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ON AN IDEAL OF MULTISYMMETRIC POLYNOMIALS

ASSOCIATED WITH PERFECT CUBOIDS.

Ruslan Sharipov

Abstract. A perfect Euler cuboid is a rectangular parallelepiped with integer edges,
with integer face diagonals, and with integer space diagonal as well. Finding such
parallelepipeds or proving their non-existence is an old unsolved mathematical prob-
lem. Algebraically the problem is described by a system of Diophantine equations.
Symmetry approach to the cuboid problem is based on the natural S3 symmetry of
its Diophantine equations. Factorizing these equations with respect to their S3 sym-
metry, one gets some certain ideal within the ring of multisymmetric polynomials. In
the present paper this ideal is completely calculated and presented through its basis.

1. Introduction.

The search for perfect cuboids extends from now back to the year of 1719 (see
[1–39]), though one needs only to solve a very small system of Diophantine equations
with respect to seven integer variables x1, x2, x3, d1, d2, d3, and L:

(x1)
2 + (x2)

2 − (d3)
2 = 0, (d3)

2 + (x3)
2 − L2 = 0,

(x2)
2 + (x3)

2 − (d1)
2 = 0, (d1)

2 + (x1)
2 − L2 = 0, (1.1)

(x3)
2 + (x1)

2 − (d2)
2 = 0, (d2)

2 + (x2)
2 − L2 = 0.

Here x1, x2, x3 are the edges of a cuboid and d1, d2, d3 are its face diagonals, while
L is its space diagonal. Actually the number of the equations (1.1) can be reduced
from six to four since the equations of the right column in (1.1) are equivalent to
one equation (x1)

2 + (x2)
2 + (x3)

2 = L2.

Recently in [40] the equations (1.1) were reduced to a single Diophantine equation
with respect to four especially introduced parameters a, b, c, and u. On the base of
this equation in [41] three cuboid conjectures were formulated. These conjectures
were studied in [42–44]. However, they are not yet proved.

In [45] another approach to the equations (1.1) was tested. It is based on the
intrinsic S3 symmetry of the equations (1.1). Indeed, if σ ∈ S3, then we can write

σ(xi) = xσi, σ(di) = dσi, σ(L) = L. (1.2)
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Each transformation σ ∈ S3 permutes the equations (1.1), but the system in whole
remains unchanged. Factor equations are produced from (1.1) by introducing new
variables which are unchanged under the transformations (1.2). In [45] such vari-
ables were defined as values of elementary multisymmetric polynomials:

e[1,0] = x1 + x2 + x3,

e[2,0] = x1 x2 + x2 x3 + x3 x1,

e[3,0] = x1 x2 x3,

(1.3)

e[0,1] = d1 + d2 + d3,

e[0,2] = d1 d2 + d2 d3 + d3 d1,

e[0,3] = d1 d2 d3,

(1.4)

e[2,1] = x1 x2 d3 + x2 x3 d1 + x3 x1 d2,

e[1,1] = x1 d2 + d1 x2 + x2 d3 + d2 x3 + x3 d1 + d3 x1,

e[1,2] = x1 d2 d3 + x2 d3 d1 + x3 d1 d2.

(1.5)

The polynomials (1.3) coincide with regular elementary symmetric polynomials
in x1, x2, x3 (see [46]). The polynomials (1.4) coincide with regular elementary
symmetric polynomials in d1, d2, d3. As for the polynomials (1.5), they are actually
multisymmetric, i. e. they depend on double set of variables.

General multisymmetric polynomials, which are also known as vector symmetric
polynomials, diagonally symmetric polynomials, McMahon polynomials etc, were
initially studied in [47–53] (see also later publications [54–67]).

A general multisymmetric polynomial in our case is defined as an element of the
ring Q[x1, x2, x2, d1, d2, d3, L] invariant with respect to the transformations (1.2).
The variables x1, x2, x3 and d1, d2, d3 are usually arranged into a matrix:

M =

∥

∥

∥

∥

x1 x2 x3

d1 d2 d3

∥

∥

∥

∥

. (1.6)

Due to (1.2) the group S3 act upon the matrix (1.6) by permuting its columns. The
polynomials from Q[x1, x2, x2, d1, d2, d3, L] invariant with respect this action of S3

constitute a ring1. We denote this ring through SymQ[M,L].
Let’s denote through p1, p2, p3, p4, p5, p6 the left hand sides of the cuboid

equations (1.1). Then we have the following six polynomials:

p1 = (x1)
2 + (x2)

2 − (d3)
2, p4 = (d3)

2 + (x3)
2 − L2,

p2 = (x2)
2 + (x3)

2 − (d1)
2, p5 = (d1)

2 + (x1)
2 − L2, (1.7)

p3 = (x3)
2 + (x1)

2 − (d2)
2, p6 = (d2)

2 + (x2)
2 − L2.

The polynomials (1.7) generate an ideal in the ring Q[x1, x2, x2, d1, d2, d3, L]:

I =
〈

p1, p2, p3, p4, p5, p6

〉

. (1.8)

1 Actually both rings Q[x1, x2, x2, d1, d2, d3, L] and SymQ[M,L] are algebras over the field of
rational numbers Q.
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The intersection of the ideal (1.8) with the subring SymQ[M,L] of the polynomial
ring Q[x1, x2, x2, d1, d2, d3, L] is an ideal in SymQ[M,L]:

Isym = I ∩ SymQ[M,L]. (1.9)

Definition 1.1. A polynomial equation p(x1, x2, x2, d1, d2, d3, L) = 0 with the
polynomial p ∈ Isym is called a factor equation of the cuboid equations (1.1) with
respect to their S3 symmetry.

