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TWO NEW ZETA CONSTANTS: FRACTAL STRING, CONTINUED

FRACTION, AND HYPERGEOMETRIC ASPECTS OF THE RIEMANN ZETA

FUNCTION

STEPHEN CROWLEY

Abstract. The Riemann zeta function at integer arguments can be written as an infinite sum of
certain hypergeometric functions and more generally the same can be done with polylogarithms,
for which several zeta functions are a special case. An analytic continuation formula for these
hypergeometric functions exists and is used to derive some infinite sums which allow the zeta
function at integer arguments n to be written as a weighted infinite sum of hypergeometric
functions at n − 1. The form might be considered to be a shift operator for the Riemann zeta
function which leads to the curious values ζF (0) = I0(2) − 1 and ζF (1) = Ei(1) − γ which
involve a Bessel function of the first kind and an exponential integral respectively and differ from
the values ζ (0) = −

1

2
and ζ (1) = ∞ given by the usual method of continuation. Interpreting

these “hypergeometrically continued” values of the zeta constants in terms of reciprocal common

factor probability we have ζF (0)−1 ∼= 78.15% and ζF (1)−1 ∼= 75.88% which contrasts with the

standard known values for sensible cases like ζ (2)−1 = 6

π2
∼= 60.79% and ζ (3)−1 ∼= 83.19%.

The combinatorial definitions of the Stirling numbers of the second kind, and the 2-restricted
Stirling numbers of the second kind are recalled because they appear in the differential equation
satisfied by the hypergeometric representation of the polylogarithm. The notion of fractal strings
is related to the (chaotic) Gauss map of the unit interval which arises in the study of continued
fractions, and another chaotic map is also introduced called the “Harmonic sawtooth” whose
Mellin transform is the (appropritately scaled) Riemann zeta function. These maps are within
the family of what might be called “deterministic chaos”. Some number theoretic definitions are
also recalled.
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1. The Zeta Function

1.1. Riemann’s ζ(t) Function. Riemann’s zeta function, named after Bernhard Riemann(1826-
1866), is defined by

(1)

ζ(t) =
∑∞

n=1 n
−t ∀{t ∈ C : R(t) > 1}

= 1
1−2−t

∑∞
n=0(2n+ 1)−t ∀{t ∈ C : R(t) > 1}

= (1− 2−t) η (t) ∀{t ∈ C : R(t) > 0}

where R(t) and I(t) denote real and imaginary parts of t respectively and η (t) is the Dirichlet eta

function, also known as the alternating zeta function, named after Johann Dirichlet(1805-1859)

(2)
η (t) =

∑∞
n=1

(−1)n−1

nt
∀{t ∈ C : R(t) > 0}

= 1
Γ(s)

∫
xs−1 1

ex+1dx ∀{t ∈ C : R(t) > 0}

where the integral is a Mellin transform of (ex + 1)
−1

. The function ζ(t) is analytic and uniformly
convergent when R(t) > 1 or R(t) > 0 when using the eta function form. The only singularity of
ζ(t) is at t = 1 where it becomes the divergent harmonic series. The reflection functional equation
[48, 13.151] which relates ζ(t) to ζ(1 − t) is given by

(3) ζ(t)π−t21−tΓ(t) cos

(
tπ

2

)

= ζ(1 − t)

The interpretation of zeta in terms of frequentist probability is that given n integers chosen at

random, the probability that no common factor will divide them all is ζ (n)
−1

. In other words,

given an array i of n random intgers, ζ (n)
−1

is the probabability that gcd (i1, i2, . . . , in) = 1 where
gcdis the greatest common denominator function. So for example, the probability that a pair of
randomly chosen integers is coprime is ζ (2)−1 = 6

π2
∼= 60.79%, and the probability that a triplet

of randomly chosen integers is relatively prime is ζ (3)−1 ∼= 83.19%. [37][48, 13.1][7, 1.4]

1.1.1. The Generalized Hurwitz Zeta Function ζ(t, a). A more general function which includes Rie-
mann’s Zeta function was defined by A. Hurwitz.

(4) ζ(t, a) =
∞∑

n=0

(n+ a)−t

Notice that the summation starts at n = 0 whereas Riemann’s starts at n = 1. It is apparent that
ζ(t) is a special case of ζ(t, a) where

(5) ζ(t) =

∞∑

n=1

n−t = ζ(t, 1) =

∞∑

n=0

(n+ 1)−t

[14][48, 13.11]
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1.1.2. Hypergeometric Representations of the Lerch Transcendent: Φ(z, t, v). The Lerch transcen-
dent Φ(z, t, v) [10, 1.11] is a further generalization of the Hurtwitz zeta function

(6) Φ(z, t, v) =
∑∞
n=0

zn

(v+n)t

valid ∀|z| < 1 or {|z| = 1 : R(t) > 1} which is related to ζ(t, v) and ζ(t) by

(7)
Φ(1, t, v) = ζ(t, v)
Φ(1, t, 1) = ζ(t)
Φ(1, t, 1/2) = ζ(t, 1/2) = (2t − 1)ζ(t)

When t = 1 the Lerch transcendent reduces to

(8)
Φ(z, 1, v) =

2F1





1 v
1 + v

|z





v

and when n ∈ {0, 1, 2, . . . .}, Φ(z, n, v) has the hypergeometric representation [19]

(9) Φ(z, n, v) = v−nn+1Fn

(
1 ~vn−−−→

1 + vn
|z
)

yielding

(10) ζ(n, v) = v−nn+1Fn

(
1 ~vn−−−→

1 + vn

)

and

(11)

ζ(n) =
(

2n

2n−1

)

n+1
Fn

(

1
−→
1/2n−→
3/2n

)

=n+1 Fn

(
~1n+1

~2n

)

and thus due to (1) and (7) we have the hypergeometric transformation

(12) n+1Fn

(

1
−→
1/2n−→
3/2n

)

= (1− 2−n)n+1Fn

(
~1n+1

~2n

)

where the argument absent in pFq is assumed to be 1 and the symbol ~cn denotes a parameter vector

of length n where each element is equal to c (e.g. ~53 = [5, 5, 5]).

1.1.3. The Hypergeometric Polylogarithm. The polylogarithm, also known as Jonquière’s function,
is defined ∀|t| 6 1, n ∈ {0, 1, 2, . . .} by

(13)

Lin(t) =
∑∞

k=1
tk

kn

=n+1 Fn

(
~1n+1

~2n
|t
)

t

= t
∑∞
k=0

tk

k!

