M‖2 =
tr(M †M), we have

‖Y (ψ)‖2 = 4
(
‖γ1(ψ)‖2 + ‖γ2(ψ)‖2 + ‖γ3(ψ)‖2

)
.

This formula has a remarkable structure, namely if we
note that sa(ψ) = ‖γb(ψ)‖2 + ‖γc(ψ)‖2 and γa(ψ) = 0 if
and only if ‖γa(ψ)‖2 = 0. Now turn to the vanishing of
T (ψ, ψ, ψ), given in (3e). Again, this vanishes if and only
if its norm ‖T (ψ, ψ, ψ)‖2 does. This can be calculated by
the use of the form

|T (ψ, ψ, ψ)〉 = −γ1(ψ)ε⊗ I⊗ I|ψ〉
= −I⊗ γ2(ψ)ε⊗ I|ψ〉
= −I⊗ I⊗ γ3(ψ)ε|ψ〉

=
1

3
Y (ψ)|ψ〉.

(The quantity ‖T (ψ, ψ, ψ)‖2 also appears in the twistor-
geometric approach of three-qubit entanglement, it is
proportional to ωABC in [14].) About the scalar q, note
that q(ψ) = −2Det(ψ) [12], and it vanishes if and only
if the three-tangle (2c) does.
Summarizing the observations above, it is useful to de-

fine the following set of real-valued functions on H:

n(ψ) = ‖ψ‖2, (4a)

y(ψ) =
2

3

(
g1(ψ) + g2(ψ) + g3(ψ)

)
, (4b)

sa(ψ) = gb(ψ) + gc(ψ), (4c)

ga(ψ) = ‖γa(ψ)‖2, (4d)

t(ψ) = 4‖T (ψ, ψ, ψ)‖2, (4e)

τ2(ψ) = 4|q(ψ)|2. (4f)

[The explicit forms of these functions and their relations
to other important quantities can be found in the Ap-
pendixes A 1, A 2, and A3. The constant factors have
been chosen so that 0 ≤ y(ψ), sa(ψ), ga(ψ), t(ψ), τ

2(ψ) ≤
1 for normalized states, which is shown in Appendix A4.]
These quantities are obtained by index contraction of

ψijks and complex conjugated (ψi′j′k′

)
∗
s by δii′s from

the tensors in (3), which were obtained by index contrac-

tion of ψijks and ψi′j′k′

s by εii′s. From the contractions
of free indices of the tensors in (3), we have U †δU = δ
for U ∈ U(2). From the contractions inside the tensors
of (3), we have U tεU = ε det(U) but for every factor
det(U) there is a conjugated det(U)

∗
= 1/ det(U) from

U †εU∗ = εdet(U)∗. Consequently, all the functions in
(4) are LU invariant, while their vanishings are still LSL
invariant. (Again, n is invariant under the larger group

U(8), and τ2 under [U(1)× SL(2,C)]×3
.)

Now, the conditions for the SLOCC classes by the van-
ishing of the tensors in (3) (see in Table II) can be refor-
mulated by the vanishing of the functions in (4) in the
way which can be seen in Table III. We call the functions
in (4) pure state indicator functions for the three-qubit
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Class n(ψ) y(ψ) s1(ψ) s2(ψ) s3(ψ) g1(ψ) g2(ψ) g3(ψ) t(ψ) τ
2(ψ)

VNull = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0

V1|2|3 > 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0

V1|23 > 0 > 0 = 0 > 0 > 0 > 0 = 0 = 0 = 0 = 0

V2|13 > 0 > 0 > 0 = 0 > 0 = 0 > 0 = 0 = 0 = 0

V3|12 > 0 > 0 > 0 > 0 = 0 = 0 = 0 > 0 = 0 = 0

VW > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 = 0

VGHZ > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0

TABLE III. SLOCC classes of three-qubit state vectors identified by the vanishing of the pure-state indicator functions given
in (4).

case. We will give the exact definition of indicator func-
tions for the general case later (in Sec. VIC), until that
point we just use this name for non-negative functions
having the vanishing properties given in Table III. Al-
though this scheme constructed by ten quantities is even
more redundant than the previous two, but it will turn
out that these ten indicator functions (4) will be neces-
sary in the case of mixed states. Moreover, investigating
Table III, we can catch all the ideas leading to the general
construction.

III. MIXED THREE-QUBIT STATES

Here we recall and extend the PSS classification for
three qubits. The main concept here, first given in [7, 8],
then used and extended in [6, 10], is that we define a
density matrix to be the element of a class according to
whether it can or cannot be mixed by the use of pure
states of some given kinds.

A. Convex subsets

Let us introduce some convenient notations. The set
of states D ≡ D(H) ⊂ Lin(H) is the convex body of
positive semidefinite operators of unit trace acting on H,
while the set of pure states P ⊂ D is the set of extremal
points of D, which are the projection operators of rank 1.
(For the sake of simplicity, we have restricted ourselves to
the operators of unit trace, that is, density matrices, in
spite of the fact that the construction could be extended
for the whole cone of positive semidefinite operators.)
Disjoint subsets in P given by unit vectors of different
SLOCC classes are

P1|2|3 =
{
|ψ〉〈ψ|

∣
∣ |ψ〉 ∈ V1|2|3, ‖ψ‖2 = 1

}
, (5a)

Pa|bc =
{
|ψ〉〈ψ|

∣
∣ |ψ〉 ∈ Va|bc, ‖ψ‖2 = 1

}
, (5b)

PW =
{
|ψ〉〈ψ|

∣
∣ |ψ〉 ∈ VW, ‖ψ‖2 = 1

}
, (5c)

PGHZ =
{
|ψ〉〈ψ|

∣
∣ |ψ〉 ∈ VGHZ, ‖ψ‖2 = 1

}
, (5d)

which cover P entirely: P = P1|2|3∪P1|23∪P2|13∪P3|12∪
PW ∪ PGHZ. Besides these, if only partial separability

properties are considered, define

P123 =
{
|ψ〉〈ψ|

∣
∣ |ψ〉 ∈ V123, ‖ψ‖2 = 1

}
, (5e)

so P123 = PW ∪PGHZ. Except P1|2|3, none of the above
sets are closed.

The notion of k-separability and αk-separability [6],
and the relevant classes of [10] for three-qubit systems
can be formulated as the convex hulls of some of the
sets (5). The 3-separable states (D3-sep), or, equivalently
1|2|3-separable states (D1|2|3) can be mixed from the
pure states of P1|2|3, i.e., they are fully separable. The
a|bc-separable states (Da|bc) can be written in the form
∑

i pi̺a,i ⊗ ̺bc,i, [̺a,i ∈ D(Ha), ̺bc,i ∈ D(Hb ⊗ Hc)],
where we demand only the split between a and bc, but
s split between b and c can also occur in the pure-
state decompositions, so they can be mixed from the
pure states of P1|2|3 and Pa|bc. The 2-separable states,
also called biseparable states (D2-sep) are of the form
∑

i pi̺ai,i ⊗ ̺bici,i, so they can be mixed from the pure

states of P1|2|3, P1|23, P2|13, and P3|12. These states are
also of relevance because, although they are not separable
under any a|bc split, there is no need of genuine three-
qubit entangled pure state to mix them [6]. From the
point of view of convex hulls of extremal points, it can
be seen better than originally in [6] that we can define
three new partial separability sets “between” the a|bc-
separable and 2-separable ones. For example, the 2|13-
3|12-separable states (D2|13,3|12) are the states which can
be mixed from the pure states of P1|2|3, P2|13, and P3|12.
States of this kind are also of relevance, since there is no
need of 1|23-separable pure states to mix them, that is,
entanglement between the 2 and the 3 subsystems. Be-
yond these, we use the set of W-states [10] (DW) which
can be expressed as the mixture of the pure states P1|2|3,
P1|23, P2|13, P3|12, and PW, so there is no need for pure
states of GHZ type to mix them, and the set of GHZ
states (DGHZ) or, equivalently, 1-separable (D1-sep), or
123-separable states (D123), which is equal to the full set
of states (D). Summarizing, we have the following PSS
subsets in D arising as convex hulls of pure states of given
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FIG. 1. Inclusion hierarchy of the PSS sets D... given in (6).

kinds:

D1|2|3 = Conv
(
P1|2|3) ≡ D3-sep, (6a)

Da|bc = Conv
(
P1|2|3 ∪ Pa|bc), (6b)

Db|ac,c|ab = Conv
(
P1|2|3 ∪ Pb|ac ∪ Pc|ab), (6c)

D2-sep = Conv
(
P1|2|3 ∪ P1|23 ∪ P2|13 ∪ P3|12), (6d)

DW = Conv
(
P1|2|3 ∪ P1|23 ∪ P2|13 ∪ P3|12

∪ PW
)
,

(6e)

D123 = Conv
(
P1|2|3 ∪ P1|23 ∪ P2|13 ∪ P3|12

∪ PW ∪ PGHZ
︸ ︷︷ ︸

P123

)
≡ D1-sep ≡ D. (6f)

These sets are convex and they contain each other in a
hierarchic way, which is illustrated in Fig. 1.

From an abstract point of view, we form the convex
hulls of closed sets [10], and the convex hulls of all the
possible closed sets arising from the unions of the P ... sets
(5) of extremal points are listed in (6) above. We mean
the PSS classification involving the PSS subsets (6a)–(6f)
[and the PS classification involving the PS subsets (6a)–
(6d) and (6f)] to be complete in this sense. As special,
noncomplete cases, we get back the classification involv-
ing only the sets Dk-sep and Dαk (for any k-partite split
αk) obtained by Seevinck and Uffink [6], the classification
involving only the sets Dαk obtained by Dür and Cirac
[7, 8] and also the classification involving only the sets
Dk-sep and DW, obtained by Aćın, Bruß, Lewenstein and
Sanpera [10].

