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TANGENT POWER SUMS AND THEIR APPLICATIONS

VLADIMIR SHEVELEV AND PETER J. C. MOSES

Abstract. For integerm, p, we study tangent power sum
∑m

k=1
tan2p πk

2m+1
.

We give recurrent, asymptotical and explicit formulas for these polyno-
mials and indicate their connections with Newman’s digit sums in base
2m.

1. Introduction

Everywhere below we suppose that n ≥ 1 is an odd number and p is a

positive integer. In the present paper we study tangent power sum of the

form

(1) σ(n, p) =

n−1
2

∑

k=1

tan2p πk

n
.

In 2002, Chen [1] found formulas for σ(n, p) in case p ≤ 5 as polynomials

in n. In 2007-2008, Shevelev [12] and Hassan [4] independently proved the

following statements:

Theorem 1. For every p, σ(n, p) is integer and multiple of n.

Theorem 2. For a fixed p, σ(n, p) is a polynomial in n of degree 2p with

the leading term

(2)
22p−1(22p − 1)

(2p)!
|B2p|n2p,

where B2p is Bernoulli number.

Hassan [4] proved these results (see his Theorem 4.3 and formula 4.19),

using a sampling theorem associated with the second-order discrete eigen-

value problem.

Shevelev [12] (see his Remark 2 and Remark 1) used some elementary

arguments including the best-known Littlewood expression for the power

sum of elementary polynomials in a determinant form [5].

In this paper we give another proof of these two theorems. Besides,

we find several other representations and identities involving σ(n, p) and

numerical results for them. We give applications of σ(n, p) in digit theory

(Section 5). In the conclusive Section 7, using the digit interpretation and

a combinatorial idea, we found an explicit expression for σ(n, p) (Theorem

7).
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2. Proof of Theorem 1

Denote ω = e
2πi
n . Note that

(3) tan
πk

n
= i

1− ωk

1 + ωk
= −i

1− ω−k

1 + ω−k
, tan2 πk

n
=

1− ω−k

1 + ωk

1− ωk

1 + ω−k

and, for the factors of tan2 πk
n
, we have

(4)
1− ω−k

1 + ωk
=

(−ωk)n−1 − 1

(−ωk)− 1
=

n−2
∑

j=0

(−ωk)j,
1− ωk

1 + ω−k
=

n−2
∑

j=0

(−ω−k)j .

Since tan πk
n

= − tan π(n−k)
n

, then we have

(5) 2σ(n, p) =
n−1
∑

k=1

tan2p πk

n

and, by (3)-(5),

2σ(n, p) =

n−1
∑

k=1

(

n−2
∑

j=0

(−ωk)j)p(

n−2
∑

j=0

(−ω−k)j)p =

n−1
∑

k=1

(

p−1
∏

l=0

n−2
∑

j=0

(−ωk)j
p−1
∏

l=0

n−2
∑

j=0

(−ω−k)j) =

(6) =
n−1
∑

k=1

(

2p−1
∏

t=0

n−2
∑

j=0

(−ω(−1)tk)j).

Furthermore, we note that

(7) (n− 1)t ≡ (−1)t (mod n).

Indeed, it is evident for odd t. If t is even and t = 2hs with odd s, then

(n− 1)t − (−1)t = ((n− 1)s)2
h − ((−1)s)2

h

=

((n− 1)s − (−1)s)((n− 1)s + (−1)s)((n− 1)2s+

(−1)2s) · ... · ((n− 1)2
h−1s + (−1)2

h−1s),

and, since (n− 1)s + 1 ≡ 0 (mod n), we are done. Using (7), we can write

(6) in the form (we sum from k = 0, adding the zero summand)

(8) 2σ(n, p) =
n−1
∑

k=0

2p−1
∏

t=0

(1− ωk(n−1)t + ω2k(n−1)t − ...− ω(n−2)k(n−1)t).