∏n+1
i=1 (1)k

∏

n
j=1(2)k

= t
∑∞
k=0 t

k (1)n+1
k

(2)n
k

= t
∑∞
k=0 t

k Γ(k+1)n

Γ(k+2)n

= t
∑∞
k=0

tk

(1+k)n



4 STEPHEN CROWLEY

The hypergeometric representation (116) of Lin(t) =n+1 Fn

(
a1 . . . an+1

b1 . . . bn
|t
)

t = LiFn (t) where

a1 . . . an+1 = ~1n+1 and b1 . . . bn = ~2n is nearly-poised of the first kind [41, 2.1.1] since a1 + b1 =

3 = . . . = an + bn = 3. The notation LiFn (t) refers specifically the hypergeometric form of Lin(t).
The derivatives and integrals of Lin(t) satisfy the recurrence relations

(14)

d
dt Lin(t) = Lin−1(t)

t

d
dtn+1

Fn

(
~1n+1

~2n
|t
)

t =n Fn−1

(
~1n+1

~2n
|t
)

(15)

∫ t

0
Lin(s)
s

ds = Lin+1(t)
∫ t

0 n+1Fn

(
~1n+1

~2n
|s
)

ds = n+2Fn+1

(
~1n+2

~2n+1
|t
)

t

and the reflection functional equation for Lin(1) = ζ(n) is

(16) Lin(1) = Lin(−1)
(21−n−1)

LiFn (t) is seen to be (n− 1)-balanced (117) with the trivial calculation

(17)
n∑

k=1

2−
n+1∑

k=1

1 = 2n− (n+ 1) = n− 1

The usual defintion of Lin(t) requires analytic continuation at t = 1 but this is not necessary because
the hypergeometric function converges absolutely on the unit circle when it is at least 1-balanced
(117) which is true ∀n > 2. The only Saalschützian polylogarithm is Li2(t) [32, Eq3.8] [20, 25:12][26,
1.4.2]

1.1.4. The Differential Equation Solved by LiFn (t) and Some Combinatorics. Some combinatorial

functions need to be defined before writing the differential equation solved by LiFn (t). Let a partition

be an arrangement of the set of elements 1, . . . , k into n subsets where each element is placed into
exactly one set. The number of partitions of the set 1, . . . , k into n subsets is given by the Stirling

numbers of the second kind [2, 1.1.3][38, 2.7] defined by

(18)

{
k
n

}

=
∑n
j=0

jk

n!(−1)j−n

(
n
j

)

=
∑n
j=0

jk(−1)n−j

Γ(j+1)Γ(n−j+1)

= (−1)n+1

Γ(n) k
Fk−1

(
1− n,~2k−1

~1k−1

)

The kFk−1 representation of

{
k
n

}

is (n−k)-balanced (117) since (k−1)−((1−n)+2(k−1)) = n−k.

The r-restricted Stirling numbers of the second kind

{
k
n

}

r

, or simply the r-Stirling numbers ,

counts the number of partitions of the set 1,...,n into k subsets with the restriction that the numbers
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1, . . . , r belong to distinct subsets. [29] The recursion satisfied by

{
k
n

}

r

is given by

(19)

{
k
n

}

r

=







0 k < r
δn,r k = r

n

{
k − 1
n

}

r

+

{
k − 1
n− 1

}

r

n > r

where δn,m =

{
1 n = m
0 n 6= m

is the Kronecker delta. Specifically, the 2-restricted Stirling num-

bers [15, A143494] appearing in the differential equation for LiFn (t) are given by

(20)

{
k
n

}

2

=

{
k
n

}

−
{
k − 1
n

}

= 1
(k−2)!

∑k−2
j=0 (−1)j−k

(
k − 2
j

)

(j + 2)n−2

= (−1)k
∑k−2

j=0
(j+2)n−2(−1)j

j!(k−2−j)!

The (n+ 1)-th order hypergeometric differential equation (119) satisfied by f(t)=LiFn (t) (13)

(21) 0 =







f(t) + d
dtf(t)(t

2 − t) n = 0

d
dtf(t) +

∑n+1
m=2

(
d

dtm f(t)
)
(

tm−1

{
n+ 1
m

}

− tm−2

{
n+ 1
m

}

2

)

n > 1

has a most general solution of the form

(22) f (t) = x+ yGn(t) +
∑n−1

m=1 zm ln(t)m

where x, y, z1, . . . , zn−1 are arbitrary parameters and Gn(t) satifies the recursion

(23) Gn(t) =







t
1−t n = 0

ln(t− 1) n = 1
Li2(1− t) + ln(t− 1) ln(t) n = 2
∫ Gn−1(t)

t
dt n > 3

which has the explicit solution

(24) Gn(t) =







t
1−t n = 0

ln(t− 1) n = 1
Li2(1− t) + ln(t− 1) ln(t) n = 2
(ln(t−1)−ln(1−t)) ln(t)n−1

Γ(n) + π2

6
ln(t)n−2

Γ(n−1) − Lin(t) n > 2

The indicial equation of (21) at the t = 1 is

(25) ind(LiFn (t)) = − t(−1)n−1Γ(n−1−t)(t−n+1)2

Γ(1−t)

The (n+ 1) roots of ind(LiFn (t)) are the exponents of (21) which are simply

(26)
{
t : ind(LiFn (t)) = 0} = 0, 1, . . . , n− 1, n− 1

where the last root n − 1 of ind(LiFn (t)) is the balance of LiFn (t) (17) having multiplicity 2 thus
inducing the logarithmic terms of (22). [16, 15.31 and 16.33] These equations were derived by writing
the differential equation for increasing values of n and then noticing that the developing pattern
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of coefficients were combinatorial. After deriving the general combinatorial differential equation, it
was solved for increasing values of n which resulted in nested integrals of prior solutions and then
the general solution was derived from that pattern.

1.1.5. The “Hypergeometric Form” of the Zeta Function. The main focus will be on the special
case LiFn (t) at unit argument where it coincides with the Riemann Zeta function at the integers.

As with LiFn (t), the symbol ζF (n) refers specifically to the hypergeometric representation of ζ(n)
at non-negative integer values of n. Using (5) and (13), it can easily be seen that ζ(n) can be
expressed as a generalized hypergeometric function (116) with

(27)

ζF (n) = LiFn (1)

= n+1Fn

(
~1n+1

~2n

)

=
∑∞
k=0

1
k!

