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ON A PAIR OF CUBIC EQUATIONS

ASSOCIATED WITH PERFECT CUBOIDS.

Ruslan Sharipov

Abstract. A perfect cuboid is a rectangular parallelepiped with integer edges and
integer face diagonals whose space diagonal is also integer. The existence of such
cuboids is neither proved, nor disproved. A rational perfect cuboid is a natural com-
panion of a perfect cuboid absolutely equivalent to the latter one. Its edges and face
diagonals are rational numbers, while its space diagonal is equal to unity. Recently,
based on a symmetry reduction, it was shown that edges of a rational perfect cuboid
are roots of a certain cubic equation with rational coefficients depending on two ra-
tional parameters. Face diagonals of this cuboid are roots of another cubic equation
whose coefficients are rational numbers depending on the same two rational parame-
ters. In the present paper these two cubic equations are studied for reducibility. Six
special cases of their reducibility over the field of rational numbers are found.

1. Introduction.

The problem of a perfect cuboid is known since 1719, but is still not resolved.
For the history of this problem the reader is referred to [1–44]. Let x1, x2, x3 be
edges of a cuboid, d1, d2, d3 be its face diagonals, and L be its space diagonal.
Then the cuboid is described by the following four polynomial equations:

x2

1
+ x2

2
+ x2

3
− L2 = 0, x2

2
+ x2

3
− d2

1
= 0,

(1.1)

x2

3
+ x2

1
− d2

2
= 0, x2

1
+ x2

2
− d2

3
= 0.

This paper continues the series of papers [45–50] applying the symmetry approach
to the equations (1.1). Indeed, using three numbers x1, x2, x3, one can build the
cubic equation (x− x1)(x − x2)(x− x3) = 0 which expands to

x3 − E10 x
2 + E20 x− E30 = 0. (1.2)

Similarly, the equation (d− d1)(d − d2)(d− d3) = 0 expands to

d3 − E01 d
2 + E02 d− E03 = 0. (1.3)

The coefficients E10, E20, and E30 of the equation (1.2) are elementary symmetric
polynomials of three variables x1, x2, x3 (see [51]). Similarly, the coefficients E01,
E02, and E03 of the equation (1.3) are elementary symmetric polynomials of three
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variables d1, d2, d3. Here are the formulas for these polynomials:

x1 + x2 + x3 = E10, d1 + d2 + d3 = E01,

x1 x2 + x2 x3 + x3 x1 = E20, d1 d2 + d2 d3 + d3 d1 = E02, (1.4)

x1 x2 x3 = E30, d1 d2 d3 = E03.

Mixing x1, x2, x3 with d1, d2, d3, one can write the following formulas:

x1 x2 d3 + x2 x3 d1 + x3 x1 d2 = E21,

x1 d2 + d1 x2 + x2 d3 + d2 x3 + x3 d1 + d3 x1 = E11,

x1 d2 d3 + x2 d3 d1 + x3 d1 d2 = E12.

(1.5)

The left hand sides of the formulas (1.4) complemented with the left hand sides of
the formulas (1.5) constitute the complete set of so-called elementary multisymmet-
ric polynomials. For the theory of multisymmetric polynomials, either elementary
and non-elementary, the reader is referred to [52–72].

The cuboid equations (1.1) imply some equations for E10, E20, E30, E01, E02,
E03, E21, E11, and E12 in (1.4) and (1.5). These equations are called factor equa-
tions. They were studied in [46] and [47] using ideals in polynomial rings and their
Gröbner bases (see the general theory in [73]). In [48] the factor equations were
reduced to a single biquadratic equation for three variables E10, E01, and E11:

(2E11)
2 + (E2

01
+ L2 − E2

10
)2 − 8E2

01
L2 = 0. (1.6)

The other variables E20, E30, E02, E03, E21, and E12 are expressed through E10,
E01, and E11 by means of the following formulas:

E20 =
1

2
E2

10 −
1

2
L2, E02 =

1

2
E2

01 − L2, (1.7)

E21 =
2E3

10
E11 + 2E2

01
E10 E11 − E01 E

4

10
+ E5

01

8 (E2

01
+ E2

10
)

+

+
6E10 E11 L

2 − 2E01 E
2

10
L2 − 8E3

01
L2 + 3E01 L

4

8 (E2

01
+ E2

10
)

,

(1.8)

E12 =
E4

01
E10 − 2E3

01
E11 − 2E01 E

2

10
E11 − E5

10

8 (E2

01
+ E2

10
)

+

+
6E3

10
L2 − 6E01 E11 L

2 + 3E10 L
4

8 (E2

01
+ E2

10
)

,

(1.9)

