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Abstract: We develop a general recipe for constructing orthogonal bases for the calcula-

tion of color structures appearing in QCD for any number of partons and arbitrary Nc. The

bases are constructed using hermitian gluon projectors onto irreducible subspaces invariant

under SU(Nc). Thus, each basis vector is associated with an irreducible representation of

SU(Nc). The resulting multiplet bases are not only orthogonal, but also minimal for finite

Nc. As a consequence, for calculations involving many colored particles, the number of

basis vectors is reduced significantly compared to standard approaches employing over-

complete bases. We exemplify the method by constructing multiplet bases for all processes

involving a total of 6 external colored partons.
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1. Introduction

With the start of the Large Hadron Collider follows an increased demand for accurately

calculated processes in perturbative quantum chromodynamics (QCD), as the higher ener-

gies open up for events with more colored partons. A major challenge for these calculations

is the complication brought about by the non-abelian gauge structure in QCD.

Several methods have been developed for treating the color structure in special cases

[1–5]. The most general, and probably most widely used approach for exact calculations

employs a decomposition of the color space into open and closed quark-lines [6–14], i.e.

linear combinations of terms like

tr[tg1tg2tg3 ] (tg4tg5tg6)q1q2 =

g1

g2g3

g4 g5 g6

q1 q2

, (1.1)

where the involved partons may be combined to form any structures allowed in QCD. Here

tgj , gj = 1, . . . , N2
c − 1 denotes a generator in the fundamental representation of SU(Nc),

Nc = 3 for QCD, and q1,2 = 1, ..., Nc. We refer to this type of basis as a trace basis. Any

amplitude, at tree level and beyond, can be decomposed in this way, and for fixed order

calculations only a small fraction of all possible products of open and closed quark-lines

have non-vanishing amplitudes. For calculations involving many partons, approximative

Monte Carlo techniques [15–20] and, for higher efficiency, the color-flow basis [16], may be

employed.

Two drawbacks of the trace basis are that it is non-orthogonal and, in general, over-

complete, i.e. it is not a proper basis but just a spanning set. In an alternative approach

the state spaces of incoming and outgoing partons are decomposed into multiplets, i.e. into

irreducible subspaces invariant under SU(3), or, more generally, SU(Nc). It is then possible

to construct (minimal) orthogonal bases for color spaces. We refer to this kind of basis

as a multiplet basis. These bases have the potential to significantly speed up QCD color

calculations. However, to the best of our knowledge, multiplet bases have so far only been

employed for processes with up to five colored partons [3–5,21–23], typically in the context

of resummation. One reason is that, in general, the construction of these bases is far from

obvious. This is the problem we want to shed light on in this article.

Our main result is a general recipe for constructing orthogonal multiplet bases for QCD

processes with an arbitrary number of quarks and gluons, to arbitrary order in perturbation

theory and for arbitrary Nc. We explicitly demonstrate the method by constructing bases

for all processes with six colored partons.

This article is organized as follows: In the remainder of the introduction we discuss

the notion of color space (section 1.1), review the trace basis approach (section 1.2) and

set the stage for our method with an example in section 1.3. Thereafter we address the

construction of projection operators (section 2) and basis vectors (section 3) in the quarks-

only case. We discuss the importance of hermitian projection operators, and define quark
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Figure 1: A color structure for a process with nq = 2 and Ng = 4.

projectors which we use in the subsequent construction of gluon projectors. In section 4

we address the considerably more involved task of constructing projection operators for an

arbitrary number of gluons. Starting from these projectors, we outline in section 5 how

to build orthogonal bases for processes involving only gluons. After having addressed the

construction in the gluon-only case, we find in section 6 that the extension to processes

involving both quarks and gluons is straightforward. We conclude with some remarks in

section 7.

1.1 Color space

Consider a process with a certain number of incoming and outgoing quarks, anti-quarks

and gluons. We denote by nq the number of outgoing quarks plus the number of incoming

anti-quarks, and by Ng the number gluons (incoming plus outgoing). Due to the QCD

Feynman rules the number of incoming quarks plus the number of outgoing anti-quarks

also has to equal nq. Focusing on the color degrees of freedom, i.e. ignoring spin and

momentum, quark states are elements of V = C
Nc and transform under the fundamental

or defining representation of SU(Nc), anti-quarks states are elements of the dual space

V ∼= C
Nc and transform in the complex conjugate of the fundamental representation,

whereas gluons transform in the adjoint representation, i.e. gluon states are elements of a

real N2
c − 1-dimensional vector space which we complexify to A ∼= C

N2
c−1. Thus, with a

QCD amplitude is associated a tensor c ∈ (V ⊗ V )⊗nq ⊗A⊗Ng , its color structure.

Let us briefly remark on some conventions. We refer to SU(Nc)-invariant irreducible

subspaces as multiplets. A multiplet carries an irreducible representation of SU(Nc). As

there is a unique irreducible representation associated with each multiplet, we often use

the two terms interchangeably, e.g. we refer to the trivial representation as singlet or to

the adjoint representation of SU(3) as octet.

Eventually we will use Cvitanović’s birdtrack notation [8, 24] representing a tensor

c ∈ (V ⊗ V )⊗nq ⊗ A⊗Ng as a blob with 2nq + Ng legs, where straight lines with outward

pointing arrows correspond to outgoing quarks (or incoming anti-quarks), straight lines

with inward pointing arrows correspond to incoming quarks (or outgoing anti-quarks) and

curly lines correspond to gluons1, see figure 1. Inside the blob the lines can be connected

1Cvitanović [8, 24] represents gluons by thin instead of curly lines.
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directly or via any number of

quark-gluon vertices,
i j

a

= (ta)ij and

triple-gluon vertices,
a

b

c = ifabc ,

(1.2)

where i, j = 1, . . . , Nc, a, b, c = 1, . . . , N2
c − 1 and the indices in the triple gluon vertex

are to be read anti-clockwise. Here ta denotes a generator of SU(Nc) in the fundamental

representation and fabc are the SU(Nc) structure constants. We do not include the four

gluon vertex in this list since its color part can be built from linear combinations of (one-

gluon) contracted products of two triple-gluon vertices.

Since QCD-processes conserve color we are only interested in color structures that are

overall singlets, i.e. invariant tensors, see appendix F. Thus, we define the color space as

the color singlet subspace of (V ⊗V )⊗nq ⊗A⊗Ng , i.e. the span of all tensors that transform

under the trivial representation of SU(Nc). For instance, consider a process with two

incoming and two outgoing quarks, qq → qq for short. The color space for this process is

spanned by the singlets in V ⊗ V ⊗ V ⊗ V and as such has dimension 2, with a possible

basis being given by the linear operators Ps, Pa : V ⊗ V → V ⊗ V projecting onto the

symmetric (sextet) and anti-symmetric (anti-triplet) tensors in V ⊗ V , respectively.

We are only interested in color summed (averaged) cross sections, which depend on

the norm squared of the color structure,

‖c‖2 = 〈c|c〉 , (1.3)

where the scalar product is given by summing over all external color indices, i.e.

〈c1|c2〉 =
∑

a1, a2, ...

c∗a1 a2...1 ca1 a2...
2 (1.4)

with ai = 1, . . . , Nc if parton i is a quark or anti-quark and ai = 1, . . . , N2
c − 1 if parton i

is a gluon. For Ng even, i.e. Ng = 2ng, color structures c ∈ (V ⊗ V )⊗nq ⊗ A⊗2ng can be

viewed as linear operators c : V ⊗nq ⊗ A⊗ng → V ⊗nq ⊗ A⊗ng and the scalar product (1.4)

reads

〈c1|c2〉 = tr(c†1c2) . (1.5)

Out of these operators the hermitian projectors,

Pi1 ...inq ,o1...onq
= (P†)i1 ...inq ,o1...onq

= (Po1...onq ,i1 ...inq
)∗ (1.6)

onto SU(Nc)-invariant subspaces of V ⊗nq ⊗ A⊗ng play a special role. They are examples

of color singlets in (V ⊗ V )⊗nq ⊗A⊗2ng . If we chose them to be mutually transversal,

PjPk = 0 ∀ j 6= k , (1.7)
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i.e. the image of each projector is contained in the kernel of all the others, then hermiticity

implies that they project onto mutually orthogonal subspaces, and that the projectors are

themselves orthogonal with respect to the scalar product (1.5),

〈Pj |Pk〉 = tr(P†
jPk) = tr(PjPk) = 0 ∀ j 6= k . (1.8)

These projectors can therefore be used in the construction of orthogonal bases. Denoting

by dj the dimension of the image of Pj we also find

‖Pj‖2 = tr(P†
jPj) = tr(P2

j ) = tr(Pj) = dj , (1.9)

and thus Pj/
√

dj is normalized with respect to the scalar product (1.4).

In the example of qq → qq above, the color space was spanned by these projectors

alone. In general this is not the case. If the same multiplet appears several times in the

decomposition of V ⊗nq⊗A⊗ng , then also operators describing transitions from one instance

of a multipet to a different instance of the same multiplet constitute linearly independent

vectors in color space.

Hermitian projectors onto SU(Nc)-invariant irreducible subspaces of A⊗ng will be our

starting point for the construction of orthogonal bases of the color space within A⊗2ng .

Then we will see that these projectors also enable the construction of orthogonal bases

for the color space for A⊗ng → A⊗(ng+1), i.e. for the color singlet space within A⊗(2ng+1).

Finally, when there are external quarks, we take advantage of V ⊗ V = • ⊕ A, where •
denotes the singlet, i.e. a subspace transforming under the trivial representation. This

implies

(V ⊗ V )⊗nq = (• ⊕A)⊗nq =

nq⊕

ν=0

(nq

ν

)
A⊗ν , (1.10)

where A⊗0 = •, and thus, we are able to construct orthogonal bases for the color spaces

within (V ⊗V )⊗nq ⊗A⊗2ng or (V ⊗V )⊗nq ⊗A⊗(2ng+1), as soon as we have constructed the

projectors for A⊗ν ∀ ν = 1, . . . , nq + ng.

1.2 Trace bases

For tree level processes involving only gluons, the most popular way to keep track of

the color structure is probably to use a basis consisting of traces over SU(3) generators

[6–12,14]. A general amplitude A can then be written as

A =
∑

σ∈SNg−1

Aσ tr[t
1tσ(2) · · · tσ(Ng)], (1.11)

where σ denotes a permutation, i.e. A is a sum over (color) scalar subamplitudes Aσ (also

referred to as color ordered, dual or partial amplitudes) multiplying the color structures

given by the traces. Note that fixing the position of the first generator does not impose any

restriction due to the cyclicity of the trace. For tree-level gluon-only processes there are

thus (Ng − 1)! basis vectors. In diagrammatic notation these traces are quark loops with

Ng gluon lines attached. That every tree-level gluon amplitude can be written in this way
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can be seen as follows [8]. Consider any tree level diagram and first rewrite any four-gluon

vertex in terms of three gluon vertices. Then replace the triple gluon vertices using

ifabc =
1

TR

[
tr(tatbtc)− tr(tbtatc)

]
⇔ =

1

TR


 −


 , (1.12)

where the arbitrary normalization constant TR is defined by

tr[tatb] = TR δab ⇔ = TR . (1.13)

Finally, remove every internal gluon propagator using the Fierz-type identity

(ta)ij(t
a)kl = TR

[
δilδ

k
j − 1

Nc
δijδ

k
l

]
⇔ = TR

[
− 1

Nc

]
.

(1.14)

Noting that the color suppressed terms drop out, see e.g. [24, sec. 9.14], the final result

is a sum of traces of the form given in eq. (1.11). At loop level it is necessary to also

incorporate basis vectors which are products of traces. In general, considering processes

to order Nloop, it is necessary to include states which are direct products of up to Nloop

different traces. As tr[ta] = 0, the basis vectors for calculations to arbitrary order in the

coupling constant have at most Ng/2 traces since each trace has to contain at least two

generators. Considering all ways of partitioning Ng gluons into traces does thus always

give a basis which can be used to any order in perturbation theory. This basis is complete

for Ng ≤ Nc, but it is overcomplete for Ng > Nc [7,8]. Moreover, it is not orthogonal. This

is a significant drawback due to the rapid growth of the number of basis vectors with the

number of external gluons (partons in general). Counting the number of basis vectors can

be reduced to the problem of mapping Ng units to Ng units without mapping a single one

to itself (no generator can stand alone inside a trace). There are thus

subfactorial(Ng) = Ng!

Ng∑

ν=0

(−1)ν

ν!
≈ Ng!/e (1.15)

basis vectors, giving rise to ≈ (Ng!/e)
2 terms when calculating scalar products.

For processes involving quarks the basis may be constructed similarly, by starting with

connecting all nq quark ends to the nq anti-quark ends, and then attaching the gluons in

all possible ways to these open quark lines. Again, at loop level, new color structures have

to be considered. For calculations up to Nloop we, in general, also have to include color

structures which, in addition to the nq open quark lines, also have up to Nloop closed quarks

lines, i.e. traces of subsets of generators. Again the basis vectors will be non-orthogonal,

and the number of basis vectors will grow roughly like a factorial. The exact number of

basis vectors for a total of Ng gluons and nq qq-pairs can be found using the recursion

relation

Nvec[nq, Ng] = Nvec[nq, Ng − 1](Ng − 1 + nq) +Nvec[nq, Ng − 2](Ng − 1) , (1.16)
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with

Nvec[nq, 0] = nq! , Nvec[nq, 1] = nqnq! , (1.17)

or, alternatively, by using an exponential generating function [8, 25]. The first term in

eq. (1.16) comes from attaching the new gluon line to any of the existing (open or closed)

quark lines, whereas the last term comes from basis vectors in which the generator for the

new gluon stands inside the same trace as one of the Ng − 1 other gluons.

For special cases the number of degrees of freedom for the sub-amplitudes have been

seen to reduce significantly, and powerful recursion relations have been derived. Especially,

this is the case for tree-level pure Yang-Mills theory, as in eq. (1.11), [10, 26–33]. While

these strategies may significantly reduce the computational effort in the situations they

are tailored for, we here pursue a general approach. We aim for minimal orthogonal bases,

which can be used for any number and kind of partons, and to any order in perturbation

theory. We demonstrate that such bases can be constructed using hermitian transversal

projectors onto different irreducible representations. The resulting bases are orthogonal,

and can easily be chosen minimal for any finite Nc, such as Nc = 3.

1.3 Illustration: gg → gg

Our method will be based on first constructing hermitian projectors which decompose

A⊗ng into irreducible subspaces invariant under SU(Nc). We will then show how these can

be used for constructing complete orthogonal bases, for processes involving up to 2ng + 1

gluons, and processes where a subset of the gluons has been replaced by qq-pairs. Let us

sketch this procedure for ng = 2.