∏n+1
i=1 (1)k

∏

n
j=1(2)k

=
∑∞
k=0

(1)n+1
k

k!(2)n
k

=
∑∞
k=0

Γ(k+1)n

Γ(k+2)n

=
∑∞
k=0(k + 1)−n

= ζ(n, 1)
= ζ(n)

The value ζF (0) =1 F0

(
1 |1

)
is singular and so must be calculated with the reflection equation

(16) to get LiF0 (−1) =1 F0

(
1 | − 1

)
= − 1

2 = ζ(0) which agrees with the integral form of ζ(t)∀t 6= 1

(28) ζ(t)|t=0 =
(

1
2 + 1

t−1 + 2
∫∞
0

sin(s arctan(s))(1+s2)−
s
2

e2πs−1 ds
)∣
∣
∣
t=0

= Li0(−1) = − 1
2

2. Number Theory, Continued Fractions, and Fractal Strings

2.1. Fractal Strings and Dynamical Zeta Functions. A fractal string is defined as a nonempty
open subset of the real line Ω ⊆ R which can be expressed as a disjoint union of open intervals Ij
being the connected components of Ω. [25, 3.1][30][23][22][11][24]

(29) Ω =
⋃∞
j=1 Ij

The length of the j-th interval Ij will be denoted ℓj . It will be assumed that Ω is standard, meaning
that its length is finite, and that ℓj is a nonnegative monotically decreasing sequence.

(30)
|Ω|d =

∑∞
j=1(ℓj)

d <∞∃d > 0

ℓ1 > ℓ2 > . . . > ℓj > ℓj+1 > · · · > 0

where ∃d > 0 means there is at least one value of d for which the statement is true. It can be the
case that ℓj = 0 for some j in which case ℓj is a finite sequence. The sequence of lengths of the
components of the fractal string is denoted by

(31) L = {ℓj}∞j=1

The boundary of Ω in R will be denoted by ∂Ω = K ⊂ Ω which will also denote the boundary of L.
Any totally disconnected bounded perfect subset K ⊂ R, or generally, any compact subset K ⊂ R,
can be represented as a string of finite length |Ω|1. A subset K of a topological space Ω is said to
be perfect if it is closed and each of its points is a limit point. Since here Ω is a metric space and
K ⊂ Ω is closed, the Cantor-Bendixon lemma states that there exists a perfect set P ⊂ K such
that K − P is a most countable. [35, 2.2 Ex17] As such, Ω can be defined as the complenent of
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K in its closed convex hull, that is, Ω = Ω(K) is the smallest compact interval [a, b] containing K.
The connected components of the bounded open set Ω = (a, b)\K are the intervals Ij of the fractal
string L associated with K.

2.2. The Gauss Map h(x). Let Ωh = (0, 1)\∂Ωh where ∂Ωh =
{
±∞, 0, 1

n
: n ∈ Z

}
is the set of

discontinous boundary points of the Gauss map h(x) ∈ Ωh∀x 6∈ ∂Ωh, also known as the Gauss
function or Gauss transformation, which maps unit intervals onto unit intervals and by iteration
gives the continued fraction expansion of a real number

(32)

h(x) = 1
x
−
⌊
1
x

⌋

= −⌊ 1
x⌋x−1

x

= {x−1}
= 1

x
mod 1

where ⌊x⌋ is the floor function, the greatest integer6 x and {x} = x− ⌊x⌋ is the fractional part of
x. [13, 2.1,3.9.1,9.1,9.3,9.7.1][42, A.1.7] Clearly h(x) is also defined outside of Ω

(33) h(x) =







1
x

x > 1
h(x) −1 6 x 6 1
1
x
+ 1 x < −1

since

(34)

⌊
1

x

⌋

=







0 x > 1
⌊
1
x

⌋
−1 6 x 6 1

−1 x < −1

As can be seen in Figure 1, h(x) is discontinuous at a countably infinite set of points of Lebesgue
measure zero on its boundary ∂Ωh

(35)

{

y : lim
x→y−

h(x) 6= lim
x→y+

h(x)

}

=∂Ωh =

{

±∞, 0,
1

n
: n ∈ Z

}

The left and right limits of h(x) when x approaches an element on the boundary ∂Ωh is given by

(36)
limx→∂Ω− h(x) = 0
limx→∂Ω+ h(x) = 1

2.2.1. The Frobenius-Perron Transfer Operator. The Frobenius-Perron transfer operator [42, 2.4.4][31,
2.3.3][13, 1.3.1,8.2][40, 1.8,2.4] of a unit interval mapping f(y) describes how a probablility density
ρ(y) transforms under the action of the map.

(37) [Ufρ](x) =
∫
δ(x− f(y))ρ(y)dy

where δ is the Dirac delta function and θ is the Heaviside step function.

(38)

∫
δ(x)dx = θ(x)

θ(x) =

{
0 x < 0
1 x > 0

The function f(y) is the map being iterated and ρ(y) is some density on which the transfer operator
U acts. Essentially, iteration of the map transforms points to points and iteration of the transfer



8 STEPHEN CROWLEY

Figure 1. The Gauss Map

operator maps point densities to point densities. The Gauss-Kuzmin-Wirsing(GKW) operator is
obtained by applying the transfer operator to the Guass map. [44, 2] [50] [46]

(39) [Uhρ](x) =
∑∞
n=1

ρ( 1
n+x )

(n+x)2

By changing the variables and order of integration in (65) an operator equation for ζ(s) is obtained.