E30 = −
1

3
E12 −

1

6
E10 E

2

01
−

1

2
E10 L

2 +
1

6
E3

10
+

1

3
E01 E11, (1.10)

E03 = −
1

3
E21 −

1

6
E01 E

2

10
−

5

6
E01 L

2 +
1

6
E3

01
+

1

3
E10 E11. (1.11)
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A general solution for the equation (1.6) was derived in [49], including a two-
parameter solution and several one-parameter solutions. As it was proved in [50],
the one-parameter solutions do not lead to perfect cuboids. The two-parameter
solution of (1.6) is written in [49] for the case of a rational cuboid with unit space
diagonal L = 1. This solution with the parameters b and c is given by the formulas

E11 = −
b (c2 + 2− 4 c)

b2 c2 + 2 b2 − 3 b2 c+ c− b c2 + 2 b
, (1.12)

E01 = −
b (c2 + 2− 2 c)

b2 c2 + 2 b2 − 3 b2 c+ c− b c2 + 2 b
, (1.13)

E10 = −
b2 c2 + 2 b2 − 3 b2 c − c

b2 c2 + 2 b2 − 3 b2 c+ c− b c2 + 2 b
. (1.14)

Substituting (1.12), (1.13), and (1.14) into the formulas (1.7), (1.8), (1.9), (1.10),
(1.11) and taking into account that L = 1, one can find that

E20 =
b

2
(b c2 − 2 c− 2 b) (2 b c2 − c2 − 6 b c+ 2 + 4 b)×

× (b c− 1− b)−2 (b c− c− 2 b)−2,

(1.15)

E02 =
1

2
(28 b2 c2 − 16 b2 c− 2 c2 − 4 b2 − b2 c4 + 4 b3 c4 − 12 b3 c3 +

+4 b c3 + 24 b3 c− 8 b c− 2 b4 c4 + 12 b4 c3 − 26 b4 c2 − 8 b2 c3 +

+24 b4 c− 16 b3 − 8 b4) (b c− 1− b)−2 (b c− c− 2 b)−2.
(1.16)

E21 =
b

2
(5 c6 b− 2 c6 b2 + 52 c5 b2 − 16 c5 b− 2 c7 b2 + 2 b4 c8 +

+142 b4 c6 − 26 b4 c7 − 426 b4 c5 − 61 b3 c6 + 100 b3 c5 + 14 c7 b3 −

− c8 b3 − 20 b c2 − 8 b2 c2 − 16 b2 c− 128 b2 c4 − 200 b3 c3 +

+244 b3 c2 + 32 b c3 − 112 b3 c+ 768 b4 c4 − 852 b4 c3 + 568 b4 c2 +

+104 b2 c3 − 208 b4 c+ 8 c4 − 4 c3 + 16 b3 + 32 b4 − 2 c5)×

× (b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)−1 ×

× (b c− 1− b)−2 (b c− c− 2 b)−2,

(1.17)

E12 = (16 b6 + 32 b5 − 6 c5 b2 + 2 c5 b− 62 b5 c6 + 62 b6 c6 −

− 180 b6 c5 + 18 b5 c7 − 12 b6 c7 − 2 b5 c8 + b6 c8 + 248 b5 c2 +

+248 b6 c2 − 96 b6 c+ 321 b6 c4 − 180 b5 c3 − 144 b5 c− 360 b6 c3 +

+ b4 c8 + 8 b4 c6 − 6 b4 c7 + 18 b4 c5 + 7 b3 c6 + 90 b5 c5 − 14 b3 c5 −

− c7 b3 + 17 b2 c4 + 28 b3 c3 − 28 b3 c2 − 4 b c3 + 8 b3 c− 57 b4 c4 +

+36 b4 c3 + 32 b4 c2 − 12 b2 c3 − 48 b4 c− c4 + 16 b4)×

× (b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)−1 ×

× (b c− 1− b)−2 (b c− c− 2 b)−2.

(1.18)
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E03 =
b

2
(b2 c4 − 5 b2 c3 + 10 b2 c2 − 10 b2 c+ 4 b2 + 2 b c+

+2 c2 − b c3) (2 b2 c4 − 12 b2 c3 + 26 b2 c2 − 24 b2 c+

+8 b2 − c4 b+ 3 b c3 − 6 b c+ 4 b+ c3 − 2 c2 + 2 c)×

× ((b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)−1 ×

× (b c− 1− b)−2 (−c+ b c− 2 b)−2,

(1.19)

E30 = c b2 (1− c) (c− 2) (b c2 − 4 b c+ 2 + 4 b)×

× (2 b c2 − c2 − 4 b c+ 2 b)×

× (b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)−1 ×

× (b c− 1− b)−2 (−c+ b c− 2 b)−2.

(1.20)

The formulas (1.15), (1.16), (1.17), (1.18), (1.19), and (1.20) were derived in [50].
Based on these formulas, two inverse problems were formulated.