The main goal of this paper is to describe the ideal (1.9) in the ring of multi-
symmetric polynomials by calculating a finite basis of this ideal.

2. The substitution homomorphism.

Let Q[E,L] = Q[E10, E20, E30, E01, E02, E03, E21, E11, E12, L] be a polynomial
ring with ten independent variables. If q ∈ Q[E,L], then substituting the elemen-
tary multisymmetric polynomials (1.3), (1.4), and (1.5) for E10, E20, E30, E01, E02,
E03, E21, E11, E12 into the arguments of q, we get a polynomial p ∈ SymQ[M,L].
This means that we have a mapping

ϕ : Q[E,L] −→ SymQ[M,L]. (2.1)

It is easy to see that the mapping (2.1) is a ring homomorphism. Such a homomor-
phism is called a substitution homomorphism.

Theorem 2.1. The elementary multisymmetric polynomials (1.3), (1.4), and (1.5)
generate the ring of all multisymmetric polynomials, i. e. each multisymmetric poly-

nomial p ∈ SymQ[M,L] can be expressed as a polynomial with rational coefficients

through these elementary multisymmetric polynomials.

The theorem 2.1 is known as the fundamental theorem for elementary multi-
symmetric polynomials. Its proof can be found in [53]. The theorem 2.1 means
that the mapping (2.1) is surjective. Unfortunately the elementary multisymmetric
polynomials (1.3), (1.4), and (1.5) are not algebraically independent over Q. For
this reason the homomorphism (2.1) is not bijective. It has a nonzero kernel:

Kerϕ = K 6= {0}. (2.2)

The kernel (2.2) is an ideal of the ring Q[E,L]. According to Hilbert’s basis theorem
(see [68] and [69]) each ideal of the Q[E,L] is finitely generated. This means that

K =
〈

q1, . . . , qn
〉

. (2.3)

At present time I know seven polynomials belonging to the ideal (2.3). They are
found by means of direct calculations. Here is the first of these seven polynomials:

q1 = 4E01 E02 E20 − E02 E
2
10 E01 − E3

01 E20 +

+E10 E11 E
2
01 − E2

11 E01 − 2E10 E01 E12 + 3E03 E
2
10 −

− 9E03E20 − 3E21 E02 + E21 E
2
01 + 3E11E12,

(2.4)
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The other six polynomials are given by the following formulas:

q2 = 4E10 E20 E02 − E20 E
2
01 E10 − E3

10 E02 +

+E01 E11 E
2
10 − E2

11 E10 − 2E01 E10 E21 + 3E30 E
2
01 −

− 9E30E02 − 3E12 E20 + E12 E
2
10 + 3E11 E21,

(2.5)

q3 = 9E21 E12 − E2
01 E10 E21 − 6E10 E11 E12 − 6E01 E12 E20 +

+5E01E
2
10 E12 − 3E3

11 + 7E10E
2
11 E01 + 12E11E20 E02 −

− 3E2
01E11 E20 − 3E02E

2
10 E11 − 4E2

01 E
2
10 E11 − 81E03 E30 +

+18E01E02 E30 − 3E3
01 E30 + 36E20E10 E03 − 9E03 E

3
10 −

− 16E01E02 E20 E10 + 4E3
01 E10 E20 + 4E01 E

3
10 E02,

(2.6)

q4 = 3E01 E
2
21 − 2E2

01 E21 E20 − 9E01 E12 E30 +

+E10 E12 E01 E20 − E2
11 E20 E01 + 3E2

01 E30 E11 + E11 E20 E
2
01 E10 −

− 3E01E30 E02 E10 + 4E01 E
2
20 E02 − E3

01 E
2
20 − E01 E20 E

2
10 E02,

(2.7)

q5 = −27E10E21 E03 + E10 E
3
01 E21 + 9E10 E

2
12 − E2

11 E10 E
2
01 −

− 6E02 E12 E
2
10 − 2E2

01 E12 E
2
10 − 3E02E

2
11 E10 − E2

01 E
3
10 E02 +

+9E11 E03 E
2
10 + 3E01 E02 E

2
10 E11 + E3

01 E11 E
2
10 − 3E3

10 E
2
02 +

+3E3
10E01 E03 + 12E10 E20 E

2
02 + E02 E20 E

2
01 E10 −

−E4
01E20 E10 − 18E10E01 E03 E20 + 3E11 E01 E10 E12,

(2.8)

q6 = −27E03E21 + E21 E
3
01 + 9E2

12 + 3E12 E01 E11 −

− 2E2
01E10 E12 − 3E02 E

2
11 − E2

01 E
2
11 + 9E03 E11 E10 −

− 3E2
10E

2
02 + 3E01 E02 E11 E10 + E3

01 E11 E10 −

−18E20E01 E03 + 3E03 E01 E
2
10 − 6E02 E10 E12 −

−E4
01 E20 + 12E2

02E20 + E2
01 E02 E20 − E2

01 E
2
10 E02,

(2.9)

q7 = 3E2
21 − 2E20 E01 E21 − 9E30 E12 + E10 E12 E20 −

−E20 E
2
11 + 3E30 E11 E01 + E10 E20 E11 E01 −

− 3E02E10 E30 + 4E2
20 E02 − E2

01 E
2
20 − E2

10 E20 E02.

(2.10)

Theorem 2.2. Seven polynomials (2.4), (2.5), (2.6), (2.7), (2.8), (2.9), (2.10)
constitute a basis for the ideal K being the kernel of the homomorphism (2.1).