(40)

ζ(s) = s
s−1 − s

∫ 1

0
x[Uhx

s−1]dx

= s
s−1 − s

∫ 1

0 x
∫
δ(x− h(y))ys−1dydx

= s
s−1 − s

∫ 1

0
x
∫
δ(x−

(
y−1 −

⌊
y−1

⌋)
)ys−1dydx

= s
s−1 − s

∫ 1

0 x
∑∞

n=1
( 1
n+x )

s−1

(n+x)2 dx

An operator similiar to (39) is

(41) [Shρ](x) =
∑∞

n=1 ρ
(
1
n

)
− ρ

(
1

n+x

)
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The action of [Uhρ](x) on the identity function x→ x is given by

(42)

[Uhx](x) =
∑∞

n=1

1
n+x

(n+x)2

=
∑∞

n=1
1

(n+x)3

= −Ψ(2)(x+1)
2

=

4F3





1 x+ 1 x+ 1 x+ 1
x+ 2 x+ 2 x+ 2





(x+1)3

where Ψ(n)(x) is the polygamma function (122). The area under the curve of [Uhx](x) is

(43)
∫ 1

0
[Uhx](x)dx =

∫ 1

0
− Ψ(2)(x+ 1)

2
dx =

1

2

The identity action of [Shρ](x) is

(44)
[Shx](x) =

∑∞
n=1

1
n
− 1

n+x

= γ +Ψ(x+ 1)

where γ is Euler’s constant

(45)

γ = limn→∞
∑n
k=1

1
k
− ln(n)

= lims→1 ζ(s)− 1
s−1

= lims→1 ζ(s) +
∫∞
1
h(x)xs−1dx

= lims→1
1
s−1 − s

∫ 1

0
h(x)xs−1dx+

∫∞
1
h(x)xs−1dx

= 1−
∫ 1

0
h(x)dx

≈ 0.57721566490153286060651209

and the area under its curve is given by

(46)
∫ 1

0
[Shx](x)dx =

∫ 1

0
γ +Ψ(x+ 1)dx = 1− γ

2.2.2. Piecewsise Integration of h(x). The Guass map h(x) ∈ Ωh is piecewise monotone [40, 2.1]
between the points of ∂Ωh, and thus partitions the unit interval infinite covering set of decreasing
open intervals seperated by ∂Ωh. [13, 5.7.1] Let In be an infinite set of open intervals

(47) In =







(1,∞) n = 0
(

1
n+1 ,

1
n

)

0 < n <∞
(0, 0) = ∅ n = ∞

It is easy to see that

(48)
Ωh ∪ ∂Ωh = [0, 1] =

⋃∞
n=1 In

[0,∞] =
⋃∞
n=0 In

Define the Gauss map partition hn(x) where {hn(x) 6= 0 : x ∈ In} as a piecewise step function

(49)
hn(x) =

{
1−xn
x

1
n+1 < x < 1

n

0 otherwise

=
(
1−xn
x

) (

θ
(
xn+x−1
n+1

)

− θ
(
xn−1
n

))
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where θ(t) is the Heaviside step function (38). We can reassemble all of the {hn(x)}∞n=1 to recover
h(x)

(50)
h(x) =

∑∞
n=1 hn(x)

=
∑∞

n=1

(
1−xn
x

)(

θ
(
xn+x−1
n+1

)

− θ
(
xn−1
n

))

where only one of the hn(x) is nonzero for each x. By setting n =
⌊
1
x

⌋
in (49) we get

(51)
h(x) =

{
1−x⌊ 1

x⌋
x

1

⌊ 1
x⌋+1

< x < 1

⌊ 1
x⌋

0 otherwise

=

(
1−x⌊ 1

x⌋
x

)(

θ

(
x⌊ 1

x⌋+x−1

⌊ 1
x⌋+1

)

− θ

(
x⌊ 1

x⌋−1

⌊ 1
x⌋

))

Define the partitioned integral operator [Pf(x);x] (n) by

(52) [Pf(x);x] (n) = [Pf(x)] (n) = [Pf ] (n) =
∫ 1
n
1

n+1

f(x)dx =
∫

In
f(x)dx

where by convention we have

(53)
[Pf(x)] (0) = limn→0+

∫

In
f(x)dx =

∫∞
1
f(x)dx

[Pf(x)] (∞) = limn→∞
∫

In
f(x)dx =

∫ 0

0
f(x)dx = 0

Thus

(54)

∫ 1

0
f(x)dx =

∑∞
n=1 [Pf(x)] (n) =

∑∞
n=1

∫

In
f(x)dx

∫∞
0
f(x)dx =

∑∞
n=0 [Pf(x)] (n) =

∑∞
n=0

∫

In
f(x)dx

Each interval In has the length

(55)

ℓIn = [P1] (n)

=
∫ 1
n
1

n+1

1dx

= 1
n
− 1

n+1

= 1
n(n+1)

The elements n(n + 1) are known as the oblong numbers [15, A002378]. It is seen, together with
(44), that

(56)

|Ωh| =
∫ 1

0
1dx

=
∑∞
n=1 ℓIn

=
∑∞
n=1

1
n(n+1)

= [Shx](1)
= γ +Ψ(2)
= 1

The piecewise integral operator [Pf(x);x] (n) can be used to calculate the area under the curve
of h(x) which is also equal to the area under the curve of [Shx](x). Let the length of the n-th
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component hn(x) be denoted by

(57)

ℓhn = [Ph(x);x] (n)
=
∫

In
h(x)dx

=
∫

In
hn(x)dx

=
∫ 1

0 hn(x)dx

= ln(n+1)n+ln(n+1)−ln(n)n−ln(n)−1
n+1

Regarding h(x) as a fractal string Lh = {hn(x)}∞n=1 its length |Lh| is given by

(58)

|Lh| =
∫ 1

0
h(x)dx

=
∑∞

n=1 ℓhn
=
∑∞

n=1
ln(n+1)n+ln(n+1)−ln(n)n−ln(n)−1

n+1

=
∫ 1

0 [Shx](x)dx

=
∫ 1

0 γ +Ψ(x+ 1)dx
= 1− γ

If n = 0 in (48) we get the interval I0 =
(
1
1 ,

1
0

)
= (1,∞

)
and

(59) ℓh0 =
∫

I0
h(x)dx =

∫∞
1

1
x
dx = ∞

but if we choose a finite cutoff then

(60)

∫ y

1 h(x)dx =
∫ y

1
1
x
dx

= ln(y)

and

(61)
∫∞
1

ln(y)

yn
dy =

1

(n− 1)2

thus

(62)

∑∞
n=2

∫∞
1

∫

y

1
h(x)dx

yn
dy =

∑∞
n=2

∫∞
1

∫

y

1
1
x
dx

yn
dy

=
∑∞

n=2

∫∞
1

ln(y)
yn

dy

=
∑∞

n=2
1

(n−1)2

= ζ(2)

= π2

6

2.2.3. The Mellin Transform. The Mellin transform [36, II.10.8][3, 3.6] is defined as

(63) M
(a,b)
x→s f(x) =

∫ b

a
f(x)xs−1dx

where the usual definition of the Mellin transform is M
(0,∞)
x→s f(x). Somewhat incredibly, by taking

the Mellin transformation of h(x) over the unit interval, we get an analytic continuation of ζ(s)
which is convergent when s is not equal to a negative integer, 0, or 1. When s is a negative integer
or 0 the limit or analytic continuation must be taken since the series is formally divergent at these
points, and of course the series s = 1 diverges. [45] [44] [43]