Problem 1.1. Find all pairs of rational numbers b and c for which the cubic

equations (1.2) and (1.3) with the coefficients (1.14), (1.15), (1.20), (1.13), (1.16),
(1.19) possess positive rational roots x1, x2, x3, d1, d2, d3 obeying the auxiliary

equations (1.5) with the right hand sides (1.17), (1.18), (1.12).

Problem 1.2. Find at least one pair of rational numbers b and c for which the cubic

equations (1.2) and (1.3) with the coefficients (1.14), (1.15), (1.20), (1.13), (1.16),
(1.19) possess positive rational roots x1, x2, x3, d1, d2, d3 obeying the auxiliary

equations (1.5) with the right hand sides (1.17), (1.18), (1.12).

The problems 1.1 and 1.2 are equivalent to finding all perfect cuboids and to
finding at least one perfect cuboid respectively. In the present paper we study the
cubic equations (1.2) and (1.3) for reducibility using the methods of [41], which
were applied to a twelfth order Diophantine equation in that paper.

2. The first reducibility case b = 0.

Note that the formulas (1.12) through (1.20) for the coefficients of the cubic
equations (1.2) and (1.3) and for the right hand sides of the auxiliary equations
(1.5) possess denominators. The simultaneous non-vanishing condition for all of
their denominators is written as follows:

(b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)×

× (b c− 1− b) (b c− c− 2 b) 6= 0.
(2.1)

The case b = 0 is very simple. The non-vanishing condition (2.1) in this case is
written as c 6= 0. Substituting b = 0 into (1.14), (1.15), (1.20), (1.13), (1.16), (1.19),
we find that the cubic equations (1.2) and (1.3) reduce to

x2 (x− 1) = 0, d (d− 1) (d+ 1) = 0. (2.2)

Substituting b = 0 into (1.17), (1.18), (1.12), we obtain

E21 = 0, E11 = 0, E12 = −1. (2.3)
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The equations (2.2) are already factored. We can choose their roots as follows:

x1 = 1, x2 = 0, x3 = 0,
(2.4)

d1 = 0, d1 = 1, d3 = −1.

Substituting (2.3) and (2.4) into (1.5), we find that the auxiliary equations (1.5)
are fulfilled. Substituting (2.4) along with L = 1 into (1.1), we find that the cuboid
equations (1.1) are also fulfilled. However, the formulas (2.4) do not provide a
perfect cuboid since its edges and face diagonals cannot be zero or negative.

Theorem 2.1. If b = 0 and c 6= 0, then the cubic polynomials in (1.2) and (1.3)
are reducible and provide three integer roots for each of the equations (1.2) and (1.3)
satisfying the auxiliary equations (1.5) but not resolving the problem 1.2.

3. The second reducibility case c = 0.

The case c = 0 is also simple. The non-vanishing condition (2.1) in this case
turns to b (1 + b) 6= 0. The cubic equations (1.2) and (1.3) turn to

x
(

2 (1 + b)2 x2 + 2 b (1 + b)x− (1 + 2 b)
)

= 0,

(d+ 1)
(

2 (1 + b)2 d2 − 2 b (1 + b) d− (1 + 2 b)
)

= 0.
(3.1)

Substituting c = 0 into the formulas (1.17), (1.18), and (1.12), we obtain

E21 =
1 + 2 b

2 (1 + b)2
, E11 =

−1

1 + b
, E12 = 1. (3.2)

The equations (3.1) are already factored. Upon splitting off the linear terms
they turn to quadratic equations very similar to each other:

2 (1 + b)2 x2 + 2 b (1 + b)x− (1 + 2 b) = 0,

2 (1 + b)2 d2 − 2 b (1 + b) d− (1 + 2 b) = 0.
(3.3)

The discriminants of the quadratic equations (3.3) do coincide:

D = 4 (b2 + 4 b+ 2) (1 + b)2. (3.4)

The formula (3.4) means that in order to solve the equations (3.3) in rational
numbers one should resolve the following quadratic equation in rational numbers:

b2 + 4 b+ 2 = β2. (3.5)

The equation (3.5) can be written as (b + 2)2 − β2 = 2. The lemma 2.2 from [49]
is applicable to this equation. Applying this lemma, we get

b =
t2 − 4 t+ 2

2 t
, β =

t2 − 2

2 t
(3.6)
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for some rational t 6= 0. Note that the condition b (1 + b) 6= 0 derived from (2.1)
for c = 0 implies no restrictions for t since the equations

t2 − 4 t+ 2

2 t
= 0,

t2 − 4 t+ 2

2 t
= −1

have no rational roots. Now, substituting b from (3.6) into the quadratic equations
(3.3), we can find their roots. Since the roots x = 0 and d = −1 of the cubic
equations (3.1) are already known, we can write formulas for all their roots:

x1 = 0, x2 =
−t (t− 2)

(t− 1)2 + 1
, x3 =

2 (t− 1)

(t− 1)2 + 1
,

(3.7)

d1 = −1, d2 =
−2 (t− 1)

(t− 1)2 + 1
, d3 =

t (t− 2)

(t− 1)2 + 1
.

