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Abstract

An ascent sequence is one consisting of non-negative integers in which the size of each
letter is restricted by the number of ascents preceding it in the sequence. Ascent sequences
have recently been shown to be related to (2+2)-free posets and a variety of other com-
binatorial structures. In this paper, we prove in the affirmative some recent conjectures
concerning pattern avoidance for ascent sequences. Given a pattern τ , let Sτ (n) denote
the set of ascent sequences of length n avoiding τ . Here, we show that the joint distribu-
tion of the statistic pair (asc, zeros) on S0012(n) is the same as (asc,RLmax) on the set of
132-avoiding permutations of length n. In particular, the ascent statistic on S0012(n) has
the Narayana distribution. We also enumerate Sτ (n) when τ = 1012 and τ = 0123 and
confirm the conjectured formulas in these cases. We combine combinatorial and algebraic
techniques to prove our results, in two cases, making use of the kernel method. Finally, we
discuss the case of avoiding 210 and determine two related recurrences.
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1 Introduction

An ascent in a sequence x1x2 · · ·xk is a place j ≥ 1 such that xj < xj+1. An ascent sequence
x1x2 · · ·xn is one consisting of non-negative integers satisfying x1 = 0 and for all i with 1 < i ≤ n,

xi ≤ asc(x1x2 · · ·xi−1) + 1,

where asc(x1x2 · · ·xk) is the number of ascents in the sequence x1x2 · · ·xk. An example of
such a sequence is 01013212524, whereas 01003221 is not, because 3 exceeds asc(0100) + 1 = 2.
Starting with the paper by Bousquet-Mélou, Claesson, Dukes, and Kitaev [2], where they were
related to the (2+2)-free posets and the generating function was determined, ascent sequences
have since been studied in a series of papers where connections to many other combinatorial
structures have been made. See, for example, [5, 6, 10] as well as [9, Section 3.2.2] for further
information.

In this paper, we answer some recent conjectures in the affirmative which were raised by Duncan
and Steingŕımsson [7] concerning the avoidance of patterns by ascent sequences. The patterns
considered are analogous to patterns considered originally on permutations and later on other
structures such as k-ary words and finite set partitions.

By a pattern, we will mean a sequence of non-negative integers, where repetitions are allowed.
Let π = π1π2 · · ·πn be an ascent sequence and τ = τ1τ2 · · · τm be a pattern. We will say that π
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contains τ if π has a subsequence that is order isomorphic to τ , that is, there is a subsequence
πf(1), πf(2), . . . , πf(m), where 1 ≤ f(1) < f(2) < · · · < f(m) ≤ n, such that for all 1 ≤ i, j ≤ m,
we have πf(i) < πf(j) if and only if τi < τj and πf(i) > πf(j) if and only if τi > τj . Otherwise, the
ascent sequence π is said to avoid the pattern τ . For example, the ascent sequence 0120311252
has three occurrences of the pattern 100, namely, the subsequences 211, 311, and 322, but avoids
the pattern 210. Note that within an occurrence of a pattern τ , letters corresponding to equal
letters in τ must be equal within the occurrence.

Following [7], we will write patterns for ascent sequences using non-negative integers, though
patterns for other structures like permutations have traditionally been written with positive
integers, to be consistent with the usual notation for ascent sequences which contains 0’s. Thus,
the traditional patterns will have different names here; for example 123 becomes 012 and 221
becomes 110.

If τ is a pattern, then let Sτ (n) denote the set of ascent sequences of length n that avoid τ and
Aτ (n) the number of such sequences. The set of right-to-left maxima in a sequence of numbers
a1a2 · · · an is the set of ai such that ai > aj for all j > i. Let RLmax(x) be the number of right-
to-left maxima in a sequence x. Recall that the Catalan numbers are given by Cn = 1

n+1

(

2n
n

)

and

that the Narayana numbers given by Nn,k = 1
n

(

n
k

)(

n
k−1

)

, 1 ≤ k ≤ n, refine the Catalan numbers

in that Cn =
∑n

k=1 Nn,k. It is well known that the number of 132-avoiding permutations of
length n having exactly k ascents is given by Nn,k+1.

Let fwd(x) be the length of the maximal final weakly decreasing sequence in an ascent sequence
x. For example, fwd(010013014364332) = 5 since 64332 has length 5. We also let zeros(x)
denote the number of 0’s in an ascent sequence x.

We now state here the conjectures from [7] which we prove in the affirmative in the following
sections.

Conjecture 3.2. We have A0012(n) = Cn, the n-th Catalan number. Moreover, the bistatistic
(asc, fwd) on S0012(n) has the same distribution as (asc, RLmax) does on permutations avoiding
the pattern 132. In particular, this implies that the number of ascents has the Narayana distri-
bution on S0012(n). Also, the bistatistics (asc, fwd) and (asc, zeros) have the same distribution
on 0012-avoiding ascent sequences.

Conjecture 3.4. The number A0123(n) equals the number of Dyck paths of semilength n and
height at most 5. See sequence A080937 in [14].

See Corollary 2.5 and Theorems 2.6 and 3.3 below. We also show half of the following conjecture;
see Theorem 3.2 below.

Conjecture 3.5. The patterns 0021 and 1012 are Wilf equivalent, and A0021(n) = A1012(n) is
given by the binomial transform of the Catalan numbers, which is sequence A007317 in [14].

