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Abstract

We study the number of 231-avoiding permutations with j-descents and maximum

drop is less than or equal to k which we denote by a
(k)
n,231,j . We show that a

(k)
n,231,j also

counts the number of Dyck paths of length 2n with n− j peaks and height ≤ k + 1,
and the number of ordered trees with n edges, j + 1 internal nodes, and of height

≤ k+1. We show that the generating functions for the a
(k)
n,231,js with k fixed satisfy a

simple recursion. We also use the combinatorics of ordered trees to prove new explicit

formulas for a
(k)
n,231,j as a function of n in a number of special values of j and k and

prove a simple recursion for the a
(k)
n,231,js.

Keywords: permutation statistics, 231-avoiding permutations, descents, drops, trees,
Dyck paths.

1 Introduction

In [2], Chung, Claesson, Dukes, and Graham studied generating functions for permutations
according to the number of descents and the maximum drop. Here if σ = σ1 . . . σn is a
permutation in the symmetric group Sn, then we say that σ has drop at i if σi < i and σ
has a descent at i if σi > σi+1. MacMahon proved that the number of permutations with k
descents is equal to the number of permutations with k drops. Let [n] = {1, 2, . . . , n}. We
let DES(σ) = {i ∈ [n] : σi > σi+1}, des(σ) = |DES(σ)|, and maxdrop(σ) = max{i− σi : i ∈
[n]}. We let B(k)

n denote the set of permutations σ ∈ Sn such that maxdrop(σ) ≤ k.

There is another interpretation of B(k)
n in terms of the classic bubble sort, which we de-

note by bubble. Let bsc(σ) = min{i : bubblei(σ) = id}, i.e. bsc(σ) is the minimum number
of times that bubble must be applied to σ in order to reach the identity permutation. An
inductive argument shows that bsc(σ) = maxdrop(σ), thus B(k)

n is the set of permutations
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in Sn which can be sorted by applying bubble k times. Additionally, the permutations in
B(k)
n are in bijective correspondence with certain juggling sequences (see [2]).
Let

A(k)
n (x) =

∑

σ∈B
(k)
n

xdes(σ) =

n−1∑

j=0

a
(k)
n,jx

j .

Note that for k ≥ n− 1, B(k)
n = Sn and A

(k)
n (x) becomes the classic Eulerian polynomial

An(x) =
∑

σ∈Sn

xdes(σ) =

n−1∑

j=0

an,jx
j .

The coefficient an,j is the number of permutations in Sn with j descents. These coefficients
are called Eulerian numbers. For convenience we let A0(x) = 1.

In [2], the authors show that for n ≥ 0, A
(k)
n (x) satisfies the following recurrence

A
(k)
n+k+1(x) =

k+1∑

i=1

(
k + 1

i

)
(x− 1)i−1A

(k)
n+k+1−i(x),

with the initial conditions A
(k)
i (x) = Ai(x) for 0 ≤ i ≤ k. This recurrence is equivalent to

the following generating function formula

A(k)(x, t) =
∑

n≥0

A(k)
n (x)tn =

1 +
∑k

r=1

(
Ar(x)−

∑r

i=1

(
k+1
i

)
(x− 1)i−1Ar−i(x)

)
tr

1−∑k+1
i=1

(
k+1
i

)
ti(x− 1)i−1

.

They also find an explicit formula for a
(k)
n,j. Let

Pk(u) =

k∑

r=0

Ak−r(u
k+1)(uk+1 − 1)r

k∑

i=r

(
i

r

)
u−i,

and let
∑

r

βk(r)u
r = Pk(u)

(
1− uk+1

1− u

)n−k

,

then
A(k)

n (x) =
∑

j

βk((k + 1)j)xj .

In other words, the coefficients a
(k)
n,j of the polynomial A

(k)
n (x) have the remarkable property

that they are given by every (k + 1)-st coefficient in the polynomial

Pk(u)(1 + u+ u2 + · · ·+ uk)n−k.

For example setting n = 4 and k = 2 we have

P2(u)(1 + u+ u2)4−2 = (1 + u+ 2u2 + u3 + u4)(1 + u+ u2)2
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= 1 + 3u+ 7u2 + 10u3 + 12u4 + 10u5 + 7u6 + 3u7 + u8.

So the coefficients of A
(2)
4 (x) are given by every third coefficient in the above polynomial,

that is
A

(2)
4 (x) = 1 + 10x+ 7x2.

We now turn our attention to pattern avoidance. Given a sequence σ = σ1 . . . σn

of distinct integers, let red(σ) be the permutation found by replacing the i-th smallest
integer that appears in σ by i. For example, if σ = 2754, then red(σ) = 1432. Given a
permutation τ = τ1 . . . τj in the symmetric group Sj , we say that the pattern τ occurs in
σ = σ1 . . . σn ∈ Sn provided there exists 1 ≤ i1 < · · · < ij ≤ n such that red(σi1 . . . σij ) = τ .
We say that a permutation σ avoids the pattern τ if τ does not occur in σ. Let Sn(τ) denote
the set of permutations in Sn which avoid τ . In the theory of permutation patterns (see
[6] for a comprehensive introduction to the area), τ is called a classical pattern. We let

B(k)
n,τ = Sn(τ) ∩ B(k)

n . Thus B(k)
n,τ is the set of σ ∈ Sn such that maxdrop(σ) ≤ k and σ

avoids τ . For k ≥ 1, we let E (k)
n,τ = B(k)

n,τ − B(k−1)
n,τ . Thus E (k)

n,τ is the set of σ ∈ Sn such that
maxdrop(σ) = k and σ avoids τ . We let

A(k)
n,τ (x) =

∑

σ∈B
(k)
n,τ

xdes(σ) =
n−1∑

j=0

a
(k)
n,τ,jx

j and

E(k)
n,τ (x) =

∑

σ∈E
(k)
n,τ

xdes(σ) =

n−1∑

j=0

e
(k)
n,τ,jx

j .

Let
A(k)

τ (x, t) = 1 +
∑

n≥1

A(k)
n,τ(x)t

n (1)

and
E(k)

τ (x, t) = 1 +
∑

n≥1

E(k)
n,τ(x)t

n (2)

Note that for k ≥ 1, E
(k)
n,τ (x) = A

(k)
n,τ(x) − A

(k−1)
n,τ (x) so that E

(k)
n,τ (x, t) = A

(k)
τ (x, t) −

A
(k−1)
τ (x, t).

The main goal of this paper is to study the generating functions A
(k)
231(x, t) and E

(k)
231(x, t).

We remark that the set B(k)
n,231 can also be interpreted in terms of sorting algorithms.

The 231-avoiding permutations are precisely the permutations which can be sorted by one
application of the stack sort, which we denote by stack (see [10]). So B(k)

n,231 = {σ ∈ Sn :

bubble
k(σ) = id, and stack(σ) = id}, i.e. the permutations in Sn which can be sorted by

one stack sort, but require k bubble sorts to be sorted.
Note that the only permutation σ ∈ Sn such that maxdrop(σ) = 0 is the identity

permutation σ = 123 . . . n which is 231-avoiding. Thus A
(0)
n,231(x) = 1 for all n ≥ 1 so that

A
(0)
231(x, t) =

1

1− t
. (3)
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Our key theorem is to show that generating functions A
(k)
231(x, t) for k ≥ 1 satisfy the

following simple recursion.

Theorem 1. For all k ≥ 1,

A
(k)
231(x, t) =

1

1− t+ tx− txA
(k−1)
231 (x, t)

(4)

where

A
(0)
231(x, t) =

1

1− t
.

Theorem 1 allowed us to explicitly compute the values of a
(k)
n,231,j and e

(k)
n,231,j for small

values of j, k, and n which lead us to conjecture a number of simple formulas for a
(k)
n,231,j

and e
(k)
n,231,j in certain special cases. For example, we shall show that for all n, j ≥ 1 and all

k ≥ j, a
(k)
n,231,j = N(n, n − j) = 1

n

(
n

j

)(
n

j+1

)
and e

(j)
n,231,j =

(
n+j−1

2j

)
. Here the N(n, j)s are the

Narayana numbers which count the number of Dyck paths of length 2n with j peaks and
the number of ordered trees n edges and k leaves. This suggested that the numbers a

(k)
n,231,j

should also have natural combinatorial interpretations in terms of Dyck paths and ordered
trees. In fact, we construct bijections to show that a

(k)
n,231,j is the number of ordered trees

with height less than or equal to k+1, n edges, and j+1 internal nodes and is the number
of Dyck paths of length 2n with n− j peaks and height less than or equal to k + 1.

Kemp [5] gave a general formula for the number of ordered trees with with height less
than or equal to k, n edges, and j internal nodes so that we have a general formula for
a
(k)
n,231,j . However, in many cases, Kemp’s formula is unnecessarily complicated so that

we use the combinatorics of ordered trees to derive an number of elegant formulas and
recursions for the a

(k)
n,231,js. For example, we shall show that

a
(j−2)
n,231,j =

1

n

(
n

j

)(
n

j + 1

)
−
(
n+ j − 1

2j

)
− (2j − 3)

(
n + j − 2

2j

)

and that the a
(k)
n,231,js satisfy the following simple recursion:

a
(k)
n,231,j =

j∑

i=0

a
(k−1)
j,231,i

(
n+ i

2j

)
.