B. Classes

Now, we determine the PSS classes of three-qubit
mixed states. The abstract definition of these classes
[6] is that they are the possible nontrivial intersections
of the D... convex subsets listed in (6). Since we want
to deal also with the sets Db|ac,c|ab, we cannot draw an
expressive “onionlike” figure as was done in [6] for the
sets D1|2|3, Da|bc, and D2-sep. We have to proceed in a
formal manner.
If we have the sets A1, A2, . . . , An, all of their possible

intersections can be constructed as the intersections for
all i the set Ai or its complement Ai. We have 10 PSS
subsets D..., so we can formally write 210 = 1024 possible
intersections in this way. If B ⊆ A, then B ∩ A = ∅, so
some intersections will be automatically empty (“empty
by construction”) and, using the inclusion hierarchy of
PSS subsets in Fig. 1, we write only the intersections
which are “not empty by construction.” The number of
these will turn out to be only 21. (Again, if B ⊆ A, then
B ∩ A = B and B ∩ A = A, so we can write these 21
classes as intersection sequences much shorter than 10
terms.) Since the appearance of the Db|ac,c|ab-type sets
in the intersections makes the meaning of the classes a
little bit involved, we write out the list of the PSS classes
with detailed explanations.
First, the class

C3 = D1|2|3 (7a)

is the set of fully separable states.
Then come the 18 classes of 2-separable entangled

states, that is, the subsets in D2-sep \ D1|2|3. The first
one of them is

C2.8 = D1|2|3 ∩ D1|23 ∩ D2|13 ∩ D3|12

=
(
D1|23 ∩ D2|13 ∩ D3|12) \ D1|2|3,

(7b)

which is the set of states which can be written as 1|23-
separable states (i.e.,convex combinations of P1|2|3 and
P1|23 pure states; the formation is not unique) and can
also be written as 2|13-separable states and can also be
written as 3|12-separable states but cannot be written as
1|2|3-separable states. The existence of such states was
counterintuitive because, for pure states, if a tripartite
pure state is separable under any a|bc bipartition, then
it is fully separable. For mixed states, however, explicit
examples can be constructed [10, 31], which can be writ-
ten in the form

∑

i pi̺a,i ⊗ ̺bc,i for any a|bc bipartition,
but cannot be written in the form

∑

i pi̺1,i ⊗ ̺2,i ⊗ ̺3,i.
Alternatively, we can say that states of this class can not
be mixed without the use of bipartite entanglement, but
they can be mixed by the use of bipartite entanglement
inside only one bipartite subsystem; it does not matter
which one. (This is class 2.8 in [6].) The next three
classes are

C2.7.a = Da|bc ∩ Db|ac ∩ Dc|ab

=
(
Db|ac ∩Dc|ab) \ Da|bc.

(7c)
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For example, C2.7.1 is the set of states which can be
written as 2|13-separable states and can also be written
as 3|12-separable states but cannot be written as 1|23-
separable states. Alternatively, we can say that states of
this class cannot be mixed by the use of bipartite entan-
glement only inside the 23 subsystem, but they can be
mixed by the use of bipartite entanglement inside either
the 12 or the 13 subsystems; both of them are equally
suitable. (These three classes are classes 2.7, 2.6, and 2.5
in [6].) The next three classes are

C2.6.a = Da|bc ∩ Db|ac ∩ Dc|ab ∩ Db|ac,c|ab

= Da|bc ∩
[
Db|ac,c|ab \

(
Db|ac ∪ Dc|ab)].

(7d)

For example, C2.6.1 is the set of states which can be
written as 1|23-separable states and can also be writ-
ten as states of a new kind: where the state can be
written as 2|13-3|12-separable states which are neither
2|13-separable nor 3|12-separable. And this is the nov-
elty here. Alternatively, we can say that to mix a state
of this class we need bipartite entanglement either inside
the 23 subsystem, or inside both of the 12 and the 13 sub-
systems. (The latter seems like a roundabout connecting
the 2 and 3 subsystems through the 1 subsystem.) The
next three classes are

C2.5.a = Da|bc ∩ Db|ac ∩ Dc|ab ∩ Db|ac,c|ab

≡ Da|bc ∩ Db|ac,c|ab = Da|bc \ Db|ac,c|ab.
(7e)

For example, C2.5.1 is the set of states which can be writ-
ten as 1|23-separable states but cannot be written as
2|13-3|12-separable states. Alternatively, we can say that
states of this class cannot be mixed by the use of bipartite
entanglement only inside both of the 12 and 13 subsys-
tems, contrary to C2.6.1. (The roundabout does not exist

here.) (The unions C2.6.a ∪ C2.5.a = Da|bc ∩ Db|ac ∩ Dc|ab

are classes 2.4, 2.3, and 2.2 in [6].) The next class is

C2.4 =D1|23 ∩D2|13 ∩ D3|12

∩ D2|13,3|12 ∩D1|23,3|12 ∩ D1|23,2|13

=
(
D2|13,3|12 ∩ D1|23,3|12 ∩ D1|23,2|13)

\
(
D1|23 ∪ D2|13 ∪ D3|12)

=
[
D2|13,3|12 \

(
D2|13 ∪ D3|12)]

∩
[
D1|23,3|12 \

(
D1|23 ∪ D3|12)]

∩
[
D1|23,2|13 \

(
D1|23 ∪ D2|13)],

(7f)

which is the set of states which can be mixed by the
use of bipartite entanglement inside any two bipartite
subsystems, but cannot be mixed by the use of bipartite
entanglement inside only one bipartite subsystem. The
next three classes are

C2.3.a =Da|bc ∩ Db|ac,c|ab ∩ Da|bc,c|ab ∩ Da|bc,b|ac

=
[[
Da|bc,c|ab \

(
Dc|ab ∪ Da|bc)]

∩
[
Da|bc,b|ac \

(
Da|bc ∪ Db|ac)]

]

\ Db|ac,c|ab.

(7g)

For example, C2.3.1 is the set of states which can be mixed
by the use of bipartite entanglement inside the 23 sub-
system together with bipartite entanglement inside either
the 12 or the 13 subsystems, but cannot be mixed by the
use of bipartite entanglement inside the 12 and the 13
subsystems only. (Note that mixing by the use of only
one kind of bipartite entanglement has already been ex-
cluded.) The next three classes are

C2.2.a = Db|ac,c|ab ∩ Da|bc,c|ab ∩ Da|bc,b|ac

= Db|ac,c|ab \
(
Da|bc,c|ab ∪ Da|bc,b|ac).

(7h)

For example, C2.3.1 is the set of states which can be mixed
by the use of bipartite entanglement inside both the 12
and the 13 subsystems together, but cannot be mixed by
the use of bipartite entanglement inside the 23 subsystem
together with bipartite entanglement inside only one of
the 12 or the 13 subsystems. The next class is

C2.1 = D2|13,3|12 ∩ D1|23,3|12 ∩D1|23,2|13 ∩ D2-sep

= D2-sep \
(
D2|13,3|12 ∪ D1|23,3|12 ∪ D1|23,2|13),

(7i)

which is the set of states which can be mixed by the use
of bipartite entanglement inside all the three bipartite
subsystems, but cannot be mixed by the use of bipartite
entanglement inside only two (or one) bipartite subsys-
tems. (The union C2.4 ∪ C2.3.1 ∪ C2.3.2 ∪ C2.3.3 ∪ C2.2.1 ∪
C2.2.2 ∪ C2.2.3 ∪ C2.1 = D2-sep \

(
D1|23 ∪ D2|13 ∪ D3|12) is

class 2.1 in [6].)
Then come the 2 classes of states containing genuine

tripartite entanglement [10], that is, the subsets in D \
D2-sep. The class

CW = D2-sep ∩ DW = DW \ D2-sep (7j)

is the set of states which cannot be mixed without the
use of some tripartite entangled pure states, but there is
no need for GHZ type entanglement [10]. The class

CGHZ = DW ∩ D123 = D123 \ DW (7k)

is the set of states which cannot be mixed without the
use of GHZ type entanglement. All the above classes are
PSS classes. For the PS classification define the class of
states containing genuine tripartite entanglement instead
of CW and CGHZ:

C1 = CW ∪ CGHZ = D123 \ D2-sep. (7l)

Except C3, the C. . . PS(S) classes above are neither
convex nor closed, but, by construction, they cover D
entirely. Unfortunately, we cannot draw an onionlike fig-
ure illustrating these classes, like the one in [6] (maybe it
could be drawn in three dimensions); we only summarize
these 1+18+1+1 classes in Table IV. The non-emptiness
of the PS(S) classes above is not obvious, since it depends
on the arrangement of different kinds of extremal points.
(We know only that they are not empty by construction.)
This issue has not been handled yet, but experiences in
the geometry of mixed states [1] suggest that the arrange-
ment of different kinds of extremal points leading to some
empty classes would be very implausible.
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PSS Class PS Class D1|2|3 Da|bc Db|ac Dc|ab Db|ac,c|ab Da|bc,c|ab Da|bc,b|ac D2-sep DW D123 in [6] in [8] in [10]

C3 C3 ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ 3 5 S

C2.8 C2.8 6⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ 2.8 4 B

C2.7.a C2.7.a 6⊂ 6⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ 2.7,6,5 3.3,2,1 B

C2.6.a C2.6.a 6⊂ ⊂ 6⊂ 6⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ 2.4,3,2 2.3,2,1 B

C2.5.a C2.5.a 6⊂ ⊂ 6⊂ 6⊂ 6⊂ ⊂ ⊂ ⊂ ⊂ ⊂ 2.4,3,2 2.3,2,1 B

C2.4 C2.4 6⊂ 6⊂ 6⊂ 6⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ 2.1 1 B

C2.3.a C2.3.a 6⊂ 6⊂ 6⊂ 6⊂ 6⊂ ⊂ ⊂ ⊂ ⊂ ⊂ 2.1 1 B

C2.2.a C2.2.a 6⊂ 6⊂ 6⊂ 6⊂ ⊂ 6⊂ 6⊂ ⊂ ⊂ ⊂ 2.1 1 B

C2.1 C2.1 6⊂ 6⊂ 6⊂ 6⊂ 6⊂ 6⊂ 6⊂ ⊂ ⊂ ⊂ 2.1 1 B

CW C1 6⊂ 6⊂ 6⊂ 6⊂ 6⊂ 6⊂ 6⊂ 6⊂ ⊂ ⊂ 1 1 W

CGHZ C1 6⊂ 6⊂ 6⊂ 6⊂ 6⊂ 6⊂ 6⊂ 6⊂ 6⊂ ⊂ 1 1 GHZ

TABLE IV. PSS classes of mixed three-qubit states and PS classes of mixed tripartite states. Additionally, we show the
classifications obtained by Seevinck and Uffink [6], Dür, Cirac and Tarrach [8], and Aćın, Bruß, Lewenstein and Sanpera [10].