We remark that in our proof of Conjecture 3.2 in the next section, we first consider the joint dis-
tribution (asc, zeros, fwd) on the members of S0012(n) not ending in 0 and determine a functional
equation satisfied by its generating function which we denote by g(x, y;u, v). Using the kernel
method [1], we are then able to show g(x, y; 1, u) = g(x, y;u, 1), which implies the equidistribu-
tion of (asc, fwd) and (asc, zeros) on S0012(n). Comparison with the generating function for the
distribution of (asc,RLmax) on 132-avoiding permutations then gives the first part of Conjec-
ture 3.2. Furthermore, an expression for the generating function g(x, y;u, v) may be recovered
and the full distribution for (asc, zeros, fwd) can be obtained by extracting the coefficient of xn

from it.

In the third section, we enumerate Sτ (n) when τ = 1012 and τ = 0123, in the former case,
making use of the kernel method. In this proof, we first describe refinements of the numbers
A1012(n) by introducing appropriate auxiliary statistics on S1012(n) and then write recurrences
for these refined numbers. The recurrences may then be expressed as a functional equation
which may be solved using the kernel method. See [16] for a further description and examples
of this strategy of refinement in determining an explicit formula for a sequence. We conclude
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with a discussion of the case of avoiding 210 by ascent sequences. We determine two related
recurrences using combinatorial arguments which perhaps may shed some light on Conjecture
3.3 in [7].

2 Distribution of some statistics on S0012(n)

In order to determine the distributions of some statistics on S0012(n), we first refine the set
as follows. Given n ≥ 1, 0 ≤ m ≤ n − 1, and 1 ≤ r, l ≤ n − m, let An,m,r,ℓ denote the
subset of S0012(n) whose members have m ascents, r zeros, and fwd value ℓ. For example,
π = 012334004332 ∈ A12,5,3,4. Let an,m,r,ℓ = |An,m,r,ℓ|; note that

∑

m,r,ℓ an,m,r,ℓ = A0012(n) for
all n.

In what follows, it will be more convenient to deal with the members of S0012(n) that do not
end in a 0. Let Bn,m,r,ℓ denote the subset of An,m,r,ℓ whose members do not end in a 0 and let
bn,m,r,ℓ = |Bn,m,r,ℓ|. The array bn,m,r,ℓ may be determined as described in the following lemma.

Lemma 2.1. The array bn,m,r,ℓ may assume non-zero values only when n ≥ 2, 1 ≤ m ≤ n− 1,
1 ≤ r ≤ n−m, and 1 ≤ ℓ ≤ n−m. It is determined for n ≥ 3 by the recurrences

bn,m,1,ℓ =
n−m
∑

i=1

t
∑

j=0

bn−j−1,m−1,i−j,ℓ−j , m ≥ 2, (1)

where t = min{i− 1, ℓ− 1}, and

bn,m,r,ℓ = bn−1,m,r−1,ℓ +

n−m
∑

j=ℓ+1

bn−1,m−1,r−1,j, m ≥ 2 and r ≥ 2, (2)

and by the condition

bn,1,r,ℓ =

{

1, if r + ℓ = n;

0, otherwise,
(3)

if n ≥ 2.

Proof. The first statement is clear from the definitions. If m = 1, then the set Bn,1,r,ℓ is either
empty or is a singleton consisting of a sequence of the form 0r1n−r, 1 ≤ r ≤ n−1, which implies
(3). If m ≥ 2 and r = 1, then π ∈ Bn,m,1,ℓ must be of the form π = 1π′, where π′ ∈ An−1,m−1,i,ℓ

for some 1 ≤ i ≤ n−m. For each i, note that

|An−1,m−1,i,ℓ| =
t
∑

j=0

bn−j−1,m−1,i−j,ℓ−j,

upon conditioning on the number of trailing zeros j within a member of An−1,m−1,i,ℓ. Summing
over i gives (1).

For (2), we condition on the position of the right-most zero. First observe that within π ∈
Bn,m,r,ℓ, where r ≥ 2, the right-most zero must directly precede the first letter in the final
weakly decreasing sequence, i.e., it is the lower number in the right-most ascent. (For if not,
then there would be an occurrence of 0012, with the “1” and “2” corresponding to the letters
in the right-most ascent.) One may then obtain a particular member of Bn,m,r,ℓ by inserting
a zero directly before the ℓ-th letter from the right within some member of Bn−1,m,r−1,ℓ or by
inserting a zero just before the j-th letter from the right within some member of Bn−1,m−1,r−1,j

for some j ∈ {ℓ + 1, ℓ + 2, . . . , n −m}. Note that no additional ascent is created in the former
case, while in the latter, an ascent is introduced since a zero has been inserted between two
numbers a and b, where a ≥ b ≥ 1. Summing over j g ives (2).
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If n ≥ 2 and 1 ≤ m ≤ n− 1, then let

Bn,m,r(u) =
n−m
∑

r=1

bn,m,r,ℓu
ℓ, 1 ≤ r ≤ n−m.

Let

Bn,m(u, v) =
n−m
∑

r=1

Bn,m,r(u)v
r, 1 ≤ m ≤ n− 1.

The polynomials Bn,m(u, v) satisfy the following recurrence.

Lemma 2.2. If n ≥ 3 and 2 ≤ m ≤ n− 1, then

Bn,m(u, v) = vBn−1,m(u, v) +
v

1− u
(uBn−1,m−1(1, v)−Bn−1,m−1(u, v))

+ v
n−m−1
∑

j=0

ujBn−j−1,m−1(u, 1), (4)

with

Bn,1(u, v) =
uv(un−1 − vn−1)

u− v
. (5)

Proof. First observe that if n ≥ 2 and m = 1, then Bn,1,r = un−r so that

Bn,1(u, v) =
n−1
∑

r=1

un−rvr =
uv(un−1 − vn−1)

u− v
.