(64)

M In
x→sh(x) =

[
Ph(x)xs−1;x

]
(n)

=
∫ 1
n
1

n+1

(
1
x
−
⌊
1
x

⌋)
xs−1dx

= −n(n+1)−s+s(n+1)−s−n1−s

s(s−1)
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(65)

ζ(s) = 1
s−1 − sM

(0,1)
x→s h(x)

= 1
s−1 − s

∫ 1

0
h(x)xs−1dx

= 1
s−1 − s

∫ 1

0

(
1
x
−
⌊
1
x

⌋)
xs−1dx

= s
s−1 − s

∑∞
n=1M

In
x→sh(x)

= s
s−1 − s

∑∞
n=1 −

n(n+1)−s+s(n+1)−s−n1−s

s(s−1)

The term 1
s−1 changes to s

s−1 = 1
s−1 − (−1) by subtracting the residue [47, 10.41][48, 6.1] of

(66) M I0
x→sh(x) =

∫

I0

h(x)xs−1dx =

∫ ∞

1

xs−1

x
dx = − 1

s− 1

at the singular point s = 1, which happens to coincide with
∑∞

s=2

− 1
s−1

s

(67)

Res
(∫∞

1
xs−1

x
dx; 1

)

= Res
(

− 1
s−1 ; 1

)

=
∑∞
s=2 −

1
s−1

s

= −1

2.3. The Harmonic Sawtooth w(x). Define the harmonic sawtooth map w(x) ∈ Ωh\∂Ωh which
shares the same domain and boundary as the Gauss map h(x) to which it is similiar, and also
has the property that its Mellin transform is the (appropriately scaled) zeta function. The n-th
component wn(x) is defined over the n-th interval In

(68)
wn(x) =

{
n(xn+ x− 1) 1

n+1 < x < 1
n

0 otherwise

= n(xn+ x− 1)
(

θ
(
xn+x−1
n+1

)

− θ
(
xn−1
n

))

and by the substitution n→
⌊
1
x

⌋
we have

(69)

w(x) =
∑∞

n=1 wn(x)

=
∑∞

n=1 n(xn+ x− 1)
(

θ
(
xn+x−1
n+1

)

− θ
(
xn−1
n

))

=
⌊
1
x

⌋ (
x
⌊
1
x

⌋
+ x− 1

)

Unlike h(x) which is nonzero outside of |x| > 1, the (harmonic) sawtooth map has w(x) = 0∀|x| > 1.
The length of each component of w(x) is

(70)

ℓwn = [Pw(x);x] (n)
=
∫

In
w(x)dx

= 1
2(n+1)n

So that the total length of the harmonic sawtooth string Lw is

(71)

|Lw| =
∫ 1

0
w(x)dx

=
∑∞

n=1 ℓwn
=
∑∞

n=1
1

2(n+1)n

= 1
2
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Figure 2. The Harmonic Sawtooth

The infinite set of Mellin transforms of wn(x)

(72)

M In
x→sw(x) =M

(0,1)
x→swn(x)

=
[
Pw(x)xs−1 ;x

]
(n)

=
∫ 1
n
1

n+1

n(xn+ x− 1)xs−1dx

=
∫ 1

0
n(xn+ x− 1)

(

θ
(
xn+x−1
n+1

)

− θ
(
xn−1
n

))

xs−1dx

= −n(n+1)−s+s(n+1)−s−n1−s

s(s−1)
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are summed to get an expression for {ζ(s) : R(s) 6∈ N0−}

(73)

ζ(s) = s s+1
s−1

∫ 1

0

⌊
1
x

⌋ (
x
⌊
1
x

⌋
+ x− 1

)
xs−1dx

=
∑∞

n=1 s
s+1
s−1M

In
x→sw(x)

=
∑∞

n=1 s
s+1
s−1

∫ 1
n
1

n+1

n(xn+ x− 1)xs−1dx

=
∑∞

n=1 s
s+1
s−1

(

−n(n+1)−s+s(n+1)−s−n1−s

s(s−1)

)

=
∑∞

n=1
n(n+1)−s−n1−s+sn−s

s−1

2.4. The Prime Numbers. Let P = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .} denote the set of prime
numbers and N1 = {1, 2, . . .} and N0 = {0, 1, 2, . . .},N = {. . . ,−2,−1, 0, 1, 2, . . .} be the set of
positive, non-negative, and signed integers.

2.4.1. The Prime Counting Function: π(x). The prime counting function π(x) counts the number
of primes less than a given number. It can written as

(74) π(x) =
∑p∈P

p<x 1

which is essentially a step function which increases by 1 for each prime. [9, 15.11]

2.4.2. von Mangoldt and Chebyshev’s Functions: Λ(x), θ(x), ψ(x). Chebyshev’s function of the first
kind θ(x) is the sum of the logarithm of all primes 6 x

(75)
θ(x) =

∑π(x)
k=1 ln(pk)

= ln
(
∑π(x)

k=1 pk

)

where pk ∈ P is the k-th prime. [7, 4.4] The generalization of π(x) is the Chebyshev function of
the second kind

(76)

ψ(x) =
∑{p∈P,r∈N1}

pr6x ln(p)

=
∑⌊log2(x)⌋

k=1 θ(x
1
k )

= ln(lcm(1, 2, 3, . . . , ⌊x⌋))
=
∑n6x

n Λ(n)

= x− ln(1−x−2)
2 − ln(2π)−∑ζ(ρ)=0

ρ
xρ

ρ
∀I(ρ) 6= 0

where the first sum ranges over the primes p ∈ P and positive integers r and the sum over ρ is
von Mangoldt’s formula where ρ ranges over the non-trivial roots of ζ(s) in increasing order. The
function lcm(. . . .) is the least common multiple, and Λ(x) is the von Mangoldt function.

(77)
Λ(x) =

{
ln(p) {n = pk : p ∈ P, k ∈ N1}
0 otherwise

= ln
(

lcm(1,2,...,n)
lcm(1,2,...,n−1)

)

Λ(s) is related to ζ(s) by

(78) −
d
dsζ(s)

ζ(s)
=

∞∑

n=1

Λ(n)

ns
∀R(s) > 1

Chebyshev proved that π(x), θ(x), andψ(x) have the same scaled asymptotic limit.