The SU(Nc) irreducible representations involved in the decomposition of A⊗ng can,

e.g., be obtained, by multiplying the corresponding Young diagrams [34],

N
c
-1

1 N
c
-1

1 N
c

N
c
-1

1 N
c
-1

1 N
c
-2

1 1 N
c
-1

N
c
-1

2 N
c
-1

N
c
-1

1 1 N
c
-2

2

⊗ = • ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ◦
8 8 1 8 8 10 10 27 0

. (1.18)

Here and in the following we represent irreducible representations in several ways: On the

first line we uniquely specify the multiplets in terms of the lengths of the columns of the

corresponding Young diagrams. On the second line we specialize to Nc = 3 displaying

actual Young diagrams. There we denote by ◦ any irreducible representation that does

not exist for Nc = 3 but only for sufficiently large Nc. Also recall that we denote by • the

trivial rep, i.e. • = for Nc = 3. Finally, on the third line we give the dimensions of the

respective SU(3) multiplets.

Hermitian projectors corresponding to eq. (1.18) have been given in several places. The

earliest reference known to us is [35], where they are given for Nc = 3. A derivation for

arbitraryNc in terms of birdtracks is given by Cvitanović in [36, sec. 6.D & tab. 6.3], see also

[24, sec. 9.12 & tab. 9.4]. Cvitanović employs characteristic equations for invariant matrices

in order to construct the projectors. Our approach described in section 4, which is inspired
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by [24], will avoid factorizing characteristic equations but instead provide an algorithm for

directly writing down the projectors. A slightly different diagrammatic derivation, also for

arbitrary Nc, is given by Dokshitzer and Marchesini [3]. Our construction for a certain

class of projectors in section 4.4 is a generalization of their method. For the moment we

list the two gluon projectors without derivation,

P1
g1 g2 g3 g4 =

1

N2
c − 1

δg1 g2δg3 g4 ,

P8s
g1 g2 g3 g4 =

Nc

2TR(N2
c − 4)

dg1g2i1di1g3g4 ,

P8a
g1 g2 g3 g4 =

−1

2NcTR
ifg1 g2 i1 ifi1 g3 g4 ,

P10
g1 g2 g3 g4 =

1

4
(δg1 i1δg2 i2 − δg1 i2δg2 i1)

[
δi1 g3δi2 g4 +

1

T 2
R

tr(ti1tg4ti2tg3)

]
− 1

2
P8a

g1 g2 g3 g4 ,

P10
g1 g2 g3 g4 =

1

4
(δg1 i1δg2 i2 − δg1 i2δg2 i1)

[
δi1 g3δi2 g4 −

1

T 2
R

tr(ti1tg4ti2tg3)

]
− 1

2
P8a

g1 g2 g3 g4 ,

P27
g1 g2 g3 g4 =

1

4
(δg1 i1δg2 i2 + δg1 i2δg2 i1)

[
δi1 g3δi2 g4 +

1

T 2
R

tr(ti1tg4ti2tg3)

]

−Nc − 2

2Nc
P8s

g1 g2 g3 g4 −
Nc − 1

2Nc
P1

g1 g2 g3 g4 ,

P0
g1 g2 g3 g4 =

1

4
(δg1 i1δg2 i2 + δg1 i2δg2 i1)

[
δi1 g3δi2 g4 −

1

T 2
R

tr(ti1tg4ti2tg3)

]

−Nc + 2

2Nc
P8s

g1 g2 g3 g4 −
Nc + 1

2Nc
P1

g1 g2 g3 g4 , (1.19)

where we have introduced the totally symmetric tensor

dabc :=
1

TR

[
tr(tatbtc) + tr(tbtatc)

]
=

a

b

c . (1.20)

In eq. (1.19), and often in the following, we label projection operators by the dimensions

of SU(3) multiplets, although our construction is for arbitrary Nc, and for Nc 6= 3 the

dimensions differ. If a multiplet appears several times we add some additional label, as for

the octets above. Since P0 vanishes for Nc = 3, we also have P27 = P27 +P0 in this case,

which allows to write P27 in a simpler form,

P27
g1 g2 g3 g4 =

Nc=3

1

2
(δg1 g3δg2 g4 + δg1 g4δg2 g3)−P8s

g1 g2 g3 g4 −P1
g1 g2 g3 g4 . (1.21)

This is the way in which P27 is given in [35]. As gluons transform in a real representa-

tion, for processes involving only gluons, the decuplet projectors occur only in the real

combination [5, 14,22,35,37]

(
P10 +P10

)
g1 g2 g3 g4

=
1

2
(δg1 g3δg2 g4 − δg1 g4δg2 g3)−P8a

g1 g2 g3 g4 . (1.22)

– 8 –



However, for processes involving quarks P10 and P10 can appear independently. In bird-

track notation [8, 24] eq. (1.19) reads

P1 =
1

N2
c − 1

P8s =
Nc

2TR(N2
c − 4)

P8a =
1

2NcTR

P10 =
1

2
+

1

2T 2
R

− 1

2
P8a (1.23)

P10 =
1

2
− 1

2T 2
R

− 1

2
P8a

P27 =
1

2
+

1

2T 2
R

− Nc − 2

2Nc
P8s − Nc − 1

2Nc
P1

P0 =
1

2
− 1

2T 2
R

− Nc + 2

2Nc
P8s − Nc + 1

2Nc
P1.

The black and white bars denote anti-symmetrization and symmetrization, respectively,

see appendix A. One can easily verify that

= , (1.24)

and similarly for the symmetrized expression, making the hermiticity of these projectors

manifest.

From these projection operators orthogonal bases have been constructed for processes

involving up to five gluons [5]. In general, knowing the projection operators for up to ng

gluons it is possible to construct orthogonal bases for QCD processes involving up to 2ng+1

gluons (where we assume for the moment that there are no quarks). The basis for 2ng + 1

gluons can be constructed by considering, e.g., ng → ng + 1. The incoming gluons may

then be projected onto a multiplet M using the projection operators for ng gluons. If the

incoming ng gluons are in M the outgoing ng+1 gluons must, due to color conservation, be

in the same multiplet, see appendix F. However, the multiplet M may appear more than

once in A⊗ng or A⊗(ng+1) or both. For example, there are six 27-plets in A⊗3, and one in
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P
6,8
Y =

4

3
, P6,8 =

4

3

P
3,8
Y =

4

3
, P3,8 =

4

3

Figure 2: The standard Young projection operators P6,8
Y and P

3,8
Y compared to their hermitian

versions P6,8 and P3,8 from eq. (2.2). Clearly P6,8†P3,8 = P6,8P3,8 = 0. However, as can be seen

from the symmetries, P6,8†
Y P

3,8
Y 6= 0.

A⊗2. For 2g → 3g there are thus one (from the incoming side) × six (from the outgoing

side) possibilities for the gluons to be in matching 27-plets. The 27-plets corresponding to

the case that two of the gluons in the outgoing A⊗3 are in a decuplet and an anti-decuplet,

do, however, only appear in combination.

2. Hermitian quark projectors

In this section we discuss projection operators for nq quarks. Later, in section 3 we use the

hermitian versions of these projection operators in order to construct an orthogonal basis

of the color space for nq qq pairs.

A standard method for constructing projection operators onto irreducible subspaces

invariant under SU(Nc) is to symmetrize and anti-symmetrize according to the correspond-

ing Young tableaux, and – in the case of five or more quarks – successively project out

already constructed projectors for Young tableaux of equal shape, see e.g. [38, sec. 5.4].

In this way, a complete set of projection operators can be constructed for any number of

quarks. These projection operators are, however, not hermitian, see figure 2, which implies

that they are not suited for constructing an orthogonal basis of the color space for nq qq

pairs, as we cannot use eq. (1.8).

Diagrammatically speaking, these operators have been constructed such that products

of distinct projectors vanish when contracting the outgoing indices of the first projector

with the incoming indices of the second one; however, when calculating scalar products

in the color space of nq qq-pairs, the outgoing indices of the first vector are contracted

with the outgoing indices of the second vector, cf. eq. (1.4). Therefore, standard Young

projection operators are not orthogonal in the sense of eq. (1.4). By utilizing hermitian

projection operators this problem can be circumvented.

Hermitian Young projectors for three quarks were given in [9]. In [24] a general method

for constructing hermitian Young projectors is developed. This method is based on solv-

ing certain characteristic equations. An alternative approach for directly writing down

hermitian Young projectors will be presented elsewhere [39].

The projectors can be expressed in terms of symmetrization and anti-symmetrization

operators, cf. eq. (A.8). Here and in the following we label projection operators by the
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multiplets built up successively when multiplying the partons, i.e.

PM2,M3 (2.1)

denotes a projector onto states where parton 1 and parton 2 are in a multiplet M2, and

together with parton 3 form a multiplet M3. In this notation we have

P6,10 = , P6,8 =
4

3
,

P3,8 =
4

3
, P3,1 = . (2.2)

In index notation, and written out as sums over permutations, these projection operators

read

P6,10
q1 q2 q3 q4 q5 q6 =

1

6

(
δq1q4δ

q2
q5δ

q3
q6 + δq1q4δ

q2
q6δ

q3
q5 + δq1q5δ

q2
q4δ

q3
q6

+ δq1q5δ
q2
q6δ

q3
q4 + δq1q6δ

q2
q4δ

q3
q5 + δq1q6δ

q2
q5δ

q3
q4

)
,

P6,8
q1 q2 q3 q5 q4 q6 =

1

6

(
2δq1q5δ

q2
q4δ

q3
q6 − δq1q5δ

q2
q6δ

q3
q4 + 2δq1q4δ

q2
q5δ

q3
q6

− δq1q4δ
q2
q6δ

q3
q5 − δq1q6δ

q2
q5δ

q3
q4 − δq1q6δ

q2
q4δ

q3
q5

)
,

P3,8
q1 q2 q3 q5 q4 q6 =

1

6

(
− 2δq1q5δ

q2
q4δ

q3
q6 − δq1q5δ

q2
q6δ

q3
q4 + 2δq1q4δ

q2
q5δ

q3
q6 (2.3)

+ δq1q4δ
q2
q6δ

q3
q5 + δq1q6δ

q2
q5δ

q3
q4 − δq1q6δ

q2
q4δ

q3
q5

)
,

P3,1
q1 q2 q3 q4 q5 q6 =

1

6

(
δq1q4δ

q2
q5δ

q3
q6 − δq1q4δ

q2
q6δ

q3
q5 − δq1q5δ

q2
q4δ

q3
q6

+ δq1q5δ
q2
q6δ

q3
q4 + δq1q6δ

q2
q4δ

q3
q5 − δq1q6δ

q2
q5δ

q3
q4

)
.

As these projectors are hermitian, i.e. their birdtrack diagrams (2.2) are invariant under

reflection about a vertical line and simultaneous inversion of all arrows, cf. appendix A,

they are not only mutually transversal, cf. eq. (1.7), but also orthogonal with respect to

the scalar product (1.4).

3. Quark bases from hermitian quark projectors

When viewed as vectors in the color space for (V ⊗ V )⊗3 the projectors in eq. (2.2) do not

span the full space, since operators describing transitions from one instance of a multiplet

to any other instance of that multiplet also transform as singlets under SU(Nc). A basis

of the color space for three qq pairs thus contains four different vectors derived from the

octets. Normalized orthogonal basis vectors can be chosen as follows, [9, Fig. 21],

V6,10;6,10 =

√
6

Nc(N2
c + 3Nc + 2)

P6,10 , V6,8;6,8 =

√
3

Nc(N2
c − 1)

P6,8 ,
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V6,8;3,8 =
2√

Nc(N2
c − 1)

, V3,8;6,8 =
2√

Nc(N2
c − 1)

,

V3,8;3,8 =

√
3

Nc(N2
c − 1)

P3,8 , V3,1;3,1 =

√
6

Nc(N2
c − 3Nc + 2)

P3,1 ,

(3.1)

where each basis vector is denoted by the construction history on the incoming and outgoing

side in sequence, and the normalization is consistent with eq. (1.9). In index notation the

two vectors describing transitions between the octets can be written as

V6,8;3,8
q1 q2 q3 q4 q5 q6 =

1

2
√

Nc(N2
c − 1)

(
δq1q4δ

q2
q6δ

q3
q5 − δq1q5δ

q2
q6δ

q3
q4 + δq1q6δ

q2
q4δ

q3
q5 − δq1q6δ

q2
q5δ

q3
q4

)
,

V3,8;6,8
q1 q2 q3 q4 q5 q6 =

1

2
√

Nc(N2
c − 1)

(
δq1q4δ

q2
q6δ

q3
q5 + δq1q5δ

q2
q6δ

q3
q4 − δq1q6δ

q2
q4δ

q3
q5 − δq1q6δ

q2
q5δ

q3
q4

)
.

(3.2)

These two basis vectors can be constructed as follows. In order to find a vector describing

a transition from 3, 8 to 6, 8 write down the birdtrack expression for P6,8 on the left and

that for P3,8 on the right; now one has to find a non-vanishing way for connecting these

diagrams. To this end, note that there is a symmetrizer to the very left in P6,8 and an

anti-symmetrizer to the very right in P3,8. If both lines leaving the white bar enter the

black bar then the whole expression vanishes, i.e. one of the lines leaving the white bar has

to be connected to the third line on the right. One such choice is displayed in the diagram

for V6,8;3,8 above. Any other non-vanishing choice yields the same vector up to a factor.

Finally, the result has to be normalized using the scalar product (1.5). The remaining

vector V3,8;6,8 can either be constructed in the same way, or by taking the hermitian

conjugate of V6,8;3,8.

Knowing the hermitian projection operators it is possible to similarly construct the

orthogonal basis vectors for processes involving more qq pairs. The orthogonality can be

seen by noting that contracting the incoming or the outgoing indices gives 0. We also note

that there are six basis vectors, in agreement with what is obtained from the nq! ways of

connecting quark and anti-quark lines in eq. (1.17). In this case there are thus equally

many vectors for Nc = 3 as for Nc → ∞.

4. Hermitian gluon projectors

In this section we outline a general algorithm for constructing hermitian projectors for

all multiplets appearing in A⊗ng for arbitrary ng. The construction is recursive, i.e. the

projectors for the decomposition of A⊗ν with ν ≤ ng − 1 along with their properties are

used when constructing the projectors onto multiplets within A⊗ng . As an illustrating

example we treat the case ng = 3 along with the outline of the general construction.

For our algorithm it is important to keep track of for which n a given multiplet M

appears for the first time in the sequence A⊗n, n = 0, 1, 2, . . .. We denote this number by

nf (M) and call it that multiplet’s first occurrence. For instance the singlet has nf (•) = 0
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nf 0 1 2 3

SU(3) • =

Young diagrams

Table 1: Examples of SU(3) Young diagrams sorted according to their first occurrence nf .

and the adjoint representation has first occurrence one. Some more examples, labeled by

SU(3) Young diagrams, are listed in table 1.