Considering 0, 1, 2, ..., n − 2 as digits in the base n − 1, after the multipli-

cation of factors of the product in (8) we obtain summands of the form

(−1)s(r)ωkr, r = 0, ..., (n− 1)2p − 1, where s(r) is the digit sum of r in the

base n− 1. Thus we have

(9) 2σ(n, p) =
n−1
∑

k=0

(n−1)2p−1
∑

r=0

(−1)s(r)ωkr =

(n−1)2p−1
∑

r=0

(−1)s(r)
n−1
∑

k=0

(ωk)r.
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However,
n−1
∑

k=0

(ωk)r =

{

n, if r ≡ 0 (mod n)

0, otherwise.

Therefore, by (9),

(10) 2σ(n, p) = n

(n−1)2p−1
∑

r=0, n|r
(−1)s(r)

and, consequently, 2σ(n, p) is integer multiple of n. It is left to show that

the right hand side of (10) is even. It is sufficient to show that the sum

contains even number of summands. The number of summands is

1 + ⌊(n− 1)2p

n
⌋ = 1 +

(n− 1)2p − 1

n
=

1 +

2p−1
∑

l=0

(−1)l
(

2p

l

)

n2p−1−l ≡ 1 +

2p−1
∑

l=0

(−1)l
(

2p

l

)

(mod 2) =

1− (−1)2p
(

2p

2p

)

= 0.

This completes proof of the theorem. �

3. Proof of Theorem 2

As is well known,

sin nα =

n−1
2

∑

i=0

(−1)i
(

n

2i+ 1

)

cosn−(2i+1) α sin2i+1 α,

or

sinnα = tanα cosn α

n−1
2

∑

i=0

(−1)i
(

n

2i+ 1

)

tan2i α.

Put here α = kπ
n
, k = 1, 2, ..., n−1

2
. Since tanα 6= 0, cosα 6= 0, then

0 =

n−1
2

∑

i=0

(−1)i
(

n

2i+ 1

)

tan2i α =

(−1)
n−1
2 (tann−1 α−

(

n

n− 2

)

tann−3 α + ...−

(−1)
n−1
2

(

n

3

)

tan2 α + (−1)
n−1
2

(

n

1

)

).

This means that the equation

(11) λ
n−1
2 −

(

n

2

)

λ
n−3
2 +

(

n

4

)

λ
n−5
2 − ... + (−1)

n−1
2

(

n

n− 1

)

= 0

has n−1
2

roots: λk = tan2 kπ
n
, k = 1, 2, ..., n−1

2
. Note that (11) is the charac-

teristic equation for the following difference equation
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y(p) =

(

n

2

)

y(p− 1)−
(

n

4

)

y(p− 2) + ...−

(12) (−1)
n−1
2

(

n

n− 1

)

y(p− n− 1

2
)

which, consequently, has a private solution

y(p) =

n−1
2

∑

k=1

(tan2 kπ

n
)p = σ(n, p).

Now, using Newton’s formulas for equation (11),

σ(n, 1) =

(

n

2

)

,

σ(n, 2) =

(

n

2

)

σ(n, 1)− 2

(

n

4

)

,

(13) σ(n, 3) =

(

n

2

)

σ(n, 2)−
(

n

4

)

σ(n, 1) + 3

(

n

6

)

, etc.

we conclude that σ(n, p) is a polynomial in n of degree 2p. Note that, by

induction, all these polynomials are integer-valued and thus we have an-

other independent proof of Theorem 1. To find the leading terms of these

polynomials, we make some transformations of (1). Put n−1
2

= m. Changing

in (1) the order of summands (l = m− k) and noting that

(m− l)π

2m+ 1
+

(2l + 1)π

4m+ 2
=

π

2
,

we have

(14) σ(n, p) =
m−1
∑

l=0

cot2p
(2l + 1)π

4m+ 2
.