Taking into account the formula for b in (3.6), we transform (3.2) to

E21 =
2 t (t2 − 3 t+ 2)

(t− 1)2 + 1
, E11 =

−2 t

(t− 1)2 + 1
, E12 = 1. (3.8)

Now, if we substitute the formulas (3.7) and (3.8) into (1.5), we find that the
auxiliary equations (1.5) are fulfilled. Similarly, substituting (3.7) along with L = 1
into (1.1), we find that the cuboid equations (1.1) are also fulfilled. However, the
formulas (3.7) do not provide a perfect cuboid since x1 is zero and d1 is negative.

Theorem 3.1. If c = 0 and b (1 + b) 6= 0, then the cubic polynomials in (1.2) and
(1.3) are reducible over Q. Moreover, if b is given by the first formula (3.6) for some

rational t 6= 0, then each of the cubic equations (1.2) and (1.3) has three rational

roots satisfying the auxiliary equations (1.5) but not resolving the problem 1.2.

4. The third reducibility case c = 1.

The case c = 1 is similar to the previous case c = 0. The non-vanishing condition
(2.1) in this case turns to b 6= −1. The cubic equations (1.2) and (1.3) turn to

x
(

2 (1 + b)2 x2 − (2 b+ 2)x− b (b+ 2)
)

= 0,

(d+ 1)
(

2 (1 + b)2 d2 − (2 b+ 2) d− b (b+ 2)
)

= 0.
(4.1)

Substituting c = 1 into the formulas (1.17), (1.18), and (1.12), we obtain

E21 =
b (b+ 2)

2 (1 + b)2
, E11 =

b

1 + b
, E12 = −1. (4.2)

The equations (4.1) are already factored. Upon splitting out linear terms they
turn to quadratic equations. These two quadratic equations do coincide with each
other up to the change of x for d and vice versa:

2 (1 + b)2 x2 − (2 b+ 2)x− b (b+ 2) = 0,

2 (1 + b)2 d2 − (2 b+ 2) d− b (b+ 2) = 0.
(4.3)
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Certainly, the discriminants of the coinciding equations (4.3) do also coincide:

D = 4 (2 b2 + 4 b+ 1) (b+ 1)2. (4.4)

The formula (4.4) means that in order to solve the equations (4.3) in rational
numbers one should resolve the following quadratic equation in rational numbers:

2 b2 + 4 b+ 1 = β2. (4.5)

If b = 0, then (4.5) implies β = ± 1, which yields two trivial rational solutions for
the equation (4.5). If b 6= 0, we can write the equation (4.5) as

1

b2
+

4

b
+ 2 =

β 2

b2
. (4.6)

The equation (4.6) is very similar to (3.5). Therefore the formulas (3.6) yield

1

b
=

t2 − 4 t+ 2

2 t
,

β

b
=

t2 − 2

2 t
(4.7)

for some rational t 6= 0. Then the formulas (4.7) can be transformed to

b =
2 t

(t− 2)2 − 2
, β =

t2 − 2

(t− 2)2 − 2
. (4.8)

Note that the formulas (4.8) are consistent since their denominators cannot vanish
for any rational t. Note also that one of the above trivial solutions with b = 0 and
β = −1 can be obtained from (4.8) for t = 0. In order to cover the other trivial
solution with b = 0 and β = 1 we need to add the following sign option to (4.8):

b =
2 t

(t− 2)2 − 2
, β = ±

t2 − 2

(t− 2)2 − 2
. (4.9)

Due to these observations the restriction t 6= 0 is removed and the formulas (4.9)
cover all rational solutions of the equation (4.5). The condition b 6= −1 derived
from (2.1) for c = 1 implies no restrictions for t since the equation

2 t

(t− 2)2 − 2
= −1

has no rational roots. Now we can substitute b from (4.9) into the quadratic equa-
tions (4.3) and find their roots. Since the roots x = 0 and d = −1 of the cubic
equations (4.1) are already known, we can write formulas for all their roots:

x1 = 0, x2 =
t (t− 2)

(t− 1)2 + 1
, x3 =

−2 (t− 1)

(t− 1)2 + 1
,

(4.10)

d1 = −1, d2 =
−2 (t− 1)

(t− 1)2 + 1
, d3 =

t (t− 2)

(t− 1)2 + 1
.
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Taking into account the formula for b in (4.9), we transform (4.2) to

E21 =
2 (t2 − 3 t+ 2) t

((t− 1)2 + 1)2
, E11 =

2 t

(t− 1)2 + 1
, E12 = −1. (4.11)

Now, if we substitute the formulas (4.10) and (4.11) into (1.5), we find that the
auxiliary equations (1.5) are fulfilled. Similarly, substituting (4.10) along with
L = 1 into (1.1), we find that the cuboid equations are also fulfilled. But again, the
formulas (4.10) do not provide a perfect cuboid since x1 is zero and d1 is negative.