In order to make sure that projectors onto all invariant subspaces are constructed we

first decompose A⊗ng into multiplets, A⊗ng =
⊕

j Mj, by multiplying Young diagrams.

The ng = 2 decomposition has already been preformed in eq. (1.18). For ng = 3 we have

to multiply the r.h.s. of eq. (1.18) term by term with another gluon. Multiplication of the

singlet trivially yields an octet,

N
c

N
c
-1

1 N
c
-1

1

• ⊗ =

1 8 8

. (4.1)

The product of two octets is already displayed in eq. (1.18). When multiplying the decuplet

with an octet we have

N
c
-2

1 1 N
c
-1

1 N
c
-1

1 N
c
-2

1 1 N
c
-2

1 1 N
c
-1

N
c
-1

1 1 N
c
-2

2 N
c
-1

N
c
-2

1 1 1

⊗ = ⊕ ⊕ ◦ ⊕ ⊕ ◦ ⊕
10 8 8 10 (10) 27 0 35

N
c
-1

N
c
-2

2 1 N
c
-3

1 1 1 N
c
-3

2 1

⊕ ◦ ⊕ ◦ ⊕ ◦ .

0 0 0

(4.2)

As above, we in general denote multiplets that do not appear for Nc = 3, but only for

sufficiently large Nc, by ◦. While the second (Nc − 2, 1, 1)-multiplet, has a Young tableaux

shape which is admissible for SU(3), it can be seen from Young tableaux multiplication

that it cannot appear. For such multiplets – which are forbidden only by the construction –

we display the corresponding SU(3)-dimension in brackets. Similarly, for the anti-decuplet
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we get

N
c
-1

N
c
-1

2 N
c
-1

1 N
c
-1

1 N
c
-1

N
c
-1

2 N
c
-1

N
c
-1

2 N
c
-1

N
c
-1

1 1 N
c
-2

2 N
c
-1

N
c
-1

N
c
-1

2 1

⊗ = ⊕ ⊕ ◦ ⊕ ⊕ ◦ ⊕
10 8 8 10 (10) 27 0 35

N
c
-1

N
c
-2

2 1 N
c
-1

N
c
-1

N
c
-1

3 N
c
-1

N
c
-2

3

⊕ ◦ ⊕ ◦ ⊕ ◦ .

0 0 0

(4.3)

Finally, for the products with the remaining two multiplets, 0 and 27, we obtain

N
c
-1

N
c
-1

1 1 N
c
-1

1 N
c
-1

1 N
c
-2

1 1 N
c
-1

N
c
-1

2 N
c
-1

N
c
-1

1 1 N
c
-1

N
c
-1

1 1

⊗ = ⊕ ⊕ ⊕ ⊕
27 8 8 10 10 27 27

N
c
-1

N
c
-1

N
c
-1

2 1 N
c
-1

N
c
-2

1 1 1 N
c
-1

N
c
-1

N
c
-1

1 1 1 N
c
-1

N
c
-2

2 1

⊕ ⊕ ⊕ ⊕ ◦ ,

35 35 64 0

(4.4)

N
c
-2

2 N
c
-1

1 N
c
-1

1 N
c
-2

1 1 N
c
-1

N
c
-1

2 N
c
-2

2 N
c
-2

2 N
c
-1

N
c
-2

2 1 N
c
-3

2 1 N
c
-1

N
c
-2

3 N
c
-3

3

◦ ⊗ = ◦ ⊕ ◦ ⊕ ◦ ⊕ ◦ ⊕ ◦ ⊕ ◦ ⊕ ◦ ⊕ ◦ ⊕ ◦
0 8 (8) (10) (10) 0 0 0 0 0 0

.

(4.5)

Here the first three multiplets on the r.h.s. of the last equation, (Nc − 1, 1), (Nc − 2, 1, 1)

and (Nc − 1, Nc − 1, 2), would be allowed Young diagrams for Nc = 3. However, we denote

them by ◦ and set the dimensions in brackets since they were obtained by multiplication

of (Nc − 2, 2), a multiplet that does not exist for Nc = 3.

Looking at these decompositions of tensor products one can make two observations:

1. A multiplet M ′ ⊆ M ⊗A always has first occurrence

nf (M
′) = nf (M)− 1 , nf (M) or nf(M) + 1 . (4.6)

In particular, there are no singlets in eqs. (4.2 – 4.5).

2. The only multiplet which can show up several times in M ⊗ A is M itself, all other

multiplets appear at most once. In fact, M can appear up to Nc − 1 times.

Both observations are true in general and we prove them in appendix B.

Below we outline the construction of the corresponding projectors PMj having the

following properties:

(i) PMjPMk = δjkP
Mj . We call this property transversality, cf. eq. (1.7).
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(ii) PM = CMCM† with CM : A⊗nf → A⊗ng , where nf is the first occurrence of M .

Choosing suitable bases in A⊗ng and A⊗nf the matrix elements of CM are Clebsch-

Gordan coefficients. In birdtrack notation this means that there is always an inter-

mediate section with nf gluon lines in the middle of the diagram for each projector,

PM = ... ... ...
CM CM† .

ng lines nf lines ng lines

(4.7)

(iii) A projector PM ′

onto a multiplet M ′ ⊆ A⊗ng appearing in the decomposition of

M ⊗A⊗(ng−ν), i.e. M ⊗A⊗(ng−ν) = M ′ ⊕ . . . , satisfies

(PM ⊗ 1A⊗(ng−ν))PM ′

= PM ′

(PM ⊗ 1A⊗(ng−ν)) = PM ′

, (4.8)

where 1A⊗(ng−ν) : A⊗(ng−ν) → A⊗(ng−ν) denotes the identity operator. In terms of

birdtracks this is written

... ... ...P
M

P
M ′

... ...
=

...... ... P
M

P
M ′

... ......
=

... ...
P

M ′

... ...
,

(4.9)

i.e. the first ν gluons are in multiplet M and together with the remaining gluons they

form an overall multiplet M ′.

The hermiticity of PM is obvious from (ii). Also note its birdtrack manifestation in

eq. (4.7): The diagram is invariant under simultaneous mirroring about a vertical line

through the nf gluon lines and reversing all arrows (which may appear inside CM ), cf.

appendix A. Together with transversality (i) hermiticity ensures that the projectors project

onto mutually orthogonal subspaces and are themselves mutually orthogonal with respect

to the scalar product (1.5), cf. the discussion in section 1.1.

From (ii) one can infer that by multiplying the Clebsch-Gordan matrices in reverse

order we obtain

CM†CM = ... ...
CMCM†

...
= PMf ,

nf lines ng lines nf lines

(4.10)

where Mf ⊂ A⊗nf carries the same irreducible representation as M . For M 6= M ′ we have

CM†CM ′

= 0 . (4.11)
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We include proofs of eqs. (4.10) and (4.11) in appendix C.

According to property (iii) a projector A⊗ng → A⊗ng not only projects onto a definite

multiplet, but also ensures that the first ν gluons are in multiplet Mν , ν = 2, . . . , ng.

We refer to the sequence M2,M3, . . . ,Mng as the projector’s construction history. It is

convenient to label projectors by their construction histories,

PM2,M3,...,Mng =
PM2

PM3

PMng
PM3

PM2

... ... ... ...

. . . . . .

. . .

. . .

. . .

. . . .

(4.12)

We prove our algorithm by induction in ng. We can start from either ng = 0 or ng = 1,

for which all properties are satisfied trivially. However, it is instructive to revisit the ng = 2

projectors, which were given in eqs. (1.19) and (1.23), and verify that they also satisfy the

properties (i)–(iii). The only property which may not be immediately obvious is (ii) for

the nf = 2 projectors P10,P10,P27 and P0. Note, however, that for ng = nf property (ii)

is satisfied trivially with CM = PM = CM†.

Below we outline the recursive construction of projectors for the decomposition of

A⊗ng from the projectors for the decompositions of A⊗ν , ν ≤ ng− 1. Making sure that the

properties (i)–(iii) are retained by this algorithm will establish the induction step. In order

to keep track of which projectors have to be constructed in step ng we proceed as follows.

For each multiplet M ⊆ A⊗(ng−1) we decompose M ⊗A by multiplying the corresponding

Young diagrams, as done in eq. (1.18) and eqs. (4.2–4.5) above.

Multiplets M ′ ⊆ A⊗ng with first occurrence nf (M
′) = ng we refer to as new multiplets.

For all other multiplets M ′ ⊆ A⊗ng we have nf (M
′) < ng and, correspondingly, they are

referred to as old multiplets. Multiplets M ′ ⊆ M ⊗ A with nf (M
′) = nf (M) − 1 or

nf (M
′) = nf(M) are necessarily old multiplets. Multiplets with nf (M

′) = nf(M) + 1

can be either old or new depending on whether M was old or new within A⊗(ng−1). Our

general strategy for obtaining all projectors, is to first construct all projectors onto old

multiplets, and then to use these projectors in the subsequent construction of projectors

onto new multiplets.

Projectors P...M,M ′

onto old multiplets M ′ ⊆ M ⊗ A can always be constructed as

follows. Consider the corresponding Clebsch-Gordan matrix C...M,M ′

. In order to satisfy

property (iii), there has to be a C...M ⊗ 1A at the left end, whereas property (ii) requires

a P
M ′

f at the right end,

C...M,M ′

=
...

... ...... PM ′
f

C...M
. (4.13)

In the middle one has to connect the nf (M
′
f ) gluon lines on the right to the nf (M) + 1
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gluon lines on the left in such a way that the whole expression does not vanish. Then, after

appropriate normalization, P...M,M ′

= C...M,M ′

C...M,M ′† is the desired projector.

In principle, a non-vanishing connection can always be found be splitting all gluon

lines entering the trapezoid into qq-pairs, and then considering all ways of attaching the

quark- and anti-quark ends. At least one such connection has to be non-zero. As this

procedure may be tedious, in particular for many gluons, we provide more explicit recipes

for the construction of projectors onto old multiplets in sections 4.1–4.3. These recipes

cover most of the frequently occurring cases. In particular, they directly yield the full

set of 3-gluon projectors onto old multiplets. Projectors onto new multiplets require an

independent construction which we develop in section 4.4.

4.1 Starting from an old multiplet, nf (M) < ng − 1

We begin with M ′ ⊆ M ⊗ A where the starting multiplet for ng − 1 gluons was old, i.e.

nf (M) < ng−1. In this case we write down P...,M as depicted in property (ii), add a gluon

line below and draw a projector PM ′

over the nf (M) + 1 gluon lines in the middle,

P...,M,M ′

= CM CM†

PM ′... ...
... ... . (4.14)

The projector PM ′

has already been constructed in an earlier step according to the induc-

tion hypothesis. The operator P...,M,M ′

satisfies (ii) since PM ′

does. To make it explicit we

could insert another copy of PM ′

in the middle of the r.h.s. above. P...,M,M ′

also satisfies

(iii) since, P...,M does and since

P...,M,M ′

(P...,M ⊗ 1) =
CM CM†

PM ′... ...
... ... CM ... ...

CM†

=
CM

PM ′...
... ... ... ...

CM†PMf

= CM CM†

PM ′... ...
... ... = P...,M,M ′

. (4.15)

Here the second line holds since P...,M fulfills (ii) which implies eq. (4.10). The first occur-

rence projector PMf appearing in this way, however, also has to appear in the construction

history of PM ′

. Since PM ′

in turn satisfies (iii) we can readily omit PMf from the equa-

tion. By the same arguments we establish that P...,M,M ′

actually is a projector, i.e. that
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(P...,M,M ′

)2 = P...,M,M ′

. Writing (P...,M,M ′

)2 in terms of birdtracks

(
P...,M,M ′

)2
= CM CM†

PM ′... ...
... ... CM ... ...

PM ′
CM†

,

(4.16)

the CM †CM again produces a PMf in the middle which can be absorbed into one of

the PM ′

, and, since the latter is a projector, we have (PM ′

)2 = PM ′

and thus get back

P...,M,M ′

.

The transversality property (i) for projectors constructed from different starting mul-

tiplets M is obvious due to (iii). For two different projectors constructed in the above

described way, starting from the same multiplet M , transversality follows by repeating the

last calculation with the second PM ′

replaced by PM ′′

which then cancel.

The ng = 3 projectors which can be constructed in this way are P1,8, P8s,M ′

and

P8a,M ′

with M ′ = 1, 8s, 8a, 10, 10, 27, 0. As an example we note that P8s,27 may be

written

P8s,27
g1 g2 g3 g4 g5 g6 =

1

TR

Nc

2(N2
c − 4)

dg1 g2 i1P
27
i1 g3 i2 g6di2 g4 g5 (4.17)

where the normalization derives from P8s in eq. (1.19). The other projectors are stated in

appendix D.

4.2 Starting from a new multiplet and going back to one with lower nf

When constructing multiplets M ′ ⊆ M ⊗ A where M was new in the step before, i.e.

nf (M) = ng − 1, we have to distinguish the three cases nf (M
′) = nf (M)− 1, nf (M) and

nf (M) + 1.

We first treat the case nf(M
′) = nf (M) − 1 = ng − 2. If M ′ also appeared in the

construction history immediately before M , then we find

P...,M,M ′

=
dimM ′

dimM

... ... ...
PM PM

. (4.18)

Clearly, P...,M,M ′

satisfies properties (i), (ii) and (iii). Due to the construction history the

ng − 2 lines in the middle carry the desired irreducible representation. In appendix E we

prove that P...,M,M ′

as given in eq. (4.18) is a projector, and calculate the normalization.

For the three gluon case, the construction in eq. (4.18) always works as only the octet can

precede the first occurrence two multiplet M . The projectors which can be constructed in

this way are P10,8, P10,8, P27,8 and P0,8. As an example we note that P27,8 can be written

P27,8
g1 g2 g3 g4 g5 g6 =

4(Nc + 1)

N2
c (Nc + 3)

P27
g1 g2 i1 g3P

27
i1 g6 g4 g5 (4.19)

where the prefactor is the ratio of the general Nc dimensions of the “octet” and the “27”-

plet.
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For more than three gluons it may happen that M ′ differs from the multiplet preceding

M in the construction history. The above method would then give 0. In this case we resort

to eq. (4.13) in order to find the corresponding projectors.

