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INVERSE PROBLEMS ASSOCIATED

WITH PERFECT CUBOIDS.

John Ramsden, Ruslan Sharipov

Abstract. A perfect cuboid is a rectangular parallelepiped with integer edges, in-
teger face diagonals, and integer space diagonal. Such cuboids have not yet been
found, but nor has their existence been disproved. Perfect cuboids are described
by a certain system of Diophantine equations possessing an intrinsic S3 symmetry.
Recently these equations were factorized with respect to this S3 symmetry and the
factor equations were transformed into E-form. As appears, the transformed factor
equations are explicitly solvable. Based on this solution, polynomial inverse problems
are formulated in the present paper.

1. Introduction.

Perfect cuboids are described by the following four polynomial equations:

x2

1
+ x2

2
+ x2

3
− L2 = 0, x2

2
+ x2

3
− d2

1
= 0,

(1.1)

x2

3 + x2

1 − d2

2 = 0, x2

1 + x2

2 − d2

3 = 0.

Here x1, x2, x3 are edges of a cuboid, d1, d2, d3 are its face diagonals, and L is its
space diagonal. For the history of perfect cuboids the reader is referred to [1–44].

Recently in [45] the symmetry approach to the equations (1.1) was initiated. It
is based on an intrinsic S3 symmetry of these equations. Indeed, let’s consider the
following action of the group S3 upon the variables x1, x2, x3, d1, d2, d3 and L:

σ(xi) = xσi, σ(di) = dσi, σ(L) = L. (1.2)

The first equation (1.1) is invariant with respect to the transformations (1.2). The
other three equations are not invariant, but the system as a whole is again invari-
ant, i. e. it possesses S3 symmetry based on the transformations (1.2). In [46] the
equations (1.1) were factorized with respect to their S3 symmetry and the following
system of eight factor equations was derived:

x2

1 + x2

2 + x2

3 − L2 = 0, (1.3)

(x2

2 + x2

3 − d2

1 ) + (x2

3 + x2

1 − d2

2 ) + (x2

1 + x2

2 − d2

3 ) = 0, (1.4)

d1 (x
2

2 + x2

3 − d2

1 ) + d2 (x
2

3 + x2

1 − d2

2 ) + d3 (x
2

1 + x2

2 − d2

3 ) = 0, (1.5)
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x1 (x
2

2 + x2

3 − d2

1 ) + x2 (x
2

3 + x2

1 − d2

2 ) + x3 (x
2

1 + x2

2 − d2

3 ) = 0, (1.6)

x1 d1 (x
2

2
+ x2

3
− d2

1
) + x2 d2 (x

2

3
+ x2

1
− d2

2
)+

+ x3 d3 (x
2

1 + x2

2 − d2

3 ) = 0,
(1.7)

x2

1
(x2

2
+ x2

3
− d2

1
) + x2

2
(x2

3
+ x2

1
− d2

2
) + x2

3
(x2

1
+ x2

2
− d2

3
) = 0, (1.8)

d2

1
(x2

2
+ x2

3
− d2

1
) + d2

2
(x2

3
+ x2

1
− d2

2
) + d2

3
(x2

1
+ x2

2
− d2

3
) = 0, (1.9)

x2

1 d
2

1 (x
2

2 + x2

3 − d2

1 ) + x2

2 d
2

2 (x2

3 + x2

1 − d2

2 )+

+ x2

3 d
2

3 (x2

1 + x2

2 − d2

3 ) = 0.
(1.10)

Each solution of the equations (1.1) is a solution of the equations (1.3), (1.4), (1.5),
(1.6), (1.7), (1.8), (1.9), (1.10). But generally speaking, the converse is not true.
Fortunately, in [47] the following theorem was proved.

Theorem 1.1. Each integer or rational solution of the equations (1.3) through

(1.10) such that x1 > 0, x2 > 0, x3 > 0, d1 > 0, d2 > 0, and d3 > 0 is an integer

or rational solution for the equations (1.1).

Due to Theorem 1.1 the factor equations (1.3) through (1.10) can be applied for
studying perfect cuboids.