If m ≥ 2 and r ≥ 2, then we have, by Lemma 2.1,

Bn,m,r(u) = Bn−1,m,r−1(u) +
n−m
∑

ℓ=1

uℓ

n−m
∑

j=ℓ+1

bn−1,m−1,r−1,j

= Bn−1,m,r−1(u) +

n−m
∑

j=2

bn−1,m−1,r−1,j

j−1
∑

ℓ=1

uℓ

= Bn−1,m,r−1(u) +
1

1− u

n−m
∑

j=2

bn−1,m−1,r−1,j(u− uj)

= Bn−1,m,r−1(u) +
1

1− u
(uBn−1,m−1,r−1(1)− ubn−1,m−1,r−1,1)

− 1

1− u
(Bn−1,m−1,r−1(u)− ubn−1,m−1,r−1,1)

= Bn−1,m,r−1(u) +
1

1− u
(uBn−1,m−1,r−1(1)−Bn−1,m−1,r−1(u)) , (6)

with

Bn,m,1(u) =
n−m
∑

ℓ=1

uℓ

n−m
∑

i=1

ℓ−1
∑

j=0

bn−j−1,m−1,i−j,ℓ−j

=

n−m
∑

i=1

n−m−1
∑

j=0

uj

n−m
∑

ℓ=j+1

bn−j−1,m−1,i−j,ℓ−ju
ℓ−j

=

n−m
∑

i=1

n−m−1
∑

j=0

ujBn−j−1,m−1,i−j(u)

=

n−m−1
∑

j=0

uj

n−m
∑

i=j+1

Bn−j−1,m−1,i−j(u). (7)
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Multiplying (6) by vr, summing over 2 ≤ r ≤ n−m, and adding v times equation (7) gives

Bn,m(u, v) = vBn−1,m(u, v) +
v

1− u
(uBn−1,m−1(1, v)−Bn−1,m−1(u, v))

+ v
n−m−1
∑

j=0

ujBn−j−1,m−1(u, 1),

which completes the proof.

If n ≥ 2, then let

Bn(y;u, v) =
n−1
∑

m=1

Bn,m(u, v)ym.

Let
g(x, y;u, v) =

∑

n≥2

Bn(y;u, v)x
n

denote the generating function for the sequence Bn(y;u, v). Then g satisfies the following
functional equation.

Lemma 2.3. We have
(

1− vx+
vxy

1− u

)

g(x, y;u, v) =
uvx2y

1− ux
+

uvxy

1− u
g(x, y; 1, v) +

vxy

1− ux
g(x, y;u, 1). (8)

Proof. If n ≥ 3, then by (4) and (5), we have

Bn(y;u, v) =
uvy(un−1 − vn−1)

u− v
+ v

(

Bn−1(y;u, v)−
uvy(un−2 − vn−2)

u− v

)

+
vy

1− u
(uBn−1(y; 1, v)−Bn−1(y;u, v)) + vy

n−3
∑

j=0

uj

n−j−1
∑

m=2

Bn−j−1,m−1(u, 1)y
m−1

= un−1vy + vBn−1(y;u, v) +
vy

1− u
(uBn−1(y; 1, v)−Bn−1(y;u, v))

+ vy

n−3
∑

j=0

un−j−3Bj+2(y;u, 1). (9)

Since B2(y;u, v) = uvy, equation (9) is also seen to hold when n = 2, provided we define
B1(y;u, v) = 0. Multiplying (9) by xn, and summing over n ≥ 2, implies

g(x, y;u, v) =
∑

n≥2

un−1vxny + vxg(x, y;u, v) +
vxy

1− u
(ug(x, y; 1, v)− g(x, y;u, v))

+ vy
∑

j≥0

Bj+2(y;u, 1)

uj+3

∑

n≥j+3

(ux)n

=
uvx2y

1− ux
+ vxg(x, y;u, v) +

vxy

1− u
(ug(x, y; 1, v)− g(x, y;u, v))

+
vxy

1− ux
g(x, y;u, 1),

which yields (8).

Theorem 2.4. We have

g(x, y;u, 1) = g(x, y; 1, u) =
uxy(1− ux)κ− u2x2y

(1− u)(1− ux) + uxy
, (10)
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where κ = κ(x, y) is given by

κ =
1− x(y + 1)−

√

(1− x(y + 1))2 − 4x2y

2xy
. (11)

Proof. Letting v = 1 in (8) implies

(

1− x+
xy

1− u
− xy

1− ux

)

g(x, y;u, 1) =
ux2y

1− ux
+

uxy

1− u
g(x, y; 1, 1). (12)

To solve (12), we will use the kernel method (see [1]). Let uo = uo(x, y) satisfy

1− x+
xy

1− uo

− xy

1− uox
= 0,

i.e.,

uo =
1 + x(1− y)−

√

(1 + x(1 − y))2 − 4x

2x
.

Letting u = uo in (12), and solving for g(x, y; 1, 1), then gives

g(x, y; 1, 1) = −x(1 − uo)

1− uox
= (1− x)κ− x,

where the second equality follows from comparing x(uo − 1) with (1− uox)((1 − x)κ− x) after
simplifying. (Note that there were two possible values for uo and our choice was dictated by the
condition g(0, y; 1, 1) = 0.) Thus,

g(x, y;u, 1) =
ux2y(1− u) + uxy(1− ux)g(x, y; 1, 1)

(1 − x)((1 − u)(1− ux) + uxy)

=
ux2y(1− u) + uxy(1− ux)((1− x)κ− x)

(1 − x)((1 − u)(1− ux) + uxy)

=
uxy(1− ux)κ− u2x2y

(1− u)(1− ux) + uxy
,

which gives half of (10).