C. Convex roof quantities

As a next step, we obtain indicator functions on mixed
states from the pure-state indicator functions (4) by con-
vex roof construction [15–17]. In general, let

f : P −→ R

be a continuous function. Then its convex roof extension
is defined as

f∪ : D −→ R,

f∪(̺) = min
∑

i

pif(ψi),
(8)

where the minimization takes place on all pure-state de-
compositions of ̺: 0 ≤ pi,

∑

i pi = 1,
∑

i pi|ψi〉〈ψi| = ̺.
The existence of the minimum is crucial for our construc-
tion. It follows from the Schrödinger mixture theorem
[32], also known as the Gisin-Hughston-Jozsa-Wootters
lemma [33, 34], that the decompositions form pure states
are labeled by the elements of the compact complex mani-
fold, called Stiefel manifold, Std(Cm) = U(m)/U(m− d),
where d = dimH [1]. The Carathéodory theorem en-
sures that we need only finite m, or to be more precise
m ≤ d2, shown by Uhlmann [35]. These observations
guarantee the existence of the minimum in (8).
Now, it is easy to prove the following necessary and

sufficient conditions for the PSS subsets (6) given by the
convex roof extension of the indicator functions (4):

̺ ∈ D1|2|3 ⇐⇒ y∪(̺) = 0, (9a)

̺ ∈ Da|bc ⇐⇒ s∪a (̺) = 0, (9b)

̺ ∈ Db|ac,c|ab ⇐⇒ g∪a (̺) = 0, (9c)

̺ ∈ D2-sep ⇐⇒ t∪(̺) = 0, (9d)

̺ ∈ DW ⇐⇒ τ2
∪
(̺) = 0. (9e)

To see the ⇒ implications, observe that all the D. . . PSS
subsets are the convex hulls of such pure states [see in

(6)] for which the given functions vanish [see in Table
III]. Since these functions can take only non-negative val-
ues, the minimum in the convex roof extension is zero.
To see the ⇐ implications, note that if the convex roof
extension of a non-negative function vanishes then there
exists a decomposition for pure states for which the func-
tion vanishes. Again, the vanishing of a given function
singles out the pure states [see in Table III] from which
the states of the given D. . . PSS subset can be mixed [see
in (6)].
The necessary and sufficient conditions for the PSS

subsets (9) yields necessary and sufficient conditions for
the PSS classes, and we can fill out Table V for the iden-
tification of the PSS classes of Table IV, given for mixed
states, similar to Table III, given for pure states. Because
of their vanishing properties, we call the convex roof ex-
tension of pure indicator functions mixed indicator func-
tions.
Note that the convex roof extension is a nonlinear op-

eration: (f1 + f2)
∪ 6= f1

∪ + f2
∪. However, an inequality

holds, for example, sa = gb + gc and s∪a = (gb + gc)
∪ ≥

g∪b +g∪c , so s
∪
a can be nonzero even if both g∪b and g∪c are

zero. This is why we could identify 21 classes of mixed
states by the use of the convex roof extension of func-
tions which identify only 6 classes of state vectors. On
the other hand, if a classification does not involve all the
PS(S) subsets, then, through (9), we have to use only
some of the indicator functions, for example, y, sa and t
for the classification obtained by Seevinck and Uffink [6],
y and sa for the classification obtained by Dür, Cirac and
Tarrach [8], and y, t and τ2 for the classification obtained
by Aćın, Bruß, Lewenstein and Sanpera [10].

IV. EXAMPLES

At this point, the most important question is whether
all of the PSS classes in (7) are nonempty. Of course, this
can be checked by the use of (9), but calculating convex
roof extensions symbolically is a hard problem. Here we
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Class y∪(̺) s∪a (̺) s
∪
b (̺) s

∪
c (̺) g

∪
a (̺) g

∪
b (̺) g

∪
c (̺) t

∪(̺) τ 2
∪
(̺)

C3 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0

C2.8 > 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0

C2.7.a > 0 > 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0

C2.6.a > 0 = 0 > 0 > 0 = 0 = 0 = 0 = 0 = 0

C2.5.a > 0 = 0 > 0 > 0 > 0 = 0 = 0 = 0 = 0

C2.4 > 0 > 0 > 0 > 0 = 0 = 0 = 0 = 0 = 0

C2.3.a > 0 > 0 > 0 > 0 > 0 = 0 = 0 = 0 = 0

C2.2.a > 0 > 0 > 0 > 0 = 0 > 0 > 0 = 0 = 0

C2.1 > 0 > 0 > 0 > 0 > 0 > 0 > 0 = 0 = 0

CW > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 = 0

CGHZ > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0

TABLE V. PSS classes of mixed three-qubit states given in table IV identified by the vanishing of the mixed indicator functions
(convex roof extension of the indicator functions (4)).

give considerations apart from convex roofs.
The classes given by Seevinck and Uffink in [6] are

nonempty, which are C3, C2.8, C2.7.a, the unions C2.6.a ∪
C2.5.a, the union C2.4 ∪ C2.3.1 ∪ C2.3.2 ∪ C2.3.3 ∪ C2.2.1 ∪
C2.2.2 ∪ C2.2.3 ∪ C2.1, and CW ∪ CGHZ. Both of the classes
CW and CGHZ are nonempty [10]. On the other hand,
the pure sets (5) are contained by the following classes:
P1|2|3 ⊂ C3, Pa|bc ⊂ C2.5.a, PW ⊂ CW, PGHZ ⊂ CGHZ,
so we have additionally that C2.5.a is nonempty. In
the next paragraphs, we construct states contained in
classes C2.2.a and C2.1. This justifies the use of b|ac-c|ab-
separable sets in the classification (since we can distin-
guish between C2.2.a and C2.1 by the use of these), al-
though the nonemptiness of C2.6.a, C2.4, and C2.3.a has
not been shown yet.
From the point of view of “mixtures of extremal

points,” it is easy to check that the bipartite subsystems
are separable for states in some PS subsets as follows:

̺ ∈ D1|2|3 =⇒ ̺23 sep. and ̺13 sep. and ̺12 sep.

̺ ∈ Da|bc =⇒ ̺ac sep. and ̺ab sep.

̺ ∈ Db|ac,c|ab =⇒ ̺bc sep.

Unfortunately, the reverse implications are not true. For
example, for the standard GHZ state (1c), all bipar-
tite subsystems are separable, although |GHZ〉〈GHZ| /∈
D1|2|3. However, the negation of the implications above
will turn out to be useful:

̺ /∈ D1|2|3 ⇐= ̺23 ent. or ̺13 ent. or ̺12 ent.

̺ /∈ Da|bc ⇐= ̺ac ent. or ̺ab ent.

̺ /∈ Db|ac,c|ab ⇐= ̺bc ent.

The entanglement of two-qubit subsystems can be easily
checked, for example, by the Peres-Horodecki criterion
[36, 37]:

ω separable ⇐⇒ ωt1 ≥ 0. (10)

Here ω ∈ D(Hb⊗Hc), and t1 means transposition on the
first subsystem, which, although it is basis-dependent,

the positivity of ωt1 is not. The ⇐ implication in (10)
holds only for qubit-qubit or qubit-qutrit systems.
Now, take a ̺ ∈ D2|13,3|12. Then ̺23 is always sep-

arable, but if both ̺12, and ̺13 are entangled, then by
the above observations we have ̺ /∈ D1|23, ̺ /∈ D2|13,
̺ /∈ D3|12, moreover, ̺ /∈ D1|23,2|13, and ̺ /∈ D1|23,3|12.
This singles out exactly one class from Table IV, namely
C2.2.1. So if we can mix a state ̺ from P1|2|3, Pb|ac,
and Pc|ab, whose ̺ab and ̺ac subsystems are entangled,
then ̺ ∈ C2.2.a. For example, such a state is the uniform
mixture of projectors to the |0〉b ⊗ |B〉ac and |0〉c ⊗ |B〉ab
vectors:

1

2
|0〉〈0|b ⊗ |B〉〈B|ac +

1

2
|0〉〈0|c ⊗ |B〉〈B|ab ∈ C2.2.a,

where |B〉 is the usual Bell state (1a).
Now, take a ̺ ∈ D2-sep. Then if the states of all the

two-qubit subsystems are entangled, by the above obser-
vations we have ̺ /∈ D1|23, ̺ /∈ D2|13, ̺ /∈ D3|12, more-
over, ̺ /∈ D2|13,3|12, ̺ /∈ D1|23,3|12, and ̺ /∈ D1|23,2|13.
This singles out exactly one class from Table IV, namely
C2.1. So if we can mix a state ̺ from P1|2|3, P1|23, P2|13,
and P3|12, whose all two-qubit subsystems are entangled,
then ̺ ∈ C2.1. For example, such a state is the mixture
of projectors to the previous two vectors together with
|1〉a ⊗ |B〉bc:

1

4
|0〉〈0|b ⊗ |B〉〈B|ac +

1

4
|0〉〈0|c ⊗ |B〉〈B|ab

+
1

2
|1〉〈1|a ⊗ |B〉〈B|bc ∈ C2.1.

V. GENERALIZATIONS I. – THREE

SUBSYSTEMS

The considerations written out in detail in Secs. II and
III contain the main ideas which will be generalized in
this and in the next sections. In this section we break
up with qubits, and consider tripartite systems composed
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from subsystems of arbitrary dimensions. Obviously, this
has no influence on the PS sets and PS classes, given in
Secs. III A and III B, the only question is about the con-
struction of mixed-state indicator functions of Sec. III C.
The generalization to arbitrary number of subsystems is
left to the next section.