The outline of this paper is a follows. In section 2, we shall prove theorem 1 as well
as provide simple proofs of the fact that a

(k)
n,231,1 =

(
n

2

)
for all k ≥ 1 and n ≥ 2, a

(k)
n,231,2 =

(n−1)2((n−1)2−1)
12

for all k ≥ 2 and n ≥ 3, and that e
(2)
n,231,2 =

(
n+1
4

)
for all n ≥ 3. In section 3,

we shall prove our alternative combinatorial interpretations of a
(k)
n,231,j in terms of ordered

trees and Dyck paths. In section 4, we shall use the combinatorics of ordered trees to
prove a number of formulas for a

(k)
n,231,j and e

(k)
n,231,j as well as derive a new recursion for the

a
(k)
n,231,js. Finally, in section 5, we shall briefly discuss some combinatorial identities that

arise by comparing Kemp’s formula and our formulas.
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2 Proof of Theorem 1

In this section, we shall prove Theorem 1. The proof proceeds by classifying the 231-
avoiding permutations σ = σ1 . . . σn by the position of n in σ. Clearly each σ ∈ Sn(231)
has the structure pictured in Figure 1. That is, in the graph of σ, the elements to the left
of n, Ci(σ), have the structure of a 231-avoiding permutation, the elements to the right of
n, Di(σ), have the structure of a 231-avoiding permutation, and all the elements in Ci(σ)
lie below all the elements in Di(σ). Note that the number of 231-avoiding permutations in
Sn is the Catalan number Cn = 1

n+1

(
2n
n

)
and the generating function for the Cn’s is given

by

C(t) =
∑

n≥0

Cnt
n =

1−
√
1− 4t

2t
=

2

1 +
√
1− 4t

. (5)

1

1

n

n

i

σi

σi

C (   )

D (   )

Figure 1: The structure of 231-avoiding permutations.

Suppose that k ≥ 1 and n ≥ 2. Let B(k)
n,i,231 denote the set of σ ∈ B(k)

n,231 such that

σi = n. Clearly if σ ∈ B(k)
n,i,231, then Ci(σ) must be a permutation in Si−1(231) such that

maxdrop(Ci(σ)) ≤ k. Similarly, τ = red(Di(σ)) must be a permutation in Sn−i(231) such
that maxdrop(τ) ≤ k − 1. That is, we can consider Di(σ) as a map from {(i + 1, . . . , i +
(n− i)} into {(i− 1+ 1, . . . , (i− 1) + (n− i)}. Thus for j = 1, . . . , n− i, a drop j − τj in τ
corresponds to a drop i+ j− (i−1+ τj) = i+ j−σi+j −1 in σ. Thus the drop at position j
in τ is one less than the drop at position i+ j in σ. Now if i ≤ n− 1, then σi = n will start
a descent in σ. Thus the possible choices for Ci(σ) will contribute a factor of A

(k)
i−1,231(x) to∑

σ∈B
(k)
n,i,231

xdes(σ) and the possible choices for Di(σ) will contribute a factor of A
(k−1)
n−i,231(x)

to
∑

σ∈B
(k)
n,i,231

xdes(σ). Thus the contribution of the permutations in B(k)
n,i,231 to A

(k)
n,231(x) is

xA
(k)
i−1,231(x)A

(k−1)
n−i,231(x). Finally, it is easy to see that the contribution of the permutations

5



in B(k)
n,n,231 to A

(k)
n,231(x) is just A

(k)
n−1,231(x). It follows that for n ≥ 2,

A
(k)
n,231(x) = A

(k)
n−1,231(x) + x

n−1∑

i=1

A
(k)
i−1,231(x)A

(k−1)
n−i,231(x). (6)

Note that A
(k)
1,231(x) = 1 so that if we define A

(k)
0,231(x) = 1, then (6) also holds for n = 1.

Multiplying both sides of (6) by tn and summing for n ≥ 1, we see that for k ≥ 1,

A
(k)
231(x, t)− 1 = tA

(k)
231(x, t) + t

∑

n≥1

tn−1x
n−1∑

i=1

A
(k)
i−1,231(x)A

(k−1)
n−i,231(x)

= tA
(k)
231(x, t) + txA

(k)
231(x, t)(A

(k−1)
231 (x, t)− 1).

Solving this equation for A
(k)
231(x, t), we see that

A
(k)
231(x, t) =

1

1− t+ xt− xtA
(k−1)
231 (x, t)

(7)

which proves Theorem 1.
One can use Mathematica to calculate the first few of the generating functions A

(k)
231(x, t).

A
(0)
231(x, t) =

1

1− t
,

A
(1)
231(x, t) =

1− t

1− 2t+ (1− x)t2
,

A
(2)
231(x, t) =

1− 2t+ (1− x)t2

1− 3t+ (3− 2x)t2 − (1− x)2t3
,

A
(3)
231(x, t) =

1− 3t+ (3− 2x)t2 − (1− x)2t3

1− 4t+ 3(x− 2)t2 − 2(2− 3x2
x)t

3 + (1− x)3t4
,

A
(4)
231(x, t) =

1− 4t + 3(x− 2)t2 − 2(2− 3x2
x)t

3 + (1− x)3t4

1− 5t+ (10− 4x)t2 − (10− 12x+ 3x2)t3 − (1− x)2(2x− 5)t4 − (1− x)4t5
.

One can also use Mathematica to find the initial terms of the generating function
A

(k)
231(t, x). For example, we have computed that

A
(1)
231(t, x)

= 1 + t + (1 + x)t2 + (1 + 3x)t3 +
(
1 + 6x+ x2

)
t4 +

(
1 + 10x+ 5x2

)
t5+

(
1 + 15x+ 15x2 + x3

)
t6 +

(
1 + 21x+ 35x2 + 7x3

)
t7+

(
1 + 28x+ 70x2 + 28x3 + x4

)
t8 +

(
1 + 36x+ 126x2 + 84x3 + 9x4

)
t9+

(
1 + 45x+ 210x2 + 210x3 + 45x4 + x5

)
t10+

(
1 + 55x+ 330x2 + 462x3 + 165x4 + 11x5

)
t11 + · · ·

6



A
(2)
231(t, x)

= 1 + t + (1 + x)t2 +
(
1 + 3x+ x2

)
t3 +

(
1 + 6x+ 6x2

)
t4 +

(
1 + 10x+ 20x2 + 3x3

)
t5+

(
1 + 15x+ 50x2 + 22x3 + x4

)
t6 +

(
1 + 21x+ 105x2 + 91x3 + 15x4

)
t7+

(
1 + 28x+ 196x2 + 280x3 + 100x4 + 5x5

)
t8+

(
1 + 36x+ 336x2 + 714x3 + 444x4 + 65x5 + x6

)
t9+

(
1 + 45x+ 540x2 + 1596x3 + 1530x4 + 441x5 + 28x6

)
t10+

(
1 + 55x+ 825x2 + 3234x3 + 4422x4 + 2101x5 + 301x6 + 7x7

)
t11 + · · ·

A
(3)
231(t, x)

= 1 + t+ (1 + x)t2 +
(
1 + 3x+ x2

)
t3 +

(
1 + 6x+ 6x2 + x3

)
t4+

(
1 + 10x+ 20x2 + 10x3

)
t5 +

(
1 + 15x+ 50x2 + 50x3 + 6x4

)
t6+

(
1 + 21x+ 105x2 + 175x3 + 60x4 + 3x5

)
t7+

(
1 + 28x+ 196x2 + 490x3 + 325x4 + 53x5 + x6

)
t8+

(
1 + 36x+ 336x2 + 1176x3 + 1269x4 + 428x5 + 35x6

)
t9+

(
1 + 45x+ 540x2 + 2520x3 + 4005x4 + 2289x5 + 427x6 + 15x7

)
t10+

(
1 + 55x+ 825x2 + 4950x3 + 10857x4 + 9394x5 + 3122x6 + 316x7 + 5x8

)
t11 + · · ·

A
(4)
231(t, x) =

1 + t+ (1 + x)t2 +
(
1 + 3x+ x2

)
t3 +

(
1 + 6x+ 6x2 + x3

)
t4+

(
1 + 10x+ 20x2 + 10x3 + x4

)
t5 +

(
1 + 15x+ 50x2 + 50x3 + 15x4

)
t6+

(
1 + 21x+ 105x2 + 175x3 + 105x4 + 10x5

)
t7+

(
1 + 28x+ 196x2 + 490x3 + 490x4 + 130x5 + 6x6

)
t8+

(
1 + 36x+ 336x2 + 1176x3 + 1764x4 + 890x5 + 128x6 + 3x7

)
t9+

(
1 + 45x+ 540x2 + 2520x3 + 5292x4 + 4291x5 + 1246x6 + 105x7 + x8

)
t10+

(
1 + 55x+ 825x2 + 4950x3 + 13860x4 + 16401x5 + 7945x6 + 1435x7 + 70x8

)
t11+

The generating function for the number of 231-avoiding permutations σ with maxdrop(σ) ≤
k is A

(k)
231(1, t) for any k ≥ 0. These are easily computed using Theorem 1 and Mathematica.
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For example, we have have computed that

A
(0)
231(1, t) =

1

1− t
,

A
(1)
231(1, t) =

1− t

1− 2t
,

A
(2)
231(1, t) =

1− 2t

1− 3t+ t2
,

A
(3)
231(1, t) =

1− 3t+ t2

1− 4t+ 3t2
,

A
(4)
231(1, t) =

1− 4t+ 3t2

1− 5t+ 6t2 − t3
, and

A
(5)
231(1, t) =

1− 5t+ 6t2 − t3

1− 6t+ 10t2 − 4t3
.