Proving the theorem 2.1 is an algorithmically solvable problem. For this purpose
the Gröbner bases technique should be applied to the ring

Q[x1, x2, x3, d1, d2, d3, E10, E20, E30, E01, E02, E03, E21, E11, E12, L]. (2.11)

Gröbner bases are associated with monomial orderings (see [69] or [70]). The lexi-
cographic ordering (lex) is the most simple one. It is defined through some ordering
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of variables. In the case of the ring (2.11) one should choose the ordering

x1 > x2 > x3 > d1 > d2 > d3 > E21 > E12 > E11 >

> E30 > E03 > E20 > E02 > E10 > E01 > L.
(2.12)

Due to the lexicographic ordering based on (2.12) each polynomial r of the ring
(2.11) gains its leading term LT(r) with respect to this lex-ordering.

Definition 2.1. For each ideal I of a polynomial ring the ideal LT(I) is generated
by leading terms of all polynomials of this ideal.

Definition 2.2. A basis r1, . . . , rs of an ideal I is called a Gröbner basis if the
leading terms LT(r1), . . . , LT(rs) generate the ideal LT(I).

An algorithm for computing Gröbner bases was first published by Bruno Buch-
berger in 1965 in his PhD thesis [71]. Wolfgang Gröbner was Buchberger’s thesis
adviser. Similar algorithms were developed for local rings by Heisuke Hironaka in
1964 (see [72] and [73]) and for free Lie algebras by A. I. Shirshov in 1962 (see [74]).

The ring (2.11) comprises both of the rings Q[M,L] and Q[E,L]. For this reason
one can consider the following nine polynomials in this ring:

r1 = E10 − e[1,0], r2 = E20 − e[2,0], r3 = E30 − e[3,0],

r4 = E01 − e[0,1], r5 = E02 − e[0,2], r6 = E03 − e[0,3], (2.13)

r7 = E21 − e[2,1], r8 = E11 − e[1,1], r9 = E12 − e[1,2].

The polynomials (2.13) are constructed with the use of the elementary multisym-
metric polynomials (1.3), (1.4), and (1.5). They generate the ideal

K0 =
〈

r1, r2, r3, r4, r5, r6, r7, r8, r9
〉

(2.14)

of the ring (2.11). The kernel of the homomorphism (2.1) in (2.2) coincides with
the 6-th elimination ideal for the ideal (2.14) with respect to the ordering (2.12):

K = Kerϕ = K6 = K0 ∩Q[E,L]. (2.15)

Definition 2.3. Let I be an ideal in the polynomial ring Q[x1, . . . , xn]. Then
the intersection of the ideal I with the subring Q[xk+1, . . . , xn] ⊂ Q[x1, . . . , xn] is
called the k-th elimination ideal of the ideal I:

Ik = I ∩Q[xk+1, . . . , xn]. (2.16)

Theorem 2.3 (elimination theorem). Let I be an ideal in the polynomial ring

Q[x1, . . . , xn] and let G = {g1, . . . , gs} be its Gröbner basis with respect to the

lex-ordering with x1 > x2 > . . . > xn. Then for any 0 6 k 6 n the intersection

Gk = G ∩Q[xk+1, . . . , xn] (2.17)

is a Gröbner basis for the k-th elimination ideal Ik.

The definition 2.3 and the formula (2.16) explain the formula (2.15), while the
theorem 2.3 along with the formula (2.17) yields an algorithm for calculating a
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basis for the ideal (2.2) and thus for proving the theorem 2.2. The proof of the
theorem 2.3 can be found in [69].

The algorithm provided by the theorem 2.3 is already implemented in many
packages for symbolic computations. For instance, the Maxima package (version
5.22.1) contains the Gröbner subpackage (revision 1.6) with the command

poly elimination ideal(L,k,V), (2.18)

where L is a list of polynomials, k is the integer number from (2.17), and V is a
list of variables. Due to (2.12), (2.13), and (2.15) in my case I have k = 6 and

L = [r1, r2, r3, r4, r5, r6, r7, r8, r9],

V = [x1, x2, x3, d1, d2, d3, E21, E12, E11, E30, E03, E20, E02, E10, E01, L].

After running the command (2.18) with the above parameters on a machine with
dual core Prescott 2.8E Intel Pentium-4 processor and with 500 megabytes RAM on
board I have got a Gröbner basis GK of the ideal K consisting of 14 polynomials.
Some of them are rather huge for to typeset them here. Using this Gröbner basis, I
have verified that the polynomials (2.4), (2.5), (2.6), (2.7), (2.8), (2.9), and (2.10)
do actually belong to the kernel of the homomorphism (2.1).

Conversely, the polynomials (2.4), (2.5), (2.6), (2.7), (2.8), (2.9), and (2.10)
generate their own Gröbner basis GQ. Using this second Gröbner basis GQ, I have
tested each polynomial of the first Gröbner basis GK and have found that all of
these polynomials belong to the ideal Q =

〈

q1, q2, q3, q4, q5, q6, q7
〉

generated by
the polynomials (2.4), (2.5), (2.6), (2.7), (2.8), (2.9), and (2.10). This result means
that the ideals K = Kerϕ and Q do coincide, i. e. I have got a computer aided
proof of the theorem 2.2.