A. Pure state indicator functions for tripartite

systems from the FTS approach

To get the necessary and sufficient conditions for the
PS classes in the tripartite case, we need the generaliza-
tions of the pure-state indicator functions in (4b)–(4e).
Apart from continuity, the main—and only—requirement
for these is to satisfy the vanishing requirements for
pure states given in Table III (apart from the column
τ2, and for row V123 instead of rows VW and VGHZ).
Then their convex roof extensions satisfy the vanishing
requirements for mixed states given in Table V (apart

from the column τ2
∪
, and for row C1 instead of rows

CW and CGHZ), since in (9a)–(9d) we have used only the
vanishing-requirements for pure states.
The pure-state indicator functions of (4) have been ob-

tained in the FTS approach, which works only for the
qubit case. However, some parts of the definitions can be
generalized. To do this, our basic quantities will be the
local entropies sa(ψ) = Sq(πa) instead of the functions
ga(ψ) given in (4d), since the former ones are defined for
all dimensions. [Here we use the notation for the pro-
jector π = |ψ〉〈ψ|, and πa = trbc(π).] The most basic
quantum entropy is the von Neumann entropy,

S(̺) = − tr
[
̺ ln(̺)

]
, (11)

having the strongest properties among all entropies. The
Tsallis entropy, sometimes called q-entropy, in the quan-
tum case is defined as

Sq(̺) =
1

1− q

[
tr(̺q)− 1

]
, q > 0, (12a)

which is a nonadditive generalization of the von Neumann
entropy: limq→1 Sq(̺) = S(̺). Again, as in (2b), we
can use the concurrence-squared, which is the normalized
Tsallis entropy of parameter 2:

C2(̺) =
d

d− 1
S2(̺) =

d

d− 1

[
1− tr(̺2)

]
, (12b)

if we prefer to deal with polynomials in the ψijk and
(ψijk)

∗
coefficients. This is the nontrivial polynomial

of the lowest degree which is also an entropy, that is,
Schur-concave, so tells us something about mixedness.
[In (12b), d is the dimension of the Hilbert space on which
̺ acts, so the prefactor d

d−1 ensures that 0 ≤ C2(̺) ≤ 1.]
Obviously, for all Tsallis entropies of the subsystems,

sa(ψ) = Sq(πa) fulfils the corresponding column of Table
III, since it vanishes if and only if the subsystem is pure,
which means the separability of that subsystem from the

rest of the system if the whole system is in pure state.
From (4c) and (4d), it turns out that y, given in (4b), is
just the average of the local entropies y = 1

3 (s1 + s2 +
s3), vanishing if and only if no entanglement is present.
This works well not only for qubits, so we can keep this
definition of y.
The functions ga in (4d) can also be expressed by the

local entropies (4c) for qubits as ga = 1
2 (sb + sc − sa).

Can this definition be kept for subsystems of arbitrary
dimensions? For V1|2|3, obviously ga = 0. For Va|bc,
the subsystem a can be separated from the others so the
subsystems a and bc are in pure states, sa = 0 and sb =
sc 6= 0, from which ga 6= 0 and gb = gc = 0. So the first
five rows of the ga columns of Table III is fulfilled. For
the last row, we need that ga > 0 when genuine tripartite
entanglement is present. This is the problematic point.
This question can be traced back to the subadditivity of
the Tsallis entropies. Raggio’s conjecture [38] about that
is twofold: For q > 1,

Sq(̺) ≤ Sq(̺1) + Sq(̺2), (13a)

Sq(̺) = Sq(̺1) + Sq(̺2) ⇐⇒
{
̺ = ̺1 ⊗ ̺2,

̺1 or ̺2 pure.
(13b)

[Note that for 0 < q < 1, there is no definite relation
between Sq(̺) and Sq(̺1) + Sq(̺2).] Both statements
hold for the classical scenario [38], which can be mod-
eled in the quantum scenario by density matrices being
LU equivalent to diagonal ones. The first part (13a) of
the conjecture has been proven by Audenaert [39]. This
guarantees the non-negativity of the functions ga: For
pure states, Sq(πa) = Sq(πbc) ≤ Sq(πb) + Sq(πc), so
0 ≤ 1

2 (sb + sc − sa) = ga. On the other hand, (13b) is

exactly what we need: |ψ〉 ∈ V123 if and only if neither of
its subsystems are pure, which means that there is subad-
ditivity in a strict sense, so 0 < 1

2 (sb+sc−sa) = ga. The
⇐ implication in (13b) holds obviously, but the whole
second part (13b) of the conjecture, to our knowledge,
has not been proven yet. A very little side result of our
work is that Raggio’s conjecture holds for the very re-
stricted case of two-qubit mixed states which are, at the
most, of rank 2.
We note that the von Neumann entropies (q → 1) of

the subsystems are not suitable for the role of the func-
tions sa, if we want to write the functions ga by that as
1
2 (sb+sc−sa), since the von Neumann entropy is additive
for product states without any reference to the purity of
the subsystems:

S(̺) ≤ S(̺1) + S(̺2), (14a)

S(̺) = S(̺1) + S(̺2) ⇐⇒ ̺ = ̺1 ⊗ ̺2. (14b)

Indeed, it is easy to construct a tripartite state, which is
not separable under any partition, but has vanishing ga
(defined by the von Neumann entropy). For example, let
dimHa = 4, then for the state

|ψ〉 = 1

2

(
|000〉+ |101〉+ |210〉+ |311〉

)
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π23 = π2 ⊗ π3, so g1(ψ) =
1
2

(
S(π2) + S(π3) − S(π1)

)
=

0, while S(π1) = ln 4, and S(π2) = S(π3) = ln 2, so
neither of the subsystems are pure, the state is genuinely
tripartite entangled.

The Rényi entropy is defined as

SR
q (̺) =

1

1− q
ln
[
tr(̺q)

]
, q > 0, (15)

which is another generalization of the von Neumann en-
tropy: limq→1 S

R
q (̺) = S(̺), having the advantage of

additivity:

SR
q (̺) = SR

q (̺1) + SR
q (̺2) ⇐= ̺ = ̺1 ⊗ ̺2. (16)

This is an advantage when entanglement is studied in the
asymptotic regime, when the state is present in multiple
copies and properties are investigated against the number
of copies. Again, this advantage is a disadvantage from
our point of view, the Rényi entropies of the subsystems
are not suitable for the role of the functions sa, if we
want to write the functions ga by that as 1

2 (sb + sc −
sa). Moreover, subadditivity does not hold for Rényi
entropy, so the non-negativity of the functions ga defined
by Rényi entropies is not even guaranteed. (For further
properties and references on the quantum entropies, see,
for example, [1, 40–42].)

B. Pure state indicator functions for tripartite

systems outside the FTS approach

Fortunately, it is easy to define the pure-state indica-
tor functions of three subsystems of arbitrary dimensions
without the issues of equality in the subadditivity of q-
entropies. Again, the basic quantities are the local en-
tropies, and we use a “multiplicative” definition for the
functions ga instead of the “additive” one, which came
from the FTS approach,

y(ψ) = s1(ψ) + s2(ψ) + s3(ψ), (17a)

sa(ψ) = Sq(πa), (17b)

ga(ψ) = sb(ψ)sc(ψ), (17c)

t(ψ) = s1(ψ)s2(ψ)s3(ψ). (17d)

These functions obviously reproduce the relevant part of
Table III, so, by (9a)–(9d), their convex roof extensions
reproduce Table V for the identification of the PS classes
of the tripartite case given in Table IV. The structure
of the formulas above give us a hint for the generaliza-
tion for arbitrary number of subsystems of arbitrary di-
mensions: Te just have to play a game with statements
like “being zero,” with the logical connectives “and” and
“or,” parallel to the addition and multiplication, and also
parallel to the set-theoretical inclusion, union, and inter-
section.

VI. GENERALIZATIONS II. – PARTIAL

SEPARABILITY OF MULTIPARTITE SYSTEMS

In the previous sections, we have followed a didactic
treatment in order to illustrate the main concept; now
it is high time to turn to abstract definitions to handle
the PS classification and criteria for arbitrary number of
subsystems of arbitrary dimensions.
For n subsystems, the set of the labels of the subsys-

tems is L = {1, 2, . . . , n}. Let α = L1|L2| . . . |Lk denote
a k-partite split, that is, a partition of the labels into k
disjoint non-empty sets Lr, where L1∪L2∪· · ·∪Lk = L.
For two partitions, β and α, β is contained in α, denoted
as β � α, if α can be obtained from β by joining some—
maybe neither—of the parts of β. This defines a partial
order on the partitions. [It is easy to see from the defi-
nition that α � α (reflexivity); if γ � β and β � α then
γ � α (transitivity); if β � α and α � β then α = β
(antisymmetry).] For example, for the tripartite case
1|2|3 � a|bc � 123. Since there is a greatest and a small-
est element (the full n-partite split and the trivial parti-
tion without split, respectively, 1|2| . . . |n � α � 12 . . . n,)
the set of partitions of L for � forms a bounded lattice.

A. PS subsets in general

The first point is the generalization of the PS subsets
D. . . . Let Pα be the set of pure states which are separable
under the partition α = L1|L2| . . . |Lk, but not separable
under any β ≺ α. Then the PS subset of α-separable
states is

Dα = Conv
⋃

β�α

Pβ, (18a)

which is a special case of the PS subsets of α-separable
states

Dα = Conv
⋃

α∈α

⋃

β�α

Pβ ≡ Conv
⋃

α∈α

Dα, (18b)

with the label α being an arbitrary set of partitions. [In
the writing we omit the {. . . } set brackets, as was seen in,
e.g.,(6c).] The set of k-separable states Dk-sep arises as a
special case where the α elements of α are all the possible
k-partite splits. Note that in general, the α partitions are
not required to be k-partite splits for the same k. This
freedom can not be seen in the case of three subsystems.
The Pα sets are not closed if and only if α is not the

full n-partite split 1|2| . . . |n, but ∪β�αPβ is closed, so
the sets Dα are closed, and convex by construction. Note
that different α labels can give rise to the same Dα sets;
in other words, the α 7→ Dα “labeling map” defined
by (18b) is surjective but not injective. For the full PS
classification we need all the possible different Dα sets.
Because of the nontrivial structure of the lattice of par-
titions, obtaining all the different PS sets is also a non-
trivial task. We cannot provide a closed formula for that,
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but only an algorithm. Before we do this, we need some
constructions.
First, observe that if β � α then Dβ ⊆ Dα [from def-

inition (18a), and the transitivity of �], from which it
follows that for the labels β and α, if for every β ∈ β

there is an α ∈ α for which β � α then Dβ ⊆ Dα.
[From definition (18b). We will prove the reverse too.]
These observations motivate the extension of � from the
partitions to the labels:

β � α
def.⇐⇒ ∀β ∈ β, ∃α ∈ α : β � α. (19)

Note that, at this point, the relation � on the labels is
not a partial order, only the reflexivity and the transitiv-
ity properties hold for that. The antisymmetry property
fails, which is the consequence of that the definition (19)
was motivated by the inclusion of the PS sets, and dif-
ferent αs can lead to the same PS set. Independently of
this problem, which will be handled later, the following
is true:

β � α ⇐⇒ Dβ ⊆ Dα. (20)

For the proof, see Appendix B1. Again, note that the
relations � and ⊆ are defined on nonisomorphic sets,
so (20) does not contradict the fact that the latter is a
partial order while the former is not.
The next step is to define those labels for which � will

be a partial order. A label α is called a proper label if

∀α, α′ ∈ α, α 6= α′ =⇒ α � α′. (21)