4.3 Starting from a new multiplet and going to one with same nf

We now turn to the case nf (M
′) = nf (M) = ng − 1. If the multiplicity of M ′ in M ⊗A is

one, we construct the corresponding projector by attaching a gluon to one of the internal

gluons,

P...,M,M ′

=
dim(M ′)

B(M,M ′)
PM ′... PM PM ... . (4.20)

where the big gray circles can be any of if or d (same on both sides of PM ′

), and B is the

normalization factor from eq. (E.6). The projection operators P27,10, P27,10, P0,10, P0,10,

P10,27, P10,27, P10,0, and P10,0 are constructed as indicated above.

As an example we note that, after calculating the normalization, the projector P27,10

may be written

P27,10
g1 g2 g3 g4 g5 g6 =

1

TR

2(Nc + 2)

Nc(Nc + 3)
P27

g1 g2 i1 i2di2 g3 i3P
10
i1 i3 i4 i6di6 g6 i5P

27
i4 i5 g4 g5 . (4.21)

For ng > 3 it can happen that the above construction does not work. This is the case

if there is no instance of M ′ in m ⊗ A, where m is the multiplet preceding M in the

construction history. In this case we refer to the general strategy from eq. (4.13).

For the multiplet M appearing in many instances in M ⊗ A, it has to be guaranteed

that projectors corresponding to all instances are constructed and that the operators are

hermitian and transversal. We start by defining two projectors of the form (4.20), P...,M,Md,

for which both big gray circles represent d and P...,M,Mf , where both circles represent if .

For ng = 3 and M = 0 or M = 27 these two projectors are transversal and we are done.

We note in passing that the two-gluon octet-projectors are also constructed in this way,

cf. eq. (1.23).

For the decuplets, i.e. for M = 10 and M = 10, within A⊗3 the situation is slightly

more complicated. It turns out that

P...,M,Mf 6= P...,M,Md but P...,M,Mf P...,M,Md 6= 0 , (4.22)

i.e. the projectors are different but not transversal. In this case we keep one of them,

P...,M,Mf , for our final list. Then we construct another transversal operator by projecting

P...,M,Md onto the orthogonal complement of the image of P...,M,Mf ,

T...,M,Mfd :=
(
1A⊗3 −P...,M,Mf

)
P...,M,Md

(
1A⊗3 −P...,M,Mf

)
. (4.23)

The resulting tensor is proportional to the desired projector, P...,M,Mfd = αT...,M,Mfd, and

the normalization is determined by taking the trace and solving for α. This yields the

second projector

P...,M,Mfd =
dimM

trT...,M,Mfd
T...,M,Mfd , (4.24)
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which is transversal to P...,M,Mf . In appendix E we show that P...,M,Mfd can be written

in the form of eq. (4.20) where the big gray circles represent a linear combination of d and

if , and in appendix D we give the corresponding projection operators in this form.

For Nc > 3 and ng > 3, there may be more than two instances of M in M ⊗ A,

allowing for the definition of more than two projectors, which – if not already transversal

– can be made so by recursively projecting onto orthogonal complements as above. In this

case the original set of projectors can always be found by applying the method outlined in

eq. (4.13).

4.4 Projection operators onto new multiplets

In order to be able to reach a new multiplet, i.e. one with first occurrence nf(M
′) = ng,

we have to start with a multiplet M which was new for ng−1 gluons, i.e. nf (M) = ng−1.

For constructing the projection operators we split the gluons into qq̄ pairs, such that

symmetrization and anti-symmetrization can be done in the quark and anti-quark indices

separately. We start by constructing tensors

T...M,M ′

= P
M

Pq

Pq

P
M

...

...

...... ... ...

...

...

P
M

, (4.25)

where Pq projects onto a multiplet Mq ⊂ V ⊗ng and Pq onto Mq ⊂ V
⊗ng

, (in the notation

of appendix B). The motivation for the definition T...M,M ′

is best understood by reading

the expression from the center outwards. In the middle section we project onto Mq ⊗Mq,

which contains at most one (and for sufficiently large Nc exactly one) new multiplet, as we

show in appendix B.

The projector ontoMq⊗Mq is sandwiched between generators projecting (V⊗V )⊗ng →
A⊗ng . This removes projections onto some (not all) old multiplets, but leaves the projection

onto the new multiplet untouched, as the difference between (V ⊗ V )⊗ng = (A ⊕ •)⊗ng

and A⊗ng is
⊕nq−1

ν=0

(nq
ν
)
A⊗ν , cf. eq. (1.10), i.e. contains only multiplets of lower first

occurrence.

Finally we sandwich between PM ⊗ 1A, thus projecting onto M ⊗A and making sure

that property (iii), i.e. the construction history, is satisfied. Since there is only one new

multiplet within Mq ⊗Mq and only one within M ⊗A, and since Ang ⊆ (V ⊗ V )ng we can

always choose the quark and anti-quark multiplets in such a way that the resulting T...M,M ′

is non-zero and contains a part which is proportional to the projector onto M ′ which we

want to construct. The details of how to choose these quark and anti-quark projectors are

discussed towards the end of this section.

The tensor T...M,M ′

, seen as linear operator from M ⊗ A to M ⊗ A contains a part

mapping the new multiplet M ′ to itself. However, there are also pieces mapping other

multiplets m ⊆ M ⊗ A to (sometimes a different instance of) m. These pieces have to be
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projected out. To this end we define the hermitian operator

Q = 1A⊗ng −
∑

m⊆A⊗ng

nf (m)<ng

Pm , (4.26)

which projects onto the new multiplets within A⊗ng , and sandwich T...M,M ′

between it,

T̃...M,M ′

:= QT...M,M ′

Q . (4.27)

Note that for practical purposes in eq. (4.26) it is sufficient to sum over m ⊆ M ⊗A with

nf (m) < ng, as all other terms vanish in eq. (4.27). Using

T...,M,M ′

=
∑

m,m′∈M⊗A

tm,m′CmCm′† , (4.28)

and rewriting all projection operators in terms of Clebsch-Gordan matrices, it is not hard

to prove that eq. (4.27) can be further simplified to

T̃...,M,M ′

= T...,M,M ′ −
∑

m⊆M⊗A

nf (m)<ng

PmT...,M,M ′

. (4.29)

This is the way in which the three gluon projection operators are constructed. The desired

projector is proportional to T̃...M,M ′

and the normalization is found by taking the trace in

P...M,M ′

= αT̃...M,M ′

, yielding

P...M,M ′

=
dimM ′

tr
(
T̃...M,M ′

) T̃...M,M ′

. (4.30)

It remains to show that the resulting projector is hermitian. Using hermitian quark pro-

jectors, see section 2, the hermiticity of P...M,M ′

is obvious from inserting eq. (4.25) into

eq. (4.27).

Interestingly P...M,M ′

is also hermitian when using conventional, i.e. non-hermitian,

Young projectors. It follows from Schur’s lemma, see appendix F, that invariant projectors

onto multiplets can only be non-hermitian if the multiplet is not unique within the space

from which one projects. Within A⊗3, e.g., the 64-plet is unique and thus an invariant

projector onto it is automatically hermitian, whereas the 35-plet appears within both,

10 ⊗ 8, and 27 ⊗ 8, see eqs. (4.2) and (4.4). In the latter case, of a multiplet which is

not unique within A⊗ng , it can (and actually does) happen that, when constructing the

projector onto a particular instance of M ′ = 35, the central part of eq. (4.25) – without

the PM -projectors – contains terms projecting onto an instance of 35 having a different

construction history and terms which map one of the instances to the other. Of these

only the latter terms can be non-hermitian. However, since M ′ is unique within M ⊗ A

these terms are removed by the PM -projectors in eq. (4.25), and, after removing the lower

first occurrence parts in eq. (4.27), the resulting T̃...M,M ′

is hermitian – irrespectively of

whether the Pq and Pq are hermitian or not.
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Finally, we note that property (ii) follows trivially from the hermiticity usingC...M,M ′

=

C†...M,M ′

= P...M,M ′

, and that the construction history property is manifest. The projec-

tors thus fulfill all of (i)-(iii).

As an example consider the projector onto 35 ⊂ A⊗3 coming from 27 ⊂ A⊗A. From

the Young tableau
1 2
3 for the quarks, and 1 2 3 for the anti-quarks we get

N
c
-1

N
c
-1

N
c
-1

2 1

⊗ 1 2
3 =

N
c
-1

N
c
-1

N
c
-1

2 1

35

⊕ old multiplets . (4.31)

As
1 2
3 is symmetric in the first two indices, and since the 27-plet is contained in 1 2 ⊗ 1 2 ,

these q- and q-diagrams are chosen such that the projection onto the 27-plet in the first

two indices is non-vanishing,

T27,35 =
P27P27

1 2 3

1 2
3

6= 0 . (4.32)

In this way, by considering the symmetry of the quarks and the anti-quarks in the ng − 1

projector, and using the ng quark and anti-quark projectors where the nth
g quark and

anti-quark are added to their respective Young diagrams, in such a way that the Young

diagrams have the right shapes to guarantee M ′ ⊆ Mq ⊗Mq, it is always possible to find

suitable q- and q-diagrams. This allows for a unique construction of all instances of new

multiplets, i.e. each new multiplet within A⊗ng has a corresponding new multiplet within

(V ⊗ V )ng , defined in this way.

For the three gluon case the projection operators are written down in appendix D. It

has been checked that these projection operators sum to unity, i.e.

∑

I∈A⊗3

PI
g1 g2 g3 g4 g5 g6 = δg1 g3δg2 g4δg3 g6 , (4.33)

and that they are hermitian

Pg1 g2 g3 g4 g5 g6 = P∗
g4 g5 g6 g1 g2 g3 . (4.34)

As a consequence of the hermiticity it follows that the real projection operators, and the

real linear combinations are symmetric, i.e.

Pg1 g2 g3 g4 g5 g6 = P g4 g5 g6 g1 g2 g3 for real combinations. (4.35)

4.5 Further remarks

We conclude this section with some general remarks. First we note that the fact that the

multiplets can be uniquely constructed from the quark and anti-quark projection operators
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Case Projectors Nc = 3 Projectors Nc = ∞ Vectors Nc = 3 Vectors Nc = ∞
2g → 2g 6 7 8 9

3g → 3g 29 51 145 265

4g → 4g 166 513 3 598 14 833

5g → 5g 1 002 6 345 107 160 1 334 961

Table 2: Number of projectors and basis vectors for ng → ng gluons (without imposing projection

operators and vectors to appear in self-conjugate combinations). In the Nc → ∞ limit the number of

vectors for a total of Ng, incoming plus outgoing, gluons is given by subfactorial(Ng) as in eq. (1.15).

For Nc = 3 the number of projectors are found by counting all irreducible representations occurring

in A⊗ng , and the number of vectors are obtained by considering all possible transitions between

multiplets of same type on the incoming and outgoing side.

also introduces an alternative Nc-independent description of all multiplets. They can be

labeled using first the lengths of all quark columns, and then the lengths of all anti-quark

columns, e.g. 12 and 111 in the above case of 35. We use this notation for the new

multiplets arising for three gluons, which have dimension 0 for SU(3). As an example we

note that P27,35 alternatively could have been written Pc11c11,c21c111. Using this notation

also translates straightforwardly to the representations of Young diagrams used in eqs.

(4.1)-(4.5). The length of the first column is Nc minus the length of the last anti-quark

column, the length of the second column is Nc minus the length of the second last anti-

quark column, etc. After this follow columns with lengths given by the quark columns.

The notation also immediately reveals the first occurrence of a multiplet; it is simply the

sum of the quark-column lengths (which equals the sum of the anti-quark column lengths

– before conjugating). To distinguish the different instances of the new multiplets we

note that they could alternatively have been labeled using Young tableaux with quark and

anti-quark numbers filled in as in eq. (4.32).

In this context we also remark that the fact that Nc is small in QCD leads to a

significant reduction of the number of projection operators in the ng gluon space, partly

since many new projection operators vanish for small Nc, and partly because projectors

may be forbidden by construction, such as P0,8. Similarly, there is a reduction in the

number of basis vectors in the space of 2ng gluons. In fact, as is argued in appendix G, the

number of basis vectors grows only exponentially, as opposed to factorially, c.f. eq. (1.15),

for finite Nc. As can be seen in table 2, for more than a few gluons, the reduction in the

number of projectors and in the dimension of the vector space is significant.

We finally remark that as the gluon transforms under a real representation, only projec-

tion operators and basis vectors which are invariant under charge conjugation may appear

for purely gluonic processes [5, 14, 22, 37]. Non-invariant projectors may only appear to-

gether with their charge conjugated versions. Thus, for example P10,35 may only occur

together with P10,35. This reduces the number of projection operators for ng = 3 gluons

from 51 to 36 in the Nc → ∞ limit, and from 29 to 21 for Nc = 3.
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5. Multiplet based gluon bases

In order to construct the vectors in the color space for A⊗6 we may group the gluons as

g1 g2 g3 → g4 g5 g6. We can (naively) combine any instance of an incoming multiplet with

any (other) instance of the same outgoing multiplet as there is no conserved quantum

number which forbids the transition from one instance of a multiplet to another instance

of the same multiplet. However, as long as only gluons are involved, all vectors have to be

invariant under charge conjugation. The construction of the basis for the six gluon space,

is discussed in detail in appendix H.

Alternatively we could have grouped the gluons as g1g2 → g3g4g5g6 in which case only

multiplets with first occurrence up to two could have appeared on the left hand side, and

therefore also on the right hand side. On the incoming side we then have the multiplets as

enumerated in eq. (1.18). For keeping track of the multiplets on the outgoing side we would

need to find all the multiplets with first occurrence up to two, when Young multiplying

four gluons.

The multiplets with first occurrence up to two, arising when multiplying a first oc-

currence two multiplet with an octet can be read off from eqs. (4.1)-(4.5). However, we

also have multiplets with first occurrence two, when multiplying the three gluon multiplets

with first occurrence three with a gluon. To enumerate these multiplets we need to Young

multiply the first occurrence three states in eqs. (4.1)-(4.5) with a gluon. After having

performed this task we can, however, construct the basis vectors using projection operators

with first occurrence up to three.

As the first occurrence cannot change by more then one unit when multiplying with a

gluon, it is in general the case that we never need projection operators with first occurrence

larger than ng when treating up to 2ng + 1 gluons. This is true independently of how the

gluons are grouped. In particular the ng = 3 projection operators are also sufficient to

construct orthonormal bases for up to seven gluons.