These generating functions have recently turned up in a completely different context.
In [8], Kitaev, Remmel, and Tiefenbruck studied what they called quadrant marked mesh

patterns. That is, let σ = σ1 . . . σn be a permutation written in one-line notation. Then
we will consider the graph of σ, G(σ), to be the set of points (i, σi) for i = 1, . . . , n. For
example, the graph of the permutation σ = 471569283 is pictured in Figure 2. Then if
we draw a coordinate system centered at a point (i, σi), we will be interested in the points
that lie in the four quadrants I, II, III, and IV of that coordinate system as pictured in
Figure 2. For any a, b, c, d ∈ N where N = {0, 1, 2, . . .} is the set of natural numbers
and any σ = σ1 . . . σn ∈ Sn, we say that σi matches the quadrant marked mesh pattern
MMP (a, b, c, d) in σ if in G(σ) relative to the coordinate system which has the point (i, σi)
as its origin, there are ≥ a points in quadrant I, ≥ b points in quadrant II, ≥ c points in
quadrant III, and ≥ d points in quadrant IV. For example, if σ = 471569283, the point
σ4 = 5 matches the simple marked mesh pattern MMP (2, 1, 2, 1) since relative to the
coordinate system with origin (4, 5), there are 3 points in G(σ) in quadrant I, 1 point in
G(σ) in quadrant II, 2 points in G(σ) in quadrant III, and 2 points in G(σ) in quadrant
IV. Note that if a coordinate in MMP (a, b, c, d) is 0, then there is no condition imposed
on the points in the corresponding quadrant. In [8], the authors studied the generating
functions

Q
(a,b,c,d)
132 (t, x) = 1 +

∑

n≥1

tnQ
(a,b,c,d)
n,132 (x) (8)

where for any a, b, c, d ∈ N,

Q
(a,b,c,d)
n,132 (x) =

∑

σ∈Sn(132)

xmmp(a,b,c,d)(σ). (9)

It turns out that Q(k,0,0,0)(t, 0) = A(k−1)(1, t) for all k ≥ 2 since it was shown in [8] that

Q
(1,0,0,0)
132 (t, 0) =

1

1− t

8
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Figure 2: The graph of σ = 471569283.

and for k > 1,

Q
(k,0,0,0)
132 (t, 0) =

1

1− tQ
(k−1,0,0,0)
132 (t, 0)

.

Thus the number of 231-avoiding permutations with maxdrop(σ) ≤ k − 1 is the number
of 132-avoiding permutations which have no occurrences of the quadrant mesh pattern
MMP (k, 0, 0, 0). In fact, one can use the recursions satisfied by A

(k−1)
n,231 (1) and Q

(k,0,0,0)
n,132 to

give a bijective proof of this fact. It was also shown in [8] that the number of permutations
σ ∈ Sn(132) which have no occurrences of the quadrant mesh pattern MMP (k, 0, 0, 0) is
also equal to the number of Dyck paths of length 2n such that all steps have height ≤ k.

Many of the sequences (A
(k)
n,231(1))n≥1 as well as many of the sequences (a

(k)
n,231,r)n≥1 ap-

pear in the OEIS. For example, the sequence (A
(2)
n,231(1))n≥0 starts out with

1, 1, 2, 5, 13, 34, 89, 233, 610, 1597, . . . .. This is sequence A001519 in the OEIS. It immedi-
ately follows from the generating function

A
(2)
231(1, t) =

1− 2t

1− 3t+ t2

that the numbers A
(2)
n,231(1) satisfy the simple recursion that

A
(2)
n,231(1) = 3A

(2)
n−1,231(1)− A

(2)
n−2,231(1)

with initial conditions that A
(2)
0,231(1) = A

(2)
1,231(1) = 1. The OEIS lists many combinatorial

interpretations of these numbers including the number of permutations of Sn+1 which avoid
321 and 3412 and the number of ordered trees with n + 1 edges and height of at most
3. In section 3, we shall establish a direction connection between ordered trees and the
permutations in B(k)

n,231 which will explain this and many other formulas.

The sequence (A
(3)
n,231(1))n≥0 starts out with 1, 1, 2, 5, 14, 41, 122, 365, 1094, 3281, . . .. This

is sequence A124302 in the OEIS. This sequence also has many combinatorial definitions
including the number of set partitions of [n] = {1, . . . , n} of length ≤ 3. The sequence

(A
(4)
n,231(1))n≥0 starts out with 1, 1, 2, 5, 14, 42, 131, 417, 1341, 4434, . . . . which is sequence

A080937 in the OEIS. The sequence (A
(5)
n,231(1))n≥0 starts out with

1, 1, 2, 5, 14, 42, 132, 428, 1416, 4744, . . . which is sequence A024175 in the OEIS.
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We end this section, with a few simple results which can be easily proved from (6).
These results will be generalized in the subsequent section when we consider a bijection
between ordered trees and permutations σ with maxdrop(σ) ≤ k.

Theorem 2. 1. For all n ≥ 1, A
(1)
n,231(1) = 2n−1.

2. For all r ≥ 1 and n ≥ 2r, A
(1)
n,231(x)|xr = a

(1)
n,231,r =

(
n

2r

)
.

Proof. Part (1) follows immediately form the fact that A
(1)
231(1, t) =

1−t
1−2t

. It is also easy to
give a direct inductive proof of part (1). That is, for part (1), clearly the statement holds

for n = 1 since A
(1)
1,231(1) = 1. But then using the fact that A

(0)
n,231(1) = 1 for all n ≥ 0, we

see that (6) implies

A
(1)
n,231(1) = A

(1)
n−1,231(1) +

n−1∑

i=1

A
(1)
i−1,231(1)A

(0)
n−i,231(1)

= A
(1)
n−1,231(1) + A

(0)
n−1,231(1) +

n−1∑

i=2

A
(1)
i−1,231(1)

= 2n−2 + 1 +

n−1∑

i=2

2i−2 = 2n−1.

In fact, we can directly construct all the elements B(1)
n,231. We let [n] = {1, . . . , n} and,

if 1 ≤ i < j ≤ n, we let [i, j] = {s ∈ [n] : i ≤ s ≤ j} be the interval from i to j. Let P([n])
denote the set of all subsets of [n] and Pe([n]) denote the set of all elements of P([n]) that
have even cardinality. Clearly, the cardinality of Pe([n]) is 2n−1. We define bijection φ :

Pe([n]) → B(1)
n,231. We let φ(∅) = 12 . . . n. Now if S = {s1, s2, . . . , s2r−1, s2r} ∈ Pe([n]) where

1 ≤ s1 < s2 < · · · < s2r−1 < s2r ≤ n, then we consider the intervals Ij = [s2j−1, s2j] for
j = 1, . . . , r. We define φ(S) = τS = τS1 . . . τSn to be the permutation in Sn such that τSi = i
if i is not in one of the intervals I1, . . . , Ir, and τSs2j−1

. . . τSs2j = s2js2j−1(s2j−1+1) . . . (s2j−1).
For example, if n = 12, and S = {1, 3, 6, 8, 10, 12}, then I1 = [1, 3], I2 = [6, 8], and
I3 = [10, 12]. Thus

τS = 3 1 2 4 5 8 6 7 9 12 10 11.

Note on each of the intervals Ij, τ
S has maximum drop 1 so that maxdrop(τS) ≤ 1 for

all S ∈ Pe([n]). Moreover it easy to see that τS is 231-avoiding and that we can recover

S from τS . Thus φ is a one-to-one map from Pe([n]) into B(1)
n,231. However, since we know

that |Pe([n])| = |B(1)
n,231|, φ must also be a surjection. Thus φ is a bijection from Pe([n])

onto B(1)
n,231.

Note that φ also has the property that for all S ∈ Pe([n]), des(φ(S)) = |S|
2
. Thus it

follows that the number of σ ∈ B(1)
n,231 such that des(σ) = r equals the number of subsets S

of [n] of size 2r. That is, A
(1)
n,231(x)|xr =

(
n

2r

)
which proves part (2).
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In fact, our construction in Theorem 2 constructs all the possible elements of Sn(231)
with exactly one descent. That is, we claim that if σ ∈ Sn(231) and des(σ) = 1, then
maxdrop(σ) = 1. Suppose that σ = σ1 . . . σn ∈ Sn(231), des(σ) = 1 and maxdrop(σ) = k
where k ≥ 2. Let i be least element such that i− σi = k. Thus σi = i− k. Our choice of i
ensures that σi−1 ≥ i− k since we can have a drop of at most k − 1 at position i− 1. But
since σi = i − k, it must be the case that σi−1 > i − k = σi. Thus the only descent of σ
must occur at position i − 1. This means that σ1 < · · · < σi−1. Since k ≥ 2, there must
be at least two elements in σ1 . . . σi−1 which are greater than or equal to i− k which would
mean that there is an occurrence of 231 in σ1 . . . σi. Thus if σ ∈ Sn(231) and des(σ) = 1,
then it must be the case that maxdrop(σ) = 1. Thus the elements of the form φ(S) where
|S| = 2 consists of all the elements of Sn(231) such that des(σ) = 1. It thus follows that
we have the following theorem.