Note that each of the equations (1.3) through (1.10) is invariant with respect to
the transformations (1.2). The left hand sides of these equations are multisymmetric
polynomials in the sense of the following definition.

Definition 1.1. A polynomial p ∈ Q[x1, x2, x3, d1, d2, d3, L] is called multisym-
metric if it is invariant with respect to the action (1.2) of the group S3.

Multisymmetric polynomials constitute a subring within the polynomial ring
Q[x1, x2, x3, d1, d2, d3, L]. For the sake of brevity we introduce the matrix

M =

∥

∥

∥

∥

x1 x2 x3

d1 d2 d3

∥

∥

∥

∥

and denote Q[x1, x2, x3, d1, d2, d3, L] = Q[M,L]. Similarly, the subring of multi-
symmetric polynomials is denoted through SymQ[M,L]. For the general theory of
multisymmetric polynomials the reader is referred to [48–68]. For our purposes we
need the following theorem from this theory.

Theorem 1.2. Each multisymmetric polynomial p ∈ SymQ[x1, x2, x3, d1, d2, d3, L]
can be expressed through the following elementary multisymmetric polynomials:

e[1,0] = x1 + x2 + x3,

e[2,0] = x1 x2 + x2 x3 + x3 x1,

e[3,0] = x1 x2 x3,

e[0,1] = d1 + d2 + d3,

e[0,2] = d1 d2 + d2 d3 + d3 d1,

e[0,3] = d1 d2 d3,

(1.11)

e[2,1] = x1 x2 d3 + x2 x3 d1 + x3 x1 d2,

e[1,1] = x1 d2 + d1 x2 + x2 d3 + d2 x3 + x3 d1 + d3 x1,

e[1,2] = x1 d2 d3 + x2 d3 d1 + x3 d1 d2.

(1.12)
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Theorem 1.2 is known as the Fundamental Theorem on Elementary Multisym-
metric Polynomials. Its proof can be found in [54]. If we denote

Q[E10, E20, E30, E01, E02, E03, E21, E11, E12, L] = Q[E,L],

then Theorem 1.2 means that for each multisymmetric polynomial p from the ring
SymQ[M,L] there is some polynomial q ∈ Q[E,L] of ten independent variables
such that p is produced from q by substituting the elementary multisymmetric
polynomials (1.11) and (1.12) for E10, E20, E30, E01, E02, E03, E21, E11, and E12

into its arguments. The substitution procedure can be understood as a mapping:

ϕ : Q[E,L] → SymQ[M,L]. (1.13)

The mapping (1.13) is a ring homomorphism. It is surjective, which follows from
Theorem 1.2, but it is not bijective, i. e. it has a nonzero kernel K = Kerϕ. The
kernel K is an ideal in the ring Q[E,L]. It was calculated as

K =
〈

q1, . . . , q7
〉

, (1.14)

where q1, . . . , q7 are seven polynomials being a basis of K. These polynomials are
given by the explicit formulas (2.4) through (2.10) in [46]. The ideal (1.14) has a
Gröbner basis comprising fourteen polynomials:

K =
〈

q̃1, q̃2, q̃3, q̃4, q̃5, q̃6, q̃7, q̃8, q̃9, q̃10, q̃11, q̃12, q̃13, q̃14
〉

. (1.15)

The polynomials q1 through q14 from (1.15) were calculated in [46] with the use of
the Maxima symbolic computations package, but explicit formulas for them were
not given. These formulas were given later in Appendix to [69]. For the theory of
Gröbner bases and their applications the reader is referred to [70].