6. General construction of multiplet bases

To treat the general case involving both quarks and gluons we note that for each quark

(outgoing quark or incoming anti-quark) there is an anti-quark (incoming quark or outgoing

anti-quark). We can therefore always start the process of sub-grouping by paring up each

quark with an anti-quark. Each qq pair can either be in a singlet, reducing the basis

construction to the corresponding problem without this qq pair, or in an octet. In the latter

case the basis construction is equivalent to the construction where the qq pair is traded for

a gluon. Below we exemplify the basis construction by constructing orthogonal bases for

processes involving six colored partons. Since, for each quark there is a corresponding anti-

quark, we may have three qq-pairs, two qq-pairs and 2 gluons, one qq-pair and four gluons

or six gluons, as treated above. Mathematica .m-files containing the bases constructed in

this way are attached electronically.
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SU(3) dimension/notation 1 8

Multiplet, general notation c0c0 c1c1

In q1q2 (12)1 (12)8

Out q3q4q5q6 ((34)1(56)1)1 ((34)1(56)8)8, ((34)8(56)1)8

((34)8(56)8)1 ((34)8(56)8)8s, ((34)8(56)8)8a

Table 3: The multiplets appearing in the construction of the bases corresponding to q1q2 →
q3q4q5q6. On the incoming side q1q2 may be in a singlet or in an octet. Due to color conservation

the outgoing multiplet must be the same. However, in this case, there are may ways to build up

the singlet or octet. To have an overall singlet the quarks q3 and q4 may separately form a singlet

if q5 and q
6
do too. Alternatively q3 and q

4
may be in an octet which then combines with another

octet from q5 and q6 to from a total singlet. For the octets we have a total of four options. All in

all, the multiplets may be enumerated as above. The vector space has thus 1 × 2 dimensions for

the singlets and 1× 4 dimensions from the octets.

6.1 Example: Three qq pairs

This case is dealt with extensively in section 3 where a basis is constructed using the

hermitian quark projection operators for q1q2q3 → q4q5q6. In this section we note that we

can equally well construct the basis using the gluon projection operators and grouping the

partons as q1q2 → q3q4q5q6. The multiplets on the ingoing and outgoing side may then

be constructed as in table 3, by first grouping qq-pairs to form octets or singlets. Clearly

the dimension of the basis must still be 6 as in section 3. Having enumerated all the

basis vectors as in table 3, we may write down the basis using the (somewhat redundant)

notation VM12;M34,M56,M3456 ,

V1;1,1,1
q1 q2 q3 q4 q5 q6 =

1√
N3

c

δq1q2 δ
q4
q3δ

q6
q5 ,

V1;8,8,1
q1 q2 q3 q4 q5 q6 =

1

TR

1√
Nc(N2

c − 1)
δq1q2 (t

i1)q4q3(t
i1)q6q5 ,

V8;1,8,8
q1 q2 q3 q4 q5 q6 =

1

TR

1√
Nc(N2

c − 1)
(ti1)q1q2δ

q4
q3 (t

i1)q6q5 ,

V8;8,1,8
q1 q2 q3 q4 q5 q6 =

1

TR

1√
Nc(N2

c − 1)
(ti1)q1q2(t

i1)q4q3δ
q6
q5 ,

V8;8,8,8s
q1 q2 q3 q4 q5 q6 =

1

T 2
R

√
Nc

2(N4
c − 5N2

c + 4)
(ti1)q1q2di1 i2 i3(t

i2)q4q3(t
i3)q6q5 ,

V8;8,8,8a
q1 q2 q3 q4 q5 q6 =

1

T 2
R

1√
2Nc(N2

c − 1)
(ti1)q1q2 ifi1 i2 i3(t

i2)q4q3(t
i3)q6q5 , (6.1)

where the normalization has been fixed to get an orthonormal basis. We note that in this

case we did not have to make use of the two or three gluon projection operators, which is

immediately clear from the grouping of the partons, since on the left hand side we cannot

get a multiplet with first occurrence larger than one. The basis in eq. (6.1) is related to

that in eq. (3.1) by an orthogonal transformation.
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SU(3) dim 1 8 10 10 27 0

Multiplet c0c0 c1c1 c11c2 c2c11 c11c11 c2c2

In q1q2g3 ((12)83)1 ((12)13)8 ((12)83)10 ((12)83)10 ((12)83)27 ((12)83)0

((12)83)8s

((12)83)8a

Table 4: Table describing the multiplets used in the construction of the bases corresponding to

q1q2g3 → q4q5g6. As the incoming and outgoing particle content is the same, the possible multiplets

for the outgoing partons are identical to those for the incoming. For each basis vector, any instance

of a multiplet M on the incoming side can be combined with any instance of M on the outgoing

side. For q1q2g3 → q4q5g6 we thus have 1+ 32 +1+1+1+ 1 = 14 basis vectors, reducing to 13 for

SU(3).

6.2 Example: Two qq pairs and two gluons

In order to construct a basis for processes involving two qq-pairs and two gluons we may

for example group the partons as q1q2g3 → q4q5g6 and use Young multiplication to arrive

at the multiplet possibilities in table 4. (Alternatively we could use g3 g6 → q1q2q4q5 in

which case we would not have any projection operators.)

The q1q2, can be either in a singlet or in an octet. If they are in a singlet, the singlet is

combined with the gluon g3 to an overall octet. On the other hand, if q1q2 are in an octet,

when combined with g3, the overall multiplet may be any of 1, 8s, 8a, 10, 10, 27, 0. On the

outgoing side, the same method of subgrouping can be applied. From this it is immediately

clear that we need gluon projectors with first occurrence up to two, but not higher.

To construct the projectors, the states with corresponding construction history on the

incoming and outgoing side have to be joined, giving

P8,1
q1 q2 g3 q4 q5 g6 =

1

TR
(ti1)q1q2 P

1
g3 i1 g6 i2(t

i2)q5q4 ,

P1,8
q1 q2 g3 q4 q5 g6 =

1

Nc
δq1q2 δg3 g6 δq5q4 ,

P8,8s
q1 q2 g3 q4 q5 g6 =

1

TR
(ti1)q1q2 P

8s
g3 i1 g6 i2(t

i2)q5q4 ,

P8,8a
q1 q2 g3 q4 q5 g6 =

1

TR
(ti1)q1q2 P

8a
g3 i1 g6 i2(t

i2)q5q4 ,

P8,10
q1 q2 g3 q4 q5 g6 =

1

TR
(ti1)q1q2 P

10
g3 i1 g6 i2(t

i2)q5q4 ,

P8,10
q1 q2 g3 q4 q5 g6 =

1

TR
(ti1)q1q2 P

10
g3 i1 g6 i2(t

i2)q5q4 ,

P8,27
q1 q2 g3 q4 q5 g6 =

1

TR
(ti1)q1q2 P

27
g3 i1 g6 i2(t

i2)q5q4 ,

P8,0
q1 q2 g3 q4 q5 g6 =

1

TR
(ti1)q1q2 P

0
g3 i1 g6 i2(t

i2)q5q4 , (6.2)

where the factor 1/TR in the norm (when present) compensates for the factor TR coming

from contraction of quarks to form gluon projectors when squaring the above projectors.
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SU(3) dim 1 8 10 10 27 0

Multiplet c0c0 c1c1 c11c2 c2c11 c11c11 c2c2

In q1q2g3 ((12)83)1 ((12)13)8 ((12)83)10 ((12)83)10 ((12)83)27 ((12)83)0

((12)83)8s

((12)83)8a

Out g4g5g6 ((45)16)8

((45)8s6)1 ((45)8s6)8s/a ((45)8s6)10 ((45)8s6)10 ((45)8s6)27 ((45)8s6)0

((45)8a6)1 ((45)8a6)8s/a ((45)8a6)10 ((45)8a6)10 ((45)8a6)27 ((45)8a6)0

((45)106)8 ((45)106)10 ((45)106)10 ((45)106)27 ((45)106)0

((45)106)8 ((45)106)10 ((45)106)10 ((45)106)27 ((45)106)0

((45)276)8 ((45)276)10 ((45)276)10 ((45)276)27 ((45)06)0

((45)06)8 ((45)06)10 ((45)06)10 ((45)276)27 ((45)06)0

Table 5: Table describing the multiplets used in the construction of the bases corresponding to

q1q2g3 → g4g5g6. In each case basis vectors corresponding to any instance of a multiplet M on the

incoming side can be combined with any instance of the same outgoing multiplet. We thus have a

2 + 3× 9 + 6 + 6 + 6+ 6 = 53 dimensional vector space, reducing to 2 + 3× 8 + 4 + 4+ 6 + 0 = 40

for SU(3).

The basis vectors in the six parton space are given by allowing all instances of a given

multiplet to go into any instance of the same multiplet, as enumerated in table 4. The

vector space is thus 14 dimensional, reducing to 13 for SU(3). Their explicit forms are

given in appendix I.

6.3 Example: One qq pair and four gluons

To find an orthonormal basis for processes involving one qq pair and four gluons, we again

utilize the method of sub-grouping, sorting the partons as q1 q2 g3 → g4 g5 g6, and finding

the multiplets listed in table 5.

We note that we could as well have sorted the partons (for example) as q1 q2 →
g3 g4 g5 g6, in which case we would have had to perform the four gluon Young tableaux

multiplication on the right hand side.

With the chosen treatment the incoming side is treated precisely as in the case of

q1q2g3 → q4q5g6 above. Due to color conservation, only states with first occurrence up to

two appearer on the outgoing side, meaning that we again only need the gluon projection

operators with first occurrence up to two.

If q1q2 are in an octet, the basis construction is similar to the case of 2g → 3g [5], with

the exception that also non-self conjugate states may appear. This leads to a doubling of

the number of basis vectors for the part of the sub-space where q1q2 are in an octet.

As the types of partons on the incoming and outgoing side are not the same, there are

no projection operators, but there are 53 orthogonal basis vectors out of which 13 vanish

for SU(3). Due to the size of the basis, we do not display the basis vectors but only attach

them electronically to this publication. A future publication of the Mathematica package

used in the construction of the projection operators and basis vectors is planned.
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7. Conclusions and outlook

In this paper we outline a general algorithm for constructing orthogonal (normalized)

multiplet bases for color summed calculations in QCD, for any number of quarks and

gluons, any Nc, and to any order in perturbation theory.

This is accomplished by first constructing gluon projection operators projecting onto

irreducible representations. We outline, how to construct these projection operators re-

cursively for an arbitrary number of gluons, and illustrate the method by constructing a

complete set of orthogonal projection operators for three gluons.

A key idea for the construction is the splitting of gluons into qq-pairs, and the sub-

sequent usage of hermitian (anti-) quark projection operators, as illustrated in eq. (4.25).

We find that, in the Nc → ∞ limit, there is a one to one correspondence between the quark

and anti-quark symmetries, and the gluon projection operators, cf. appendix B, whereas

for small Nc many projection operators vanish. As a consequence of this uniqueness, we

note that the Young tableaux corresponding to different Nc stand in a one to one – or one

to zero – relation to each other. We also remark that choosing explicit indices we are able

to calculate the Clebsch-Gordan matrices CM in an Nc independent manner.

As an illustration we explicitly construct three gluon projection operators projecting

onto mutually orthogonal subspaces, and the corresponding six gluon basis. Note, however,

that the three gluon projectors can also be used for constructing orthogonal bases for up

to seven gluons, or up to ng + nq = 7 gluons and qq-pairs in general.

Using this type of gluon projection operators, we note that we can easily construct

complete sets of basis vectors for an arbitrary number of qq-pairs and gluons. The bases

constructed in this way have the advantage of being orthogonal. As the number of basis

vectors (for Nc → ∞) scales roughly as a factorial in the number of gluons and qq-pairs,

cf. eq. (1.15) and eq. (1.16), this is a very strong advantage for processes involving many

partons. These bases can also trivially be made minimal for the Nc under consideration,

by just omitting the vanishing basis vectors. For many partons, this leads to a significant

reduction in the number of terms that have to be treated. For example, for a total of

10 gluons, there are about one million basis vectors for Nc → ∞, which in the standard,

non-orthogonal, trace-type basis would give rise to an unmanageable ≈ 1012 elements to

calculate while squaring an amplitude. On the other hand, for the Nc = 3, in the minimal

multiplet basis, we instead have to treat about 105 terms. In fact we prove in appendix G

that the number of basis vectors scales at most as an exponential, rather than a factorial,

in the number of gluons plus qq-pairs.

The usage of these orthogonal SU(3) minimal bases therefore has the potential to

speed up exact multi-parton calculations significantly. However, it should be remarked

that in order to facilitate this, additional theoretical progress is advantageous. For the

standard trace-type bases powerful recursion relations in the number of external particles

can be employed for special cases [10,26–33] and it remains to be explored how these would

manifest themselves in a multiplet type basis.

In general (and especially for classes of processes where no efficient recursion relations

can be found), one would want efficient algorithms for sorting Feynman diagrams in the
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multiplet basis. If this can be done at tree level, and the effect of gluon exchange could

be found, the color structure of higher order calculations could probably be dealt with

efficiently. Although the effect of gluon emission is simple in many situations, and although

the soft anomalous dimension matrices [3–5,21,22] describing the effect of gluon exchange

on the various basis vectors, have been found to be relatively sparse, a complete systematic

treatment is still pending.
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A. Some birdtrack conventions

We introduced Cvitanović’s birdtrack notation [8, 24] in sections 1.1 and 1.3. Here we

collect some properties and conventions.

When translating the birdtrack diagram for a projector to index notation we subgroup

the indices on the l.h.s. and on the r.h.s., respectively, i.e.

P

a1
a2

an

b1
b2

bn

...
... = Pa1 a2 ... an b1 b2 ... bn , (A.1)

where all lines could be gluon , quark or anti-quark lines. With

this convention we deviate from [24, sec. 4.1], where all indices are read off in anti-clockwise

order, in which case the r.h.s. of eq. (A.1) would read Pa1 ... an bn ... b1 . However, for the

structures constants fabc and the totally symmetric tensor dabc we do adopt the convention

of assigning indices in an anti-clockwise order, see eqs. (1.2) and (1.20).

Tensor products are taken by writing the birdtrack diagrams one below the other,

⊗ = , (A.2)

and index contractions are achieved by joining lines,

q1
g1

q2
g2

q2
g2

q3
g3 = q1

g1
q3
g3 . (A.3)

In particular this implies that traces are taken by joining left and right legs,

tr

( )
= . (A.4)
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The complex conjugate of a diagram is obtained by reversing all arrows

∗

= , (A.5)

and hermitian conjugation amounts to mirror the diagram across a vertical line and to

reverse all arrows,

†

= . (A.6)

The latter is to be compared to

(P†)a1 a2 ... an b1 b2 ... bn = (Pb1 b2 ... bn a1 a2 ... an)
∗ (A.7)

in index notation.

We frequently have to symmetrize or anti-symmetrize over a set of indices which in

birdtrack notation is indicated by a white or a black bar, respectively,

a1

a2

an

...

b1

b2

bn

... = Sa1 a2 ... an b1 b2 ... bn ,

a1

a2

an

...

b1

b2

bn

... = Aa1 a2 ... an b1 b2 ... bn .