Theorem 4.1. If c = 1 and b 6= −1, then the cubic polynomials in (1.2) and (1.3)
are reducible over Q. Moreover, if b is given by the first formula (4.9) for some

rational t, then each of the cubic equations (1.2) and (1.3) has three rational roots

satisfying the auxiliary equations (1.5) but not resolving the problem 1.2.

5. The fourth reducibility case c = 2.

The case c = 2 is similar to both of the previous cases c = 0 and c = 1. The
non-vanishing condition (2.1) in this case turns to b 6= 1. The cubic equations (1.2)
and (1.3) in this case turn to the following ones:

x
(

2 (b− 1)2 x2 + 2 (b− 1)x− b (b− 2)
)

= 0,

(d+ 1)
(

2 (b− 1)2 d2 − 2 (b− 1) d− b (b− 2)
)

= 0.
(5.1)

Substituting c = 2 into the formulas (1.17), (1.18), and (1.12), we obtain

E21 = −
b (b− 2)

2 (b− 1)2
, E11 = −

b

b− 1
, E12 = −1. (5.2)

The equations (5.1) are already factored. If we split off the linear terms, they
turn to quadratic equations. These two quadratic equations are very similar:

2 (b− 1)2 x2 + 2 (b− 1)x− b (b− 2) = 0,

2 (b− 1)2 d2 − 2 (b− 1) d− b (b− 2) = 0.
(5.3)

The discriminants of the quadratic equations (5.3) do coincide:

D = 4 (2 b2 − 4 b+ 1) (b− 1)2. (5.4)

The formula (5.4) means that in order to solve the equations (5.3) in rational
numbers one should resolve the following quadratic equation in rational numbers:

2 b2 − 4 b+ 1 = β2. (5.5)

The equation (5.5) is similar to the equation (4.5). If b = 0, then it has two trivial
solutions with β = ± 1. If b 6= 0, we can write the equation (5.5) as

(

1

b
− 2

)2

−
β2

b2
= 2. (5.6)
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The lemma 2.2 from [49] is applicable to the equation (5.6). This lemma yields

1

b
=

t2 + 4 t+ 2

2 t
,

β

b
=

t2 − 2

2 t
(5.7)

for some rational t 6= 0. Now the formulas (5.7) can be transformed to

b =
2 t

(t+ 2)2 − 2
, β =

t2 − 2

(t+ 2)2 − 2
. (5.8)

Like (4.8), the formulas (5.8) are consistent since their denominators cannot vanish
for any rational t. One of the above trivial solutions with b = 0 and β = −1 can
be obtained from (5.8) for t = 0. In order to cover the other trivial solution with
b = 0 and β = 1 we need to add the following sign option to (5.8):

b =
2 t

(t+ 2)2 − 2
, β = ±

t2 − 2

(t+ 2)2 − 2
. (5.9)

Due to the above observations the restriction t 6= 0 is removed and the formulas
(5.9) cover all rational solutions of the equation (5.5). The condition b − 1 6= 0
derived from (2.1) for c = 2 implies no restrictions for t since the equation

2 t

(t+ 2)2 − 2
= 1

has no rational roots. Now we can substitute b from (5.9) into the quadratic equa-
tions (5.3) and find their roots. Since the roots x = 0 and d = 1 of the cubic
equations (5.1) are already known, we can write formulas for all their roots:

x1 = 0, x2 =
2 (t+ 1)

(t+ 1)2 + 1
, x3 =

t (t+ 2)

(t+ 1)2 + 1
,

(5.10)

d1 = 1, d2 =
−t (t+ 2)

(t+ 1)2 + 1
, d3 =

−2 (t+ 1)

(t+ 1)2 + 1
.

Taking into account the formula for b in (5.9), the formula (5.2) is transformed to

E21 =
2 (t2 + 3 t+ 2) t

((t+ 1)2 + 1)2
, E11 =

2 t

(t+ 1)2 + 1
, E12 = −1. (5.11)

If we substitute the formulas (5.10) and (5.11) into (1.5), we find that the auxiliary
equations (1.5) are fulfilled. Similarly, substituting (5.10) into (1.1) along with
L = 1, we find that the cuboid equations are also fulfilled. But, like in the previous
cases, the formulas (5.10) do not provide a perfect cuboid since x1 is zero.