(79) lim
x→∞

π(x)
(

x
ln(x)

) = lim
x→∞

ψ(x)

x
= lim
x→∞

θ(x)

x
= 1
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[18, 1.3] [17, I.4] [7, 4.3-4.4&3.1-3.2] [8] [9, 15.11]. Note that [9] incorrectly defines ψ(x) as
ln(gcd(. . .)).

3. Analytic Continuation

3.1. Continuation of n+1Fn Near Unit Argument. The continuation formula for Gauss’s hy-
pergeometric function 2F1 near unit argument is well known

(80)

Γ(a1)Γ(a2)
Γ(b1) 2

F1

(
a1 a2
b1

|z
)

=
∑∞

n=0
(−1)n(1−z)n

n!
Γ(a1+n)Γ(a2+n)Γ(s1−n)

Γ(a1+s1)Γ(a2+s1)

+(1− z)s1
∑∞
n=0

(−1)n(1−z)n
n!

Γ(a1+s1+n)Γ(a2+s1+n)Γ(−s1−n)
Γ(a1+s1)Γ(a2+s1)

where s1 = b1 − a1 − a2 is the balance (117) of 2F1 which must not be equal to an integer, that
is, 2F1 cannot be s1-balanced. A function is said to be k-balanced only when k is an integer. When
R(s1) > 0 the value at z = 1 is finite and given by the Gaussian summation formula

(81)
2F1





a1 a2
b1





Γ(b1)
= Γ(b1−a1−a2)

Γ(b1−a1)Γ(b1−a2)
= Γ(s1)

Γ(a1+s1)Γ(a2+s1)

It is obvious that limt→1 Li
F
1 (t) = limt→1 2F1

(
1 1
2

|t
)

= ζF (1) = ∞ is 0-balanced and of course

equal to the divergent harmonic series so the continuation formula does not apply. However, Bühring
and Srivastava [6][5] generalized this relation to all n+1Fn by expanding (81) as a series then
interchanging the order of summations to derive a recurrence with respect to n

(82)

n+1Fn

(
a1, . . . , an+1

b1, . . . , bn
|t
)

= Γ(bn)Γ(bn−1)
Γ(an+1)Γ(bn+bn−1−an+1)

·∑∞
m=0

(bn−an+1)m(bn−1−an−1)m
(bn+bn−1−an+1)mm! n

Fn−1

(
a1, . . . , an
b1, . . . , bn−2, bn−1 + bn − an+1 +m

|t
)

which is valid ∀{R(ai) > 0 : 1 6 i 6 n+1}. The m-th term of the summand in (82) is contiguous
(4.1.2) to the (m− 1)-th and (m+ 1)-th terms and thus a linear relationship can always be found
between neighboring terms.

3.2. The Continuation of LiFn (t) and ζ
F (n) via Contiguous Functions. There are 4 functions

contiguous (4.1.2) to LiFn (t), only 3 of them are unique, and just 1 of them is interesting. The
functions are obtained by shifting one of the numerator parameters ai ± 1 or shifting one of the
denominator parameters bi ± 1. Shifting any of the a parameters or any of the b parameters will
suffice since they are all equal and pFq is invariant with respect to the ordering of parameters. Let
~c+n and ~c−n denote the parameter vector ~cn where one element is shifted up or down by 1.

(83)

~c+n = ~cn−1, c+ 1 = c, . . . , c
︸ ︷︷ ︸

n−1

, c+ 1

~c−n = ~cn−1, c− 1 = c, . . . , c
︸ ︷︷ ︸

n−1

, c− 1
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For example, ~4+3 = 4, 4, 5. Two of the four functions contiguous to LiFn (t) are identical

(84) n+1Fn

(
~1+n+1
~2n

|t
)

t =n+1 Fn

(
~1n+1
~2−n

|t
)

t = LiFn−1(t)

Shifting any ai up is equivalent to shifting any bi down, both operations take LiFn (t) to LiFn−1(t).
Shifting any ai down results in the identity function since it puts a 0 in the numerator.

(85) n+1Fn

(
~1−n+1
~2n

|t
)

t = t

Thus, the only interesting function continguous to LiFn (t) is obtained by shifting one of the denom-

inator parameters up. Let this function be denoted by LiF+1
n (t)

(86) LiF+1
n (t) =n+1 Fn

(
~1n+1
~2+n

|t
)

=







I0
(
2
√
t
)
− 1√

t
I1
(
2
√
t
)

n = 0
et

t
− 1

t
− 1 n = 1

(−1)n
(

1− Li1(t)
t

+
∑n−1

k=1 (−1)k+1 Lik(t)
)

n > 2

where In(x) is a modified Bessel function of the first kind [34, 65] [10, 6.9.1]

(87) In(x) = xn

Γ(n+1)2n 0
F1

(

n+ 1
|x2

4

)

Before applying (82), the notation will be simplified by extending (83) so that repeated shifts can
be written more easily

(88)

~c+jn = ~cn−1, c+ j = c, . . . , c
︸ ︷︷ ︸

n−1

, c+ j

~c−jn = ~cn−1, c− j = c, . . . , c
︸ ︷︷ ︸

n−1

, c− j

where clearly ~c+n = ~c+1
n and ~c−n = ~c−1

n . The goal is to extend LiF+1
n (t) to all LiF+m

n (t) by repeated

application of ~c+1
n . Applying (82) to (13) gives the continuation of LiFn (t) → LiFn+1(t)∀n > 1 by

setting a1...n+1 = ~1n+1 and b1...n = ~2n which results in

(89)

LiFn (t) = n+1Fn

(
~1n+1

~2n
|t
)

t∀n > 0

= t
∑∞

m=0







nFn−1





~1n
~2n−2, 3 +m

|t





(m+1)(m+2)







∀n > 2

= t
∑∞

m=0







nFn−1





~1n
~2+m+1
n−1

|t





(m+1)(m+2)







∀n > 2

since

(90)
Γ(bn)Γ(bn−1)

Γ(an+1)Γ(bn + bn−1 − an+1)
=

Γ(2)Γ(2)

Γ(1)Γ(2 + 2− 1)
=

1

2
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and

(91)
(bn − an+1)m(bn−1 − an−1)m

(bn + bn−1 − an+1)m!
=

(1)m(1)m
(2 + 2− 1)mm!