(A.8)

Written out as sums over permutations these read

Sa1 a2 ... an b1 b2 ... bn =
1

n!

∑

σ∈Sn

δa1bσ(1)
δa2bσ(2)

· · · δanbσ(n)
,

Aa1 a2 ... an b1 b2 ... bn =
1

n!

∑

σ∈Sn

sign(σ) δa1bσ(1)
δa2bσ(2)

· · · δanbσ(n)
.

(A.9)

B. First occurrence in Young multiplication

In this appendix we analyze the first occurrence of multiplets in terms of Young diagrams.

In particular we show that there is at most one new multiplet, having nf = n, within

Mq ⊗Mq with Mq,Mq ⊆ V ⊗n. We also derive a rule for determining the first occurrence

nf (M) of a given multipletM , and show that nf (M
′)−nf(M) ∈ {−1, 0, 1} forM ′ ⊆ M⊗A.

We assume that the reader is familiar with the labeling of irreducible representation of

SU(Nc) by Young diagrams as well as the rules for conjugating and multiplying Young

diagrams, see e.g. [34, secs. 7.12 & 10] and [24, sec. 9.8].

The first occurrence nf (M) of a multiplet M , which is contained in A⊗n for some n,

was defined in section 4. We now define the first occurrence ñf (M) within the sequence

(V ⊗ V )⊗n in the same way, as the smallest n ≥ 0 for which M ⊆ (V ⊗ V )⊗n. Let us show

that

nf (M) = ñf (M) (B.1)

for any M which appears in either one of the sequences. On the one hand, note that due to

A⊗n ⊆ (V ⊗V )⊗n any M ⊆ A⊗n is also contained in (V ⊗V )⊗n, and thus ñf (M) ≤ nf (M).
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On the other hand, due to eq. (1.10) any M ⊆ (V ⊗ V )⊗n also has to be contained in A⊗ν

for some ν ≤ n, and therefore ñf (M) ≥ nf (M). Together these two inequalities establish

eq. (B.1) and, consequently, we no longer distinguish between nf and ñf .

In order to analyze first occurrences we exploit that (V ⊗V )⊗n is isomorphic to V
⊗n⊗

V ⊗n, i.e. we have

A⊗n ⊆ (V ⊗ V )⊗n ∼= V
⊗n ⊗ V ⊗n . (B.2)

In terms of Young diagrams this means that for every instance of a multiplet M ⊆ A⊗n

there exist n-box Young diagrams corresponding to multiplets Mq and Mq such that2

M ⊆ Mq ⊗Mq . (B.3)

In the following we refer the Young diagrams for Mq and Mq as quark diagram and anti-

quark diagram, respectively, or q- and q-diagram for short. Recall that the q-diagram is

obtained from the diagram for Mq by first supplementing the latter with additional boxes

at the bottom until all columns have length Nc, then rotating the resulting rectangular

diagram by 180◦, and finally removing the original boxes. For instance, for Nc = 5 we have

=
• •

• • • •

(B.4)

where • denotes the absence of a box, i.e. these are the boxes which were removed in the

last step. We may thus view the q-diagram as a rectangular diagram with Nc rows with n

boxes cut out.

Now consider Mq ⊗Mq with Nc such that the rightmost column of the q-diagram has

as many boxes as the leftmost column of the q-diagram. In this case we obtain

• •

• • • •

⊗ q q q

q q

q
=

q q q
q q

q

• •

• • • •

⊕ diagrams in which at least one quark box

occupies a cut out space
. (B.5)

However, all diagrams in which a quark box occupies a cut out space, such as

q q

q q

q

q •

• • • •

, (B.6)

are already contained in V
⊗(n−1) ⊗ V ⊗(n−1), in the above case within

•

• • • •

⊗ q q

q q

q
. (B.7)

Thus, the first occurrence of these diagrams is less than n, here n − 1. The first diagram

on the r.h.s. of eq. (B.5), however, cannot be obtained for smaller n, as there would not be

enough boxes available. Hence, its first occurrence is nf = n, i.e. it corresponds to a new

2By “n-box diagram” we only mean that Mq,Mq ⊆ V ⊗n, i.e. if the diagrams have one or more columns

with Nc boxes it does not matter for our discussion whether we keep these columns or omit them – as one

is allowed to for SU(Nc) Young diagrams.
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multiplet in the terminology of section 4. We also note that all Young diagrams of this

kind, i.e. with n cut out spaces • from the q-diagram and n boxes q from the q-diagram,

appear within (V ⊗ V )⊗n, and thus also within A⊗n. Therefore, we can use the shapes of

the quark and anti-quark diagrams for determining the first occurrence nf .

For larger Nc, such that the rightmost column of the q-diagram is longer than the

leftmost column of the q-diagram, the structure of eq. (B.5) remains the same, e.g., for

Nc = 6,

• •

• • • •

⊗ q q q

q q

q
=

q q q

q q

q

• •

• • • •

⊕ diagrams in which at least one quark box

occupies a cut out space
, (B.8)

as all other ways of appending all quark boxes to the q-diagram without occupying a cut

out space are forbidden by the rules for Young multiplication. Therefore, also in this case

we obtain exactly one multiplet with first occurrence nf = n. On the other hand, for

smaller Nc, such that the rightmost column of the q-diagram is shorter than the leftmost

column of the q-diagram, it is impossible to append all quark boxes to the q-diagram

without occupying a cut out space. In this case we thus obtain only diagrams with nf < n,

i.e. diagrams corresponding to old multiplets. We conclude that within Mq ⊗ Mq, with

Mq,Mq ⊆ V ⊗n, there is always at most one new multiplet, and for sufficiently large Nc

there is exactly one new multiplet. Our construction of projectors onto new multiplets

builds on this. Another consequence is that new multiplets can be labeled uniquely by the

q- and q-diagrams. We introduce a corresponding notation in section 4.5.

The above discussion also provides us with a graphical rule for determining the first

occurrence nf (M) of a given multiplet M . First, draw the Young diagram corresponding

to M and mark empty spaces at the bottom of it by • until all columns have length Nc.

Then draw a vertical line through the diagram such that the number of cut out spaces • to

the left of the line is the same as the number of boxes to the right of it. This number is

the first occurrence of M . As examples we consider the octet, the decuplet and the 35-plet

for SU(3),

•

• • ,
• • •

• • • ,
• • • •

• • • • • , (B.9)

and obtain their first occurrences 1, 2 and 3, respectively.

We now turn to the question of how the first occurrence changes under multiplication

with an additional gluon. More precisely, forM ′ ⊆ M⊗A we want to know how nf (M) and

nf (M
′) are related. By definition we can obtain nf (M

′) = nf (M) + 1 but not higher, we

will see that this also is in agreement with the first occurrence counting above. Concerning

the lowest possible value of nf (M
′) one may heuristically argue as follows. The additional

gluon can form a singlet with one of the other gluons, leaving the remaining gluons in

a multiplet with first occurrence nf (M) − 1. (If they were in a state with lower first
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occurrence, they could not have built up a state with first occurrence nf (M) before the

multiplication with the additional gluon.) Overall we thus expect

nf (M)− 1 ≤ nf (M
′) ≤ nf (M) + 1 ∀ M ′ ⊆ M ⊗A . (B.10)

In order to prove this we carry out the Young multiplication with the adjoint representation

and use the rule for determining the first occurrence, which we have derived above.

Recall that the Young diagram for the adjoint representation has two columns, the first

one with Nc − 1 boxes and the second column with one box. For the following discussion

it is convenient to define k = Nc − 1. In order to calculate M ⊗A we have to append the

labeled boxes of
1 1
2
·

·

k

(B.11)

in all allowed ways to the Young diagram for M . We label the way in which the boxes are

appended by a pattern like
1 1
•

2
·

·

k

, (B.12)

which stands for appending the boxes 1 1 to row 1, nothing to row 2, box 2 to row 3, etc.,

and box k to row Nc. For instance, if the initial multiplet was

(B.13)

then the pattern (B.12) is a shorthand notation for the resulting Young diagram

1 1
•

2
·

·

k

. (B.14)

In this way we can enumerate all multiplets which could possibly arise after Young multi-

plication with the adjoint representation by

1 1
•

2
·

·

k

,

1 1
2
•

·

·

k

, ...

1 1
2
·

·

•

k

,

1 1
2
·

·

k

•

,

•

1 1
2
·

·

k

,

1
1 2
•

·

·

k

, ...

1
1 2
·

·

•

k

,

1
1 2
·

·

k

•

, ...

•

1
2
·

·

1 k

,

1
•

2
·

·

1 k

, ...

1
2
•

·

·

1 k

,

1
2
·

·

•

1 k

,

1
1
2
·

·

k

,

1
2
1
·

·

k

, ...

1
2
·

·

1
k

,

1
2
·

·

k

1

.

(B.15)

For a given initial multiplet many of these are typically forbidden, but the list is always

exhaustive.

We first consider the last patterns, all of the same shape, with Nc unit length rows.

They give rise to different instances of the initial multiplet. There are thus up to Nc − 1

instances of the multiplet M within M ⊗ A, coming from the different placements of the

second 1 . In these cases the first occurrence of the resulting multiplet M ′ is, trivially, equal

to the first occurrence of the initial multiplet M .

All other patterns in (B.15) have different shapes, and, accordingly, the corresponding

resulting Young diagrams (if they are allowed) also have different shapes. Thus, all of these
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patterns correspond to unique multiplets in M ⊗A, which carry non-equivalent irreducible

representations of SU(Nc). It remains to determine their first occurrence.

Assume that we have calculated the first occurrence of the initial multipletM according

to the rules, described before the examples (B.9). In particular we have placed the vertical

line such that the number of boxes to the right, and the number of cut out spaces • to

the left of it are the same. Keep this line in place while appending the boxes according to

the pattern. Now each box which we append to the Young diagram for M either increases

the number of boxes to the right of the vertical line by one or decreases the number of

cut out spaces • to the left of it by one. Thus, the difference between the former and the

latter number always increases by Nc. In order to determine the first occurrence of the

resulting multiplet M ′ we thus have to compensate this increase by moving the vertical line

one column to the right, as by this, in each row we either decrease the number of boxes

to the right of it by one or increase the number of cut out spaces • to the left of it by one.

Consider now again the patterns in (B.15) which append two boxes to one row and

nothing to one of the other rows. Think of applying these according to the following two-

step procedure. First append one box to each row and move the vertical line one box to the

right as justified in the preceding paragraph. Then move one box from the row in which

the pattern has the • to the row in which the pattern has two boxes. We illustrate this for

the example of eqs. (B.12)–(B.14),

•

• • •

• • • •

• • • •

• • • • • •

7→
•

• • •

• • • •

• • • •

• • • • • •

7→
• • •

• • • •

• • • • •

• • • • •

• • • • • • • , (B.16)

where in the second step the box is moved from row 2 to row 1. Note once more that it

does not matter whether we keep or omit the first column of the resulting Young diagram.

The first occurrence of the resulting diagram now depends only on whether the box,

which is moved in the last step, crosses the vertical line, and, if it does, in which direction.

If it does not cross the line, then the first occurrence does not change (but the shape of the

diagram does). This is the case in the example (B.16), and consequently the first occurrence

remains 5. However, the first occurrence changes whenever the moving box crosses the

vertical line. If the box crosses the line from left to right then nf (M
′) = nf (M) + 1, e.g. if

it is moved from row 3, 4, 5 or 6 to row 1 or 2 in the example. If the box crosses the line

from right to left, then nf (M
′) = nf (M) − 1, e.g. if it is moved from row 1 or 2 to row 4,

5 or 6 in the example. As only one box moves, the first occurrence can change by at most

1. From this reasoning we also see immediately from the Young diagram shapes that there

cannot be any “27”-plet within “0”⊗“8”⊂ A⊗3.

We summarize the results of what can happen under multiplication with one additional

gluon, i.e. for M ′ ⊆ M ⊗A:

(i) If M ′ = M then it can appear up to Nc − 1 times in M ⊗A.
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(ii) All other M ′ ⊆ M ⊗ A appear only once. In particular all new multiplets within

M ⊗A appear with multiplicity one.

(iii) The first occurrence of M ′ differs from that of M by at most 1,

i.e. nf (M
′) ∈ {nf (M)− 1, nf (M), nf (M) + 1}.

The fact that nf can change by at most one unit has a well-known manifestation for SU(2)

(spin), namely that when multiplying a spin-j state with a spin-1 state then the resulting

state’s total spin is either j − 1, j or j + 1.

C. Properties of the Clebsch-Gordan matrices CM

In this appendix we prove some properties of the Clebsch-Gordan matrices CM : A⊗nf →
A⊗ng and projection operators introduced in section 4.

We first consider eq. (4.10) which states the following. If PM = CMCM† projects onto

a multiplet M ⊆ A⊗ng then PMf = CM†CM is also projector, projecting onto Mf ⊆ A⊗nf ,

a first occurrence of the multiplet M . Notice first that by cyclic permutation under the

trace

d := dimM = trPM = trPMf = dimMf , (C.1)

i.e. if PMf is a projector, then it projects onto a subspace with the same dimension as

M . It remains to show that (a) PMf actually is a projector and that (b) Mf carries an

irreducible representation of SU(Nc) equivalent to that carried by M .

(a) Recall that both CMCM† and CM†CM are diagonalizable since they are manifestly

hermitian. All their non-zero eigenvalues are identical, including their multiplicities, for

the following reason: If λ 6= 0 is an eigenvalue of CMCM† then there exists a non-zero

v ∈ A⊗ng such that CMCM†v = λv. Defining u ∈ A⊗nf by u = CM†v the eigenvalue

equation can be rewritten as CMu = λv and by multiplication with CM† on the left we

obtain

CM†CMu = CM†λv = λu , (C.2)

i.e. λ is also an eigenvalue of CM†CM with eigenvector u. As PM = CMCM† is a projector

its only non-zero eigenvalue is 1 and by the above argument this is also true for PMf =

CM†CM , i.e. PMf is also a projector.

(b) In order to analyze whether Mf is invariant under SU(Nc) it is necessary to distin-

guish carefully between a multiplet M and the irreducible representation which it carries.

We denote by Ad the adjoint representation of SU(Nc), in particular, for every group el-

ement G ∈ SU(Nc), Ad(G) is a linear operator A → A. The space A⊗ng carries Ad⊗ng ,

the ng-fold tensor product of the adjoint representation. By ΓM we denote the irreducible

representation carried by M ⊆ A⊗ng .

Now we choose bases {vj} for A⊗ng and {uj} for A⊗nf such that v1, . . . , vd span M

and u1, . . . , ud span Mf . In this basis PM reads

PM =

(
1d 0

0 0

)
(C.3)
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where 1d denotes the d× d unit matrix. Similarly, PMf =
(
1d 0
0 0

)
. Recall, however, that in

general the zero blocks have different sizes for PM and PMf .