Theorem 5.1. If c = 2 and b 6= 1, then the cubic polynomials in (1.2) and (1.3)
are reducible over Q. Moreover, if b is given by the first formula (5.9) for some

rational t, then each of the cubic equations (1.2) and (1.3) has three rational roots

satisfying the auxiliary equations (1.5) but not resolving the problem 1.2.
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6. Some other reducibility cases.

Note that in each of the previous four cases the cubic equation (1.2) has the root
x = 0. The necessary and sufficient condition for that is written as

P (x) = E30 = 0, (6.1)

where P (x) is the cubic polynomial in the left hand side of the equation (1.2).
Looking at the formulas (6.1) and (1.20), we see that along with the conditions
b = 0, c = 0, c = 1, c = 2, which were already considered in the previous cases,
there are the following two conditions for vanishing E30:

b c2 − 4 b c+ 4 b+ 2 = 0, (6.2)

2 b c2 − 4 b c+ 2 b− c2 = 0. (6.3)

Let’s denoter throughQ(d) the cubic polynomial in the left hand side of the equation
(1.3). Then one can easily derive the following formulas:

Q(−1) = −(c− 1)2 (b c2 − 4 b c+ 4 b+ 2)2 b2 c2 ×

× (b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)−1 × (6.4)

× (b c− 1− b)−2 (b c− c− 2 b)−2,

Q(1) = (c− 2)2 (2 b c2 − 4 b c+ 2 b− c2)2 b2 ×

× (b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)−1 × (6.5)

× (b c− 1− b)−2 (b c− c− 2 b)−2.

Comparing (6.2) with (6.4), we see that the condition (6.2) implies Q(−1) = 0. Sim-
ilarly, comparing (6.3) with (6.5), we find that the condition (6.3) implies Q(1) = 0.
These observations yield the following theorems.

Theorem 6.1. If the condition (6.2) is fulfilled, then both cubic equations (1.2)
and (1.3) are reducible. In this case the first of them has the root x = 0, while the

second has the root d = −1.

Theorem 6.2. If the condition (6.3) is fulfilled, then both cubic equations (1.2)
and (1.3) are reducible. In this case the first of them has the root x = 0, while the

second has the root d = 1.

7. The fifth reducibility case.

The fifth reducibility case is defined by the condition (6.2). The equality (6.2)
is linear with respect to b. It can be resolved as follows:

b =
−2

(c− 2)2
. (7.1)

Substituting (7.1) into the formulas (1.14), (1.15), and (1.20), we find that the first
cubic equation (1.2) reduces to the following one:

x
(

(c2 − 2 c+ 2)x+ 2 (c− 1)
)(

(c2 − 2 c+ 2)x− c (c− 2)
)

= 0. (7.2)
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It is easy to see that the equation (7.2) has three rational roots

x1 = 0, x2 =
−2 (c− 1)

(c− 1)2 + 1
, x3 =

c (c− 2)

(c− 1)2 + 1
. (7.3)

Now let’s substitute (7.1) into the formulas (1.13), (1.16), and (1.19). As a result
we find that the second cubic equation (1.3) reduces to the following one:

(d+ 1)
(

(c2 − 2 c+ 2) d− 2 (c− 1)
)(

(c2 − 2 c+ 2) d− c (c− 2)
)

= 0. (7.4)

Again, it is easy to see that the equation (7.4) has three rational roots

d1 = −1, d2 =
c (c− 2)

(c− 1)2 + 1
, d3 =

2 (c− 1)

(c− 1)2 + 1
. (7.5)

Now let’s substitute (7.1) into the formulas (1.17), (1.18), and (1.12). This yields

E21 =
2 (c− 2) (c− 1) c

((c− 1)2 + 1)2
,

E11 =
2 ((c− 2)2 − 2) (c− 2)

((c− 1)2 + 1)2
, (7.6)

E12 =
−((c− 2)2 − 2) (c2 − 2)

((c− 1)2 + 1)2
.

If we substitute the formulas (7.3), (7.5), and (7.6) into (1.5), we find that the
auxiliary equations (1.5) are fulfilled. Similarly, substituting (7.3) and (7.5) along
with L = 1 into the equations (1.1), we find that the cuboid equations are also
fulfilled. But, like in the previous cases, the formulas (7.3) and (7.5) do not provide
a perfect cuboid since x1 is zero.

Note that (7.1) provides the restriction c 6= 2. Substituting (7.1) into (2.1), we
get the condition (c− 1)2 + 1 6= 0 which is fulfilled for all rational c. Summarizing
the results of this section, we can formulate the following theorem.