On the set of proper labels, the relation � defined in (19)
is a partial order. For the proof, see Appendix B 2. A
corollary is that the set of proper labels for � forms a
bounded lattice, its greatest and smallest elements are
the one-element labels of full n-partite split and the triv-
ial partition without split, respectively: 1|2| . . . |n � α �
12 . . . n.
Is it true that every PS subset can be labeled by proper

label? Do different proper labels lead to different PS
subsets? In other words, is the α 7→ Dα “labelling map”
from the set of proper labels to the set of PS subsets an
isomorphism? The injectivity is the ⇐ implication from
the observation, that for α, β, proper labels

β = α ⇐⇒ Dβ = Dα. (22)

For the proof, see Appendix B3. If β is a label, then we
can obtain a unique proper label from that, if we drop
every β ∈ β for which there is a β′ ∈ β for which β � β′.
The remaining partitions form a proper label which we
denote α, and the partitions which have been dropped
out form a label which we denote γ. Then β = αγ,
which means the union of labels α and γ. (We omit the
union sign too.) Our next observation is useful for this
case. For the general labels α and γ,

γ � α ⇐⇒ Dαγ = Dα, (23)

which means that when we obtain a proper label α from
a general label β, as was done above, both of these lead
to the same PS subset. For the proof, see Appendix B 4.
Since all PS subsets arise from general labels, the above
shows that they arise also from proper labels, which is
the surjectivity of the labeling by proper labels.
Now we have that the set of proper labels is isomorphic

to the set of PS subsets. The former one is much easier
to handle. Moreover, (20) states now that the lattice of
α proper labels with respect to the partial order � is
isomorphic to the lattice of Dα PS subsets with respect
to the partial order ⊆. (This lattice is the generalization
of the “inclusion hierarchy” in Fig. 1.) To get all the PS
subsets, we have to obtain all the proper labels. A brute-
force method for this is to form all the β labels (all the
subsets of the set of all partitions), then obtain the proper
labels α as before (β = αγ) and keep the different proper
labels obtained in this way. A much more sophisticated
algorithm is given in Appendix B 5.

B. PS classes in general

The second point is the generalization of the PS classes
C. . . , which are the possible non-trivial intersections of
the PS subsets D. . . . Constructing these requires direct
calculations for a given n, as was done in Sec. III B.
Let us divide the set of proper labels into two disjoint

subsets, α and β; then all the possible intersections of
PS subsets can be labeled by such a pair, which is called
class label, as

Cα,β =
⋂

α∈α

Dα ∩
⋂

β∈β

Dβ. (24)

It can happen that Cα,β = ∅ by construction, under which
we mean that its emptiness follows from the inclusion hi-
erarchy of PS subsets. For example, if Dβ ⊆ Dα for some
α ∈ α and β ∈ β, then the intersection above is identi-
cally empty. The PS(S) classes for three subsystems in
Sec. III B were obtained by the use of this observation.
In this general framework, this observation is formulated
as follows:

Cα,β = ∅ (i)⇐⇒
⋃

α∈α

Dα ∩
⋂

β∈β

Dβ = ∅

(ii)⇐⇒
⋂

β∈β

Dβ ⊆
⋃

α∈α

Dα

(iii)⇐= ∃α ∈ α, ∃β ∈ β : Dβ ⊆ Dα

(iv)⇐⇒ ∃α ∈ α, ∃β ∈ β : β � α.

[Equivalence (i) comes from De Morgan’s law A ∩ B =
A ∪B. Equivalence (ii) comes from the identity B ⊆
A ⇔ B ∩ A ≡ B \ A = ∅. Implication (iii) comes from
B ⊆ A ⇒ B ∩B′ ⊆ A ∪ A′. Equivalence (iv) is (20).]
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Implication (iii) is the point which makes it possible
to formulate the emptiness of PS classes by the use of
labels only. That is still a question whether implication
(iii) can be replaced with a stronger one, which leads to
a condition involving only labels again. (The problem is
that we have no interpretations of ∩ and ∪ in the lan-
guage of labels.) Our first conjecture is that implication
(iii) above is the strongest one which leads to a condition
involving only labels.

Summarizing, we have

Cα,β = ∅ ⇐= ∃α ∈ α, ∃β ∈ β : β � α. (25a)

If the right-hand side holds, then we say, according to
the conjecture above, that Cα,β is empty by construction.
Since this implication is only one way, it could happen
that Cα,β = ∅ for such class label α,β for which the right-
hand side does not hold. However, we think that this
cannot happen: Our second conjecture is that there is an
equivalence in (25a); that is, all the PS classes which are
not empty by construction are nonempty. [This implies
the first conjecture above, but it can still happen that
implication (iii) can be replaced by a stronger condition,
so the first conjecture is false. Then the (25a) definition
of the emptiness-by-construction changes, and the second
conjecture concerns this new definition.] The motivation
of this is the same as in the tripartite case, (see at the
end of Sec. III B), where the PS classes conjectured to be
non-empty were obtained under the same assumptions.

An advantage of the formulation by the labeling con-
structions is—roughly speaking—that by the use of that
“we have separated the algebraic and the geometric part”
of the problem of nonemptiness of the classes. At this
point, it seems that we have tackled all the algebraic is-
sues of the question, and these conjectures cannot be
proven without the investigation of the geometry of D,
more precisely, the geometry of the different kinds of Pα

extremal points.

The negation of (25a) leads to

Cα,β 6= ∅ =⇒ ∀α ∈ α, ∀β ∈ β : β � α, (25b)

so if we obtain all α,β class-labels for which
the right-hand side of this holds (“non-emptiness-by-
construction”) then we will have all the nonempty
classes, together with some empty classes if the second
conjecture does not hold. Because of the nontrivial struc-
ture of the lattice of proper labels, obtaining all the class-
labels leading to nonempty-by-construction classes is also
a nontrivial task. The number of all the partitions of n
grows rapidly [43, 44], which is only the number of the
PS subsets of α-separability Dα. So the number of all the
PS subsets Dα grows more rapidly, and the number of all
the PS classes Cα,β grows even more rapidly. However,
at least, it is finite.

C. Indicator functions in general

The third point is the generalization of the indicator
functions. Let F : D(HK) → R be a continuous func-
tion for all K ⊂ L, that is, for all—also composite—
subsystems. The only condition on F is

F (̺) ≥ 0, with equality if and only if ̺ is pure, (26)

for example, the von Neumann entropy or any Tsallis or
Rényi entropies are suitable. (Note that the additional
requirements of the features of LU invariance, convexity,
Schur-concavity, additivity, being homogeneous polyno-
mial, etc., are only optional; they will not have been
needed for the construction.) For all K ⊂ L subsystems,
let the following functions on pure states be defined:

fK : P −→ R,

fK(π) = F (πK),
(27)

where again, π = |ψ〉〈ψ|, and πK = trK(π), with K =
L\K. Then, for the k-partite split α = L1|L2| . . . |Lk, fLr

identifies the bipartite split Lr|Lr, (where Lr = L \ Lr,)
as

fLr
(π) = 0 ⇐⇒ π ∈

⋃

β�Lr|Lr

Pβ , (28)

which is the consequence of (26). Note that α is the
greatest element which is smaller than Lr|Lr for all r.
Then the function

fα(π) =

k∑

r=1

fLr
(π), (29)

has the ability to identify the k-partite split α as

fα(π) = 0 ⇐⇒ π ∈
⋃

β�α

Pβ. (30)

All non-negative fα functions satisfying (30) are called
α-indicator functions, not only the ones defined in (29).
The generalization of (29) for more-than-one partitions,
that is, for all labels, is defined as

fα(π) =
∏

α∈α

fα(π), (31)

being the generalization of (17). It vanishes exactly for
the convenient Pαs

fα(π) = 0 ⇐⇒ π ∈
⋃

α∈α

⋃

β�α

Pβ. (32)

All non-negative fα functions satisfying (32) are called
α-indicator functions, not only the ones defined in (31).
For example, the functions in (4) were not constructed
by (31), but still satisfy (32), which is equivalent to the
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relavant part of Table III for the three-qubit case. Now,
the vanishing of their convex roof extension

f∪
α(̺) = min

∑

i

pifα(πi)

identifies the PS sets:

f∪
α(̺) = 0 ⇐⇒ ̺ ∈ Dα, (33)

being the generalization of (9). Indeed, f∪
α(̺) = 0 if and

only if there exists a decomposition ̺ =
∑

i piπi such
that fα(πi) = 0 for all i (fα is non-negative), which
means that πi ∈

⋃

α∈α

⋃

β�α Pβ (32), which means that
̺ ∈ Dα.

D. Entanglement-monotone indicator functions in

general

There is a possibility to choose indicator functions so
that they obey some axioms of entanglement measures
[45]. The most fundamental one of them is the mono-
tonicity under LOCC [45, 46]. A µ : D → R is (nonin-
creasing) monotone under LOCC if

µ
(
Λ(̺)

)
≤ µ(̺) (34a)

for any LOCC transformation Λ, which expresses that
entanglement can not increase by the use of local oper-
ations and classical communication. A µ : D → R is
nonincreasing on average under LOCC if

∑

j

pjµ(̺j) ≤ µ(̺), (34b)

where the LOCC is constituted as Λ =
∑

j Λj , where
the Λjs are the parts of the LOCC realizing the out-
comes of selective measurements, and ̺j =

1
pj
Λj(̺) with

pj = tr[Λj(̺)]. This latter condition is stronger than the
former one if the function is convex :

µ
(∑

j

pj̺j

)

≤
∑

j

pjµ(̺j) (34c)

for all ensemble {(pj , ̺j)}, which expresses that entan-
glement can not increase by mixing. A µ : D → R
is entanglement-monotone if (34b) and (34c) hold for
that [46]. There is common agreement [2] that LOCC-
monotonity (34a) is the only necessary postulate for a
function to be an entanglement measure. However, the
stronger condition (34b) is often satisfied too, and it is
often easier to prove. This holds also for our case.
If µ is defined only for pure states µ : P → R, then

only (34b) makes sense, whose restriction is

∑

i

piµ(πi) ≤ µ(π). (35)

Here {(pi, πi)} is the pure ensemble generated by all the
Kraus operators of all Λjs from the input state π. (Not

all πi members of the ensemble are accessible physically,
only the outcomes of the LOCC, which are formed by
partial mixtures of this ensemble [45]. Mathematically,
however, we can use the pure ensemble, which make the
construction much more simple.) If we have such a func-
tion µ : P → R, (34b) holds for its convex roof extension
[45, 46]:
∑

i

piµ(πi) ≤ µ(π) =⇒
∑

i

piµ
∪(̺i) ≤ µ∪(̺). (36)