Further we have

σ(n, p) =
∑

0≤l≤√
m

cot2p
(2l + 1)π

4m+ 2
+

(15)
∑

√
m<l≤m−1

cot2p
(2l + 1)π

4m+ 2
= Σ1 + Σ2.

Let p > 1. Let us estimate the second sum Σ2. The convexity of sin x on

[0, π
2
] gives the inequality sin x ≥ 2

π
x. Therefore, for summands in the second

sum, we have

cot2p
(2l + 1)π

4m+ 2
< sin−2p (2l + 1)π

4m+ 2
<

(
2m+ 1

2l + 1
)2p < (

2m+ 1

2
√
m+ 1

)2p < mp.
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This means that Σ2 < mp+1 < m2p and not influences on the leading

term. Now note that, evidently,

(2l + 1)π

4m+ 2
cot

(2l + 1)π

4m+ 2
→ 1

uniformly over l ≤ √
m. Thus

Σ1 =
∑

0≤l≤√
m

(
(4m+ 2)

(2l + 1)π
)2p + α(m) =

(
(4m+ 2)

π
)2p

∑

0≤l≤√
m

1

(2l + 1)2p
+ α(m),

where α(m) ≤ ε
√
m. Thus the coefficient of the leading term of the poly-

nomial σ(n, p) is

lim
m→∞

Σ1

n2p
= (

2

π
)2p

∞
∑

l=0

1

(2l + 1)2p
=

(
2

π
)2p(ζ(2p)−

∞
∑

l=1

1

(2l)2p
) =

(
2

π
)2p(ζ(2p)− 1

22p
ζ(2p)) =

2p(22p − 1)

π2p
ζ(2p).

It is left to note that, by very known formula, ζ(2p) =
|B2p|22p−1π2p

(2p)!
, we find

that the leading coefficient is defined by formula (2). �

4. Several numerical results

Since, by (1), σ(1, p) = 0, then σ(n, p) ≡ 0 (mod n(n− 1)). Put

σ∗(n, p) = 2σ(n, p)/(n(n− 1)).

By formulas (13), the first polynomials {σ∗(n, p)} are

σ∗(n, 1) = 1,

σ∗(n, 2) =
n2 + n

3
− 1,

σ∗(n, 3) =
2(n2 + n)(n2 − 4)

15
+ 1,

σ∗(n, 4) =
(n2 + n)(17n4 − 95n2 + 213)

315
− 1,

σ∗(n, 5) =
2(n2 + n)(n2 − 4)(31n4 − 100n2 + 279)

2835
+ 1, etc.

As well known (cf. Problem 85 in [8]), the integer-valued polynomials have

integer coefficients in the binomial basis {
(

n

k

)

}. The first integer-valued poly-

nomials {σ(n, p)} represented in binomial basis have the form

σ(n, 1) =

(

n

2

)

,
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σ(n, 2) =

(

n

2

)

+ 6

(

n

3

)

+ 4

(

n

4

)

,

σ(n, 3) =

(

n

2

)

+ 24

(

n

3

)

+ 96

(

n

4

)

+ 120

(

n

5

)

+ 48

(

n

6

)

,

σ(n, 4) =

(

n

2

)

+78

(

n

3

)

+836

(

n

4

)

+3080

(

n

5

)

+5040

(

n

6

)

+3808

(

n

7

)

+1088

(

n

8

)

,

etc.

Note that the recursion (12) presupposes a fixed n. In general, by (12),

we have

σ(n, p) =

(

n

2

)

σ(n, p− 1)−
(

n

4

)

σ(n, p− 2) + ...−

(16) (−1)
n−1
2

(

n

n− 1

)

σ(n, p− n− 1

2
), p ≥ n− 1

2
.