=
2

(m+ 1)(m+ 2)

The denominator parameters ~2+1+m
n−1 in (89) are simply

(92)
~2+1+m
n−1 = ~2n−2, 3 +m = 2, . . . , 2

︸ ︷︷ ︸

n−2

, 3 +m

The numbers (m+ 1)(m+ 2) are known as the oblong numbers , [15, A002378]. By simply setting
t = 1 in (89) we get the continuation from ζF (n) → ζF (n+ 1)∀n > 1

(93) ζF (n) =n+1 Fn

(
~1n+1

~2n

)

=
∑∞
m=0







nFn−1





~1n
~2+m+1
n−1





(m+1)(m+2)







∀n > 2

The justification in saying that LiFn (t) and ζF (n) are continued to LiFn+1(t) and ζF (n + 1) comes

from the fact that the first term in the summand of the continuation (89) from LiFn−1(t) → LiFn (t) is

contiguous to LiFn−1(t), that is, nFn−1

(
~1n
~2+1
n−1

|t
)

is contiguous to LiFn−1(t) = nFn−1

(
~1n
~2n−1

|t
)

.

The continuation formula (89) gives interesting answers for n = 0 and n = 1 which suggest an
alternative to “the analytic continuation” of ζ (t) which is different from the usual 1

1−2−t

∑∞
n=0(2n+

1)−t. We have

(94)

ζF (0) =
∑∞

m=0







0F1





m+ 3





(m+1)(m+2)







=
∑∞

m=0
−(Im+1(2)m+Im+1(2)−Im(2))Γ(m+3)

(m+1)(m+2)

= I0(2)− 1
≈ 1.2795853023360

ζF (1) =
∑∞

m=0







1F1





1
m+ 3





(m+1)(m+2)







=
∑∞

m=0
e(Γ(m+3)−Γ(m+2,1)m−2Γ(m+2,1))

(m+1)(m+2)

= Ei(1)− γ
≈ 1.3179021514544

where Ei(x) is the exponential integral [10, 6.9.2]

(95)
Ei(x) = γ − ln(x−1)

2 + ln(x)
2 +

∑∞
k=1

xk

kΓ(k+1)

= γ − ln(x−1)
2 + ln(x)

2 + x2F2

(
1 1
2 2

|x
)
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and Γ (a, z) is the incomplete Gamma function

(96) Γ (a, z) = Γ (z)−
za1F1

(
a
a+ 1

| − z

)

a

So we have the “hypergeometrically continued” values ζF (0) = I0(2) − 1 and ζF (1) = Ei(1) − γ
whereas the “real” values are ζ (0) = − 1

2 and ζ (1) = ∞. In terms of reciprocal probability we have

(97)
ζF (0)

−1 ∼= 78.15%

ζF (1)
−1 ∼= 75.88%

3.2.1. LiF1 (t) → LiF2 (t) and ζF1 (t) → ζF2 (t). The continuation ζFn (t) from n = 1 → 2 via (93) is
straightforward

(98)

ζF (2) =3 F2

(
1 1 1
2 2

)

=
∑∞

m=0







2F1





1 1
3 +m





(m+1)(m+2)







=
∑∞

m=0

(
∑

∞

k=0
Γ(m+3)Γ(k+1)

Γ(m+k+3)

(m+1)(m+2)

)

=
∑∞

m=0
1

(m+1)(m+2)
(m+2)
(m+1)

=
∑∞

m=0
1

(m+1)2

= π2

6

The continuation of LiF1 (t) to LiF2 (t) is a bit more complicated

(99)

LiF2 (t) =3 F2

(
1 1 1

2 2
|t
)

=
∑∞

m=0







2F1





1 1
m+ 3

|t





(m+1)(m+2)







=
∑∞

m=0 r2(m, t)

then r2(m, t) is given by

(100) r2(m, t) =
∑

m
n=0

(−1)n+1Γ(m+2)(Ψ(m−n+1)−Ψ(m+2))(−1)meψ(m+2)tn

Γ(n+2)Γ(m−n+1)

(m+1)eψ(m+2)tm+1

− (t−1)m+1t−2−m ln(1−t)
m+1

so LiF2 (t) is equal to
(101)

LiF2 (t)=

∞∑

m=0

∑m
n=0

(−1)n+1Γ(m+2)(Ψ(m−n+1)−Ψ(m+2))(−1)meψ(m+2)tn

Γ(n+2)Γ(m−n+1)

(m+ 1)eψ(m+2)tm+1
− (t− 1)m+1t−2−m ln(1− t)

m+ 1
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where ψ(m) = ln(lcm(1, 2, 3, . . . ,m)) is Chebyshev’s function of the 2nd kind (76) and Ψ(m) is the
digamma function

(102) Ψ(x) =
d

dx
ln(Γ(x)) =

d
dxΓ(x)

Γ(x)

3.2.2. ζF (2) → ζF (3). The continuation from ζF (2) to ζF (3) via (93) is carried out like so

(103)

ζF (3) =4 F3

(
1 1 1 1

2 2 2

)

=
∑∞
m=0







3F2





1 1 1
2 3 +m





(m+1)(m+2)







=
∑∞
m=0 r3(m)

Each term in the summand r3(m) has the form ζ(2)
m+1 + q3(m) where of course ζ(2) = π2

6 and q3(m)

is a rational function of m which follows a 3rd order linear recurrence equation[28, 8.2] given by

(104)
q3(m) = q3 (m+ 1)

(
m3 + 8m2 + 21m+ 18

)

+q3 (m+ 2)
(
−2m3 − 20m2 − 67m− 75

)

+q3 (m+ 3)
(
m3 + 12m2 + 48m+ 64

)

(105) q3(m) =







−1 m = 0
− 5

8 m = 1
− 49

108 m = 2

The solution to which is given by

(106) q3(m) = Ψ(1)(m+2)−ζ(2)
m+1

so the summand r3(m) is

(107) r3(m) = ζ(2)
m+1 + q3(m) = Ψ(1)(2+m)

m+1

Thus (111) is also equal to

(108) ζF (3) =
∑∞

m=0
Ψ(1)(m+2)

m+1

Thus

(109)

r3(m) = Ψ(1)(m+2)
m+1

= ζ(2,m+2)
m+1

= π2

6 −∑m−1
k=1

1
k2

=

∑

∞

k=1
1

(k+m−1)2

m+1

=

3F2





1 m+ 2 m+ 2
m+ 3 m+ 3





(m+1)(m+2)2

=

3F2





1 1 1
2 3 +m





(m+1)(m+2)
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The first 10 terms of {q3(m) : m = 0 . . . 9} are