Returning to the factor equations (1.3) through (1.10) and noting that their left
hand sides are multisymmetric polynomials, one can apply Theorem 1.2 to them.
This was done in [69] and the E-forms1 of the factor equations were derived in [69].
Here are the transformed factor equations:

E2

10 − 2E20 − L2 = 0, (1.16)

2E02 − 4E20 − E2

01 + 2E2

10 = 0, (1.17)

E10 E11 − 3E03 − E21 + 3E01 E02 − E20 E01 − E3

01
= 0, (1.18)

E01 E11 − E12 − 3E30 + E10 E02 + E20 E10 − E2

01 E10 = 0, (1.19)

−E10 E21 − E01 E12 − E01 E30 − E3

01 E10 + E2

01 E11 −

− E02 E11 + E11 E20 − E10 E03 + 2E10 E01 E02 = 0.
(1.20)

4E01 E10 E11 − 3E2

01 E
2

10 + 2E2

10 E02 + 2E20 E
2

01 − 2E10 E12 −

− 2E02E20 − 2E01 E21 − E2

11
− 12E10E30 + 6E2

20
= 0,

(1.21)

1 The E-form of a polynomial is its preimage under the mapping (1.13).
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4E01 E10 E11 − 4E2

10
E02 − 4E20 E

2

01
− 2E10 E12 + 10E02E20 −

− 2E01E21 − E2

11 − 12E01E03 − 3E4

01 − 6E2

02 + 12E2

01E02 = 0,
(1.22)

9E01 E03 E20 − 7E2

01
E02 E20 + 2E02 E10 E12 − 2E2

01
E10 E12 +

+3E03E10 E11 + 4E3

01 E10 E11 − 7E01 E02 E10 E11 − 6E01 E03 E
2

10 +

+8E2

01 E02 E
2

10 + 3E01 E11 E30 − 2E01E20 E21 + E10 E12 E20 −

−E02 E
2

10 E20 + E01 E10 E11 E20 + 9E02 E10 E30 − 2E02 E
2

20 +

+2E2

01
E2

20
− E2

11
E20 − 3E12E30 + E02 E

2

11
− E2

01
E2

11
−

− 2E2

02
E2

10
+ 2E4

01
E20 + 2E2

02
E20 − 3E03 E21 −

− 2E3

01
E21 + 5E01 E02 E21 − 6E2

01
E10 E30 − 3E4

01
E2

10
= 0.

(1.23)

In [69] the factor equations (1.16), (1.17), (1.18), (1.19), (1.20), (1.21), (1.22), and
(1.23) were complemented with fourteen kernel equations

q̃1 = 0, q̃2 = 0, q̃3 = 0,

q̃4 = 0, q̃5 = 0, q̃6 = 0,

q̃7 = 0, q̃8 = 0, q̃9 = 0, (1.24)

q̃10 = 0, q̃11 = 0, q̃12 = 0,

q̃13 = 0, q̃14 = 0.

As a result a huge system of twenty two polynomial equations with respect to ten
variables was obtained. In [69] this system was analyzed and luckily was reduced
to a single equation. Here is this equation:

(2E11)
2 + (E2

01 + L2
− E2

10)
2
− 8E2

01L
2 = 0. (1.25)

Equation (1.25) turns out to be explicitly solvable, which is also a lucky event.
Its general solution was discovered in [71]. This general solution of (1.25), upon
eliminating L by homogeneity, consists of one two-parameter solution and a series
of one-parameter solutions. The main goal of the present paper is to propagate
these explicit solutions back to the equations (1.16) through (1.24) and formulate
polynomial inverse problems relating these solutions with perfect cuboids.

2. Rational perfect cuboids.

Let x1, x2, x3, d1, d2, d3 be edges and face diagonals of some perfect cuboid
and let L be its space diagonal. Then, dividing these numbers by L, we get a
cuboid whose edges and face diagonals are given by rational numbers, while the
space diagonal is equal to unity. Such a cuboid is called a rational perfect cuboid.
Conversely, if we have a rational perfect cuboid with unit space diagonal, we can
take the common denominator of the rational numbers x1, x2, x3, d1, d2, d3 for
L and then, multiplying these numbers by L, we get a perfect cuboid with integer
edges and face diagonals whose space diagonal is equal to the integer number L.
Thus, integer perfect cuboids and rational perfect cuboids with unit space diagonal
are equivalent to each other.

The equivalence of perfect cuboids and rational perfect cuboids was already used
in [41] for deriving three cuboid conjectures. In the present paper we use this fact
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by setting L = 1 and thus reducing the number of variables in the equations (1.16)
through (1.23) and in the equation (1.25).