Since from (1) σ(n, 0) = n−1
2
, n = 3, 5, ..., then, calculating other initials by

(13), we have the recursions:

σ(3, p) = 3σ(3, p− 1), p ≥ 1, σ(3, 0) = 1;

σ(5, p) = 10σ(5, p− 1)− 5σ(5, p− 2), p ≥ 2, σ(5, 0) = 2, σ(5, 1) = 10;

σ(7, p) = 21σ(7, p− 1)− 35σ(7, p− 2) + 7σ(7, p− 3), p ≥ 3,

σ(7, 0) = 3, σ(7, 1) = 21, σ(7, 2) = 371;

σ(9, p) = 36σ(9, p−1)−126σ(9, p−2)+84σ(9, p−3)−9σ(9, p−4), p ≥ 4,

σ(9, 0) = 4, σ(9, 1) = 36, σ(9, 2) = 1044, σ(9, 3) = 33300; etc.

Thus

(17) σ(3, p) = 3p,

and a few terms of the other sequences {σ(n, p)} are

n = 5) 2, 10, 90, 850, 8050, 76250, 722250, 6841250, 64801250,

613806250, 5814056250, ...;

n = 7) 3, 21, 371, 7077, 135779, 2606261, 50028755, 960335173,

18434276035, 353858266965, 6792546291251, ...;

n = 9) 4, 36, 1044, 33300, 1070244, 34420356, 1107069876,

35607151476, 1145248326468, 36835122753252, ...;

n = 11) 5, 55, 2365, 113311, 5476405, 264893255, 12813875437,

619859803695, 29985188632421, 1450508002869079, ... .
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5. Applications to digit theory

For x ∈ N and odd n ≥ 3, denote by Sn(x) the sum

(18) Sn(x) =
∑

0≤r<x: r≡0 (mod n)

(−1)sn−1(r),

where sn−1(r) is the digit sum of r in base n− 1.

Note that, in particular, S3(x) equals the difference between the numbers of

multiples of 3 with even and odd binary digit sums (or multiples of 3 from

sequences A001969 and A000069 in [14]) in interval [0, x).

Leo Moser (cf. [7], Introduction) conjectured that always

(19) S3(x) > 0.

Newman [7] proved this conjecture. Moreover, he obtained the inequali-

ties

(20)
1

20
< S3(x)x

−λ < 5,

where

(21) λ =
ln 3

ln 4
= 0.792481... .

In connection with these remarkable Newman results, the qualitative result

(19) we call a weak Newman phenomenon (or Moser-Newman phenome-

non), while an estimating result of the form (20) we call a strong Newman

phenomenon.

In 1983, Coquet [2] studied a very complicated continuous and nowhere

differentiable fractal function F (x) with period 1 for which

(22) S3(3x) = xλF

(

lnx

ln 4

)

+
η(x)

3
,

where

(23) η(x) =

{

0, if x is even,

(−1)s2(3x−1), if x is odd.

He obtained that

(24) lim sup
x→∞, x∈N

S3(3x)x
−λ =

55

3

(

3

65

)λ

= 1.601958421 . . . ,
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(25) lim inf
x→∞, x∈N

S3(3x)x
−λ =

2
√
3

3
= 1.154700538 . . . .

In 2007, Shevelev [11] gave an elementary proof of Coquet’s formulas

(24)-(25) and his sharp estimates in the form

(26)
2
√
3

3
xλ ≤ S3(3x) ≤

55

3

(

3

65

)λ

xλ, x ∈ N.

Besides, Shevelev showed that the sequence {(−1)s2(n)(S3(n)−3S3(⌊n/4⌋))},
is periodic with period 24 taking the values −2,−1, 0, 1, 2. This gives a sim-

ple recursion for S3(n). In 2008, Drmota and Stoll [3] proved a generalized

weak Newman phenomenon, showing that (19) is valid for sum (18) for

every n ≥ 3, at least beginning with x ≥ x0(n). Our proof of Theorem 1

allows to consider a strong form of this generalization, but yet only in “full”

intervals in even base n − 1 of the form [0, (n − 1)2p) (see also preprint of

Shevelev [12]).