Theorem 7.1. If c 6= 2 and b (c− 2)2 = −2, then the cubic polynomials in (1.2)
and (1.3) are reducible over the field of rational numbers Q. Moreover, each of

the cubic equations (1.2) and (1.3) has three rational roots satisfying the auxiliary

equations (1.5) but not resolving the problem 1.2.

8. The sixth reducibility case.

The sixth reducibility case is defined by the condition (6.3). The equality (6.3)
is linear with respect to b. It can be resolved as follows:

b =
c2

2 (c− 1)2
. (8.1)

Substituting (8.1) into the formulas (1.14), (1.15), and (1.20), we find that the first
cubic equation (1.2) reduces to the following one:

x
(

(c2 − 2 c+ 2)x+ 2 (c− 1)
)(

(c2 − 2 c+ 2)x− c (c− 2)
)

= 0. (8.2)
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It is easy to see that the equation (8.2) has three rational roots

x1 = 0, x2 =
−2 (c− 1)

(c− 1)2 + 1)
x3 =

c (c− 2)

(c− 1)2 + 1
. (8.3)

Now let’s substitute (8.1) into the formulas (1.13), (1.16), and (1.19). As a result
we find that the second cubic equation (1.3) reduces to the following one:

(d− 1)
(

(c2 − 2 c+ 2) d− 2 (c− 1)
)(

(c2 − 2 c+ 2) d− c (c− 2)
)

= 0. (8.4)

Again, it is easy to see that the equation (8.4) has three rational roots

d1 = 1, d2 =
c (c− 2)

(c− 1)2 + 1
, d3 =

2 (c− 1)

(c− 1)2 + 1
. (8.5)

The formulas (8.3) and (8.5) are almost identical to the formulas (7.3) and (7.5).
The only difference is the sign of d1.

Now let’s substitute (7.1) into the formulas (1.17), (1.18), and (1.12). This yields

E21 = −
2 (c− 2) (c− 1) c

((c− 1)2 + 1)2
,

E11 =
2 c ((c− 2)2 − 2) (c− 1)

((c− 1)2 + 1)2
, (8.6)

E12 =
((c− 2)2 − 2) (c2 − 2)

((c− 1)2 + 1)2
.

If we substitute the formulas (8.3), (8.5), and (8.6) into (1.5), we find that the
auxiliary equations (1.5) are fulfilled. Similarly, substituting (8.3) and (8.5) along
with L = 1 into the equations (1.1), we find that the cuboid equations are also
fulfilled. But like in all previous cases, the formulas (8.3) and (8.5) do not provide
a perfect cuboid since x1 is zero.

Note that (8.1) provides the restriction c 6= 1. Substituting (7.1) into (2.1), we
get the condition c ((c − 2)2 + 1) 6= 0, which reduces to c 6= 0 since (c − 2)2 + 1
is always positive. Summarizing the results of this section, we can formulate the
following theorem.

Theorem 8.1. If c 6= 0, c 6= 1, and 2 b (c−1)2 = c2, then the cubic polynomials in

(1.2) and (1.3) are reducible over the field of rational numbers Q. Moreover, each of

the cubic equations (1.2) and (1.3) has three rational roots satisfying the auxiliary

equations (1.5) but not resolving the problem 1.2.

9. Concluding remarks.

Six special cases of reducibility considered in the above sections do not exhaust
all of the cases where the cubic equations (1.2) and (1.3) are reducible over Q.
There is one very special case with the following values of b and c:

b =
14

5
, c = −

7

2
.
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In this very special case the equations (1.2) and (1.3) are factored as follows:

(17 x+ 15) (9248 x2 + 3128 x− 495) = 0,

(17 d+ 8) (9248 d2 − 952 d− 8175) = 0.
(9.1)

The search for such special cases of reducibility like (9.1) is planned for the future.
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18. Lagrange J., Sur le dérivé du cuboide Eulérien, Canad. Math. Bull. 22 (1979), no. 2, 239–241.

19. Leech J., A remark on rational cuboids, Canad. Math. Bull. 24 (1981), no. 3, 377–378.

20. Korec I., Nonexistence of small perfect rational cuboid, Acta Math. Univ. Comen. 42/43
(1983), 73–86.

21. Korec I., Nonexistence of small perfect rational cuboid II, Acta Math. Univ. Comen. 44/45
(1984), 39–48.

22. Wells D. G., The Penguin dictionary of curious and interesting numbers, Penguin publishers,
London, 1986.

23. Bremner A., Guy R. K., A dozen difficult Diophantine dilemmas, Amer. Math. Monthly 95
(1988), no. 1, 31–36.

24. Bremner A., The rational cuboid and a quartic surface, Rocky Mountain J. Math. 18 (1988),
no. 1, 105–121.

25. Colman W. J. A., On certain semiperfect cuboids, Fibonacci Quart. 26 (1988), no. 1, 54–57;
see also Some observations on the classical cuboid and its parametric solutions, Fibonacci

Quart. 26 (1988), no. 4, 338–343.