3. The two-parameter case.

Let’s substitute L = 1 into (1.25). As a result, using the notation E11 = x,
E01 = y, E10 = z, we get the equation coinciding with the equation (1.1) in [71]:

(2E11)
2 + (E2

01 + 1− E2

10)
2 = 8E2

01. (3.1)

This equation was solved in [71]. Theorem 2.1 from [71] yields the following two-
parameter solution of the equation (3.1):

E11 = −
b (c2 + 2− 4 c)

b2 c2 + 2 b2 − 3 b2 c+ c− b c2 + 2 b
, (3.2)

E01 = −
b(c2 + 2− 2 c)

b2 c2 + 2 b2 − 3 b2 c+ c− b c2 + 2 b
, (3.3)

E10 = −
b2 c2 + 2 b2 − 3 b2 c − c

b2 c2 + 2 b2 − 3 b2 c+ c− b c2 + 2 b
. (3.4)

The numbers b and c are two rational parameters in (3.2), (3.3), and (3.4).
Apart from E11, E10, and E01 there are six other variables E20, E30, E02, E03,

E21, E12 in the equations (1.16) through (1.23). These variables are expressed
through E11, E10, E01, and L by means of the formulas (4.1), (4.3), (4.6), (4.7),
(5.1), and (5.2) from [69]. Here are the formulas for E20 and E02:

E20 =
1

2
E2

10
−

1

2
L2, E02 =

1

2
E2

01
− L2. (3.5)

Substituting L = 1, (3.3), and (3.4) into (3.5), we derive

E20 =
b

2
(b c2 − 2 c− 2 b) (2 b c2 − c2 − 6 b c+ 2 + 4 b)×

× (b c− 1− b)−2 (b c− c− 2 b)−2,

(3.6)

E02 =
1

2
(28 b2 c2 − 16 b2 c− 2 c2 − 4 b2 − b2 c4 +

+4 b3 c4 − 12 b3 c3 + 4 b c3 + 24 b3 c− 8 b c− 2 b4 c4 +

+12 b4 c3 − 26 b4 c2 − 8 b2 c3 + 24 b4 c− 16 b3 − 8 b4)×

× (b c− 1− b)−2 (b c− c− 2 b)−2.

(3.7)

The formulas for E21 and E12 are taken from (5.1) and (5.2) in [69] respectively:

E21 =
2E3

10E11 + 2E2
01 E10 E11 − E01 E

4
10 + E5

01

8 (E2
01

+ E2
10
)

+

+
6E10 E11 L

2
− 2E01E

2
10 L

2
− 8E3

01 L
2 + 3E01 L

4

8 (E2
01

+ E2
10
)

,

(3.8)
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E12 =
E4

01
E10 − 2E3

01
E11 − 2E01E

2

10
E11 − E5

10

8 (E2

01
+ E2

10
)

+

+
6E3

10
L2

− 6E01E11 L
2 + 3E10 L

4

8 (E2

01
+ E2

10
)

.

(3.9)

Substituting L = 1, (3.2), (3.3), and (3.4) into (3.8) and (3.9), we derive

E21 =
b

2
(5 c6 b− 2 c6 b2 + 52 c5 b2 − 16 c5 b− 2 c7 b2 + 2 b4 c8 +

+142 b4 c6 − 26 b4 c7 − 426 b4 c5 − 61 b3 c6 + 100 b3 c5 + 14 c7 b3 −

− c8 b3 − 20 b c2 − 8 b2 c2 − 16 b2 c− 128 b2 c4 − 200 b3 c3 +

+244 b3 c2 + 32 b c3 − 112 b3 c+ 768 b4 c4 − 852 b4 c3 + 568 b4 c2 +

+104 b2 c3 − 208 b4 c+ 8 c4 − 4 c3 + 16 b3 + 32 b4 − 2 c5)×

× (b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)−1
×

× (b c− 1− b)−2 (b c− c− 2 b)−2,

(3.10)