Theorem 3. For xn,p = (n− 1)2p, p ≥ 1, we have

(27) Sn(xn,p) ∼
2

n
xλ
n,p σ(n, p) ∼ xλ

n,p (p → ∞),

where

(28) λ = λn =
ln cot( π

2n
)

ln(n− 1)
.

Proof. According to (10) and (18), we have

(29) Sn(xn,p) =
2

n
σ(n, p), p ≥ 1.

Thus, choosing the maximal exponent in (1) as p → ∞, we find

Sn(xn,p) ∼
2

n
tan2p (n− 1)π

2n
=

2

n
cot2p

π

2n
= exp(ln

2

n
+ 2p ln cot

π

2n
) =

(30) exp(ln
2

n
+ 2pλ ln(n− 1)) = exp(ln

2

n
+ ln xλ

n,p) =
2

n
xλ
n,p.

�

In particular, in the cases of n = 3, 5, 7, 9, 11 we have λ3 = ln 3
ln 4

=

0.79248125..., λ5 = 0.81092244..., λ7 = 0.82452046..., λ9 = 0.83455828..., λ11 =

0.84230667... respectively.

Show that

(31) 1− ln π
2

ln(n− 1)
≤ λn ≤ 1− ln π

2

ln(n− 1)
+

1

(n− 1) ln(n− 1)
.
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Indeed, by the convexity of cosx on [0, π
2
], cosx ≥ 1− 2

π
x, and, therefore,

cos π
2n

≥ 1− 1
n
. Using also that tan π

2n
≥ π

2n
≥ sin π

2n
, we have

2

π
(n− 1) ≤ cot

π

2n
≤ 2

π
n

and, by (28),

1− ln π
2

ln(n− 1)
≤ λn ≤ 1− ln π

2

ln(n− 1)
+

ln(1 + 1
n−1

)

ln(n− 1)

which yields (31), since, for n ≥ 3, ln(1 + 1
n−1

) < 1
n−1

. Finally, let us show

the monotonic increasing of λn. For function f(x) =
ln cot( π

2x
)

ln(x−1)
, we have

(32) ln(x− 1)f ′(x) =
π

x2 sin π
x

− f(x)

x− 1
.

As in (31), we also have

(33) f(x) ≤ 1− ln π
2

ln(x− 1)
+

1

(x− 1) ln(x− 1)
.

On the other hand, since sin π
x
≤ π

x
, then

π(x− 1)

x2 sin π
x

≥ 1− 1

x
,

and, by (32), in order to show that f ′(x) > 0, it is sufficient to prove that

f(x) < 1− 1
x
, or, by (33), to show that

1− ln π
2

ln(x− 1)
+

1

(x− 1) ln(x− 1)
< 1− 1

x
,

or
ln(x− 1)

x
+

1

x− 1
< ln

π

2
.

This inequality holds for x ≥ 7, and since λ3 < λ5 < λ7, then the mono-

tonicity of λn follows. Thus we have the monotonic strengthening of the

strong form of Newman-like phenomenon for the base n−1 in the considered

intervals.

6. An identity

Since (29) was proved for xn,p = (n − 1)2p, p ≥ 1, then, by (16), for

Sn(xn,p) in the case p ≥ n+1
2
, we have the relations

n−1
2

∑

k=0

(−1)k
(

n

2k

)

σ(n, p− k) =

n−1
2

∑

k=0

(−1)k
(

n

2k

)

Sn((n− 1)2p−2k) = 0.
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In case p = n−1
2

the latter relation does not hold. Let us show that in

this case we have the identity
n−1
2

∑

k=0

(−1)k
(

n

2k

)

Sn((n− 1)n−2k−1) = (−1)n,

or, putting n− 2k − 1 = 2j, the identity

(34)

n−1
2

∑

j=0

(−1)j
(

n

2j + 1

)

Sn((n− 1)2j) = 1.