To find an expression for g(x, y; 1, u), we again use the kernel method. Let vo = vo(x, y, u)
satisfy

1− vox+
voxy

1− u
= 0,

i.e., vo = 1−u
x(1−u−y) . Substituting v = vo in (8) implies

g(x, y; 1, vo) =
u− 1

uvoxy

(

uvox
2y

1− ux
+

voxy

1− ux
g(x, y;u, 1)

)

. (13)

Letting vo = w in (13) then gives

g(x, y; 1, w) =
u− 1

uwxy

(

uwx2y

1− ux
+

wxy

1− ux
g(x, y;u, 1)

)

, (14)

where u = 1−wx(1−y)
1−wx

. Substituting into (14) the expression determined above for g(x, y;u, 1),
and simplifying, implies after several algebraic steps,

g(x, y; 1, w) =
wxy(1 − wx)κ− w2x2y

(1− w)(1 − wx) + wxy
,

which completes the proof.
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Note that the full expression for g(x, y;u, v) can now be recovered from (10) and (8). Let Bn

denote the subset of S0012(n) whose members do not end in 0. Taking u = y = 1 in (10) shows
that there are Cn −Cn−1 members of Bn if n ≥ 1 and thus Cn members of S0012(n) altogether.
Let f(x, y;u) be the generating function counting the members of S0012(n) according to the
number of ascents and the length of the final weakly decreasing sequence.

Corollary 2.5. The bistatistics (asc,fwd) and (asc,zeros) have the same distribution on S0012(n).
Furthermore, the common generating function f(x, y;u) has explicit formula

f(x, y;u) =
1

1− ux
+

1

1− ux
g(x, y; 1, u), (15)

where g(x, y; 1, u) is given by (10).

Proof. Theorem 2.4 implies that the bistatistics (asc,fwd) and (asc,zeros) are equally distributed
on Bn for all n. Since adding an arbitrary number of trailing zeros to a member of Bn preserves
the number of ascents while increasing the length of the final weakly decreasing sequence and
the number of zeros by the same amount, it follows that (asc,fwd) and (asc,zeros) are also
equally distributed on S0012(n) for all n. Furthermore, note that a member of S0012(n) having
at least one ascent may be obtained by adding i zeros for some i to the end of some member
of Bn−i. Each added zero increases the fwd value by one, which justifies the 1

1−ux
factor in the

second term on the right-hand side of (15). The 1
1−ux

term counts all ascent sequences having
no ascents, i.e., those of the form 0n for some n ≥ 0.

The following result answers the remaining part of Conjecture 3.2 above in the affirmative.

Theorem 2.6. The bistatistic (asc, fwd) on S0012(n) has the same distribution as (asc,RLmax)
on the set of 132-avoiding permutations of length n. In particular, the number of ascents has
the Narayana distribution on S0012(n).

Proof. The second statement is an immediate consequence of the first since it is well known that
asc has the Narayana distribution on 132-avoiding permutations. To show the first statement, let
h(x, y;u) denote the generating function which counts the 132-avoiding permutations of length
n according to the number of ascents and the number of right-to-left maxima. We will show

h(x, y;u) = f(x, y;u). (16)

We first compute h(x, y;u) Considering whether or not n is the first letter of a non-empty
132-avoiding permutation of length n implies

h(x, y;u) = 1 + uxh(x, y;u) + uxy(h(x, y; 1)− 1)h(x, y;u), (17)

which gives

h(x, y;u) =
1

1− ux(1− y)− uxyh(x, y; 1)
.

Taking u = 1 in (17) and solving for h(x, y; 1) implies h(x, y; 1) = κ + 1, where κ = κ(x, y) is
defined by (11) above, which gives

h(x, y;u) =
1

1− ux− uxyκ
. (18)

On the other hand, by (15) and (10), we have

f(x, y;u) =
1

1− ux
+

1

1− ux
g(x, y; 1, u)

=
1

1− ux
+

1

1− ux

(

uxy(1− ux)κ− u2x2y

(1− u)(1− ux) + uxy

)

=
1− u+ uxy(κ+ 1)

(1− u)(1− ux) + uxy
. (19)
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Equality (16) now follows from (18) and (19), upon verifying

1

1− ux− uxyκ
=

1− u+ uxy(κ+ 1)

(1− u)(1− ux) + uxy
,

which may be done by cross-multiplying, expanding both sides of the equation that results, and
using the relation xyκ2 = (1− x(y + 1))κ− x.

3 Other patterns

In this section, we consider the problem of determining Aτ (n) in the cases when τ = 1012, 0123,
or 210. We will use the following additional notation. If n is a positive integer, then let [n] =
{1, 2, . . . , n}, with [0] = ∅. If m and n are positive integers, then let [m,n] = {m,m+ 1, . . . , n}
if m ≤ n, with [m,n] = ∅ if m > n.

3.1 The case 1012

Here, we enumerate the members of S1012(n). Recall that a sequence π = π1π2 · · ·πn is said to be
a restricted growth function (RGF) if it satisfies (i) π1 = 1 and (ii) πi+1 ≤ max{π1, π2, . . . , πi}+1
for all i ∈ [n− 1]. See, e.g., [12] for details. By [7, Lemma 2.4], the set S1012(n) consists solely
of RGF sequences since 1012 is a subpattern of 01012. So we consider the avoidance problem
on RGF’s, or, equivalently, on finite set partitions.

Recall that a partition of [n] is any collection of non-empty, pairwise disjoint subsets, called
blocks, whose union is [n]. A partition Π is said to be in standard form if it is written as
Π = B1/B2/ · · · , where min(B1) < min(B2) < · · · . One may also represent Π, equivalently,
by the canonical sequential form π = π1π2 · · ·πn, wherein j ∈ Bπj

for each j; see, e.g., [15]
for details. For example, the partition Π = 1, 3, 6/2, 4/5, 8/7 has canonical sequential form
π = 12123143. Note that π is a restricted growth function from [n] onto [k], where k denotes
the number of blocks of Π. Below, we will represent partitions Π by their canonical sequential
forms π and consider an avoidance problem on these words. See, for example, the related papers
[4, 8, 13] concerning the problem of pattern avoidance on set partitions.