E12 = (16 b6 + 32 b5 − 6 c5 b2 + 2 c5 b − 62 b5 c6 + 62 b6 c6 −

− 180 b6 c5 + 18 b5 c7 − 12 b6 c7 − 2 b5 c8 + b6 c8 + 248 b5 c2 +

+248 b6 c2 − 96 b6 c+ 321 b6 c4 − 180 b5 c3 − 144 b5 c− 360 b6 c3 +

+ b4 c8 + 8 b4 c6 − 6 b4 c7 + 18 b4 c5 + 7 b3 c6 + 90 b5 c5 − 14 b3 c5 −

− c7 b3 + 17 b2 c4 + 28 b3 c3 − 28 b3 c2 − 4 b c3 + 8 b3 c− 57 b4 c4 +

+36 b4 c3 + 32 b4 c2 − 12 b2 c3 − 48 b4 c− c4 + 16 b4)×

× (b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)−1
×

× (b c− 1− b)−2 (b c− c− 2 b)−2.

(3.11)

The formulas for E30 and E03 are taken from (4.6) and (4.7) in [69]:

E30 = −
1

3
E12 −

1

6
E10 E

2

01
−

1

2
E10 L

2 +
1

6
E3

10
+

1

3
E01 E11, (3.12)

E03 = −
1

3
E21 −

1

6
E01 E

2

10 −
5

6
E01 L

2 +
1

6
E3

01 +
1

3
E10 E11. (3.13)

The formulas (3.12) and (3.13) comprise E21 and E12 from (3.10) and (3.11). Ap-
plying L = 1, (3.10), (3.11), (3.2), (3.3), and (3.4) to (3.12) and (3.13), we get

E03 =
b

2
(b2 c4 − 5 b2 c3 + 10 b2 c2 − 10 b2 c+ 4 b2 + 2 b c+

+2 c2 − b c3) (2 b2 c4 − 12 b2 c3 + 26 b2 c2 − 24 b2 c+

+8 b2 − c4 b+ 3 b c3 − 6 b c+ 4 b+ c3 − 2 c2 + 2 c)×

× ((b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)−1
×

× (b c− 1− b)−2 (−c+ b c− 2 b)−2,

(3.14)
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E30 = c b2 (1 − c) (c− 2) (b c2 − 4 b c+ 2 + 4 b)×

× (2 b c2 − c2 − 4 b c+ 2 b)×

× (b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)−1
×

× (b c− 1− b)−2 (−c+ b c− 2 b)−2.

(3.15)

Note that the quantities E10, E20, and E30 given by the formulas (3.4), (3.6),
(3.15) are the values of three elementary multisymmetric polynomials in the left
column of (1.11). One can easily see that these polynomials coincide with the reg-
ular symmetric polynomials of three variables x1, x2, and x3 (see [72]). Therefore,
if we write the cubic equation (x− x1)(x − x2)(x − x3) = 0, it expands to

x3
− E10 x

2 + E20 x− E30 = 0. (3.16)

Similarly, the quantities E01, E02, and E03 given by the formulas (3.3), (3.7),
and (3.14) are the values of the elementary multisymmetric polynomials in the
right column of (1.11). These three polynomials coincide with regular symmetric
polynomials of three variables d1, d2, and d3. For this reason, if we write the cubic
equation (d− d1)(d− d2)(d− d3) = 0, this equation expands to

d3
− E01 d

2 + E02 d− E03 = 0. (3.17)

The remaining three quantities E11, E21, and E12 given by the formulas (3.2),
(3.10), (3.11) are the values of three elementary multisymmetric polynomials in
(1.12). They lead to the following auxiliary polynomial equations:

x1 x2 d3 + x2 x3 d1 + x3 x1 d2 = E21,

x1 d2 + d1 x2 + x2 d3 + d2 x3 + x3 d1 + d3 x1 = E11,

x1 d2 d3 + x2 d3 d1 + x3 d1 d2 = E12.

(3.18)

Now we can formulate the following two inverse cuboid problems.