Theorem 3. For all k ≥ 1 and n ≥ 2,

A
(k)
n,231(x)|x = a

(k)
n,231,1 =

(
n

2

)
.

The sequence (a
(2)
n,231,2)n≥3 starts out with 1, 6, 20, 50, 105, 196, 336, 540, . . . .. This is

sequence A002415 in the OEIS whose n-th term is n2(n2−1)
12

. These numbers are known
as the 4-dimensional pyramidal numbers. They have several combinatorial interpretations
including the number of squares with corners in the n×n grid. We can prove the following
general theorem about such numbers.

Theorem 4. For all k ≥ 2 and n ≥ 3, A
(k)
n,231(x)|x2 = (n−1)2((n−1)2−1)

12
.

Proof. We proceed by induction on n. For the base case, note that the only permutation σ ∈
Sn(231) with 2 descents is 321 which has maximum drop 2. It follows that A

(k)
3,231(x)|x2 = 1

for all k ≥ 2 so that our formulas hold for n = 3.
Next assume that n > 3 and our formula holds for all m < n. Then by (6),

A
(k)
n,231(x)|x2 = A

(k)
n−1,231(x)|x2 +

(
n−1∑

i=1

A
(k)
i−1,231(x)A

(k−1)
n−i,231(x)

)
|x. (10)

By induction, A
(k)
n−1,231(x)|x2 = (n−2)2((n−2)2−1)

12
. Note that

(
n−1∑

i=1

A
(k)
i−1,231(x)A

(k−1)
n−i,231(x)

)
|x =

n−1∑

i=1

A
(k)
i−1,231(x)|xA(k−1)

n−i,231(x)|x0 +

n−1∑

i=1

A
(k)
i−1,231(x)|x0A

(k−1)
n−i,231(x)|x.

But we know that A
(k)
i−1,231(x)|x0 = 1 for all k and n since the only permutation with no

descents is the identity. By Theorem 3, we know that A
(k)
n,231(x)|x =

(
n

2

)
for all k ≥ 1 and

11



n ≥ 1. It follows that

A
(k)
n,231(x)|x2 =

(n− 2)2((n− 2)2 − 1)

12
+

n−1∑

i=1

(
i− 1

2

)
+

n−1∑

i=1

(
n− i

2

)

=
(n− 2)2((n− 2)2 − 1)

12
+

(
n− 1

3

)
+

(
n

3

)

=
(n− 1)2((n− 1)2 − 1)

12

where the last equality can be checked in Mathematica.

Theorems 2 and Theorem 4 automatically imply the following theorem.

Theorem 5. For n ≥ 3, E
(2)
n,132(x)|x2 =

(
n+1
4

)
.

Proof. By Theorem 2, we know that A
(1)
n,132(x)|x2 =

(
n

4

)
and Theorem 4, we know that

A
(2)
n,132(x)|x2 = (n−1)2(((n−1)2)−1)

12
. Thus

E
(2)
n,132(x)|x2 = A

(2)
n,132(x)|x2 −A

(1)
n,132(x)|x2

=
(n− 1)2(((n− 1)2)− 1)

12
−
(
n

4

)
=

(
n+ 1

4

)
.

3 Ordered trees of bounded height

In this section we show there is a bijective correspondence between permutations in Sn(231)
with a given maximum drop and a given number of descents, to a certain class of trees.
An ordered tree is a rooted tree where the children of each vertex are ordered, so for
example we can refer to the left-most child of a vertex. We use the convention of placing
the root at the top of the tree. Micheli and Rossin show there is a bijection between
231-avoiding permutations and ordered trees [12]. Here we show this same bijection also
carries additional information about the descents and maximum drop size of 231-avoiding
permutations. The level of a vertex is the distance of the shortest path from that vertex
to the root. The height of an ordered tree is the maximum of the levels of all vertices
in the tree. An internal node is a vertex which has at least one child. Let T (k)

n,j denote
the set of all ordered trees having n edges, height less than or equal to k, and j internal
nodes. Let B(k)

n,231,j denote the set of permutations in σ ∈ Sn(231) with des(σ) = j and

maxdrop(σ) ≤ k, thus
∣∣∣B(k)

n,231,j

∣∣∣ = A
(k)
n,231(x)|xj = a

(k)
n,231,j (not to be confused with B(k)

n,i,231 in

the proof of Theorem 1).

Theorem 6. There is a bijection φ : T (k)
n,j → B(k−1)

n,231,j−1, for all n, k, j ≥ 1, thus

a
(k)
n,231,j =

∣∣∣T (k+1)
n,j+1

∣∣∣ .
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In other words a
(k)
n,231,j is equal to the number of ordered trees with n edges, j+1 internal

nodes, and height less than or equal to k + 1.

Proof. Given T ∈ T (k)
n,j , label the edges by a postorder traversal. Read the labels by a

preorder traversal to obtain a word σ ∈ Sn. Set φ(T ) = σ.
For example, consider the ordered tree T in Figure 3. When we read the labels by a

Figure 3: An ordered tree T (left), T with edges labeled by a postorder traversal (right).

preorder traversal, we obtain the permutation σ (which we write in two-line notation)

σ =

[
1 2 3 4 5 6 7 8 9 10 11 12
5 1 4 2 3 7 6 12 11 8 9 10

]

Since Micheli and Rossin showed that σ ∈ Sn(231) and φ is a bijection (see [12]), our
Theorem is proved if we can show that des(σ) = j − 1 and maxdrop(σ) ≤ k − 1.

First we show that des(σ) = j − 1. Given any edge of T , let σi be its label from the
postorder traversal, and let x be the vertex at the bottom of this edge.

If x is an internal node, then σi+1 is the label on the leftmost edge immediately below
x. Since the labeling is done with a postorder traversal, we have σi > σi+1.

If x is not an internal node (i.e. a leaf), then there is a vertex y with subtrees Y1 and
Y2 such that σi is a label on an edge of Y1, σi+1 is a label on an edge of Y2, and Y1 is to the
left of Y2. It follows that σi < σi+1.

Since every vertex other than the root is at the bottom of a unique edge, σ has j − 1
descents.

Next we show that maxdrop(σ) ≤ k− 1. Suppose σi < i, and let x be the vertex at the
bottom of the edge labeled σi.

If x is an internal node, then σi > σi+1 as noted above, thus there is a larger drop size
at position i+ 1 in σ. Since we want to find the maximum drop size, we need not consider
the case that x is an internal node.

13



Now assume that x is not an internal node, and let m be the level of x. On the path
from x to the root, there are m (possibly empty) subtrees along the left side of the path,
as in Figure 4. Let |Tr| denote the number of edges in a tree Tr. Then we have

Figure 4: An ordered tree with edge labeled σi directly above a leaf x at level m.

|T1|+ |T2|+ · · ·+ |Tm| = σi − 1,

since the edges in the subtrees T1, T2, . . . , Tm are precisely the edges which precede the edge
labeled σi in the postorder traversal. The edges in the subtrees T1, T2, . . . , Tm along with
the edges in the path from x to the root are precisely the edges which precede the edge
labeled σi in the preorder traversal, therefore

i = |T1|+ |T2|+ · · ·+ |Tm|+m = σi +m− 1.

Thus σ has a drop of size i−σi = m−1 at position i. Since m ≤ k, we have maxdrop(σ) ≤
k − 1.

The set of trees in T (k)
n,j are also in bijection with certain Dyck paths. A Dyck path of

length 2n is a path in the plane that starts at the point (0, 0) and ends at the point (2n, 0).
The path may consist only of up-steps (1, 1) and down-steps (1,−1), and the path always
stays on or above the x-axis. Let D2n denote the set of Dyck paths of length 2n. Next
we describe a couple statistics for Dyck paths. The height of a Dyck path is the highest
y-coordinate attained in the path. A peak is a point in a Dyck path which is immediately
preceded by an up-step, and immediately followed by a down-step. Let D(k)

2n,j denote the set
of Dyck paths of length 2n with j peaks and height less than or equal to k. The standard
bijection from ordered trees to Dyck paths preserves height, and converts each leaf to a

14



peak. A tree with n edges and j+1 internal nodes has n+1 total nodes, thus n− j leaves.

From this it follows that
∣∣∣T (k)

n,j+1

∣∣∣ =
∣∣∣D(k)

2n,n−j

∣∣∣.
Next we provide a direct bijection from permutations in B(k)

n,231,j to Dyck paths inD(k+1)
2n,n−j.

However, in subsequent sections of this paper we choose to use ordered trees to obtain
enumeration results for the numbers a

(k)
n,231,j (and e

(k)
n,231,j).