Next we choose a vector v ∈ M and define u := CM†v. As a consequence of (a) we

have u ∈ Mf and v = CMu. We know how v transforms under SU(Nc),

Ad⊗ng(G) v =

(
ΓM (G) 0

0 0

)
v =: ṽ ∈ M ∀ G ∈ SU(Nc) . (C.4)

Again we have ũ := CM† ṽ ∈ Mf , i.e. the transformation Ad⊗ng(G) leads to a transforma-

tion ΓMf
(G) : Mf → Mf defined by

ũ =:

(
ΓMf

(G) 0

0 0

)
u = CM†

(
ΓM(G) 0

0 0

)
CM u. (C.5)

It remains to show that ΓMf
is a representation of SU(Nc) and that it is equivalent to ΓM .

Denoting the upper left d× d block of CM by U , i.e.

CM =

(
U · · ·
...

. . .

)
, (C.6)

we observe that

ΓMf
(G) = U † ΓM (G)U . (C.7)

Finally, we show that U is unitary which concludes the proof. To this end notice that ΓM

maps the identity 1Nc ∈ SU(Nc) to the d× d unit matrix, i.e. ΓM (1Nc) = 1d, since ΓM is

a representation. From eq. (C.5) we infer

(
ΓMf

(1Nc) 0

0 0

)
u = CM†

(
1d 0

0 0

)
CM u =

(C.3)
CM†PMCM u = CM†CMCM†CM u

=
(
PMf

)2
u =

(
1d 0

0 0

)
u ,

(C.8)

i.e. 1d =
(C.8)

ΓMf
(1Nc) =

(C.7)
U † ΓM (1Nc)U = U †U .

Having shown eq. (4.10) we turn to eq. (4.11) which is proved easily using CM†CM ′

=

0 ⇔ ‖CM†CM ′‖ = 0 and the norm (1.5):

‖CM†CM ′‖2 = tr(CM ′†CMCM†CM ′

) = tr(PMPM ′

) = 0 for M 6= M ′ . (C.9)

When constructing basis vectors from projectors in appendix H we are also interested

in the norm of V := CMCM ′†,

‖V‖2 = tr(CM ′

CM†CMCM ′†) = tr(PMfP
M ′

f ) = δMfM
′
f
tr(PMf ) = δMfM

′
f
dimMf ,

(C.10)

where δMfM
′
f
indicates that the instances of the first occurrence multiplets must be the

same.
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D. Projectors for ggg → ggg in SU(Nc)

For large enough Nc (Nc ≥ 6) there are 51 projection operators projecting onto irreducible

subspaces. They are stated in eq. (D.1). Note, however, that for Nc = 3, this number is

reduced to 29, as many projectors correspond to multiplets whose Young diagrams are not

admissible (as, for example, column 2 is longer than column 1), or were constructed using

a non-admissible intermediate state (as is the case for P0,8).

In addition, as the gluon transforms under a real representation, for processes with

only gluons, the projection operators can only occur in real (i.e. symmetric) combinations,

further reducing the number of physically independent projection operators to 21. The full

set of 51 projection operators reads

P8s,1
g1 g2 g3 g4 g5 g6 =

1

TR

Nc

2 (N4
c − 5N2

c + 4)
dg1 g2 g3dg4 g5 g6

P8a,1
g1 g2 g3 g4 g5 g6 =

1

TR

−1

2Nc(N2
c − 1)

ifg1 g2 g3 ifg4 g5 g6

P1,8
g1 g2 g3 g4 g5 g6 =

1

N2
c − 1

δg1 g2δg4 g5δg3 g6

P8s,8s
g1 g2 g3 g4 g5 g6 =

1

T 2
R

N2
c

4 (N2
c − 4)2

dg1 g2 i1di1 g3 i2dg4 g5 i3di3 g6 i2

P8s,8a
g1 g2 g3 g4 g5 g6 =

1

T 2
R

−1

4(N2
c − 4)

dg1 g2 i1 ifi1 g3 i2dg4 g5 i3 ifi3 g6 i2

P8a,8s
g1 g2 g3 g4 g5 g6 =

1

T 2
R

−1

4(N2
c − 4)

ifg1 g2 i1di1 g3 i2ifg4 g5 i3di3 g6 i2

P8a,8a
g1 g2 g3 g4 g5 g6 =

1

T 2
R

1

4N2
c

ifg1 g2 i1 ifi1 g3 i2 ifg4 g5 i3 ifi3 g6 i2

P10,8
g1 g2 g3 g4 g5 g6 =

4

N2
c − 4

P10
g1 g2 i1 g3P

10
i1 g6 g4 g5

P10,8
g1 g2 g3 g4 g5 g6 =

4

N2
c − 4

P10
g1 g2 i1 g3P

10
i1 g6 g4 g5

P27,8
g1 g2 g3 g4 g5 g6 =

4(Nc + 1)

N2
c (Nc + 3)

P27
g1 g2 i1 g3P

27
i1 g6 g4 g5

P0,8
g1 g2 g3 g4 g5 g6 =

4(Nc − 1)

(Nc − 3)N2
c

P0
g1 g2 i1 g3P

0
i1 g6 g4 g5

P8s,10
g1 g2 g3 g4 g5 g6 =

1

TR

Nc

2 (N2
c − 4)

dg1 g2 i1P
10
i1 g3 i2 g6di2 g4 g5

P8a,10
g1 g2 g3 g4 g5 g6 = − 1

TR

1

2Nc
ifg1 g2 i1P

10
i1 g3 i2 g6 ifi2 g4 g5

P10,10f
g1 g2 g3 g4 g5 g6 = C

10f
g1 g2 g3; i1 i2

C
10f †
i1 i2; g4 g5 g6

P10,10fd
g1 g2 g3 g4 g5 g6 = C

10fd
g1 g2 g3; i1 i2

C
10fd †
i1 i2; g4 g5 g6

P27,10
g1 g2 g3 g4 g5 g6 =

1

TR

2(Nc + 2)

Nc(Nc + 3)
P27

g1 g2 i1 i2di2 g3 i3P
10
i1 i3 i4 i6di6 g6 i5P

27
i4 i5 g4 g5

P0,10
g1 g2 g3 g4 g5 g6 =

1

TR

2(Nc − 2)

Nc(Nc − 3)
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Nc

2 (N2
c − 4)
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1

TR

Nc

2(N2
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g1 g2 g3 g4 g5 g6 =
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27
i1 i3 i4 i6di6 g6 i5P
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i4 i5 g4 g5

P10,27
g1 g2 g3 g4 g5 g6 =
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2Nc
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P10
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27
i1 i3 i4 i6di6 g6 i5P

10
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P27,27d
g1 g2 g3 g4 g5 g6 =
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i1 i3 i4 i6di6 g6 i5P
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1

TR

1

Nc + 1
P27

g1 g2 i1 i2 ifi2 g3 i3P
27
i1 i3 i4 i6 ifi6 g6 i5P
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P8s,0
g1 g2 g3 g4 g5 g6 =

1

TR

Nc

2 (N2
c − 4)

dg1 g2 i1P
0
i1 g3 i2 g6di2 g4 g5

P8a,0
g1 g2 g3 g4 g5 g6 = − 1

TR

1

2Nc
ifg1 g2 i1P
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i1 g3 i2 g6 ifi2 g4 g5

P10,0
g1 g2 g3 g4 g5 g6 =

1

TR

2Nc

N2
c +Nc − 2

P10
g1 g2 i1 i2 ifi2 g3 i3P

0
i1 i3 i4 i6 ifi6 g6 i5P
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i4 i5 g4 g5

P10,0
g1 g2 g3 g4 g5 g6 =

1

TR

2Nc

N2
c +Nc − 2

P10
g1 g2 i1 i2 ifi2 g3 i3P

0
i1 i3 i4 i6 ifi6 g6 i5P
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i4 i5 g4 g5

P0,0d
g1 g2 g3 g4 g5 g6 =

1
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(Nc − 2)Nc

N3
c − 3N2

c − 6Nc + 8
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0
i1 i3 i4 i6di6 g6 i5P
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i4 i5 g4 g5

P0,0f
g1 g2 g3 g4 g5 g6 =

1
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1

Nc − 1
P0

g1 g2 i1 i2 ifi2 g3 i3P
0
i1 i3 i4 i6 ifi6 g6 i5P

0
i4 i5 g4 g5

P27,64=c111c111
g1 g2 g3 g4 g5 g6 =

1

T 3
R

T27,64
g1 g2 g3 g4 g5 g6 −

2N2
c

9(Nc + 1)(Nc + 2)
P27,8

g1 g2 g3 g4 g5 g6

− 4(N2
c −Nc − 2)

9Nc (Nc + 2)
P27,27d

g1 g2 g3 g4 g5 g6

P10,35=c111c21
g1 g2 g3 g4 g5 g6 =

1

T 3
R

4

3
T10,35

g1 g2 g3 g4 g5 g6 −
Nc − 2

3Nc
P10,8

g1 g2 g3 g4 g5 g6 −
Nc + 3

18Nc
P10,10f

g1 g2 g3 g4 g5 g6

+

√
N2

c − 9

6Nc
C

10f
g1 g2 g3; i1 i2

C
10fd †
i1 i2; g4 g5 g6

+

√
N2

c − 9

6Nc
C

10fd
g1 g2 g3; i1 i2

C
10f †
i1 i2; g4 g5 g6
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− Nc − 3

2Nc
P10,10fd

g1 g2 g3 g4 g5 g6 −
Nc − 2

3Nc
P10,27

g1 g2 g3 g4 g5 g6

P27,35=c111c21
g1 g2 g3 g4 g5 g6 =

1

T 3
R

4

3
T27,35

g1 g2 g3 g4 g5 g6 −
Nc(Nc + 3)

9(Nc + 1)(Nc + 2)
P27,8

g1 g2 g3 g4 g5 g6

− Nc

3(Nc + 2)
P27,10

g1 g2 g3 g4 g5 g6 −
N2

c + 2Nc − 8

18Nc(Nc + 2)
P27,27d

g1 g2 g3 g4 g5 g6
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1

T 3
R
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g1 g2 g3 g4 g5 g6 −
Nc − 2

3Nc
P10,8

g1 g2 g3 g4 g5 g6 −
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√
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√
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N2

c + 2Nc − 8

18Nc(Nc + 2)
P27,27d

g1 g2 g3 g4 g5 g6

+
1

TR

1

6(Nc + 1)
P27

g1 g2 i1 i2di2 g3 i3P
27
i1 i3 i4 i6 ifi6 g6 i5P
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4

9
P10,10f

g1 g2 g3 g4 g5 g6

− 2 (Nc + 1)
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3Nc
P10,0

g1 g2 g3 g4 g5 g6

P10,c21c21
g1 g2 g3 g4 g5 g6 =
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3Nc
P10,27

g1 g2 g3 g4 g5 g6 −
2 (Nc − 1)
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(D.1)

where the tensors TM12,M123 are constructed as indicated in eq. (4.25), and

C
10f †
i1 i2; g4 g5 g6

=
1√

NcTR
P10

i1 i2 i3 i4 ifi4 g6 i5P
10
i3 i5 g4 g5
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C
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i1 i2; g4 g5 g6

=
1√

NcTR
P10

i1 i2 i3 i4 ifi4 g6 i5P
10
i3 i5 g4 g5

C
10fd †
i1 i2; g4 g5 g6

=

√
Nc√

TR(N2
c − 9)

P10
i1 i2 i3 i4(di4 g6 i5 −

1

Nc
ifi4 g6 i5)P

10
i3 i5 g4 g5

C
10fd †
i1 i2; g4 g5 g6

=

√
Nc√

TR(N2
c − 9)

P10
i1 i2 i3 i4(di4 g6 i5 +

1

Nc
ifi4 g6 i5)P

10
i3 i5 g4 g5 . (D.2)

To understand the presence of TR in eq. (D.1) we note that expressed in terms of pure

traces, such as for example tr[tg2tg5tg6tg4tg3tg1 ], the TR factor would enter as 1/T 3
R, to

compensate for the contraction of three gluons (giving T 3
R) when squaring the projection

operator. However, every internal index gives rise to an extra factor TR when contracted,

and the ifabc and dabc come with a factor 1/TR, as can be seen from eqs. (1.12) and (1.20).

Similarly, the two gluon projection operators contain a compensating factor 1/T 2
R. When

all this is accounted for the TR appears as in eq. (D.1) and eq. (D.2).

E. Properties of some projection operators

In this appendix we collect and prove some properties of the gluon projection operators in

section 4.

First we prove eq. (4.18). We explicitly verify that PM ′

is a projector by squaring,

(
P...,M ′,M,M ′

)2
=

(
dimM ′

dimM

)2 ... ... ...
PM PM PM

...

.

(E.1)

Due to property (ii) the term in the middle has to be proportional to PM ′

: A⊗(ng−2) →
A⊗(ng−2), i.e.

... ...
PM

= α ...... PM ′
. (E.2)

The constant can be found by taking the trace, dimM = α dimM ′, and thus α =

dimM/dimM ′. Substituting into eq. (E.1) we obtain
(
P...,M,M ′)2

= P...,M,M ′

as desired.

We now turn to eq. (4.20). Letting

P...,M,M ′

= N (M,M ′) PM ′... PM PM ... , (E.3)

where N (M,M ′) denotes a normalization factor, we have

(P...,M,M ′

)2 = N 2(M,M ′)× (E.4)
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× PM ′... PM PM ...PM PM ′
PM

.

After employing (PM )2 = PM we observe that the middle part can be written as

PM... PM ′ ...PM ′
= α ... P

M ′ ... (E.5)

for some α. We find α and thus N (M,M ′) by taking the trace

B(M,M ′) = PM PM ′... ......

... ...

= α dim(M ′) , (E.6)

i.e. N (M,M ′) = dim(M ′)/B(M,M ′).

Next we show that the projector (4.24) can also be written in the form (4.20). Ex-

panding the products in eq. (4.23) we have

T...,M,Mfd = P...,M,Md −P...,M,MfP...,M,Md −P...,M,MdP...,M,Mf

+P...,M,MfP...,M,MdP...,M,Mf .
(E.7)

The second term on the r.h.s. reads

P...,M,MfP...,M,Md =
(dimM)2

Bf (M)Bd(M)
×

× PM... PM PM ...PMPM
.