Note than an RGF, equivalently, a set partition, avoids the pattern 1012 if and only if it avoids
01012. In what follows, we will denote 01012 by 12123 to be consistent with the convention of
RGF’s starting with the letter 1. We now address the problem of avoiding 12123. Let Pn denote
the set of all partitions of [n] and let Pn(12123) consist of those members of Pn that avoid the
pattern 12123 when represented canonically.

We refine the set Pn(12123) as follows. Given n ≥ 2 and 1 ≤ s < t ≤ n, let An,t,s denote the
subset of Pn(12123) consisting of those partitions π = π1π2 · · ·πn having at least two distinct
letters in which the left-most occurrence of the largest letter is at position t and the left-most
occurrence of the second largest letter is at position s. For example, π = 123324425215 ∈ A12,9,6

since the left-most occurrence of the largest letter, namely, 5, is at position 9 and the left-most
occurrence of the second largest letter is at position 6. The array an,t,s = |An,t,s| is determined
by the following recurrence.

Lemma 3.1. The array an,t,s can assume non-zero values only when n ≥ 2 and 1 ≤ s < t ≤ n.
It is determined by the recurrence

an,t,s =

n−1
∑

j=t

an−1,j,s +

t−s
∑

r=1

s−1
∑

i=1

an−r,t−r,i, n ≥ 3 and 2 ≤ s < t ≤ n, (20)

and the condition
an,t,1 = 2n−t, n ≥ 2 and 2 ≤ t ≤ n. (21)
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Proof. Note that members of An,t,1 are of the form 1t−12α, where α is any word on the letters
{1, 2}, which implies (21). To show (20), first suppose that π = π1π2 · · ·πn ∈ An,t,s, where
n ≥ 3 and 2 ≤ s < t ≤ n. Let us denote the largest letter of π by z. We first show that there
are

∑n−1
j=t an−1,j,s members π of An,t,s in which z occurs at least twice. To do so, first note that

if π contains two or more letters z, then the z at position t (i.e., the left-most z) is extraneous
concerning the avoidance of 12123 since all letters coming to the left of it are also governed by
a z to the right of position t. Thus, we may safely delete the z at position t and the left-most
occurrence of z in the resulting partition of [n− 1] is at position j for some j ∈ [t, n− 1]; note
that the left-most position of the second largest letter remains unchanged. Thus, de letion of
the left-most z defines a bijection between the subset of An,t,s in which z occurs at least twice

and
⋃n−1

j=t An−1,j,s, which has cardinality
∑n−1

j=t an−1,j,s.

So it remains to show that there are
∑t−s

r=1

∑s−1
i=1 an−r,t−r,i members π of An,t,s in which z

occurs once. Suppose that the z − 1 at position s within such π is the first letter in a run of
(z − 1)’s of length r. Then 1 ≤ r ≤ t − s and no other (z − 1)’s may occur between positions
s and t without introducing an occurrence of 12123 (note s ≥ 2 implies z ≥ 3). Thus, we may
delete the run of (z − 1)’s starting at position s since all letters to the left of position s are also
governed by the z at position t. We then change the z at position t to a z − 1. For each r,
this change of letter and deletion defines a bijection with

⋃s−1
i=1 An−r,t−r,i, which has cardinality

∑s−1
i=1 an−r,t−r,i. Summing over r then implies (20) and completes the proof.

Our next result shows in the affirmative half of Conjecture 3.5 above.

Theorem 3.2. We have

A1012(n) =
n−1
∑

i=0

(

n− 1

i

)

Ci, n ≥ 1, (22)

where Ci denotes the i-th Catalan number.

Proof. We determine a generating function for the sum
∑n

t=2

∑t−1
s=1 an,t,s, where n ≥ 2. To do

so, we first define the polynomials An,t(v) =
∑t−1

s=1 an,t,sv
s−1 and An(u, v) =

∑n

t=2 An,t(v)u
t−2.

Note that An,t(0) = an,t,1 = 2n−t for all 2 ≤ t ≤ n, which implies An(u, 0) = 2n−1−un−1

2−u
.

Multiplying (20) by ut−2vs−1, and summing over s = 2, 3, . . . , t− 1 and t = 3, 4, . . . , n, gives

An(u, v)−An(u, 0) =
n
∑

t=3

t−1
∑

s=2

n−1
∑

j=t

an−1,j,sv
s−1ut−2 +

n
∑

t=3

t−1
∑

s=2

t−s
∑

r=1

s−1
∑

i=1

an−r,t−r,iv
s−1ut−2

=

n−2
∑

s=2

n−1
∑

j=s+1

j
∑

t=s+1

an−1,j,sv
s−1ut−2 +

n−1
∑

s=2

n−s
∑

r=1

n
∑

t=s+r

s−1
∑

i=1

an−r,t−r,iv
s−1ut−2

=

n−2
∑

s=2

n−1
∑

j=s+1

an−1,j,sv
s−1

(

us−1 − uj−1

1− u

)

+

n−1
∑

s=2

n−s
∑

r=1

n−r
∑

t=s

s−1
∑

i=1

an−r,t,iv
s−1ur+t−2

=

n−1
∑

j=3

j−1
∑

s=2

an−1,j,sv
s−1

(

us−1 − uj−1

1− u

)

+
n−2
∑

r=1

n−r
∑

t=2

t−1
∑

i=1

an−r,t,iu
t+r−2

(

vi − vt

1− v

)
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=
1

1− u
(An−1(1, uv)− uAn−1(u, v)−An−1(1, 0) + uAn−1(u, 0))

+

n−1
∑

j=2

un−j

1− v
(vAj(u, v)− v2Aj(uv, 1)), n ≥ 3,

which implies

An(u, v) =
2n−1 − un−1

2− u
+

1

1− u
(An−1(1, uv)− uAn−1(u, v)− 2n−2 + 1 +

u

2− u
(2n−2 − un−2))

+

n−1
∑

j=2

un−j

1− v
(vAj(u, v)− v2Aj(uv, 1)), n ≥ 3,

which is also seen to hold when n = 2 upon taking A1(u, v) = 0.