3. The fine structure of the ideal Isym.

The ideal I producing Isym in (1.9) is generated by six polynomials (1.7) in (1.8).
Actually, the number of generating polynomials of the ideal I can be reduced from
six to four. Indeed, we can write

I =
〈

p0, p1, p2, p3

〉

, (3.1)

where p0 is a symmetric polynomial given by the formula

p0 = (x1)
2 + (x2)

2 + (x3)
2 − L2. (3.2)

Due to the relationship (3.1) each polynomial p ∈ Isym is written as

p = α0 p0 +

3
∑

i=1

αi p i, (3.3)

where αi ∈ Q[M,L]. Since p is a multisymmetric polynomial, it should be invariant
with respect to the symmetrization operator S defined by the formula

S(p) =
∑

σ∈S3

σ−1(p)

6
. (3.4)
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The invariance of p with respect to the operator (3.4) is written as p = S(p).
Therefore, applying S to (3.3), we derive the formula

p = S(α0 p0) +

3
∑

i=1

S(αi p i). (3.5)

Now let’s recall the formulas (1.2). Applying them to the polynomials (1.7) and
(3.2), we derive the analogous formulas

σ(p i) = pσi, σ(p0) = p0 (3.6)

for p1, p2, p3, and p0. Relying on (3.6) we introduce the following notations:

α̃0 = S(α0), α̃i =
∑

σ∈S3

σ−1(ασi)

6
(3.7)

Using (3.7), we can transform the formula (3.5) as follows:

p = α̃0 p0 +
3

∑

i=1

α̃i p i. (3.8)

The formula (3.8) is analogous to the formula (3.3). However, unlike the original
coefficients α1, α2, α3, and α0 in (3.3), the coefficients (3.7) obey the relationships

σ(α̃i) = α̃σi, σ(α̃0) = α̃0. (3.9)

The formulas (3.8) and (3.9) mean that we have proved the following lemma.

Lemma 3.1. Each polynomial p ∈ Isym = I ∩SymQ[M,L] is given by the formula

(3.3) with the coefficients αi ∈ Q[M,L] obeying the relationships

σ(αi) = ασi, σ(α0) = α0. (3.10)

The formulas (3.10) in the lemma 3.1 are important since, applying them back
to the formula (3.5) and taking into account (3.6), we derive

p = α0 p0 + 3S(α1 p1). (3.11)

Note that α1 ∈ Q[M,L] in (3.11) is a polynomial, i. e. it is a sum of monomials:

α1 =
∑

i,j,k
m,n,r,s

θijkmnrs xi
1 x

j
2 x

k
3 d

m
1 dn

2 dr
3 L

s. (3.12)

Substituting (3.12) into the formula (3.11), we easily derive the following lemma.

Lemma 3.2. The ideal Isym = I ∩ SymQ[M,L] of the ring SymQ[M,L] is gene-

rated by the polynomial p0 and by various polynomials of the form

S(p1 x
i
1 x

j
2 x

k
3 d

m
1 dn

2 dr
3 L

s). (3.13)

Note that the factor Ls is invariant with respect to the operator S. It can be
split out from the polynomial (3.13). Similarly, if µ = min(i, j, k) > 0 and/or
ν = min(m,n, r) > 0, we can split out the invariant factors (x1 x2 x3)

µ and/or
(d1 d2 d3)

ν . As a result we modify the lemma 3.2 as follows.
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Lemma 3.3. The ideal Isym = I ∩ SymQ[M,L] of the ring SymQ[M,L] is gene-

rated by the polynomial p0 and by various polynomials of the form

S(p1 x
i
1 x

j
2 x

k
3 d

m
1 dn

2 dr
3 ),

where at least one of the nonnegative numbers i, j, k is zero and at least one of the

nonnegative numbers m, n, r is zero.

The lemma 3.3 yields a basis for the ideal Isym. However this basis is not finite.
Getting a finite basis of the ideal Isym is a little bit more tricky.

4. Partially multisymmetric polynomials.

Let’s consider the formulas (3.10). The polynomial α0 in (3.10) is multisymmet-
ric, i. e. it is invariant with respect to the transformations (1.2) for all σ ∈ S3. As
for the polynomials α1, α2, and α3 in (3.10), they are partially multisymmetric.
The formulas (3.10) for these polynomials yield

σ(α1) = α1 if and only if σ1 = 1,

σ(α2) = α2 if and only if σ2 = 2, (4.1)

σ(α3) = α3 if and only if σ3 = 3.

The formulas (4.1) mean that the polynomials α1, α2, and α3 are S2 invariant, but
they are invariant with respect to different subgroups of the group S3 isomorphic
to the group S2. In order to describe such partially multisymmetric polynomials
we split out the following three matrices from the matrix (1.6):

M1 =

∥

∥

∥

∥

x2 x3

d2 d3

∥

∥

∥

∥

, M2 =

∥

∥

∥

∥

x1 x3

d1 d3

∥

∥

∥

∥

, M3 =

∥

∥

∥

∥

x1 x2

d1 d2

∥

∥

∥

∥

. (4.2)

Like the matrix (1.6), the matrices (4.2) can be used for producing elementary
multisymmetric polynomials. Here are these polynomials:

f[1,0][1] = x2 + x3, f[2,0][1] = x2 x3,

f[0,1][1] = d2 + d3, f[0,1][1] = d2 d3,

f[1,0][2] = x3 + x1, f[2,0][2] = x3 x1,
(4.3)

f[0,1][2] = d3 + d1, f[0,1][2] = d3 d1,

f[1,0][3] = x1 + x2, f[2,0][3] = x1 x2,

f[0,1][3] = d1 + d2, f[0,1][3] = d1 d2.