(E.8)

Here and in the following we denote by Bf (M) the bubble diagram (E.6) with M ′ = M

and where both gray circles are chosen as if , and by Bd(M) the same diagram with both

gray circles being d. The middle part in eq. (E.8) is proportional to P...,M ,

PM... PM ...PM = α PM... ... . (E.9)

We find α by taking the trace,

α =
C(M)

dimM
, (E.10)

where C(M) denotes the bubble diagram (E.6) with M ′ = M and where one gray circle

represents if and the other one equals d. Note that α is real. By similar calculations we
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also find the other terms,

T...,M,Mfd =
dimM

Bd(M)

(
PM... PM ...PM

− C(M)

Bf (M)
PM... PM ...PM

− C(M)

Bf (M)
PM... PM ...PM

+

(
C(M)

Bf (M)

)2
PM... PM ...PM

)

=
dimM

Bd(M)
PM ′... PM PM ... ,

(E.11)

where on the last line the big gray circles are given by

= − C(M)

Bf (M)
. (E.12)

Upon normalization we have cast P...,M,Mfd in the form (4.20) with M ′ = M and where

all big gray circles, also those inside B(M,M), are given by eq. (E.12).

F. Invariant tensors, Schur’s lemma and color conservation

We briefly summarize properties of invariant tensors and their relation to the multiplet

version of color conservation which follows from Schur’s Lemma.

Let vj ∈ V , j = 1, . . . , nq, wk ∈ V , k = 1, . . . , nq, and ul ∈ A, l = 1, . . . , Ng. Under

G ∈ SU(Nc) the vj transform in the defining representation, vj 7→ Gvj , the wk transform

in the complex conjugate of the defining representation, wk 7→ G∗wk and the ul transform

in the adjoint representation, ul 7→ Ad(G)ul. A tensor T ∈ V ⊗nq ⊗ V
⊗nq ⊗A⊗Ng is called

invariant if
〈
T

∣∣∣ v1 ⊗ · · · ⊗ vnq ⊗ w1 ⊗ · · · ⊗ wnq
⊗ u1 ⊗ · · · ⊗ uNg

〉

=
〈
T

∣∣∣Gv1 ⊗ · · · ⊗Gvnq ⊗G∗w1 ⊗ · · · ⊗G∗wnq
⊗Ad(G)u1 ⊗ · · · ⊗Ad(G)uNg

〉 (F.1)

∀ G ∈ SU(Nc) and ∀ vj, wk, ul, where we use the scalar product of section 1.1. Another way

to express invariance is to say that T is a (color) singlet, i.e. that it transforms under the

trivial representation of SU(Nc). Viewing T as a linear map, e.g., as T : V ⊗nq ⊗ A⊗ng →
V ⊗nq ⊗A⊗(Ng−ng), the invariance condition can be rewritten as
〈
T(w∗

1 ⊗ · · · ⊗ w∗
nq

⊗ u1 ⊗ · · · ⊗ ung)
∣∣∣ v1 ⊗ · · · ⊗ vnq ⊗ ung+1 ⊗ · · · ⊗ uNg

〉

=
〈
TΓa(G)(w∗

1 ⊗ · · · ⊗ w∗
nq

⊗ u1 ⊗ · · · ⊗ ung)
∣∣∣Γb(G)(v1 ⊗ · · · ⊗ vnq ⊗ ung+1 ⊗ · · · ⊗ uNg)

〉

(F.2)
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where Γa and Γb are product representations of SU(Nc),

Γa(G) = G⊗nq ⊗Ad(G)⊗ng , Γb(G) = G⊗nq ⊗Ad(G)⊗(Ng−ng) . (F.3)

Using unitarity of Γb(G) we can further rewrite the invariance condition as,

〈T(· · · ) | · · · 〉 = 〈Γb(G)† TΓa(G)(· · · ) | · · · 〉 = 〈Γb(G)−1 TΓa(G)(· · · ) | · · · 〉 , (F.4)

where the dots stand for the tensor products of eq. (F.2). Since the condition has to hold

for any vj , wk, ul an invariant tensor T commutes with the representations Γa and Γb in

the sense that

TΓa(G) = Γb(G)T ∀ G ∈ SU(Nc) . (F.5)

In the case of irreducible representations Γa and Γb, Schur’s lemma, see e.g. [34, sec. 3-

14], states that T has to be a scalar multiple of the identity if the two representations are

equivalent and that T vanishes if they are not equivalent. In general, the representations

(F.4) are not irreducible, but their carrier spaces V ⊗nq ⊗A⊗ng and V ⊗nq ⊗A⊗(Ng−ng) can

be decomposed into a direct sum of multiplets, M1⊕M2⊕ . . .. Introducing bases, such that

the first dim(M1) vectors span M1, the next dim(M2) span M2 etc., the invariant tensor

T gets a block structure. Due to Schur’s lemma all blocks which would map elements of a

multiplet M to a multiplet M ′ carrying a non-equivalent irreducible representation vanish

identically. For instance, T can map an octet state to any other octet state – and there

can be several octets in the decompositions of V ⊗nq ⊗ A⊗ng and V ⊗nq ⊗A⊗(Ng−ng) – but

it can never map an octet state to a decuplet state. In the context of QCD we refer to this

property as color conservation.

Examples for SU(Nc)-invariant tensors are δ
q2
q1 (quark or anti-quark lines), δg1g2 (gluon

lines), the three-gluon vertices ifg1g2g3 and dg1g2g3 or the generators (tg)q2q1 of the defining

representation, see e.g. [7,8,40]. Tensor products and contractions of invariant tensors are

again invariant tensors, i.e. all tensors appearing in our constructions of projectors and

basis vectors are invariant tensors.

G. Exponential scaling of number of basis vectors

We here show that for finite Nc the number of projection operators required for ng → ng

gluons grows at most exponentially in ng. To see this, we note that starting in any multiplet

M we have, for finite Nc, according to eq. (B.15), at most a finite number of new multiplets

Nmax. For Nc = 3, the possibilities may, in accordance with eq. (B.15), be enumerated as

1 1
•

2
,

1 1
2
•

,
•

1 1
2

,
1
1 2
•

,
•

1
1 2

,
1
•

1 2
,

1
1
2
,

1
2
1
.

For Nc = 3 we thus have Nmax = 8, and the number of projection operators increases

at most by a factor of 8 for each new gluon. In fact, it grows much slower for a small

number of gluons, as then most placements above are forbidden. However, we observe that

it approaches this increase for many gluons. In general we have Nmax = (Nc + 1)(Nc − 1)

as there are Nc ways of placing the only 2-row, and, for each option, (Nc − 1) ways of
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SU(3) dim 64 35 35 0

Multiplet c111c111 c111c21 c21c111 c21c21

Out g4g5g6 ((45)276)64 ((45)106)35 ((45)106)35 ((45)106)c21c21

((45)276)35 ((45)276)35 ((45)106)c21c21

((45)276)c21c21

((45)06)c21c21

SU(3) dim 0 0 0 0 0

Multiplet c111c3 c3c111 c21c3 c3c21 c3c3

Out g4g5g6 ((45)106)c111c3 ((45)106)c3c111 ((45)106)c21c3 ((45)106)c3c21 ((45)06)c3c3

((45)06)c21c3 ((45)06)c3c21

Table 6: The new multiplets for 3g → 3g, appearing in addition to those listed in table 5. Putting

together the information here and in table 5 we note that there are 22+92+62+62+62+62+1+22+

22+42+1+1+22+22+1 = 265 bases vectors, reducing to 22+82+42+42+62+1+22+22 = 145

for SU(3).

placing the • . Finally, when there is no • (rightmost cases above), there are Nc − 1 ways

of placing the second 1. As we always, irrespective of the shape of the starting multiplet,

have a finite Nmax the number of projection operators grows at most as N
ng
max.

Having this upper bound for the growth of the number of projection operators we note

that the number of basis vectors in the 2ng space grows at most as N
2ng
max. (This would

correspond to allowing transitions between all multiplets.) Again, in reality, it grows much

slower for a small number of gluons.

Finally, we note that for processes involving quarks, each qq-pair is either in an octet, in

which case the above counting for the gluon case carries over, or in a singlet, corresponding

to the case of one less gluon above. We thus find that also in the general case of both, quarks

and gluons, the number of projectors and basis vectors grows (at most) exponentially.

H. Orthogonal basis for six gluons in SU(Nc)

In this appendix we discuss in detail how to construct a basis for the six gluon color space.

As always we utilize the method of subgrouping. In order to construct all basis vectors we

have to combine every instance of a multiplet M on the incoming side with every instance

of M on the outgoing side. One way of splitting the gluons is to consider g1 g2 g3 → g4 g5 g6.

Then, clearly, the possible multiplets are the same on the incoming and outgoing side. The

multiplets with first occurrence up to two are in fact already listed in table 5. In addition

to these multiplets there are also new multiplets, as listed in table 6. In total this gives rise

to 265 basis vectors, in agreement with subfactorial(6), eq. (1.15). For Nc = 3 this number

is reduced to 145.

To construct the corresponding basis we note that we may divide the basis vectors into

four different categories, according to their first occurrence zero, one, two and three. For

the singlets we effectively have zero gluons passing from the incoming to the outgoing side.

They are thus of the form
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C8a/s,1
g1 g2 g3C

8a/s,1 †
g4 g5 g6 ∝

g1

g2

g3

g4

g5

g6

incoming singlet outgoing singlet

if/d

if/d

(H.1)

where – as opposed to in the projector case, c.f. eq. (4.7) – the color structure on the

incoming side in general differs from that on the outgoing side, giving rise to a total of four

singlets.

Similarly, in order to construct the basis vectors corresponding to multiplets with first

occurrence one (octets), we note that they may be drawn having one gluon passing from

the incoming to the outgoing side, for example

C
M2,8
g1 g2 g3; i1

C
8a/s,8a/s †
i1;g4 g5 g6

∝
g1

g2

g3

g4

g5

g6

if/d if/d

incoming octet outgoing octet

PM12

. (H.2)

Moreover, the first occurrence two projectors can be treated in the same way, e.g

C
M2,M3
g1 g2 g3; i1 i2

C
8a/s,M3 †
i1 i2; g4 g5 g6

∝
g1

g2

g3

g4

g5

g6

if/d

if/d

incoming first occurrence two multiplet same multiplet as on incoming side

P
M2 P

M3 P
M3 .

(H.3)

For the first occurrence zero, one, and two case, the normalization of the basis vectors is

always given by eq. (C.10).

For multiplets with first occurrence three and higher we encounter a new situation.

Even for nf gluons there are several instances of the same multiplet corresponding to

different construction histories. Therefore the basis vectors are in general not proportional

to

C
M2,M3
g1 g2 g3; i1 i2 i3

C
M ′

2,M3 †

i1 i2 i3; g4 g5 g6
(H.4)

for all first occurrence 3 projectors. They can only be constructed in this way if M2 = M ′
2,

in which case the six gluon vector is proportional to the corresponding ggg → ggg projector,

and the normalization is given by eq. (1.9). If M2 6= M ′
2 the above color structure vanishes,

due to the construction history property (iii) in section 4. In order to find the corresponding

vector we instead permute the gluon lines before contracting the projectors

P
M2,M3

g1 g2 g3 i1 g6 i2
P

M ′
2

i1 i2 g4 g5
∝

g1

g2

g3

g4

g5

g6

P
M2 P

M ′

2

P
M2, M3 . (H.5)
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The electronically attached six gluon vectors corresponding to first occurrence three mul-

tiplets are constructed in this way. Having more than three gluons, there are yet more

possibilities of having transitions between different instances of the same multiplets on the

incoming and outgoing side. In this case we remark that having all projectors at hand, we

can always construct the basis by pursuing the same strategy as in eq. (4.13).

I. Multiplet basis for two qq pairs and two gluons

Here the multiplet basis for q1q2g3 → q4q5g6, discussed in section 6.2 is given:

V8,1;8,1
q1 q2 g3 q4 q5 g6 =

1

TR

1

N2
c − 1

(tg3)q1q2 (tg6)q5q4

V1,8;1,8
q1 q2 g3 q4 q5 g6 =

1

Nc

√
N2

c − 1
δq1q2 δg3 g6 δ

q5
q4

V1,8;8,8s
q1 q2 g3 q4 q5 g6 =

1

TR

1√
2(N4

c − 5N2
c + 4)

δq1q2 dg3 g6 i1 (ti1)q5q4

V1,8;8,8a
q1 q2 g3 q4 q5 g6 =

1

TR

1

Nc

√
2(N2

c − 1)
δq1q2 ifg3 g6 i1 (ti1)q5q4

V8,8s;1,8
q1 q2 g3 q4 q5 g6 =

1

TR

1√
2(N4

c − 5N2
c + 4)

(ti1)q1q2 di1 g3 g6 δ
q5
q4

V8,8s;8,8s
q1 q2 g3 q4 q5 g6 =

1

T 2
R

N

2(N2
c − 4)

√
N2

c − 1
(ti1)q1q2 di1 g3 i2 di2 g6 i3 (ti3)q5q4

V8,8s;8,8a
q1 q2 g3 q4 q5 g6 =

1

T 2
R

1

2
√

N4
c − 5N2

c + 4
(ti1)q1q2 di1 g3 i2 ifi2 g6 i3 (ti3)q5q4

V8,8a;1,8
q1 q2 g3 q4 q5 g6 =

1

TR

1

Nc

√
2(N2

c − 1)
(ti1)q1q2 ifi1 g3 g6 δq5q4

V8,8a;8,8s
q1 q2 g3 q4 q5 g6 =

1

T 2
R

1

2
√

N4
c − 5N2

c + 4
(ti1)q1q2 ifi1 g3 i2 di2 g6 i3 (ti3)q5q4

V8,8a;8,8a
q1 q2 g3 q4 q5 g6 =

1

T 2
R

1

2Nc

√
N2

c − 1
(ti1)q1q2 ifi1 g3 i2 ifi2 g6 i3 (ti3)q5q4

V8,10;8,10
q1 q2 g3 q4 q5 g6 =

1

TR

2√
N4

c − 5N2
c + 4

(ti1)q1q2 P10
g3 i1g6 i2(t

i2)q5q4

V8,10;8,10
q1 q2 g3 q4 q5 g6 =

1

TR

2√
N4

c − 5N2
c + 4

(ti1)q1q2 P10
g3 i1 g6 i2(t

i2)q5q4

V8,27;8,27
q1 q2 g3 q4 q5 g6 =

1

TR

2

Nc

√
N2

c + 2Nc − 3
(ti1)q1q2 P27

g3 i1 g6 i2(t
i2)q5q4

V8,0;8,0
q1 q2 g3 q4 q5 g6 =

1

TR

2

Nc

√
N2

c − 2Nc − 3
(ti1)q1q2 P0

g3 i1 g6 i2(t
i2)q5q4 . (I.1)

The normalization is fixed such that the norm square is 1. Note that for the basis vectors

with the same construction history on the incoming and outgoing side, the vectors are

proportional to the corresponding projector, and the normalization is given by eq. (1.9).
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