Next define the generating function

A(t;u, v) =
∑

n≥1

An(u, v)t
n.

Multiplying the last recurrence relation by tn, and summing over n ≥ 2, we obtain

A(t;u, v) =
t2

(1− ut)(1− t)
+

t

1− u
(A(t; 1, uv)− uA(t;u, v))

+
uvt

(1− v)(1 − ut)
(A(t;u, v)− vA(t;uv, 1)).

Substituting u = 1/v into the last equation then yields

(

1 +
t

v − 1
− vt

(1− v)(v − t)

)

A(t; 1/v, v) =
vt2

(1 − t)(v − t)
+

vt

v − 1
A(t; 1, 1)

− v2t

(1− v)(v − t)
A(t; 1, 1),

which is equivalent to
(

1− t(2v − t)

(1− v)(v − t)

)

A(t; 1/v, v) =
vt2

(1− t)(v − t)
− vt(2v − t)

(1 − v)(v − t)
A(t; 1, 1). (23)

To solve (23), we use the kernel method. If we set the coefficient of A(t; 1/v, v) in (23) equal to
zero, and solve for v = vo in terms of t, we obtain

vo =
1− t+

√
1− 6t+ 5t2

2
.

Substituting v = vo into (23) then gives

A(t; 1, 1) =
t(1− vo)

(1− t)(2vo − t)
=

1− 3t−
√
1− 6t+ 5t2

2(1− t)
.

(Note that there were two possible values for vo, and our choice for vo was dictated by the
condition A(0; 1, 1) = 0.) Thus the generating function for the sequence A1012(n) = 1 +
∑n

t=2

∑t−1
s=1 an,t,s, n ≥ 1, is given by

t

1− t
+A(t; 1, 1) =

1− t−
√
1− 6t+ 5t2

2(1− t)
=

1

2

(

1−
√

1− 5t

1− t

)

.

It is easily verified that this is also the generating function for the Catalan transform sequence
∑n−1

i=0

(

n−1
i

)

Ci, n ≥ 1, which completes the proof.
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3.2 The case 0123

Here, we determine A0123(n) and answer Conjecture 3.4 above in the affirmative.

Theorem 3.3. Let an = A0123(n). Then an is given by the recurrence

an = 5an−1 − 6an−2 + an−3, n ≥ 3, (24)

with a0 = a1 = 1 and a2 = 2.

Proof. Let bn denote the number of 0123-avoiding ascent sequences having at least three distinct
letters. Then an = bn+2n−1 if n ≥ 1, with a0 = 1, upon including all possible binary sequences.
We first find an explicit formula for bn. To do so, suppose that an ascent sequence π enumerated
by bn has largest letter ℓ+ 1, where the left-most occurrence of ℓ+ 1 corresponds to the larger
number in the r-th ascent for some r. Since π avoids 0123, the only letters occurring prior to
ℓ + 1 are 0’s and 1’s. Since exactly r − 1 ascents involving 0 and 1 occur prior to the left-most
ℓ + 1, we must have 2r − 2 ≤ n− 1 so that 2 ≤ r ≤ n+1

2 . By definition of an ascent sequence,
we have ℓ+ 1 ≤ r so that 1 ≤ ℓ ≤ r − 1. Then π must be of the form

π = α(ℓ + 1)β,

where α is a binary sequence starting with 0 having exactly r− 1 ascents for some 2 ≤ r ≤ n+1
2 ,

ℓ+ 1 is the largest letter for some 1 ≤ ℓ ≤ r − 1, and β is possibly empty.

Suppose further that |α| = i and that the total length of the first 2r − 2 runs of letters is j,
where 2r− 2 ≤ i ≤ n− 1 and 2r− 2 ≤ j ≤ i. Then there are

(

j−1
2r−3

)

choices for the first j letters
of α, with the last i − j letters of α being 0. We now turn our consideration to the subword
β, which is of length n − i − 1. The subsequence L comprising all letters of β from the set
[2, ℓ + 1] must be non-increasing, with L possibly empty or comprising all of β. Furthermore,
there is no restriction within β concerning the relative positions of 0’s and 1’s. Let s = |L|,
where 0 ≤ s ≤ n − i − 1. Then there are n − i − s − 1 positions to be occupied by 0’s and 1’s
within β, and thus there are

(

n− i− 1

n− i− s− 1

)

2n−i−s−1 =

(

n− i− 1

s

)

2n−i−s−1

possibilities for these letters. Once the choices for the positions of the 0’s and 1’s within β have
been made, there are

(

s+ℓ−1
ℓ−1

)

choices for the subsequence L since it is of length s with its letters
in non-increasing order coming from the set [2, ℓ+ 1]. Summing over all possible r, ℓ, i, j, and
s, we obtain

bn =

n+1

2
∑

r=2

r−1
∑

ℓ=1

n−1
∑

i=2r−2

i
∑

j=2r−2

n−i−1
∑

s=0

(

j − 1

2r − 3

)(

n− i− 1

s

)(

s+ ℓ− 1

ℓ− 1

)