Apart from (4.3) there are three other elementary multisymmetric polynomials:

f[1,1][1] = x2 d3 + x3 d2,

f[1,1][2] = x3 d1 + x1 d3, (4.4)

f[1,1][3] = x1 d2 + x2 d1.

The polynomials in (4.3) and (4.4) are subdivided into three groups depending on
which matrix (4.2) is used for their production.
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Like α1, α2, and α3, the polynomials (4.3) and (4.4) are partially multisymmetric.
They obey the following relationships very similar to (3.10):

σ(f[1,0][i]) = f[1,0][σi], σ(f[2,0][i]) = f[2,0][σi],

σ(f[0,1][i]) = f[0,1][σi], σ(f[0,2][i]) = f[0,2][σi], (4.5)

σ(f[1,1][i]) = f[1,1][σi].

The polynomials (4.3) and (4.4) obey a theorem similar to the theorem 2.1.

Theorem 4.1. The elementary multisymmetric polynomials f[1,0], f[2,0], f[0,1], f[0,2],

f[1,1] generate the ring of all S2 multisymmetric polynomials, i. e. each S2 multisym-

metric polynomial can be expressed as a polynomial with rational coefficients through

these elementary multisymmetric polynomials.

The theorem 4.1 is an S2 version of the fundamental theorem on elementary
multisymmetric polynomials which is formulated for the general case of Sn multi-
symmetric polynomials (see [53]). Applying this theorem to α1, α2, and α3, we get

αi = qi(xi, di, f[1,0][i], f[2,0][i], f[0,1][i], f[0,2][i], f[1,1][i], L), (4.6)

where qi is some polynomial of eight independent variables. The polynomials α1,
α2, and α3 are not independent. They are related to each other by means of the
formulas (3.10). Therefore, applying (1.2), (3.10), and (4.5) to (4.6), we conclude
that the polynomials qi in (4.6) can be chosen so that they do coincide, i. e.

q1 = q2 = q3 = q(x, d, f[1,0], f[2,0], f[0,1], f[0,2], f[1,1], L) (4.7)

Applying (4.7) to (4.6), we write (4.6) as follows:

αi = q(xi, di, f[1,0][i], f[2,0][i], f[0,1][i], f[0,2][i], f[1,1][i], L), (4.8)

Now let’s return back to the formulas (3.5) and (3.11). Applying (4.8) to (3.11),
we get the following expression for p:

p = α0 p0 + 3S(q p1). (4.9)

Here q = q(x1, d1, f[1,0][1], f[2,0][1], f[0,1][1], f[0,2][1], f[1,1][1], L) and S is the symmetri-
zation operator (3.4). The formula (4.9) applies to any polynomial p ∈ Isym.

5. The module structure of the ideal Isym.

Each ideal is a module over that ring for which it is an ideal. When applied to
the ideal Isym, this fact means that

p ∈ Isym implies α p ∈ Isym for any α ∈ SymQ[M,L]. (5.1)

Relying on (5.1), let us consider the the product αp for a polynomial p given by
the formula (4.9). As a result we obtain the formula

αp = αα0 p0 + 3αS(q p1). (5.2)
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Note that α in (5.2) is a multisymmetric polynomial. Therefore it goes through the
symmetrization operator S as a scalar factor. This yields

αp = αα0 p0 + 3S(αq p1). (5.3)

Comparing the formulas (5.3) and (4.9), we conclude that the multiplication by α

in Isym is equivalent to the transformation

α0 7→ αα0, q 7→ α q. (5.4)

The polynomial α in the formulas (5.4) is expressed the through elementary multi-
symmetric polynomials (1.3), (1.4), and (1.5):

α = α(e[1,0], e[2,0], e[3,0], e[0,1], e[0,2], e[0,3], e[2,1], e[1,1], e[1,2], L), (5.5)

while the polynomial q in (5.4) is given by the formula

q = q(x1, d1, f[1,0][1], f[2,0][1], f[0,1][1], f[0,2][1], f[1,1][1], L) (5.6)

Formally, the polynomials α and q depend on different sets of variables, though
due to (1.3), (1.4), (1.5), (4.3), and (4.4) both sets reduce to x1, x2, x3, d1, d2, d3,
and L. Our next goal is to study the mutual relations of arguments in (5.5) and
(5.6). By means of direct calculations we derive the formulas

f[1,0][1] = e[1,0] − x1, f[2,0][1] = e[2,0] − x1 e[1,0] + x2
1,

(5.7)
f[0,1][1] = e[0,1] − x1, f[0,2][1] = e[0,2] − d1 e[0,1] + d2

1 .

The polynomial f[1,1][1] is reexpressed by the formula

f[1,1][1] = e[1,1] − d1 e[1,0] − x1 e[0,1] + 2 d1 x1. (5.8)

In addition to (5.7) and (5.8), there are the following four equations:

x3
1 = x2

1 e[1,0] − x1 e[2,0] + e[3,0],

d3
1 = d2

1 e[0,1] − d1 e[0,2] + e[0,3],
(5.9)

d1 x
2
1 =

2 d1 x1

3
e[1,0] +

x2
1

3
e[0,1] −

x1

3
e[1,1] −

d1

3
e[2,0] +

1

3
e[2,1],

x1 d
2
1 =

2 x1 d1

3
e[0,1] +

d2
1

3
e[1,0] −

d1

3
e[1,1] −

x1

3
e[0,2] +

1

3
e[1,2].