Theorem 7. For all n ≥ 1 and all j, k ≥ 0, there is a bijection φn : B(k)
n,231,j → D(k+1)

2n,n−j. In

other words, a
(k)
n,231,j is equal to the number of Dyck paths of length 2n with n− j peaks, and

height less than or equal to k + 1.

Proof. First we need to define the lifting of a path P ∈ D2n to path L(P ) ∈ D2n+2. Let
P = (p1, . . . , p2n) where each pi is either an up-step or a down-step. Then L(P ) is obtained
from P by appending an up-step at the start of P , and a down-step at the end of P . That
is, L(P ) = ((1, 1), p1, . . . , p2n, (1,−1)). An example is shown in Figure 5. Also, if P1 ∈ D2n

and P2 ∈ D2k, then we let P1P2 ∈ D2n+2k denote the path which starts with P1 followed by
P2.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

P = 

L(P) =

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

5

4

5

4

3

3

Figure 5: The lifting of a Dyck path.

For n = 1, we simply define φ1(σ) = ((1, 1), (1,−1)), i.e. and up-step followed by a
down-step. For n > 1 we define φn recursively by cases as follows.

Case 1. σn = n.
Then φn(σ) = P1P2 where P1 = φn−1(σ1 . . . σn−1) and P2 = ((1, 1), (1,−1)).

Case 2. σ1 = n.
Then φn(σ) = L(φn−1(σ2 . . . σn)).

Case 3. σi = n where 1 < i < n. In this case, φn(σ) = P1P2 where
P1 = φi−1(red(σ1 . . . σi−1)) and P2 = L(φn−i(red(σi+1 . . . σn))).
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The first few values of this map a pictured in Figure 6, where σ is on the left and φn(σ) is
on the right.

Figure 6: Values of φn up to n = 3.

Since a
(k)
n,231,j = |T (k+1)

n,j+1 | = |D(k+1)
2n,n−j|, it suffices to show that φn well-defined and injective.

We induct on n. The base case n = 1 is obvious. Now let n > 1 and assume the theorem
holds for all m < n. Let σ = σ1 . . . σn ∈ B(k)

n,231,j , and let σi = n. Since σ avoid the pattern

231, we have σ1 . . . σi−1 ∈ B(k)
i−1,231, and red(σi+1 . . . σn) ∈ B(k−1)

n−i,231 (see also the proof of
Theorem 1). To show φn is well-defined, we consider the three cases for i in the definition
of φn.

Case 1. σn = n.
In this case, φn(σ) = P1P2 where P1 = φn−1(σ1 . . . σn−1) and P2 = ((1, 1), (1,−1)). Since

n − 1 /∈ DES(σ), we have σ1 . . . σn−1 ∈ B(k)
n−1,231,j . By the inductive hypothesis we have

P1 ∈ D(k+1)
2n−2,n−j−1. Since appending P2 to P1 increases the length by two, increases the

number of peaks by one, and does not change the height, it follows that P1P2 ∈ D(k+1)
n,n−j.

Case 2. σ1 = n.
In this case, φn(σ) = L(φn−1(σ2 . . . σn)). Since 1 ∈ DES(σ), we have σ2 . . . σn ∈ B(k−1)

n−1,231,j−1.

By induction, φn−1(σ2 . . . σn) ∈ D(k)
2n−2,n−j. Since lifting a path increases the height by one,

increasing the length by two, and adds no peaks, it follows that L(φn−1(σ2 . . . σn)) ∈ D(k+1)
2n,n−j.

Case 3. σi = n where 1 < i < n.
In this case, φn(σ) = P1P2 where P1 = φi−1(red(σ1 . . . σi−1)) and
P2 = L(φn−i(red(σi+1 . . . σn))). Note that red(σ1 . . . σi−1) = σ1 . . . σi−1. Since i ∈ DES(σ)

we have σ1 . . . σi−1 ∈ B(k)
i−1,231,j1

, and red(σi+1 . . . σn) ∈ B(k−1)
n−i,231,j2

, where j1+j2+1 = j. Then

φn−i(red(σi+1 . . . σn)) ∈ D(k)
2n−2i,n−i−j2

, and P2 = L(φn−i(red(σi+1 . . . σn))) ∈ D(k+1)
2n−2i+2,n−i−j2

.

Also, P1 ∈ D(k+1)
2i−2,i−1−j1

. It follows that P1P2 ∈ D(k+1)
2n,n−j1−j2−1 as desired since n−j1−j2−1 =

n− j.

This proves φn is well-defined.
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To prove injectivity let σ, π ∈ B(k)
n,231,j, and suppose σ 6= π. If σi = πi = n for some i,

then for each case that i falls into in the definition of φn, one can easily use the inductive
hypothesis to prove that φn(σ) 6= φn(π). So assume σi1 = n and πi2 = n where i1 6= i2. We
consider the three possible combinations for i1 and i2 in the definition of φn.

Case I. σn = n and π1 = n.
Since φn(π) = L(φn−1(π2 . . . πn)), it follows that the second to last step of φn(π) is a
down-step. Then φn(σ) 6= φn(π) since the second to last step of φn(σ) is an up-step.

Case II. σn = n and πi2 = n where 1 < i2 < n.
Since φn(π) = P1P2 where P2 = L(φn−i2(red(πi2+1 . . . πn))), we again have that the second
to last step of φn(π) is a down-step, whereas the second to last step of φn(σ) is an up-step.
Thus φn(σ) 6= φn(π).

Case III. σ1 = n and πi2 = n where 1 < i2 < n.
In this case we note that φn(σ) = L(φn−1(σ2 . . . σn)), so that the only points where
φn(σ) touches the x-axis are at (0, 0) and (2n, 0). In contrast, φn(π) = P1P2 where
P1 = φi2−1(red(π1 . . . πi2−1)), so that φn(π) must touch the x-axis at the point (2i2 − 2, 0).
Thus φn(σ) 6= φn(π).

4 Recursions and closed form expressions for a
(k)
n,231,j

In this section we prove some recursions and closed form expressions for a
(k)
n,231,j and e

(k)
n,231,j .

For certain cases of the values of n, j, k, we can find nice closed form expressions for these
numbers. For the general case, it turns out that there is a closed form expression due to
Kemp (see [5]) for a class of trees very closely related to T (k)

n,j . This formula can easily be

translated to a closed form expression for a
(k)
n,231,j. We also find a recurrence for a

(k)
n,231,j. We

conclude this section by showing that this recurrence leads to closed form expression for
a
(k)
n,231,j which looks completely different from the formula due to Kemp.

Theorem 8 ([5, Theorem 1]). Let hk(n, j) be the number of ordered trees with n nodes,

j leaves, and height 1 less than or equal to k − 1. Then hk(1, j) = δj,1, h1(n, j) = δn,jδn,1
where δn,j is Kronecker’s symbol. For k ≥ 2 and n ≥ 2

hk(n, j) = N(n− 1, j)− [Q1(n, j, k)− 2Q0(n, j, k) +Q−1(n, j, k)] ,

where

Qa(n, j, k) =
∑

s≥1

(
n− s(k − 1)− 2

j + s+ a− 1

)(
n+ s(k − 1)− 2

j − s− a− 1

)
,

1In [5], the author uses the convention that the root is a vertex at level one, so we have translated this
result to coincide with our definition of height.
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and N(n, j) are the Narayana numbers given by

N(n, j) =
1

n

(
n

j

)(
n

j − 1

)
.

Corollary 1. For all n ≥ 1, and j, k ≥ 0 we have

a
(k)
n,231,j = hk+2(n+ 1, n− j).

Proof. A tree with n edges has n+1 nodes. An ordered tree with n edges and j+1 internal
nodes has n + 1− (j + 1) = n− j leaves. Thus from Theorem 6 we have

a
(k)
n,231,j =

∣∣∣T (k+1)
n,j+1

∣∣∣ = hk+2(n + 1, n− j).

The Narayana numbers N(n, j) appear in several combinatorial problems (see A001263
in the OIES [13]). One interpretation is that N(n, j) is equal to the number of Dyck paths
of length 2n with j peaks. Another interpretation is that N(n, j) is equal to the number of

ordered trees with n edges and j leaves. Next we show that a
(k)
n,231,j reduces to a Narayana

number whenever k ≥ j, extending the results from Theorem 3 and Theorem 4.

Corollary 2. For all n, j ≥ 1, and for all k ≥ j we have

a
(k)
n,231,j = N(n, n− j) =

1

n

(
n

j

)(
n

j + 1

)
.

Proof. An ordered tree with n edges and j +1 internal nodes has height less than or equal
to j + 1, and n− j leaves. Thus whenever k ≥ j we have

a
(k)
n,231,j =

∣∣∣T (k+1)
n,j+1

∣∣∣ = N(n, n− j) =
1

n

(
n

n− j

)(
n

n− j − 1

)
=

1

n

(
n

j

)(
n

j + 1

)
.

Note that in generalN(n, j) = N(n, n−j+1), i.e. the Narayana numbers are symmetric,
and this follows from the symmetry of the binomial coefficients.

In particular, a
(k)
n,231,1 =

(
n

2

)
for k ≥ 1, and a

(k)
n,231,2 =

1
n

(
n

2

)(
n

3

)
= (n−1)2((n−1)2−1)

12
for k ≥ 2,

as expected from Theorem 3 and Theorem 4.