Problem 3.1. Find all pairs of rational numbers b and c for which the cubic

equations (3.16) and (3.17) with the coefficients given by the formulas (3.4), (3.6),
(3.15), (3.3), (3.7), (3.14) possess positive rational roots x1, x2, x3, d1, d2, d3
obeying the auxiliary polynomial equations (3.18) whose right hand sides are given

by the formulas (3.2), (3.10), (3.11).

Problem 3.2. Find at least one pair of rational numbers b and c for which the

cubic equations (3.16) and (3.17) with the coefficients given by the formulas (3.4),
(3.6), (3.15), (3.3), (3.7), (3.14) possess positive rational roots x1, x2, x3, d1, d2, d3
obeying the auxiliary polynomial equations (3.18) whose right hand sides are given

by the formulas (3.2), (3.10), (3.11).

4. The first one-parameter case.

The four one-parameter cases considered below correspond to the special so-
lutions of Theorem 2.1 in [71]. The first one-parameter case corresponds to the
following choice of sign options in this theorem:

x = y, y = z + 1. (4.1)
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Equations (4.1) are easily resolved in the one-parameter form:

x = c, y = c, z = c− 1. (4.2)

Taking into account the notations E11 = x, E01 = y, E10 = z, we derive the
following one-parameter solution of the equation (3.1) from (4.2):

E11 = c, E01 = c, E10 = c− 1. (4.3)

Substituting L = 1 and (4.3) into (3.5), (3.8), (3.9), (3.12), and (3.13), we get

E20 =
c2 − 2 c

2
, E02 =

c2 − 2

2
,

E21 =
c2 − 2 c

2
, E12 = 1, (4.4)

E30 = 0, E03 =
c2 − 2 c

2
.

In the formulas (4.4) we find E30 = 0, i. e. the last term E30 of the cubic equation
(3.16) is zero. Then one of its roots x1, x2, or x3 is zero. But a non-degenerate
cuboid cannot have a zero edge. As a result we have the following theorem.

Theorem 4.1. There are no perfect cuboids associated with the one-parameter

solution (4.3) of the equation (3.1).

5. The second one-parameter case.

In the second one-parameter case we choose the following sign options in Theo-
rem 2.1 from [71]: x = y and y = −z − 1. Then instead of (4.3) we derive

E11 = c, E01 = c, E10 = −c− 1. (5.1)

Substituting L = 1 and (5.1) into (3.5), (3.8), (3.9), (3.12), and (3.13), we get

E20 =
c2 + 2 c

2
, E02 =

c2 − 2

2
,

E21 = −
c2 + 2 c

2
, E12 = 1, (5.2)

E30 = 0, E03 = −
c2 + 2 c

2
.

In (5.2) we again see E30 = 0. Therefore we can formulate the following theorem.

Theorem 5.1. There are no perfect cuboids associated with the one-parameter

solution (5.1) of the equation (3.1).

6. The third and the fourth one-parameter cases.

These two one-parameter cases correspond to the last two sign options in The-
orem 2.1 from [71]. These two sign options are given by the formulas x = −y and
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y = ± (z + 1). They yield the following one-parameter solutions for (3.1):

E11 = c, E01 = −c, E10 = ± c− 1. (6.1)

The formulas E11 = c and E01 = −c mean that E11 and E01 are of opposite signs
or both of them are zero. On the other hand, we have two equalities

x1 d2 + d1 x2 + x2 d3 + d2 x3 + x3 d1 + d3 x1 = E11,

d1 + d2 + d3 = E01

derived from (1.11) and (1.12). The left hand sides of these equalities are posi-
tive numbers since edges and face diagonals of a perfect cuboid are positive. The
contradiction obtained leads to the following theorem.

Theorem 6.1. There are no perfect cuboids associated with the one-parameter

solutions (6.1) of the equation (3.1).

7. Conclusions.

Theorems 4.1, 5.1, and 6.1 show that the inverse problem 3.1 formulated in
Section 3 is equivalent to finding all perfect cuboids, while the problem 3.2 is
equivalent to finding at least one perfect cuboid.
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