Since the convex roof extension of a function is convex
[Eq. 34c] (moreover, it is the largest convex function tak-
ing the same values for pure states as the original function
does, [35]), µ∪(̺) is also entanglement-monotone.
Now, we construct indicator functions which are

entanglement-monotone. (These are denoted m in con-
trast with the general fs.) This is carried out in four
steps.
(i) It has also been shown in [45, 46] that if F :

D(HK) → R is unitary invariant and concave, then the
fK functions defined in (27) are non increasing on aver-
age for pure states, that is, obey (35). So let

mK(π) =M(πK) (37)

with M : D(HK) → R vanishing if and only if the state
is pure, as before, but now we demand also unitary in-
variance and concavity. The von Neumann entropy (11),
the Tsallis entropies (12a) for all q > 0, and the Rényi
entropies (15) for all 0 < q < 1 are known to be concave
[1], and all of them are unitary invariant.
(ii) Clearly, the functions obeying (35) form a cone;

that is, their sums and multiples by non-negative real
numbers also obey (35), so we can conclude that the sums
of the functions mK also obey (35). Here, instead of the
original sums in (29), we introduce the arithmetic mean
of the mLr

functions,

mα(π) =
1

k

k∑

r=1

mLr
(π), (38)

which are also indicator functions, since they obey (30).
[The factor 1/k is not really important, but the next step,
and in the three-qubit case y = 1/3(s1 + s2 + s3) from
(4b)–(4c) motivate the use of mean values.]
(iii) The only problem we face here is that the set of

functions obeying (35) is not closed under multiplication,
which is the case of the fα functions of (31). This is re-
lated to the fact that the product of two concave func-
tions is not concave in general. Moreover, a recent result
of Eltschka et. al. suggests that functions obeying (35)
cannot be of arbitrary high degree (see Theorem I in
[47], concerning a special class of functions), so we make
a trial of such a combination which does not change the
degree, but still fulfils the conditions (32). The geometric
mean will be proven to be suitable, which is just a root
of the product given in (31)

mα(π) =
[∏

α∈α

mα(π)
]1/l

, (39)
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where l = |α|, the number of mαs in the product. These
functions obviously obey (32) and also (35), which latter
is proven in Appendix B 6.
(iv) Now, the function mα(π) of (39) is nonincreasing

on average for pure states (35) so

m∪
α(̺) = min

∑

i

pimα(πi)

is also non increasing on average (34b) [because of (36)],
so it is entanglement-monotone and also identifies the PS
subsets

m∪
α(̺) = 0 ⇐⇒ ̺ ∈ Dα, (40)

as in (33).

VII. SUMMARY AND REMARKS

In this paper we have constructed the complete PS
classification of multipartite quantum states by the PS
classes arising from the PS subsets (18b), together with
necessary and sufficient conditions for the identification
of the PS classes through the necessary and sufficient
conditions for the identification of the PS subsets (33)
by indicator functions arising as convex roof extensions
of the pure-state indicator functions (31). The indicator
functions can be constructed so as to be entanglement-
monotone (Sec. VID). A side track is the PSS classifi-
cation of three-qubit states, (Sec. III), where a different
set of indicator functions has been obtained (4), (9) by
the use of the FTS approach of three-qubit pure-state
entanglement.
Now, we list some remarks and open questions, first

about the general case. (i) As was mentioned before,
this PS classification scheme is an extension of the classi-
fication based on k-separability and αk-separability given
by Seevinck and Uffink [6], which is the extension of the
classification dealing only with αk-separability given by
Dür and Cirac [7, 8]. (ii) The nonemptiness of the new
classes was only conjectured. More fully, we could not
give necessary and sufficient condition for the nonempti-
ness of the PS classes in the purely algebraic language
of labels. Probably, methods from geometry or calculus
would be needed to solve this puzzle (Sec. VIB). (iii)
In close connection with this, a further geometry-related
conjecture could be drafted about the nonempty classes:
They are of nonzero measure. It is known in the bipar-
tite case that the set of separable states is of nonzero
measure [1, 10], which can motivate this conjecture. (iv)
We have given also the necessary and sufficient criteria
of the classes. This was done by convex roof extension,
which is a general method for the identification of convex
subsets, having advantages and disadvantages. (v) First
of all, convex roof extensions are hard to calculate. How-
ever, necessary and sufficient criteria for the detection
of convex subsets seem always to be hard to calculate,
since they always contain an optimization problem, such

as finding a suitable witness, or positive map [37], or
symmetric extension [48–50], or local spin measurements
[6], or detection vector [51, 52], or local bases [53], etc.
(The latter three are for only necessary but not sufficient
criteria. For further references, see the reference lists of
[19, 20].) These optimization problems have no solutions
in a closed form in general cases. (vi) Another disadvan-
tage of convex roof extensions is that this is a “clearly
theoretical” method, under which we mean that the full
tomography of the state is needed, then the criteria are
applied by computer. The majority of the other known
criteria share this disadvantage. Exceptions are the cri-
teria by witnesses [37] and by local spin measurements [6]
(only necessary but not sufficient), where the criteria can
be used in the laboratory, by the tuning of measurement
settings. However, the optimization still has to be done
by the measuring apparatus. (vii) An advantage of the
convex roof extension is that it works independently of
the dimensions of the subsystems, so the criteria by that
work for arbitrary dimensions. However, the numerical
optimization depends strongly on the rank of the state,
which can be high if the dimension is high, resulting slow
convergence. (viii) The greatest advantage of the criteria
given by convex roof constructions—at least for us—is
that they have a very transparent structure; they reflect
clearly the structure of the PS classes by construction
[see (33)].

Now, we turn to some remarks about the three-qubit
case, which is although particular but very important.
(ix) First, note that the FTS approach of three-qubit
entanglement [11] is coming from the famous Black
Hole/Qubit Correspondence [54]. The FTS approach
has turned out to be fruitful also in some other fields
of quantum entanglement [55, 56]. There are some ad-
vantages of the FTS approach in the three-qubit case,
although, as we have seen, criteria for the PS subsets
can be obtained without the use of that. (x) Since the
convex roof extensions of polynomials can be known to
be semialgebraic functions [57, 58], it can be useful to
use LU-invariant homogeneous polynomials for the iden-
tification of the classes. Then we have polynomials of
this kind from (4) coming from the FTS approach, and
from (17) with the Tsallis entropy for q = 2 coming from
the general constructions. The former ones are of lower
degree, which may lead to more simple convex roof ex-
tensions. (xi) Moreover, this holds also for the functions
ga in the general tripartite case if Raggio’s conjecture
holds (Sec. VA). (xii) A little side result of our work is
that Raggio’s conjecture holds for two-qubit mixed states
which are, at the most, of rank 2. (xiii) An interesting
question is as to whether all pure-state indicator func-
tions can be obtained without products of local entropies,
but using only linear combinations of them. (xiv) We
note that there are also recent attempts to study the
general structure of LU invariant homogeneous polyno-
mials [59–63]. Looking for convex roof extensions in the
language of LU-invariant polynomials would be an in-
teresting direction of research. (xv) As a disadvantage
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of the FTS approach, we have to mention that some of
the indicator functions coming from the FTS approach
are not nonincreasing on average (35), namely ga and t
given in (4d) and (4e). [Counterexamples for (35) can be
constructed for these functions by direct calculation.]
Finally, we would like to summarize some arguments

for the relevance of the extension of the Seevinck-Uffink
classification. (xvi) We can get back the classification
given by Seevinck and Uffink if we simply forget about
the sets ̺ ∈ Db|ac,c|ab, and the functions g∪a (̺). How-
ever, the appearance of the ga(ψ) polynomials is natural
in the light of the formulas (4b), (4c), and (4d). This
motivates the introduction of the sets ̺ ∈ Db|ac,c|ab to
the classification. (xvii) The ga functions are interest-
ing in themselves (see Appendix A 3). For all non-GHZ
vectors, they coincide with the Wootters concurrence-
squared of two-qubit subsystems (A10). However, note
that the Wootters concurrences of two-qubit subsystems
are not suitable for being indicator functions, since they
can be zero also for GHZ-type vectors, so they do not ful-
fill the last row of ga columns of Table III. For example,
for the usual GHZ state (1c), the Wootters concurrences
of two-qubit subsystems are zero. (xviii) In Sec. IV we
have shown states which are definitely in classes that are
different in the extended classification. This is another
reason for using also the sets ̺ ∈ Db|ac,c|ab in the classi-
fication.
In closing, there is an important question, which can

be of research interest as well. (xix) The PS classification
is about the following issue: “From which kinds of pure
entangled states can a given state be mixed?” Another
issue, which is equivalently important from the point of
view of quantum computation but which we have not
dealt with, is “Which kinds of pure entangled states can
be distilled out from a given state?” What can be said
about the latter?
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Appendix A: For the three-qubit invariants

In this appendix, we list some features of the LU-
invariant homogeneous polynomials given in (4) for three-
qubit vectors.

1. In the standard basis

In [25], the following set of algebraically indepen-
dent LU-invariant homogeneous polynomials is given for

three-qubit state vectors:

I0(ψ) = tr(π) ≡ ‖ψ‖2, (A1a)

Ia(ψ) = tr(π2
a), (A1b)

I4(ψ) = 3 tr
[
(πb ⊗ πc)πbc

]
− tr(π3

b )− tr(π3
c ), (A1c)

I5(ψ) = |Det(ψ)|2, (A1d)

where π = |ψ〉〈ψ|. Here I4 is the Kempe invariant [26]
(the same for all different b, c ∈ {1, 2, 3} labels), arising in
connection with hidden nonlocality. We can alternatively
form the set of LU-invariant polynomials of (4) as

n = I0, (A2a)

y = 2I20 − 2

3

(
I1 + I2 + I3

)
, (A2b)

sa = 2
(
I20 − Ia

)
, (A2c)

ga = I20 + Ia − Ib − Ic, (A2d)

t =
8

3
I4 +

10

3
I30 − 2I0

(
I1 + I2 + I3

)
, (A2e)

τ2 = 4I5. (A2f)

Obviously, these are not independent.