26. Korec I., Lower bounds for perfect rational cuboids, Math. Slovaca 42 (1992), no. 5, 565–582.

27. Guy R. K., Is there a perfect cuboid? Four squares whose sums in pairs are square. Four

squares whose differences are square, Unsolved Problems in Number Theory, 2nd ed., Springer-
Verlag, New York, 1994, pp. 173–181.

28. Rathbun R. L., Granlund T., The integer cuboid table with body, edge, and face type of

solutions, Math. Comp. 62 (1994), 441–442.

http://en.wikipedia.org/wiki/Euler_brick


14 RUSLAN SHARIPOV

29. Van Luijk R., On perfect cuboids, Doctoraalscriptie, Mathematisch Instituut, Universiteit
Utrecht, Utrecht, 2000.

30. Rathbun R. L., Granlund T., The classical rational cuboid table of Maurice Kraitchik, Math.
Comp. 62 (1994), 442–443.

31. Peterson B. E., Jordan J. H., Integer hexahedra equivalent to perfect boxes, Amer. Math.
Monthly 102 (1995), no. 1, 41–45.

32. Rathbun R. L., The rational cuboid table of Maurice Kraitchik, e-print math.HO/0111229 in
Electronic Archive http://arXiv.org.

33. Hartshorne R., Van Luijk R., Non-Euclidean Pythagorean triples, a problem of Euler, and ra-

tional points on K3 surfaces, e-print math.NT/0606700 in Electronic Archive http://arXiv.org.

34. Waldschmidt M., Open diophantine problems, e-print math.NT/0312440 in Electronic Archive
http://arXiv.org.

35. Ionascu E. J., Luca F., Stanica P., Heron triangles with two fixed sides, e-print math.NT/0608
185 in Electronic Archive http://arXiv.org.

36. Ortan A., Quenneville-Belair V., Euler’s brick, Delta Epsilon, McGill Undergraduate Mathe-
matics Journal 1 (2006), 30-33.

37. Knill O., Hunting for Perfect Euler Bricks, Harvard College Math. Review 2 (2008), no. 2,
102; see also http://www.math.harvard.edu/˜knill/various/eulercuboid/index.html.

38. Sloan N. J. A, Sequences A031173, A031174, and A031175, On-line encyclopedia of integer
sequences, OEIS Foundation Inc., Portland, USA.

39. Stoll M., Testa D., The surface parametrizing cuboids, e-print arXiv:1009.0388 in Electronic
Archive http://arXiv.org.

40. Sharipov R. A., A note on a perfect Euler cuboid., e-print arXiv:1104.1716 in Electronic
Archive http://arXiv.org.

41. Sharipov R. A., Perfect cuboids and irreducible polynomials, Ufa Mathematical Journal 4,
(2012), no. 1, 153–160; see also e-print arXiv:1108.5348 in Electronic Archive http://arXiv.org.

42. Sharipov R. A., A note on the first cuboid conjecture, e-print arXiv:1109.2534 in Electronic
Archive http://arXiv.org.

43. Sharipov R. A., A note on the second cuboid conjecture. Part I, e-print arXiv:1201.1229 in
Electronic Archive http://arXiv.org.

44. Sharipov R. A., A note on the third cuboid conjecture. Part I, e-print arXiv:1203.2567 in
Electronic Archive http://arXiv.org.

45. Sharipov R. A., Perfect cuboids and multisymmetric polynomials, e-print arXiv:1205.3135 in
Electronic Archive http://arXiv.org.

46. Sharipov R. A., On an ideal of multisymmetric polynomials associated with perfect cuboids,
e-print arXiv:1206.6769 in Electronic Archive http://arXiv.org.

47. Sharipov R. A., On the equivalence of cuboid equations and their factor equations, e-print
arXiv:1207.2102 in Electronic Archive http://arXiv.org.

48. Sharipov R. A., A biquadratic Diophantine equation associated with perfect cuboids, e-print
arXiv:1207.4081 in Electronic Archive http://arXiv.org.

49. Ramsden J. R., A general rational solution of an equation associated with perfect cuboids,
e-print arXiv:1207.5339 in Electronic Archive http://arXiv.org.

50. Ramsden J. R., Sharipov R. A., Inverse problems associated with perfect cuboids, e-print
arXiv:1207.6764 in Electronic Archive http://arXiv.org.

51. Symmetric polynomial, Wikipedia, Wikimedia Foundation Inc., San Francisco, USA.
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