(5.10)

The equations (5.9) and (5.10) are easily derived by means of direct calculations
with the use of the formulas (1.3), (1.4), and (1.5).

Let’s substitute (5.7) and (5.8) into the arguments of the polynomial (5.6). As
a result the polynomial q is expressed in the form

q = q̃(x1, d1, e[1,0], e[2,0], e[3,0], e[0,1], e[0,2], e[0,3], e[2,1], e[1,1], e[1,2], L), (5.11)
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where q̃ is some arbitrary polynomial of twelve variables. The first formula (5.9)
expresses x3

1 through x2
1 and x1. Similarly, the second formula (5.9) expresses d3

1

through d2
1 and d1. Therefore, without loss of generality we can assume that the

order of the polynomial q̃ in x1 and in d1 is not higher than 2, i. e. the variables x1

and d1 enter this polynomial through the following monomials:

x2
1 d

2
1 , x2

1 d1, x1 d
2
1 , x1 d1, x2

1, d2
1 , x1, d1, 1. (5.12)

Due to the equations (5.10) we can exclude the monomials x2
1 d1 and x1 d

2
1 from

the above list (5.12) and write the formula (5.11) as

q = Q22 x
2
1 d

2
1 +Q11 x1 d1 +Q20 x

2
1 +Q02 d

2
1 +Q10 x1 +Q01 d1 +Q00. (5.13)

The coefficients Qij in (5.13) are produced by polynomials of ten variables:

Qij = Qij(e[1,0], e[2,0], e[3,0], e[0,1], e[0,2], e[0,3], e[2,1], e[1,1], e[1,2], L). (5.14)

The values of the expressions (5.5) and (5.14) are regular multisymmetric polyno-
mials from the ring SymQ[M,L], while the values of the expression (5.11) constitute
a module over this ring. Due to (5.13) this module is finitely generated.

6. A basis of the ideal Isym.

Now we can substitute the formula (5.13) with the coefficients (5.14) into the
formula (4.9). As a result we can write (4.9) as

p = α0 p0 +Q22 S(3 x
2
1 d

2
1 p1) +Q11 S(3 x1 d1 p1) +Q20 S(3 x

2
1 p1)+

+Q02 S(3 d
2
1 p1) +Q10 S(3 x1 p1) +Q01 S(3 d1 p1) +Q00 S(3 p1),

(6.1)

where p is an arbitrary polynomial from the ideal Isym and α0, Q22, Q11, Q10, Q01,
Q00 are arbitrary polynomials from the ring SymQ[M,L]. The formula (6.1) proves
the following theorem, which is the main result of the present paper.

Theorem 6.1. The ideal Isym in the ring SymQ[M,L] defined by the left hand

sides of the cuboid equations (1.1) through the formulas (1.7), (1.8), (1.9) is finitely
generated. Eight multisymmetric polynomials

p̃1 = p0, p̃2 = S(3 p1),

p̃3 = S(3 d1 p1), p̃4 = S(3 x1 p1),
(6.2)

p̃5 = S(3 x1 d1 p1), p̃6 = S(3 x2
1 p1),

p̃7 = S(3 d2
1 p1), p̃8 = S(3 x2

1 d
2
1 p1)

belong to the ideal Isym and constitute a basis of this ideal.

The polynomial p̃1 = p0 from the first formula (6.2) is already known in an
explicit form. It is given by the formula (3.2). The polynomial p1 used in the other
formulas (6.2) is also known in an explicit form (see (1.7)). Now, applying the
formula (3.4) for S, we can explicitly calculate the polynomials p̃2, p̃3, p̃4, p̃5, p̃6,
p̃7, and p̃8. Here is the formula for the polynomial p̃2:

p̃2 = (x2
2 + x2

3 − d2
1 ) + (x2

3 + x2
1 − d2

2 ) + (x2
1 + x2

2 − d2
3 ). (6.3)
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The explicit formulas for p̃3, p̃4, p̃5, p̃6, p̃7, and p̃8 are listed just below:

p̃3 = d1 (x
2
2 + x2

3 − d2
1 ) + d2 (x

2
3 + x2

1 − d2
2 ) + d3 (x

2
1 + x2

2 − d2
3 ), (6.4)

p̃4 = x1 (x
2
2 + x2

3 − d2
1 ) + x2 (x

2
3 + x2

1 − d2
2 ) + x3 (x

2
1 + x2

2 − d2
3 ), (6.5)

p̃5 = x1 d1 (x
2
2 + x2

3 − d2
1 ) + x2 d2 (x

2
3 + x2

1 − d2
2 )+

+ x3 d3 (x
2
1 + x2

2 − d2
3 ),

(6.6)

p̃6 = x2
1 (x

2
2 + x2

3 − d2
1 ) + x2

2 (x
2
3 + x2

1 − d2
2 ) + x2

3 (x
2
1 + x2

2 − d2
3 ), (6.7)

p̃7 = d2
1 (x

2
2 + x2

3 − d2
1 ) + d2

2 (x
2
3 + x2

1 − d2
2 ) + d2

3 (x2
1 + x2

2 − d2
3 ), (6.8)

p̃8 = x2
1 d

2
1 (x2

2 + x2
3 − d2

1 ) + x2
2 d

2
2 (x2

3 + x2
1 − d2

2 )+

+ x2
3 d

2
3 (x2

1 + x2
2 − d2

3 ).
(6.9)