2. For the LU canonical form

In [23, 24], the following LU-canonical form (“general-
ized Schmidt decomposition”) is obtained for normalized
pure three-qubit state vectors,

|ψSch〉 =
√
η0|000〉+ eiα

√
η1|100〉+

√
η2|101〉

+
√
η3|110〉+

√
η4|111〉

(A3a)

with the phase 0 ≤ α ≤ π and the amplitudes ηi ≥ 0, the
latter being normalized:

4∑

i=0

ηi = 1. (A3b)

The LU-invariant homogeneous polynomials of (4) for
this canonical form can be written in a more convenient
way using another set of independent LU-invariant ho-
mogeneous polynomials [23, 24], which is equivalent to
that of (A1). This set calculated for the canonical form
(A3) is

J1 = ∆, (A4a)

J2 = η0η2, (A4b)

J3 = η0η3, (A4c)

J4 = η0η4, (A4d)

J5 = η0
(
∆+ η2η3 − η1η4

)
, (A4e)

where ∆ = |√η1η4eiα−√
η2η3|2. Calculating the polyno-

mials of (4) for the canonical form (A3), we can identify
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these invariants as

y = 4J4 +
8

3

(
J1 + J2 + J3

)
, (A5a)

sa = 4
(
J4 + J1 + J2 + J3 − Ja

)
, (A5b)

ga = 2J4 + 4Ja, (A5c)

t = 4J4 + 8J5, (A5d)

τ2 = (4J4)
2. (A5e)

3. Connections with the Wootters concurrence and

fidelity of two-qubit subsystems

The concurrence c(χ) for a two-qubit pure state |χ〉 ∈
H1 ⊗ H2 is given by the concurrence (12b) of the one-
qubit subsystems as

c(χ) = C
[
trb

(
|χ〉〈χ|

)]
= |〈χ̃|χ〉|, (A6)

where 〈χ̃| = −ε⊗ ε|χ〉. [Note that ε ∈ Lin(Ha → Ha∗),

so |χ̃〉 = 〈χ̃|† = −εii′εjj′χi′j′∗|ij〉, leading to the usual
expression of the spin flip [64] with σ2 = −iε. On
the other hand, note the familiar expression: 〈χ̃|χ〉 =

−εii′εjj′χijχi′j′ .] Its square is the local entropy (2b):
c2(χ) = sa(χ) = 4 det(trb |χ〉〈χ|), this time for the two-
qubit pure state, a, b ∈ {1, 2}, a 6= b.
In the convex roof extension of (A6), called Wootters

concurrence, the minimization can be carried out explic-
itly [64, 65], and for a two-qubit mixed state ω it is given
by the famous formula

c∪(ω) = max{0, λ↓1 − λ↓2 − λ↓3 − λ↓4}, (A7)

where λ↓i s are the decreasingly ordered eigenvalues of the

positive matrix
√√

ωω̃
√
ω (being the same as the square

root of the eigenvalues of the non-Hermitian matrix ωω̃),
and the spin-flipped state is ω̃ = ε⊗ εω∗ε⊗ ε.
If the two-qubit mixed state for which the Wootters

concurrence-squared is calculated is reduced from a pure
three-qubit state π = |ψ〉〈ψ| as ω = πbc = tra

(
|ψ〉〈ψ|

)
,

as was investigated in [12], then πbc is, at the most, of

rank 2, and
[
c∪(πbc)

]2
= (λ1−λ2)2 = tr

(
πbcπ̃bc

)
−2λ1λ2.

One can check that

tr
(
πbcπ̃bc

)
= tr

[
γa(ψ)

†γa(ψ)
]
, (A8)

which is just ga(ψ) [see in (4d)], and

λ1λ2 = |det[γa(ψ)]| = |Det(ψ)|, (A9)

(see [12]). The concurrence is then given by

[
c∪(πbc)

]2
= ga(ψ)−

1

2
τ(ψ). (A10)

The CKW (Coffmann-Kundu-Wootters) equality [12]
about entanglement monogamy,

sa(ψ) =
[
c∪(πab)

]2
+

[
c∪(πac)

]2
+ τ(ψ), (A11)

is then equivalent to (4c).
The roof extension relates the concurrence with an-

other important quantity, the fidelity [16]. The fidelity
between two density matrices ω and σ is F (ω, σ) =

tr
√√

ωσ
√
ω, which is the square root of the transition

probability, and it is in connection with distances and
distinguishability measures on the space of density ma-
trices [1]. The fidelity of a state with respect the spin
flip is F (ω, ω̃), which is just the concave roof extension
of c(χ):

c∩(ω) = F (ω, ω̃) = λ1 + λ2 + λ3 + λ4 (A12)

in the two-qubit case. [The concave roof extension is the
maximization of the weighted average over the decom-
positions instead of the minimization (8).] Again, for
the mixed states of two-qubit subsystems arising from
a three-qubit system being in a pure state, the fidelity

is
[
c∩(πbc)

]2
= (λ1 + λ2)

2 = tr
(
πbcπ̃bc

)
+ 2λ1λ2. Using

(A8) and (A9), it is of the form similar to the concurrence
(A10)

[
c∩(πbc)

]2
= ga(ψ) +

1

2
τ(ψ). (A13)

Then, using (4c), we get a CKW-like equality for the
fidelities,

sa(ψ) =
[
c∩(πab)

]2
+
[
c∩(πac)

]2 − τ(ψ). (A14)

On the other hand, from (A10) and (A13), ga(ψ) is just
the average of the concave and convex roofs and τ(ψ) is
their difference

ga(ψ) =
1

2

([
c∩(πbc)

]2
+
[
c∪(πbc)

]2)
, (A15)

τ(ψ) =
[
c∩(πbc)

]2 −
[
c∪(πbc)

]2
. (A16)

Hence, on the zero-measured set of non-GHZ pure states,
the convex and concave roof extensions of c(χ) are equal,
and both of them are equal to ga(ψ).

4. The ranges of the invariants

In this appendix, we show that the LU-invariant poly-
nomials of Eq. (4) range from 0 to 1 if the state vec-
tor is normalized. [Otherwise, the maximum of the
functions goes by the corresponding power of the norm:
0 ≤ y(ψ), sa(ψ), ga(ψ) ≤ n2(ψ), 0 ≤ t(ψ) ≤ n3(ψ),
0 ≤ τ2(ψ) ≤ n4(ψ).]
It is well known that sa(ψ) ≤ 1, and this upper

bound can be achieved. Indeed, using the inequality of
arithmetic and geometric means (AM-GM inequality),

sa(ψ) = 4 det(πa) = 4λ1λ2 ≤ 4
[
1
2 (λ1 + λ2)

]2
= 1 (for

the eigenvalues of πa), which is saturated if and only if
λ1 = λ2 = 1

2 , for example, for |B〉ab ⊗ |0〉c, where |B〉 is
a Bell state of (1a).
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From (4c) it is clear that ga(ψ) ≤ sb(ψ) ≤ 1. To show
that the ga(ψ) ≤ 1 upper bound can be achieved, we note
that, for example, ga(|0〉a ⊗ |B〉bc) = 1.
From (4b) and (4c), one can find that y(ψ) =

1/3
(
s1(ψ) + s3(ψ) + s3(ψ)

)
≤ 1. To show that the

y(ψ) ≤ 1 upper bound can be achieved, we note that,
for example, for the usual normalized GHZ state (1c)
sa(GHZ) = 1.
It is known [12] that τ2(ψ) ≤ 1, and this upper bound

is achieved; for example, τ2(GHZ) = 1.
The proof of the t(ψ) ≤ 1 inequality is lengthy but

straightforward. t is LU invariant, so it is enough to
calculate (A5d) given for the LU-canonical form (A3):

t(ψSch) = 4η0
[
η4 + 4

√
η2η3

(√
η2η3 −

√
η1η4 cosα

)]
.

First we note that for state vectors of genuine tripartite
entanglement t(ψ) 6= 0 (see in Table III), so η0 6= 0. On
the other hand, τ(ψ) = 4η0η4 [see in (A5e)], so η4 decides
to which class the tripartite-entangled state belongs: If
|ψSch〉 ∈ VW, then η4 = 0, and if |ψSch〉 ∈ VGHZ, then
η4 6= 0.
For |ψSch〉 ∈ VW, (η0 6= 0, η4 = 0) we have

t(ψSch) = 16η0η2η3 ≤ 16
1

33
(η0 + η2 + η3)

3

=
16

27
(1− η1)

3 ≤ 16

27
= t(W) < 1,

where we have used the AM-GM inequality, and the
(A3b) normalization of the state. The first two inequali-
ties allow equalities for η0 = η2 = η3, and λ1 = 0, respec-
tively, which results in a state 1√

3

(
|000〉+ |101〉+ |110〉

)

being LU equivalent to the usual normalized W state
(1b).
For |ψSch〉 ∈ VGHZ, (η0 6= 0, η4 6= 0) we have to make

further distinctions.
If either η2 = 0 or η3 = 0, then

t(ψSch) = 4η0η4 ≤ 4
1

22
(η0 + η4)

2

= (1− η1 − η2 − η3)
2 ≤ 1 = t(GHZ)

by AM-GM inequality and normalization (A3b). The
inequalities can be saturated for η1 = η2 = η3, in which
case |ψSch〉 = |GHZ〉.
If η1 = 0, then

t(ψSch) = 4η0
[
η4 + 4η2η3

]

≤ 4η0
[
η4 + (η2 + η3)

2
]
≤ 4η0

[
η4 + η2 + η3

]
,

where we used again the AM-GM inequality, and that
x2 ≤ x for all 0 ≤ x ≤ 1 with the possibility of equality,
if and only if x = 0 or 1. η2 + η3 6= 1 since the state is
normalized and η0 6= 0. So we have that the inequalities
are equalities if and only if η2 = η3 = 0, which results
that t(ψSch) ≤ 4η0η4, which is maximized by the GHZ
state, as in the previous case.

If η1 6= 0, η2 6= 0, and η3 6= 0, then

t(ψSch) = 4η0
[
η4 + 4

√
η2η3

(√
η2η3 −

√
η1η4 cosα

)]

≤ 4η0
[
η4 + 4η2η3 + 4

√
η2η3η1η4)

]

≤ 4η0
[
η4 + (η2 + η3)

2 +
1

4
(η2 + η3 + η1 + η4)

2
]

where the inequalities are equalities for α = π, and η2 =
η3 = η1 = η4. This results in t(ψSch) ≤ 4η0η4[1 + 8η4].
Using the normalization (A3b) in this case: η0+4η4 = 1,

we can find the maximum at η0 = 1
6

(
5 −

√
7
)
. This is

achieved for the state

|ψm〉 =
√

1

6
(5−

√
7)|000〉+

√

1

6
(1 +

√
7)

1

2

(
−|100〉+ |101〉+ |110〉+ |111〉

)

For this state t(ψm) = 1
54 (10 + 7

√
7) = 0.52815 · · · < 1

meaning that this is only a local maximum.