Indeed, in case j = 0, we, evidently, have Sn(1) = 1, while, formally, by

(29), for p = 0, we obtain ”Sn(1) =
2
n
σ(n, 0) = 2

n
n−1
2

= n−1
n
”, i.e., the error

is − 1
n
, and the error in the corresponding sum is n(− 1

n
) = −1. Therefore, in

the latter formula, instead of 0, we have 1. Note that (34) one can rewrite

also in the form
n−1
2

∑

j=1

(−1)j−1

(

n

2j + 1

)

σ(n, j) =

(

n

2

)

.

7. Explicit combinatorial representation

In its turn, the representation (29) allows to get an explicit combinatorial

representation for σ(n, p). We need three lemmas.

Lemma 4. ([10], p. 215 ) The number of compositions C(m,n, s) of m

with n positive parts not exceeding s is given by formula

(35) C(m,n, s) =

min(n,⌊m−n
s

⌋)
∑

j=0

(−1)j
(

n

j

)(

m− sj − 1

n− 1

)

.

Since, evidently, C(m,n, 1) = δm,n, then, as a corollary, we have the

identity

(36)

min(n,m−n)
∑

j=0

(−1)j
(

n

j

)(

m− j − 1

n− 1

)

= δm,n.

Lemma 5. The number of compositions C0(m,n, s) of m with n nonnega-

tive parts not exceeding s is given by formula

(37) C0(m,n, s) =



























C(m+ n, n, s+ 1), if m ≥ n ≥ 1, s ≥ 2,
∑m

ν=1C(m, ν, s)
(

n

n−ν

)

, if 1 ≤ m < n, s ≥ 2,

1, if m = 0, n ≥ 1, s ≥ 0,

0, if m > n ≥ 1, s = 1,
(

n

m

)

, if 1 ≤ m ≤ n, s = 1.
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Proof. Let firstly s ≥ 2, m ≥ n ≥ 1. If to diminish on 1 every part of a

composition of m + n with n positive parts not exceeding s + 1, then we

obtain a composition of m with n nonnegative parts not exceeding s, such

that zero parts allowed. Let, further, s ≥ 2, 1 ≤ m < n. Consider C(m, ν, s)

compositions of m with ν ≤ m parts. To obtain n parts, consider n−ν zero

parts, which we choose in
(

n

n−ν

)

ways. The summing over 1 ≤ ν ≤ m gives

the required result. Other cases are evident. �

Let now (n− 1)h ≤ N < (n− 1)h+1, n ≥ 3. Consider the representation

of N in the base n− 1 :

N = gh(n− 1)h + ... + g1(n− 1) + g0,

where gi = gi(N), i = 0, ..., h, are digits of N, 0 ≤ gi ≤ n− 2. Let

se(N) =
∑

i is even

gi, s
o(N) =

∑

i is odd

gi.

Lemma 6. N is multiple of n if and only if so(N) ≡ se(N) (mod n).

Proof. The lemma follows from the evident relation (n−1)i ≡ (−1)i (mod n),

i ≥ 0. �

Now we obtain a combinatorial explicit formula for σ(n, p).

Theorem 7. For n ≥ 3, p ≥ 1, we have

σ(n, p) =
n

2

(n−2)p
∑

j=0

((C0(j, p, n− 2))2+

(38) 2

⌊ (n−2)p−j

n
⌋

∑

k=1

(−1)kC0(j, p, n− 2)C0(j + nk, p, n− 2)),

where C0(m,n, s) is defined by formula (37).