Remark 1. Corollary 2 also follows from Corollary 1 and Theorem 8 by noting that Qa(n+
1, n− j, k + 2) = 0 for a = −1, 0, 1 whenever

n + 1− (k + 1)− 2 < n− j + 1 + a− 1.

And this inequality holds whenever k ≥ j. Thus for k ≥ j we have

a
(k)
n,231,j = hk+2(n + 1, n− j) = N(n, n− j).
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Let E (k)
n,231,j be the set of permutations σ ∈ Sn(231) with des(σ) = j and maxdrop(σ) = k.

Thus E (k)
n,231,j = B(k)

n,231,j−B(k−1)
n,231,j , and

∣∣∣E (k)
n,231,j

∣∣∣ = e
(k)
n,231,j = a

(k)
n,231,j−a

(k−1)
n,231,j . We can interpret

e
(k)
n,231,j as the number of ordered trees with n edges, j + 1 internal nodes, and height equal
to k + 1. For any ordered tree, the number of internal nodes is always less than or equal
to its height. So e

(k)
n,231,j = 0 if k ≥ j + 1. Using the tree interpretation, we will directly

compute e
(j)
n,231,j by relating such trees to a certain set of weak compositions.

Definition 1. Let Wn(i, j) be the set of weak compositions (p1, p2 . . . , pi;m1, m2 . . . , mj)
in N

i+j such that (i) pr ≥ 1 for r = 1, 2, . . . i, (ii) mr ≥ 0 for r = 1, 2, . . . j, and (ii)(∑i

r=1 pr

)
+
(∑j

r=1mr

)
= n. In other words, Wn(i, j) is the set of weak compositions of

n with i+ j parts where the first i parts are positive.

Proposition 1. For all n, i, j ≥ 0 we have |Wn(i, j)| =
(
n+j−1
i+j−1

)
.

Proof. Let p′r = pr − 1 for r = 1, 2, . . . , i. Then

(p1, p2, . . . , pi;m1, m2, . . . , mj) ∈ Wn(i, j)

if and only if
(p′1, p

′
2 . . . , p

′
i;m1, m2, . . . , mj) ∈ Wn−i(0, i+ j).

Wn(0, k) is simply the number of weak compositions of n into k parts, and |Wn(0, k)| =(
n+k−1
k−1

)
(see [14]). Thus

|Wn(i, j)| = |Wn−i(0, i+ j)| =
(
n + j − 1

i+ j − 1

)
.

Theorem 9. For all j ≥ 1 we have

e
(j)
n,231,j =

(
n + j − 1

2j

)
.

Consequently,

a
(j−1)
n,231,j =

1

n

(
n

j

)(
n

j + 1

)
−
(
n+ j − 1

2j

)
.

Proof. An ordered tree with j + 1 internal nodes and height equal to j + 1 must be a tree
of the form shown in Figure 7 where each subtree Tr has only one internal node (its root),
and |Tr| ≥ 0 for r = 1, 2, . . . , 2j. The subtree U must also have only one internal node, but

|U | ≥ 1 so that the whole tree has height j + 1. In other words, Tr ∈ T (1)
mr ,1 with mr ≥ 0

for r = 1, 2, . . . , 2j, and U ∈ T (1)
p,1 with p ≥ 1. Note that |T (1)

m,1| = 1 for all m ≥ 0, so every
tuple (p;m1, m2 . . . , m2j) ∈ Wn−j(1, 2j) corresponds to a unique tree with n edges, j + 1
internal nodes, and height equal to j + 1. Thus by Proposition 1 we have

e
(j)
n,231,j = |Wn−j(1, 2j)| =

(
n + j − 1

2j

)
.
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Figure 7: An ordered tree with j + 1 internal nodes and height equal to j + 1.

In particular, e
(2)
n,231,2 =

(
n+1
4

)
as expected from Theorem 5.

Since e
(j)
n,231,j is equal to a binomial coefficient, we also provide a direct bijection between

such sets and permutations.

Proposition 2. For all j ≥ 1 there is a bijection

φ :

(
[n+ j − 1]

2j

)
→ E (j)

n,231,j,

where
(
[n]
j

)
is the set of j-element subsets of [n].

Proof. Let S = {a1, a2, . . . , a2j} ∈
(
[n+j−1]

2j

)
with a1 < a2 < · · · < a2j . We construct from S

a sequence of nested intervals as follows. Let IS1 = [a1, b1] where b1 = max{S ∩ [n]}. Then
for m = 2, 3, . . . , j, let ISm = [am, bm] where

bm =

{
bm−1 if n +m− 1 ∈ S

max{[1, bm−1 − 1] ∩ S} otherwise
.

By construction we have a1 < a2 < · · · < aj < bj ≤ bj−1 ≤ bj−2 ≤ · · · ≤ b1. Next
define a map cSm which acts on permutations by cyclically rotating the letters in positions
am, am + 1, . . . , bm. More precisely, given π ∈ Sn let cSm(π) = τ1 . . . τn where τi = πi if
i /∈ ISm, and τamτam+1 . . . τbm = πbmπamπam+1 . . . πbm−1. We then define

φ(S) = cSj ◦ cSj−1 ◦ · · · ◦ cS1 (id).

For example let n = 7, j = 3, and let S = {1, 3, 4, 5, 6, 8} ∈
(
[9]
6

)
. Then b1 = max{S ∩

[7]} = 6, so IS1 = [1, 6]. Next we find b2. Since n + 2 − 1 = 8 ∈ S, we set b2 = b1 = 6 and
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IS2 = [3, 6]. Next we find b3. Since n+ 3− 1 = 9 /∈ S, we set b3 = max{[1, b2 − 1] ∩ S} = 5
and IS3 = [4, 5]. We can visualize the sequence of maps cSj ◦ · · · ◦ cS1 by starting with the
identity permutation and underlining the letters to be rotated in the next step.

id = 1 2 3 4 5 6 7

cS1 (id) = 6 1 2 3 4 5 7

cS2 ◦ cS1 (id) = 6 1 5 2 3 4 7

φ(S) = cS3 ◦ cS2 ◦ cS1 (id) = 6 1 5 3 2 4 7

Since we already know that
∣∣∣
(
[n+j−1]

2j

)∣∣∣ =
∣∣∣E (j)

n,231,j

∣∣∣, it suffices to show that φ is well-

defined and injective. To show φ is well-defined, we induct on j. We want to show that

(I) φ(S) = E (j)
n,231,j whenever S = {a1 < a2 < · · · < a2j} ∈

(
[n+j−1]

2j

)
,

(II) πaj > πbj , where φ(S) = π1 . . . πn, and b1, . . . , bj are as described in the definition of
φ,

(III) i− πi = j for i = aj + 1, aj + 2, . . . , bj .

The base case is obvious (and coincides with the bijection given in Theorem 2 when
j = 1). Now let j > 1 and assume the result holds for all k < j. Let S = {a1 < a2 < · · · <
a2j}, and let

b′j =

{
bj if bj ∈ [n]

n+ j − 1 otherwise
.

It follows that φ(S) = cSj (φ(T )), where T = S − {aj, b′j}. Let σ = φ(T ), and let π = φ(S).
Thus πi = σi if i /∈ [aj , bj ], and πajπaj+1 . . . πbj = σbjσajσaj+1 . . . σbj−1. By induction we
have that i − σi = j − 1 for i = aj−1 + 1, aj−1 + 2, . . . , bj−1. Since aj−1 < aj < bj ≤ bj−1,
then for i = aj + 1, aj + 2, . . . , bj we have

i− πi = i− σi−1 = i− (i− j) = j,

which proves (III). Next we check the drop size of π at position aj

aj − πaj = aj − σbj = aj − (bj − j + 1) < bj − (bj − j + 1) = j − 1,

thus maxdrop(π) = j. (II) follows immediately since

πaj = σbj = bj − j + 1 > bj − j = πbj .

Next we prove the claim that des(π) = j. By induction we know that des(σ) = j − 1 and
σaj < σaj+1 < · · · < σbj . Moreover, (II) and (III) applied to π shows us that DES(π) ∩
[aj , bj − 1] = {aj}. Since πbj = bj − j = σbj − 1 and πbj+1 = σbj+1, it follows that πbj , πbj+1
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have the same relative order as σbj , σbj+1. Thus bj ∈ DES(π) if and only if bj ∈ DES(σ). If
aj − 1 /∈ DES(σ), then

πaj−1 = σaj−1 < σaj < σbj = πaj ,

which implies aj−1 /∈ DES(π). Conversely, suppose that aj−1 ∈ DES(σ). Since DES(σ)∩
[aj−1 +1, bj−1] = ∅, we have aj − 1 ≤ aj−1. But since aj−1 ≤ aj − 1, we have aj − 1 = aj−1.
Then

πaj−1 = σaj−1 = σaj−1
> σbj−1

≥ σbj = πaj ,

which implies aj − 1 ∈ DES(π). Since πi = σi for all i /∈ [aj, bj ], it follows that DES(π) =
DES(σ)

⊎{aj}, thus des(π) = des(σ) + 1 = j which proves (I).