(110)

[

−1,−5

8
,− 49

108
,−205

576
,− 5269

18000
,− 5369

21600
,− 266681

1234800
,−1077749

5644800
,− 9778141

57153600
,− 1968329

12700800

]

The denominator of (110) appears to be [15, A119936], the least common multiple of denominators
of the rows of a certain triangle of rationals and the numerators are [15, A007406], the numerator
of
∑n

k=1
1
k2

from (123) which, according to a theorem Wolstenholme, p divides numer(q3(p − 1))
where p ∈ P is prime. [12] [4] [1]

3.2.3. ζF (3) → ζF (4). The continuation from ζF (3) to ζF (4) via (93) is given by

(111)

ζF (4) =5 F4

(
1 1 1 1 1
2 2 2 2

)

=
∑∞

m=0







4F3





1 1 1 1
2 2 3 +m





(m+1)(m+2)







=
∑∞

m=0 r4(m)

The summand r4(m) has the form

(112) r4(m) = a(t,m)− b(t,m)− H(m+1) Li2(t)
(m+1)t + Li3(t)

(m+1)t

where a(t,m) is an (m+1)-th degree polynomial and b(t,m) is a (m+2)-th degree polynomial(the
determination of which is left to an excercise for the reader or the topic of another article, but is
readily obtained with the help of Maple[27]), and H(n) is the n-th Harmonic number

(113)

H(n) =
∑n

i=1
1
n

= Ψ(n+ 1) + γ
=
∑∞

k=1
n

k2+kn

= n
n+13

F2

(
1 1 n+ 1

2 n+ 2

)

The polynomial b(t,m) vanishes when t = 1. An interesting set of formulas for ζ(4) is

(114)

ζ(4) =
∑∞

n=1
Ψ(2)(n+1)+2ζ(3)

2n(n+1)

=
∑∞

n=1

Ψ(2)(n+1)+2
∑

∞

m=0
Ψ(1)(m+2)

m+1

2n(n+1)

= π4

90

4. Appendix

4.1. TheGeneralizedHypergeometric Function :p Fq. The Pochhammer symbol is defined according
to

(115) (n)k = Γ(n+k)
Γ(n)

The generalized hypergeometric function [39][48, 4.1] is defined as an infinite sum of quotients of
finite products of Pochhammer symbols

(116) pFq

(
a1, . . . , ap
b1, . . . , bq

|t
)

=
∑∞
k=0

tk

k!

∏p
i=1(ai)k

∏q
j=1(bj)k



TWO NEW ZETA CONSTANTS: FRACTAL STRING, CONTINUED FRACTION, AND HYPERGEOMETRIC ASPECTS OF THE RIEMANN ZET

The function pFq is said to be k-balanced [5] if the sum of the denominator parameters b1 . . . bp
minus the sum of the numerator parameters a1 . . . ap+1 is an integer.

(117) k = bal(pFq) =

q
∑

n=1

bn −
p
∑

n=1

an

The value k is the characteristic exponent of the hypergeometric differential equation at unit argu-
ment which is equal to the maximum root of the corresponding indicial equation and so determines
the behaviour of the function near this point. A 1-balanced function is said to be Saalschützian.
[41, 2.1.1]

4.1.1. The Differential Equation and Convergence. The function pFq converges when

(118)







p 6 q ∀|t| 6= ∞
p = q + 1 ∀|t| < 1
{p = q + 1 : bal(pFq) > 1} ∀|t| = 1
p > q + 1 ∀t = 0

where bal(pFq) =
∑q
n=1 bn −∑p

n=1 an is the balance of the parameters (117). The differential
equation solved by pFq is of ordermax(p,q+1)

(119)



θt

q
∏

j=1

(θt + bj − 1)− t

p
∏

i=1

(θt + ai)



 f(t) = 0

where f(t) =p Fq

(
a1, . . . , ap
b1, . . . , bq

|t
)

and θt = t d
dt is the differential operator. When p = q + 1

(119) has the form

(120) a0f(t) + tq
d

dtq+1
f(t) +

q
∑

n=1

tn−1(tan − bn)
d

dtn
f(t) = 0

[48, 4.2][21, Ch3][34, 44-46] [41, 2.1.2]

4.1.2. Contiguous Functions and Linear Relations. Any two hypergeometric functions pFq(a..., b...; z)
and pFq(c..., d...; z) are said to be contiguous if all p+q pairs of parameters (a1, c1), . . . , (ap, cp), (b1, d1), . . . , (bq, dq)
are equal except for one pair which differs only by 1. There are 2p + q linearly independent rela-
tions between the (2p + 2q) functions contiguous to pFq(a..., b...; z) where the relations are linear
functions of z and polynomial functions of the parameters a..., b.... When any {ai = aj : i 6= j}
or {bi = bj : i 6= j} in pFq(a..., b...; z) there will fewer unique contiguous functions than if all the
parameters were unique since the hypergeometric function is invariant with respect to the ordering
of parameters. [41, 2.2.1] [34, 48] [39] [10, 4.3] [49] [33]

4.2. Other Special Functions.

4.2.1. Polygamma Ψ(n)(x). The polygamma function is the n-th derivative of the digamma (102)
function

(121) Ψ(n)(x) =
d

dxn
Ψ(x)
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and is defined as an infinite sum, a Hurwitz zeta function (4), or a hypergeometric function when
x is positive integer

(122)

Ψ(n)(x) =

{ (
∑∞

k=1
1
k
− 1

k+x−1

)

− γ n = 0
∑∞

k=0 −
n!(−1)n

(k+x)n+1 n > 1

=







(

x−1
x 3

F2

(
1 1 x

2 x+ 1

))

− γ n = 0

n!(−1)n+1

xn+1 n+2
Fn+1

(

1 ~xn+1−−−−→
(1 + x)n+1

)

n > 1

=

{
Ψ(x) n = 0
(−1)n+1n!ζ(x, n+ 1) n > 1

or as a finite sum when x is a positive integer and n = 1 [10, 1.16]

(123) Ψ(1)(x) = π2

6 −∑x−1
k=1

1
k2

4.3. Notation.

(124)

Z {. . . ,−2,−1, 0, 1, 2, . . .}
N {1, 2, 3, . . . .}
N1− {. . . ,−3,−2,−1}
N0 {0, 1, 2, 3, . . . .}
N0− {. . . ,−3,−2,−1, 0}
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