Using the formulas (3.2), (6.3), (6.4), (6.5), (6.6), (6.7), (6.8), and (6.9), now we
can write the S3 factor equations for the cuboid equations (1.1). For this purpose
it is convenient to use the polynomials p1, p2, and p3 from (1.7):

x2
1 + x2

2 + x2
3 − L2 = 0, p1 + p2 + p3 = 0,

d1 p1 + d2 p2 + d3 p3 = 0, x1 p1 + x2 p2 + x3 p3 = 0,
(6.10)

d2
1 p1 + d2

2 p2 + d2
3 p3 = 0, x2

1 p1 + x2
2 p2 + x2

3 p3 = 0,

x1 d1 p1 + x2 d2 p2 +

+ x3 d3 p3 = 0,

x2
1 d

2
1 p1 + x2

2 d
2
2 p2 +

+ x3
3 d

2
3 p3 = 0.

Since the polynomials p̃1, p̃2, p̃3, p̃4, p̃5, p̃6, p̃7, p̃8 constitute a basis of the ideal
Isym, the equations (6.10) compose a complete set of S3 factor equations.

7. Comparison with the previously obtained factor equations.

In the previous paper [45] eight factor equations were already derived. But they
were written in so-called E-form, i. e. in terms of the values of the elementary mul-
tisymmetric polynomials (1.3), (1.4), and (1.5). In order to compare the previously
obtained equations from [45] with the equations (6.10) we need to convert them
into xd-form by means of the mapping ϕ from (2.1).

Let’s consider the first of the previously obtained factor equations. In its E-form
this equation is written as follows (see (4.3) in [45]):

E2
10 − 2E20 − L2 = 0. (7.1)

In order to apply ϕ to (7.1) we should substitute E10 = e[1,0], E20 = e[2,0] and then
use the formulas (1.3). As a result we get the equation coinciding with the first
equation in the left column of (6.10).

The second of the previously obtained factor equations is the equation (4.6) in
[45]. In its E-form this equation is written as follows:

E2
01 − 2E02 − 2L2 = 0. (7.2)

Upon applying the mapping ϕ to (7.2) we get the equation

2 (x2
1 + x2

2 + x2
3 − L2)− (p1 + p2 + p3) = 0, (7.3)
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which is derived from the first equations in the left and right columns of (6.10).
Let’s proceed to the third of the previously obtained factor equations. This is

the equation (4.12) in [45]. In its E-form this equation is written as follows:

2E12 + 6E30 − 2E01 E11 + E10 E
2
01 + 3E10 L

2 − E3
10 = 0. (7.4)

Upon converting to the xd-form the equation (7.4) looks like

e[1,0] ((p1 + p2 + p3)− 3 (x2
1 + x2

2 + x2
3 − L2))−

− 2 (x1 p1 + x2 p2 + x3 p3) = 0.
(7.5)

It is easy to see that (7.5) can be derived from the first and the second equations in
the right column of (6.10) and from the first equation in the left column of (6.10).

The fourth of the previously obtained factor equations is the equation (4.19) in
[45]. In its E-form this equation is written as follows:

2E21 + 6E03 − 2E10 E11 + E01 E
2
10 + 5E01 L

2 − E3
01 = 0. (7.6)

Upon applying the mapping ϕ to (7.6) we get the equation

e[0,1] (3 (p1 + p2 + p3)− 5 (x2
1 + x2

2 + x2
3 − L2))−

− 2 (d1 p1 + d2 p2 + d3 p3) = 0.
(7.7)

The equation (7.7) can be derived from the first and the second equations in the
left column of (6.10) and from the first equation in the right column of (6.10).

The fifth of the previously obtained factor equations is more complicated. It is
given by the formula (5.5) in [45]. Here is its E-form:

8E10 E12 − 8E01 E21 − 8E2
11 + 4E2

01 E
2
10 −

− E4
01 − 3E4

10 + 10E2
10L

2 + 4E2
01 L

2 + L4 = 0.
(7.8)

Upon converting to the xd-form the equation (7.8) looks like

18 (x2
1 p1 + x2

2 p2 + x2
3 p3) + 6 (x1 d1 p1 + x2 d2 p2 + x3 d3 p3)−

− 8 e[0,1] (d1 p1 + d2 p2 + d3 p3)− 24 e[1,0] (x1 p1 + x2 p2 + x3 p3)+

+ (8 e[2,0] + 3 e2[0,1] + 4 e2[1,0] + 6 e[0,2]) (p1 + p2 + p3)+

+ (2 e[2,0] − 4 e2
[0,1]

− 11 e2
[1,0]

− L2) (x2
1 + x2

2 + x2
3 − L2) = 0.

(7.9)

Like (7.5) and (7.7), the equation (7.9) is a linear combination of the equations
(6.10) with coefficients in SymQ[M,L], i. e. it can be derived from (6.10).