Next we prove that φ is injective. Let S = {a1 < a2 < · · · < a2j} ∈
(
[n+j−1]

2j

)
from

which we construct the sequence of intervals IS1 ⊃ IS2 ⊃ · · · ⊃ ISj with ISm = [am, bm] for

m = 1, . . . j.. And let U = {x1 < x2 < · · · < x2j} ∈
(
[n+j−1]

2j

)
from which we construct the

sequence of intervals IU1 ⊃ IU2 ⊃ · · · ⊃ IUj with IUm = [xm, ym] for m = 1, . . . , j. Suppose
S 6= U , then we claim there is at least one index m such that ISm 6= IUm. Suppose there
is some ak ∈ [n] ∩ S such that ak /∈ U . Then there is at least one interval ISm such that
am = ak or bm = ak, but there is no interval IUm with xm = ak or ym = bk. Next suppose
that for some m with 2 ≤ m ≤ j we have n + m − 1 ∈ S, but n + m − 1 /∈ U . Then
bm = bm−1 and ym 6= ym−1. It follows that either I

S
m 6= IUm or ISm−1 6= IUm−1. This proves the

claim.
Let π = φ(S) and σ = φ(U). It follows from (II) and (III) above and the fact that a1 <

a2 < · · · < aj , that DES(π) = {a1, a2, . . . , aj}. Similarly, DES(σ) = {x1, x2, . . . , xj}. If
am 6= xm for some m = 1, 2, . . . , j, then DES(π) 6= DES(σ) and π 6= σ. It follows from (III)
above and from the definition of φ that i−πi = j−k for i = bj−k+1+1, bj−k+1+2, . . . , bj−k

and k = 1, 2, . . . j − 1. It is also clear that πi = i for i > b1. Now suppose that am 6= xm

for some m = j + 1, j + 2, . . . , 2j. This implies that bm 6= ym, so assume bm > ym. First
we note that bm − πbm ≥ m, since φ reduces the letter in position bm by one at least m
times (it will be reduced by one more than m times if bm−1 = bm). On the other hand since
ym < bm we have bm − σbm < m, thus π 6= σ. This proves φ is injective.

A method similar to the one used to prove Theorem 9, proves the following theorem.

Theorem 10. For all j ≥ 2 we have

e
(j−1)
n,231,j = (2j − 3)

(
n+ j − 2

2j

)
.

Consequently,

a
(j−2)
n,231,j =

1

n

(
n

j

)(
n

j + 1

)
−
(
n + j − 1

2j

)
− (2j − 3)

(
n+ j − 2

2j

)
.

Proof. We interpret e
(j−1)
n,231,j as the number of ordered trees with n edges, j + 1 internal

nodes, and height equal to j. Such trees have the form shown in Figure 8 where the
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Figure 8: An ordered tree with j + 1 internal nodes and height equal to j.

subtree U ∈ T (1)
p,1 with p ≥ 1, and the subtree Tj−1 ∈ T (1)

mj−1,1
with mj−1 ≥ 0. The remaining

subtrees Tr ∈ T (2)
mr ,dr

with mr ≥ 0 for 1 ≤ r ≤ 2j − 2 with r 6= j − 1. The idea here is that
the leftmost leaf in U is the first vertex (in postorder) to reach the full height j. We also
require that exactly one of the subtrees Tr with r 6= j − 1 has two internal nodes so that
the resulting tree has j + 1 total internal nodes, i.e.

∑

1≤r≤2j−2
r 6=j−1

dr = 2j − 2.

To get a total of n edges, we also require that

p+

2j−2∑

r=1

mr = n− j + 1.

Then every such choice of subtrees U, T1, T2, . . . , T2j−2 corresponds to a unique tree with n

edges, j + 1 internal nodes, and height equal to j. Since
∣∣∣T (2)

mr ,dr

∣∣∣ = a
(1)
mr ,231,dr−1 =

(
mr

2dr−2

)
.
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Thus

e
(j−1)
n,231,j =

∑

(p;m1,...,m2j−2)∈Wn−j+1(1,2j−2)
(d1,d2,...,dj−2,dj ,dj+1,...,d2j−2)∈W2j−2(2j−3,0)

∏

r 6=j−1

(
mr

2dr − 2

)

= (2j − 3)




∑

(p;m1,...,m2j−2)∈Wn−j+1(1,2j−2)

(
m1

2

)


= (2j − 3)




∑

(p,m1,...,m2j−2)∈Wn−j(0,2j−1)

(
m1

2

)


= (2j − 3)

n−j∑

m1=0

(
m1

2

) ∑

(p;m2,...,m2j−2)∈Wn−j−m1
(0,2j−2)

1

= (2j − 3)

n−j∑

m1=0

(
m1

2

)
|Wn−j−m1(0, 2j − 2)|

= (2j − 3)

n−j∑

m1=0

(
m1

2

)(
n + j −m1 − 3

2j − 3

)

= (2j − 3)

n−j∑

m1=0

(
m1

2

)(
n + j − 3−m1

(2j − 1)− 2

)

= (2j − 3)

(
n + j − 2

2j

)
.

The last step follows from the identity

n∑

m=0

(
m

j

)(
n−m

k − j

)
=

(
n+ 1

k + 1

)
,

which holds for all n ≥ k ≥ j ≥ 0, and can easily be proved by induction.

A similar method could be used to compute e
(j−2)
n,231,j. However, the proof continues to

become more complicated. We hope the reader is convinced that the proof and resulting
formula for e

(j−2)
n,231,j will be somewhat unpleasant, and that this method will become even

more unpleasant as we continue to lower the maximum drop size. Instead, we will show
later that a

(k)
n,j can be expressed as a (positive) sum of products of binomial coefficients.

Our next goal is to obtain a recurrence for a
(k)
n,231,j. We accomplish this using a bijection

to find a recurrence for trees with n edges, j leaves, and height less than or equal to k. Let
N (n, j, k) denote the set of ordered trees with n edges, j leaves, and height less than or
equal to k, and let N(n, j, k) = |N (n, j, k)|. In other words, N(n, j, k) are the Narayana
numbers refined by height. For convenience, we let N (0, 0, k) be the set containing the tree
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with one vertex and no edges, hence N(0, 0, k) = 1 for all k ≥ 0. Note that in terms of

Dyck paths we have N(n, j, k) =
∣∣∣D(k)

2n,j

∣∣∣, i.e. the number of Dyck paths of length 2n with

j peaks and height less than or equal to k. We find a recurrence for N(n, j, k), which can

easily be translated into a recurrence for a
(k)
n,231,j .

Theorem 11. For all k ≥ 1 and for all n ≥ j ≥ 1 we have

N(n, j, k) =

n−j∑

i=0

N(n− j, i, k − 1)

(
2n− j − i

2n− 2j

)
. (11)

By replacing i with n− j − i we obtain

N(n, j, k) =

n−j∑

i=0

N(n− j, n− j − i, k − 1)

(
n+ i

2n− 2j

)
. (12)

Proof. We construct a map

s :

n−j⋃

i=0

N (n− j, i, k − 1)×Wj(i, 2n− 2j − i+ 1) → N (n, j, k),

which we will show is a bijection. Let T ∈ N (n− j, i, k − 1), and let

c = (l1, . . . , li;n1, . . . , n2n−2j−i+1) ∈ Wj(i, 2n− 2j − i+ 1)

for some i such that 0 ≤ i ≤ n − j. We describe s(T, c) via a composition of maps,
s = s1 ◦s2 ◦ · · · ◦sk. Let Uh = sh ◦sh+1 ◦ · · ·◦sk(T, c) with 2 ≤ h ≤ k, and set Uk+1 = (T, c).
Construct an ordered tree Uh−1 = sh−1(Uh) by visiting the vertices at level h−1 of Uh from
right to left, and (possibly) adding edges to each vertex x as follows:

• If x is the pth leaf visited in the process of applying sh−1, sh, . . . , sk to (T, c), then
attach the unique tree from N (lp, lp, 1) as a subtree below x.

• If x is an internal node with degree say d (i.e. x has d children), then attach the
tree from N (nr, nr, 1) to the right of the rightmost edge below x. Here r = 1 +∑

(deg(y) + 1) where the sum is over all internal nodes previously visited in the
process of applying sh−1, sh, . . . , sk to (T, c). Then for m = 1, 2, . . . , d, attach the tree
from N (nr+m, nr+m, 1) to the left of the m-th rightmost edge below x.

Consider the following example. Let n = 14, j = 10, k = 3, i = 3. Let T ∈ N (4, 3, 2) be
the tree shown in Figure 9.
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Figure 9: An ordered tree T ∈ N (4, 3, 2).

Let
c = (1, 2, 2; 1, 2, 0, 0, 1, 1) ∈ W10(3, 6).

Find s3(T, c) by visiting the vertices at level 2 from right to left. Both vertices are leaves,
so we attach l1 = 1 edge to the right vertex, and l2 = 2 edges to the left vertex, where the
dashed edges represent the added edges (see Figure 10).

Figure 10: s3(T, c), c = (1, 2, 2; 1, 2, 0, 0, 1, 1).

We continue by applying s2. The rightmost vertex on level 1 is an internal node, so we
attach n1 = 1 edge to the right of the rightmost edge, attach n2 = 2 edges in the middle,
and attach n3 = 0 edges to the left of the leftmost edge. The next vertex on level 1 is a
leaf, so we attach l3 = 2 edges below this vertex (see Figure 11).
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Figure 11: s2 ◦ s3(T, c), c = (1, 2, 2; 1, 2, 0, 0, 1, 1).