Proof. Consider all nonnegative integers N ′s not exceeding (n − 1)2p − 1,

which have 2p digits gi(N) in base n−1 (the first 0’s allowed). Let the sum

of digits of N on even p positions be j, while on odd p positions such sum be

j + kn with a positive integer k. Then, by Lemma 6, such N ′s are multiple

of n. Since in the base n−1 the digits not exceed n−2, then the number of

ways to choose such N ′s, for k = 0, is (C0(j, p, n− 2))2. In the case k ≥ 1,

we should also consider the symmetric case when on odd p positions the

sum of digits of N be j, while on even p positions such sum be j + kn with

a positive integer k. This, for k ≥ 1, gives 2C0(j, p, n−2)C0(j+kn, p, n−2)

required numbers N ′s. Furthermore, since n is odd, then, if k is odd, then
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sn−1(N) is odd, while, if k is even, then sn−1(N) is even. Thus the

difference Sn((n − 1)2p) between n-multiple N ′s with even and odd digit

sums equals

Sn((n− 1)2p) =
∑

j

((C0(j, p, n− 2))2+

2
∑

k

(−1)kC0(j, p, n− 2)C0(j + nk, p, n− 2)).

Now to obtain (38), note that 0 ≤ j ≤ (n − 2)p, and, for k ≥ 1, also

j + nk ≤ (n− 2)p, such that 1 ≤ k ≤ (n−2)p−j

n
, and that, by (29), σ(n, p) =

n
2
Sn((n− 1)2p). �

Example 8. Let n = 5, p = 2. By Theorem 7, we have

σ(5, 2) = 2.5
6

∑

j=0

((C0(j, 2, 3))
2+

(39) 2

⌊ 6−j

3
⌋

∑

k=1

(−1)kC0(j, 2, 3)C0(j + 5k, 2, 3)).

We have

C0(0, 2, 3) = 1, C0(1, 2, 3) = 2, C0(2, 2, 3) = 3,

C0(3, 2, 3) = 4, C0(4, 2, 3) = 3, C0(5, 2, 3) = 2, C0(6, 2, 3) = 1.

Thus
6

∑

j=0

((C0(j, 2, 3))
2 = 44.

In the cases j = 0, k = 1 and j = 1, k = 1 we have

C0(0, 2, 3)C0(5, 2, 3) = 2, C0(1, 2, 3)C0(6, 2, 3) = 2.

Thus

2

6
∑

j=0

⌊ 6−j

3
⌋

∑

k=1

(−1)kC0(j, 2, 3)C0(j + 5k, 2, 3)) = −8

and, by (39), we have

σ(5, 2) = 2.5(44− 8) = 90.

On the other hand, by (1), we directly have

σ(5, 2) =

2
∑

k=1

tan4 πk

5
= 0.278640...+ 89.721359... = 89.999999...

Example 9. In case n = 3, by Theorem 7 and formulas (17), (37), we have

3p =
3

2

p
∑

j=0

((C0(j, p, 1))
2+
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2

⌊ p−j

3
⌋

∑

k=1

(−1)kC0(j, p, 1)C0(j + 3k, p, 1)) =

3

2

p
∑

j=0

(

(

p

j

)2

+ 2

⌊ p−j

3
⌋

∑

k=1

(−1)k
(

p

j

)(

p

3k + j

)

.

Thus, using well known formula
∑p

j=0(
(

p

j

)2
=

(

2p
p

)

, we find the identity

p
∑

j=0

⌊ p−j

3
⌋

∑

k=1

(−1)k
(

p

j

)(

p

3k + j

)

= 3p−1 − 1

2

(

2p

p

)

,

or, changing the order of summing,

⌊ p

3
⌋

∑

k=1

(−1)k
p−3k
∑

j=0

(

p

j

)(

p

3k + j

)

= 3p−1 − 1

2

(

2p

p

)

.

Since (cf.[9],p.8)

(40)

p−3k
∑

j=0

(

p

j

)(

p

3k + j

)

=

(

2p

p+ 3k

)

,

then we obtain an identity

(41)

⌊ p

3
⌋

∑

k=1

(−1)k−1

(

2p

p+ 3k

)

=
1

2

(

2p

p

)

− 3p−1, p ≥ 1.

Note that firstly (41) was proved in a quite another way by Shevelev [13]

(2007) and again proved by Merca [6] (2012).
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