The next step is to consider the sixth of the previously obtained factor equations.
It is given by the formula (5.10) in [45]. Here is its E-form:

−8E10E12 + 8E01 E21 − 8E2
11 + 4E2

01 E
2
10 −

− E4
10 − 3E4

01 + 20E2
01L

2 − 2E2
10 L

2 − 5L4 = 0.
(7.10)

The equation is similar to (7.8) and is equally complicated as the equation (7.8)
since it is of the same order with respect to its variables. Upon converting to the



14 RUSLAN SHARIPOV

xd-form the equation (7.10) is written as follows:

6 (x2
1 p1 + x2

2 p2 + x2
3 p3) + 18 (x1 d1 p1 + x2 d2 p2 + x3 d3 p3)−

− 24 e[0,1] (d1 p1 + d2 p2 + d3 p3)− 8 e[1,0] (x1 p1 + x2 p2 + x3 p3)+

+ (8 e[2,0] + 9 e2[0,1] − 4 e2[1,0] + 18 e[0,2]) (p1 + p2 + p3)−

− (10 e[2,0]20 e
2
[0,1]

− 7 e2
[1,0]

− 5L2) (x2
1 + x2

2 + x2
3 − L2) = 0.

(7.11)

Like (7.9), the equation (7.11) is a linear combination of the equations (6.10) with
coefficients in SymQ[M,L], i. e. it can be derived from (6.10).

Let’s proceed to the seventh of the previously obtained factor equations. This is
the equation (5.17) in [45]. In its E-form this equation is written as follows:

4E11 E21 − 2E11E
3
01 + 6E12E

2
01 + 2E12 E

2
10 − E3

10 E
2
01 +

+E10 E
4
01 − 2E12L

2 − E10 E
2
01 L

2 + 2E3
10 L

2 − 2E10 L
4 = 0.

(7.12)

Upon converting to the xd-form the equation (7.12) looks like

−4 e[1,0] (d
2
1 p1 + d2

2 p2 + d2
3 p3)− 8 e[0,1] (x1 d1 p1 + x2 d2 p2 +

+ x3 d3 p3)− (4 e[2,0] + 2 e[0,2] − 2 e2
[1,0]

− 3 e2
[0,1]

) (x1 p1 + x2 p2 +

+ x3 p3) + 8 e[1,0] e[0,1] (d1 p1 + d2 p2 + d3 p3) + (3 e[3,0] −

− 3 e[1,1] e[0,1] + 3 e[2,0] e[1,0] − 3 e[0,2] e[1,0] − e3
[1,0]

− e[1,2] +

+L2 e[1,0]) (p1 + p2 + p3) + (2 e[1,2] + 2 e3
[1,0]

− 8 e[2,0] e[1,0] +

+2 e[0,2] e[1,0] + 2 e[1,0] L
2) (x2

1 + x2
2 + x2

3 − L2) = 0.

(7.13)

Again, looking at (7.13), we see that this equation is a linear combination of the
equations (6.10) with coefficients in SymQ[M,L], i. e. it can be derived from (6.10).

The eighth of the previously obtained factor equations is similar to the seventh
one. It is given by the formula (5.22) in [45]. Here is its E-form:

4E11 E12 − 2E11 E
3
10 + 6E21 E

2
10 + 2E21 E

2
01 − E3

01 E
2
10 + E01 E

4
10 +

+2E21L
2 − 2E11E10 L

2 + 2E01 E
2
10 L

2 + E3
01 L

2 − 3E01 L
4 = 0.

(7.14)

Converting the equation (7.14) to the xd-form, we obtain

−4 e[0,1] (x
2
1 p1 + x2

2 p2 + x2
3 p3)− 8 e[1,0] (x1 d1 p1 + x2 d2 p2 +

+ x3 d3 p3) + 8 e[1,0] e[0,1] (x1 p1 + x2 p2 + x3 p3) + (2 e2
[1,0]

+

+2L2) (d1 p1 + d2 p2 + d3 p3)− (4 e[1,1] e[1,0] + 4 e[2,0] e[0,1] −

− 3 e[0,1] e
2
[1,0] + 3L2 e[0,1] − 2 e[2,1]) (p1 + p2 + p3)− (4 e[2,1] +

+6 e[0,3] − 4 e[2,0] e[0,1] − 4 e[1,1] e[1,0] − 3L2 e[0,1] +

+5 e[0,1] e
2
[1,0]

) (x2
1 + x2

2 + x2
3 − L2) = 0.

(7.15)

Like (7.13), the equation (7.15) is a linear combination of the equations (6.10) with
coefficients in SymQ[M,L]. This means that it can be derived from (6.10).
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8. Concluding remarks.

The theorem 6.1 is the main result of this paper. It yields a basis for the ideal
Isym and a complete list (6.10) of the cuboid factor equations in xd-form. As we
noted above the equation (7.1) is equivalent to the first equation (6.10). Looking
attentively at (7.3), (7.5), (7.7), (7.9), (7.11), (7.13), and (7.15), we find that the
first seven equations in (6.10) can be derived from the previously obtained eight
factor equations (7.1), (7.2), (7.4), (7.6), (7.8), (7.10), (7.12), and (7.14). The
last equation (6.10) is new. Upon converting to an E-form it can be added to
the list of previously obtained factor equations. However, this is not enough for
to complete the list. The matter is that in E-form a complete list should include
kernel equations. Therefore the equations q1 = 0, q2 = 0, q3 = 0, q4 = 0, q5 = 0,
q6 = 0, q7 = 0 given by the kernel polynomials (2.4), (2.5), (2.6), (2.7), (2.8), (2.9),
and (2.10) should be added.
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47. Shläfli L., Über die Resultante eines systems mehrerer algebraishen Gleihungen, Denkschr.
Kaiserliche Acad. Wiss. Math.-Natur. Kl. 4 (1852); reprinted in «Gesammelte mathematische
Abhandlungen», Band II (1953), Birkhäuser Verlag, 9–112.
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