2n−i−s−1, n ≥ 1. (25)

We now compute the generating function
∑

n≥1 bnx
n. By (25), we have

∑

n≥1

bnx
n =

∑

n≥1

xn





n+1

2
∑

r=2

r−1
∑

ℓ=1

n−1
∑

i=2r−2

i
∑

j=2r−2

n−i−1
∑

s=0

(

j − 1

2r − 3

)(

n− i− 1

s

)(

s+ ℓ− 1

ℓ− 1

)

2n−i−s−1





=
∑

ℓ≥1

∑

r≥ℓ+1

∑

j≥2r−2

∑

i≥j

∑

s≥0

∑

n≥i+s+1

(

j − 1

2r − 3

)(

n− i− 1

s

)(

s+ ℓ− 1

ℓ− 1

)

2n−i−s−1xn
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=
∑

ℓ≥1

∑

r≥ℓ+1

∑

j≥2r−2

∑

i≥j

∑

s≥0

(

j − 1

2r − 3

)(

s+ ℓ− 1

ℓ− 1

)

2−sxi+1
∑

n≥i+s+1

(

n− i− 1

s

)

(2x)n−i−1

=
1

1− 2x

∑

ℓ≥1

∑

r≥ℓ+1

∑

j≥2r−2

∑

i≥j

(

j − 1

2r − 3

)

xi+1
∑

s≥0

(

s+ ℓ− 1

ℓ− 1

)(

x

1− 2x

)s

=
1

1− 2x

∑

ℓ≥1

∑

r≥ℓ+1

∑

j≥2r−2

∑

i≥j

(

j − 1

2r − 3

)

xi+1

(

1− 2x

1− 3x

)ℓ

,

where we have used the fact
∑

n≥i

(

n

i

)

xn = xi

(1−x)i+1 . Rearranging factors in the last sum implies

∑

n≥1

bnx
n =

1

1− 2x

∑

ℓ≥1

(

1− 2x

1− 3x

)ℓ
∑

r≥ℓ+1

∑

j≥2r−2

(

j − 1

2r − 3

)

∑

i≥j

xi+1

=
x2

(1− x)(1 − 2x)

∑

ℓ≥1

(

1− 2x

1− 3x

)ℓ
∑

r≥ℓ+1

∑

j≥2r−2

(

j − 1

2r − 3

)

xj−1

=
x

(1− x)(1 − 2x)

∑

ℓ≥1

(

1− 2x

1− 3x

)ℓ
∑

r≥ℓ+1

(

x

1− x

)2r−2

=
x(1 − x)

(1− 2x)2

∑

ℓ≥1

(

1− 2x

1− 3x

)ℓ

·
(

x

1− x

)2ℓ

=
x(1 − x)

(1− 2x)2
· x2(1− 2x)

(1 − x)2(1− 3x)
· 1

1− x2(1−2x)
(1−x)2(1−3x)

=
x3(1− x)

(1− 2x)(1− 5x+ 6x2 − x3)
.

Then we have
∑

n≥0

anx
n = 1 +

∑

n≥1

2n−1xn +
∑

n≥1

bnx
n

=
1− x

1− 2x
+

x3(1 − x)

(1− 2x)(1 − 5x+ 6x2 − x3)

=
(1− x)(1 − 3x)

1− 5x+ 6x2 − x3
,

which implies A0123(n) is given by (24).

Thus A0123(n) coincides with sequence A080937 in [14], which also counts the Dyck paths of
semilength n and height at most 5, and it would be interesting to determine a direct bijection.

3.3 Some remarks on the case 210

Duncan and Steingŕımsson [7] made the following conjecture concerning the avoidance of 210
by ascent sequences:

Conjecture 3.3. The number A210(n) equals the number of non-3-crossing set partitions of
{1, 2, . . . , n}. See sequence A108304 in [14].

While we were unable to enumerate the members of S210(n) and confirm Conjecture 3.3, we did
determine some combinatorial structure in this case. Perhaps the recurrence in either of the
propositions below would be a first step in proving this conjecture, once the proper technique
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is applied. Given m ≥ 0 and 0 ≤ s ≤ r ≤ m, let Cn,m,r,s denote the subset of S210(n)
whose members have exactly m ascents, largest letter r, and last letter s. For example, π =
012330115223 ∈ C12,6,5,3. Let fm,r,s = fm,r,s(x) be the generating function (g.f.) which counts
the members of Cn,m,r,s, where m, r, and s are fixed. Note that fm(x) =

∑

r,s fm,r,s(x) is the
g.f. counting the members of S210(n) having exactly m ascents and f(x) = 1 +

∑

m≥0 fm(x) is
the g.f., counting all members of S210(n).

The following proposition provides a recurrence for the fm,r,s.

Proposition 3.4. The array of generating functions fm,r,s, where m ≥ 0 and 0 ≤ s ≤ r ≤ m,
is determined by the initial condition f0,0,0 =

x
1−x

, and for m ≥ 1, the recurrences

fm,r,s =
x

1− x

s−1
∑

i=0

fm−1,r,i +
x

1− x

r−1
∑

j=s+1

fm−1,j,s +
x2

(1 − x)2

s
∑

i=0

r
∑

j=i

fm−1,j,i

− x2

(1− x)2

r−1
∑

j=s+1

s−1
∑

i=0

fm−2,j,i, 0 ≤ s < r ≤ m, (26)

and

fm,r,r =
x

1− x

r
∑

j=0

j
∑

i=0

fm−1,j,i −
x

1− x
fm−1,r,r, 1 ≤ r ≤ m. (27)

Proof. The initial condition is clear, the enumerated sequences being those consisting of all zeros.
To show (26), first observe that an ascent sequence enumerated by fm,r,s in this case must have
at least three distinct runs of letters, with the last run of the letter s. We condition on the letter
occurring in the next-to-last run. Note that this letter is either i for some 0 ≤ i ≤ s− 1 or is r,
for otherwise there would be an occurrence of 210. Then the term x

1−x

∑r−1
i=0 fm−1,r,i is the g.f.

counting all members of Cn,m,r,s in the first case since the s’s occurring in the final run are seen
to be extraneous concerning a possible occurrence of 210 and thus may be removed without loss
of structure (whence the factor x

1−x
which accounts for these letters).