Appendix B: For the PS classification in general

In this appendix, we prove some statements used in
the general PS classification.

1. Inclusion

Here we prove (20) in the following steps:

Dβ ⊆ Dα (i)⇐⇒ Conv
⋃

β∈β

⋃

δ�β

Pδ ⊆ Conv
⋃

α∈α

⋃

γ�α

Pγ

(ii)⇐⇒
⋃

β∈β

⋃

δ�β

Pδ ⊆
⋃

α∈α

⋃

γ�α

Pγ

(iii)⇐⇒ ∀β ∈ β, ∀δ � β, ∃α ∈ α : δ � α

(iv)⇐⇒ ∀β ∈ β, ∃α ∈ α : β � α

(v)⇐⇒ β � α.

The equivalences (i) and (v) are by definition (18b)
and (19), respectively.
Equivalence (ii) is the only one where it comes into

the picture that the story is about quantum states. The
(ii)⇐= implication holds, since it is true, in general, that

ConvB ⊆ ConvA ⇐ B ⊆ A. However, to the
(ii)
=⇒ im-

plication we have to use some special properties coming
from geometry. Obviously, for the extremal points,

ExtrConv
⋃

β∈β

⋃

δ�β

Pδ ⊆ Conv
⋃

β∈β

⋃

δ�β

Pδ

⊆ Conv
⋃

α∈α

⋃

γ�α

Pγ ,
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so π ∈ ExtrConv
⋃

β∈β

⋃

δ�β Pδ is also the element of

Conv
⋃

α∈α

⋃

γ�αPγ . However, π is a projector of rank

1, so it is extremal also in Conv
⋃

α∈α

⋃

γ�αPγ . This
holds for all π, so we have that

ExtrConv
⋃

β∈β

⋃

δ�β

Pδ ⊆ ExtrConv
⋃

α∈α

⋃

γ�α

Pγ .

Any A sets of projectors of rank 1 have the property that
A = ExtrConvA; that is, they are all extreme points of

their convex hulls, which leads to the
(ii)
=⇒ implication.

Equivalence (iii) comes from set algebra. To see the
(iii)
=⇒ implication, we note that the P ... sets are disjoint, so
every Pδ on the left-hand side of the inclusion appears on
the right-hand side as a Pγ , which means that ∀β ∈ β,

∀δ � β, ∃α ∈ α so that δ � α. To see the
(iii)⇐= impli-

cation, from the condition ∃α so that Pδ ⊆ ⋃

γ�αPγ ,
but for different δ � βs there may exist different αs, so
⋃

δ�β Pδ ⊆ ⋃

α∈α

⋃

γ�α Pγ , which holds for all β ∈ β.

Equivalence (iv) comes from the properties of partial
ordering: � is reflexive on partitions, that is, β � β, so

the
(iv)
=⇒ implication follows from the δ = β choice. On

the other hand, � is transitive on partitions, which is

just the
(iv)⇐= implication: For all δ, if δ � β and β � α

then δ � α.

2. Partial order on proper labels

We show that the relation (19) is a partial order on the
set of proper labels (21).

Reflexivity on labels: We need that α � α, which
means by definition (19) ∀α ∈ α ∃α′ ∈ α for which
α � α′. This holds with the α′ = α choice, since � is
reflexive on partitions, that is, α � α.

Transitivity on labels: Suppose that β � α and γ � β,
so by definition (19) ∀γ ∈ γ ∃β ∈ β, for which γ � β,
and for this β ∃α ∈ α, for which β � α. Since � is
transitive on partitions, we have that ∀γ ∈ γ ∃α ∈ α for
which γ � α, which is γ � α by definition (19)

Antisymmetry on proper labels: Let α and β be proper
labels. Suppose that β � α and α � β, so by definition
(19) ∀β ∈ β ∃α ∈ α for which β � α, and for this
α ∃β′ ∈ β for which α � β′. Since � is transitive on
partitions, we have that β � β′. This can be true only if
β = β′, since β is a proper label, so we have that β � α
and α � β. Since � is antisymmetric on partitions, we
have that ∀β ∈ β, ∃α ∈ α for which α = β, which means
that β ⊆ α. Interchanging the roles of α and β, we have
that α ⊆ β. Since ⊆ is antisymmetric on sets, we have
that β = α.

3. For the injectivity of labeling with proper labels

Let α and β be proper labels. Here we prove (22) in
the following steps:

Dβ = Dα (i)⇐⇒ Dβ ⊆ Dα and Dα ⊆ Dβ

(ii)⇐⇒ β � α and α � β

(iii)⇐⇒ β = α.

Equivalence (i) is the antisymmetry of ⊆ on sets, equiv-
alence (ii) is (20) on labels, equivalence (iii) is the anti-
symmetry of � on proper labels.

4. For the surjectivity of labeling with proper

labels

Here we prove (23) in the following steps:

Dαγ = Dα (i)⇐⇒ Dαγ ⊆ Dα and Dα ⊆ Dαγ

(ii)⇐⇒ αγ � α and α � αγ

(iii)⇐⇒ γ � α.

Equivalence (i) is the antisymmetry of ⊆ on sets, equiva-
lence (ii) is (20) on labels, (α � αγ holds always) equiva-
lence (iii) is from the observation that β � α and β′ � α

if and only if ββ′ � α, which can be easily seen from the
definition (19).

5. Algorithm generating PS sets

To obtain an efficient algorithm generating the proper
labels of all PS subsets, it is necessary to consider the la-
bels as l-tuples of partitions instead of sets of partitions.
In this case, α = α1, α2, . . . , αl, so the order of the ele-
ments is considered to be fixed when an l-tuple is given,
and the αjs are different for different js. [The (. . . ) l-
tuple brackets are omitted. Note that, contrary to [6],
the lower index of the partitions αj here does not refer
to the k number of Lr sets in αj .] Using ordered struc-
ture has further advantages beyond the obvious one that
a computer stores data sequentially, so implementing sets
would mean additional difficulty. Now the algorithm is
the following.

1. [Initialization] Fix an order of the partitions, this
will define a lexicographical ordering for l-tuples of
partitions. This is denoted by <. (This is to avoid
obtaining an l-tuple more than once and to make
the algorithm more optimized.)

2. [Level 1] Using this ordering, we have all the 1-
tuples of partitions ordered lexicographically.
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3. [Induction step: obtaining the l + 1-tuples of par-
titions (level l + 1) from the l-tuples of partitions
(level l)] To every α = α1, α2, . . . , αl l-tuples (com-
ing in lexicographically ordered sequence) we have
to append any such partition αl+1 (coming in lexi-
cographically ordered sequence) that
(i) αl+1 � αj and αj � αl+1 for all j = 1, 2, . . . , l,
and
(ii) αl+1 > αl. [Because of the lexicographical or-
der <, it is enough to consider only the last (lth)
partition.]
Then the resulting α = α1, α2, . . . , αl, αl+1 l + 1-
tuples, and also the partitions in every such l + 1-
tuple are ordered lexicographically.

The algorithm stops when no new partition can be ap-
pended to any of the l-tuples, which comes in finite steps,
since the number of all the partitions is finite.

6. Geometric means

Here we prove that if the functions µj : P → R
(j = 1, 2, . . . , q) are non-negative and nonincreasing on
average,

µj(π) ≥ 0, (B1a)
m∑

i=1

piµj(πi) ≤ µj(π), (B1b)

then their geometric mean

µ = (µ1µ2 . . . µq)
1/q

is also non-negative (trivially) and nonincreasing on av-
erage

µ(π) ≥ 0, (B2a)
m∑

i=1

piµ(πi) ≤ µ(π). (B2b)

(We use this for functions defined on pure states, al-
though the following proof does not use that, so the state-
ment holds also for functions defined on all states.)
To obtain this, we will need a Cauchy-Bunyakowski-

Schwarz-like inequality, for non-negative vectors x
(j) ∈

Rm, x
(j)
i ≥ 0:

m∑

i=1

x
(1)
i x

(2)
i . . . x

(q)
i ≤ ‖x(1)‖q‖x(2)‖q . . . ‖x(q)‖q, (B3)

where the usual q-norm is

‖x‖q =
[ m∑

i=1

xqi

]1/q

. (B4)

Indeed, if x(j) = 0 for some j, then the inequality holds
trivially, or else

m∑

i=1

x
(1)
i

‖x(1)‖q
x
(2)
i

‖x(2)‖q
. . .

x
(q)
i

‖x(q)‖q

≡
m∑

i=1

[

(x
(1)
i )q

‖x(1)‖qq
(x

(2)
i )q

‖x(2)‖qq
. . .

(x
(q)
i )q

‖x(q)‖qq

]1/q

≤
m∑

i=1

1

q

[

(x
(1)
i )q

‖x(1)‖qq
+

(x
(2)
i )q

‖x(2)‖qq
+ · · ·+ (x

(q)
i )q

‖x(q)‖qq

]

= 1,

where the inequality follows from the inequality of the
arithmetic and geometric means, applied to all terms in
the sum.
Using this,

m∑

i=1

piµ(πi) =

m∑

i=1

pi
[
µ1(πi)µ2(πi) . . . µq(πi)

]1/q

=

m∑

i=1

[
piµ1(πi)

]1/q[
piµ2(πi)

]1/q
. . .

[
piµq(πi)

]1/q

≤
[ m∑

i=1

piµ1(πi)
]1/q[ m∑

i=1

piµ2(πi)
]1/q

. . .
[ m∑

i=1

piµq(πi)
]1/q

≤
[
µ1(π)

]1/q[
µ2(π)

]1/q
. . .

[
µq(π)

]1/q
= µ(π),

where the first inequality is (B3) for x
(j)
i =

[
piµj(πi)

]1/q

and the second inequality is the condition (B1b).
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[20] O. Gühne and G. Tóth, Physics Reports 474, 1 (2009)
[21] C. H. Bennett, S. Popescu, D. Rohrlich, J. A. Smolin, and

A. V. Thapliyal, Phys. Rev. A 63, 012307 (Dec 2000)
[22] N. Linden and S. Popescu, Fortschr. Phys. 46, 567 (1998)
[23] A. Aćın, A. Andrianov, L. Costa, E. Jané, J. I. Latorre,
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