Now assume the next-to-last run is of the letter r. We differentiate two further cases where
the second-to-last run is (i) of the letter i for some 0 ≤ i ≤ s or (ii) of the letter j for some
j ∈ [s + 1, r − 1]. In case (i), one may simply delete the two final runs of letters, noting
that an ascent has been removed in so doing, which implies the g.f. in this case is given by

x2

(1−x)2

∑s

i=0

∑s

j=i fm−1,j,i.

In case (ii), we may delete the final run of the letter r, which removes an ascent but does
not otherwise affect the structure. The resulting ascent sequences are then enumerated by
x

1−x

∑r−1
j=s+1 f

∗
m−1,j,s, where f∗

m−1,j,s is the g.f. which counts the same ascent sequences as
fm−1,j,s but with the added condition that the next-to-last run is of the letter j. Observe that

f∗
m−1,j,s = fm−1,j,s −

x

1− x

s−1
∑

i=0

fm−2,j,i,

upon subtracting the g.f. for those sequences whose next-to-last run is of a letter smaller than
s. Combining the three cases above gives (26).

For (27), considering separately the cases in which the letter r occurs in (i) exactly one run or
in (ii) two or more runs yields

fm,r,r =
x

1− x

r−1
∑

j=0

j
∑

i=0

fm−1,j,i +
x

1− x

r−1
∑

i=0

fm−1,r,i

=
x

1− x

r
∑

j=0

j
∑

i=0

fm−1,j,i −
x

1− x
fm−1,r,r,

which completes the proof.

13



Note that fm,0,0 = 0 for all m ≥ 1 and that fm,r,s is always of the form p(x)
(1−x)2m+1 for some

polynomial p(x) of degree at most 2m+ 1. Using the recurrences, one gets for m = 1,

f1,1,0 =
x3

(1 − x)3
and f1,1,1 =

x2

(1− x)2
,

which implies f1(x) =
x2

(1−x)3 .

When m = 2, one gets

f2,1,0 =
x5

(1 − x)5
, f2,1,1 =

x4

(1 − x)4
, f2,2,0 =

x4

(1 − x)5
= f2,2,1 and f2,2,2 =

x3

(1− x)4
,

which implies f2(x) =
x3(1+2x)
(1−x)5 .

Since members of S210(n) seem to be equinumerous with the partitions of [n] having no 3-
crossings, perhaps the techniques used in [3] to enumerate the latter could be applied to the
former in the absence of an obvious bijection between the two structures.

One may also determine recurrences similar to those in Lemmas 2.1 and 3.1 above. Let Cn,m,r,s

be as defined above and let Dn,m,r,s consist of those members of Cn,m,r,s whose next-to-last
letter is r. We have the following recurrences for the numbers cn,m,r,s = |Cn,m,r,s| and dn,m,r,s =
|Dn,m,r,s|.

Proposition 3.5. The arrays cn,m,r,s and dn,m,r,s may assume non-zero values only when n ≥ 1
and 0 ≤ s ≤ r ≤ m < n. For n ≥ 2, they satisfy the recurrences

cn,m,r,s = cn−1,m,r,s + dn,m,r,s +

s−1
∑

i=0

cn−1,m−1,r,i, 0 ≤ s < r ≤ m, (28)

dn,m,r,s = dn−1,m,r,s +

r−1
∑

i=s+1

dn−1,m−1,i,s +

s
∑

i=0

r
∑

j=i

cn−2,m−1,j,i, 0 ≤ s < r ≤ m, (29)

cn,m,r,r = dn,m,r,r +

r−1
∑

i=0

r
∑

j=i

cn−1,m−1,j,i, 0 ≤ r ≤ m, (30)

and
dn,m,r,r = cn−1,m,r,r, 0 ≤ r ≤ m, (31)

with the initial conditions c1,0,0,0 = 1 and d1,0,0,0 = 0.

Proof. The first statement is clear from the definitions, as are the initial conditions. Considering
whether the penultimate letter within a member of Cn,m,r,s is s, r, or i, where 0 ≤ i ≤ s − 1,
yields (28). Note that in the last case, an ascent is lost when the final s is removed, but not
in the first case. Considering whether the antepenultimate letter within a member of Dn,m,r,s

is r or i ∈ {s + 1, s + 2, . . . , r − 1} or i ∈ {0, 1, . . . , s} yields (29). Note that the removal of
the right-most r in the second case yields a member of Dn−1,m−1,i,s, while the removal of the
right-most r and s in the third case results in a member of Cn−2,m−1,j,i for some j ≥ i. For (30),
consider whether the penultimate letter within a member of Cn,m,r,r is r or i ∈ {0, 1, . . . , r− 1}.
In the latter case, we remove the final r and the resulting sequence belongs to Cn−1,m−1,j,i for
some j ≥ i. Finall y, for (31), note that members of Dn,m,r,r are synonymous with members of
Cn−1,m,r,r upon removing the final r.

Perhaps applying the technique of the second section above to the recurrences in the last propo-
sition, and modifying it somewhat, might enable one to determine the sequence A210(n).
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