Lastly we apply s1 to obtain s(T, c) = s1 ◦ s2 ◦ s3(T, c) (see Figure 12).

Figure 12: s1 ◦ s2 ◦ s3(T, c), c = (1, 2, 2; 1, 2, 0, 0, 1, 1).

Next we show that s is well-defined. Note that T has n − j edges and c is a weak
composition of j. Thus applying s will add j edges to T , so s(T, c) has n edges. Since
l1, . . . , li are all positive, every leaf of T has edges added to it, and is therefore not a leaf
in s(T, c). On the other hand, every edge added to T creates a leaf, so s(T, c) has j leaves.
Since T has height less than or equal to k−1, it is clear that s(T, c) has height less than or
equal to k. Furthermore, T has i leaves and the first i parts of c are positive. We also need
to check that c has the appropriate number of parts for adding edges to internal nodes.
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This follows from the fact that
∑

x is an internal
node of T

(1 + deg(x)) = |{internal nodes of T}|+
∑

x is an internal
node of T

deg(x)

= |{vertices of T}| − |{leaves of T}|+ |{edges of T}|
= (n− j + 1)− i+ (n− j)

= 2n− 2j − i+ 1

Next we describe the inverse map of s, which we denote by f . We have chosen the
letter s to correspond to spring, since the tree ”grows” edges during this map. And the
letter f corresponds to fall since we will remove edges during this map. Let T ∈ N (n, j, k).
Again we describe f(T ) via a composition of maps fk ◦ fk−1 ◦ · · · ◦ f1. Let (Vh, ch) =
fh ◦ fh−1 ◦ · · · ◦ f1(T ) with 1 ≤ h ≤ k − 2, where Vh is an ordered tree and ch is a weak
composition, and let (V0, c0) = (T, ∅). Construct (Vh+1, ch+1) = fh+1(Vh, ch) by visiting the
vertices at level h of Vh from left to right, and removing all single edges below each vertex.
The weak composition ch+1 is obtained from ch by recording at each vertex x, the numbers
of edges removed as follows:

• If x has p children and all subtrees below x have height one (in other words x has no
grandchildren), then append a p to the beginning of the positive parts of ch.

• Suppose x has Y1, Y2, . . . , Yd (from left to right) subtrees of height greater than or
equal to 2. Let r1 be the number of single edges below x and to the left of Y1. For
m = 1, 2, . . . , d− 1, let rm equal the number of single edges below x between Ym and
Ym+1. Let rd+1 be the number of single edges below x and to the right of Yd. Then
append the parts (rd+1, rd, . . . , r1) to the beginning of the nonnegative parts of ch.

Here is an example, let T = V0 ∈ N (10, 7, 3) be the ordered tree in Figure 13.

Figure 13: An ordered tree T = V0, and set c0 = ∅.
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The root has 2 subtrees Y1 and Y2 with height greater than or equal to 2. There is
n1 = 1 single edge to the left of Y1, there is n2 = 1 single edge to the right of Y1, and n3 = 0
single edges to the right of Y2. We remove these single edges and record the number of edges
removed as nonnegative parts of the weak composition c1, i.e. c1 = (n3, n2, n1) = (0, 1, 1)
(see Figure 14).

Figure 14: The ordered tree V1, and c1 = (0, 1, 1).

Next we visit the vertices at level 1. The first vertex (moving from left to right) has
only single edges. We remove these l1 = 3 edges and record the number of edges removed
as a positive part of the weak composition c2. The next vertex has one subtree of height
2. There are no single edges, so we record two zeros as nonnegative parts of the weak
composition c2, i.e. n4 = n5 = 0 (see Figure 15).
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Figure 15: The ordered tree V2, and c2 = (3; 0, 0, 0, 1, 1).

At level 2, there is one vertex with only single edges, so we remove them and record
the number of edges removed as a positive part of the weak composition c3, i.e. l2 = 2 (see
Figure 16).

Figure 16: The ordered tree V3, and c3 = (2, 3; 0, 0, 0, 1, 1).

Next we show f is well-defined. When applying fh, we never visit a vertex which is a
leaf since such a vertex would have been removed when applying fh−1. Since we remove
from T precisely all edges which have a leaf at the bottom, we see that Vk has n− j edges.
Since Vk has n− j edges, the number of leaves of Vk is less than or equal to n− j. Clearly,
the height of Vk is one less than the height of T . Thus Vk ∈ N (n − j, i, k − 1) for some
0 ≤ i ≤ n− j.

30



Since the map f removes j edges from T , and since ck records the total number of edges
removed, ck is a weak composition of j. A leaf of Vk is created only when we visit a vertex
with only single edges below. The number of such edges is recorded as a positive part in
the weak composition ck. So if Vk has i leaves, then ck has i positive parts. Lastly, the
total number of parts (positive and nonnegative) of ck is given by

∑

x is a
vertex of Vk

(1 + deg(x)) = |{vertices of Vk}|+ |{edges of Vk}|

= (n− j + 1) + (n− j)

= 2n− 2j + 1,

thus ck has 2n− 2j + 1− i nonnegative parts.
It is clear by construction that f is the inverse of s.
The Theorem now follows from the fact that (see Proposition 1)

|Wj(i, 2n− 2j − i+ 1)| =
(
2n− j − i

2n− 2j

)
.

The following is a recurrence for the Narayana number due to Zabrocki (see A001263
in the OEIS [13]).

Corollary 3. For n ≥ j ≥ 2 we have

N(n, j) =

j−1∑

i=1

N(j − 1, i)

(
n + i− 1

2j − 2

)
.

Proof. Assume j ≥ 2. If k ≥ n, then N(n, j, k) = N(n, j) and N(n− j, n− j − i, k − 1) =
N(n− j, n− j − i) so that (12) becomes

N(n, j) =

n−j∑

i=0

N(n− j, n− j − i)

(
n + i

2n− 2j

)
.

Since the Narayana number are symmetric, N(n, j) = N(n, n− j + 1), we have

N(n, j) = N(n, n− j + 1)

=

j−1∑

i=0

N(j − 1, j − 1− i)

(
n + i

2j − 2

)

=

j−2∑

i=0

N(j − 1, i+ 1)

(
n+ i

2j − 2

)

The result now follows from replacing i by i− 1.
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Theorem 11 also gives us a recurrence for a
(k)
n,231,j .

Corollary 4. For k ≥ 1 we have

a
(k)
n,231,j =

j∑

i=0

a
(k−1)
j,231,i

(
n+ i

2j

)
,

where a
(k−1)
0,231,0 := 1 for all k ≥ 1.

Proof.

a
(k)
n,231,j =

∣∣∣T (k+1)
n,j+1

∣∣∣ = N(n, n− j, k + 1) =

j∑

i=0

N(j, j − i, k)

(
n + i

2j

)

=

j∑

i=0

a
(k−1)
j,231,i

(
n+ i

2j

)
.

The recurrence in Corollary 4 can be iterated to obtain a closed form expressions for
a
(k)
n,231,j . Indeed, a

(0)
j,231,i is the number of permutations in Sj(231) with i descents and no

drops. Since the identity permutation is the only permutation with no drops, we see that
a
(0)
j,231,i = 1 if i = 0, and a

(0)
j,231,i is zero otherwise. Hence

a
(1)
n,231,j =

j∑

i=0

a
(0)
j,231,i

(
n + i

2j

)
=

(
n

2j

)
,

as expected (see Theorem 2). We iterate to obtain the following formula.

Corollary 5. For all n, j ≥ 0 we have

a
(2)
n,231,j =

∑

j≥i≥0

a
(1)
j,231,i

(
n + i

2j

)
=
∑

j≥i≥0

(
j

2i

)(
n+ i

2j

)
.

We continue iterating to obtains more formulas. In each case the formula holds for all
n, j ≥ 0.

a
(3)
n,231,j =

∑

j≥i2≥i1≥0

(
i2
2i1

)(
j + i1
2i2

)(
n + i2
2j

)
.

a
(4)
n,231,j =

∑

j≥i3≥i2≥i1≥0

(
i2
2i1

)(
i3 + i1
2i2

)(
j + i2
2i3

)(
n+ i3
2j

)
.

a
(5)
n,231,j =

∑

j≥i4≥i3≥i2≥i1≥0

(
i2
2i1

)(
i3 + i1
2i2

)(
i4 + i2
2i3

)(
j + i3
2i4

)(
n+ i4
2j

)
.

A pattern emerges, giving us a formula for a
(k)
n,231,j .
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Theorem 12. For all n, j ≥ 0 and all k ≥ 2 we have

a
(k)
n,231,j =

∑

j≥ik−1≥···≥i1≥0

(
k−1∏

m=0

(
im+2 + im
2im+1

))
,

where i0 := 0, ik := j, ik+1 := n.

Proof. Induct on k. The base case k = 2 follows from Corollary 5. Now let k ≥ 3 and
assume the result holds for k − 1. Then from Corollary 4 we have

a
(k)
n,231,j =

∑

j≥pk−1≥0

a
(k−1)
j,231,pk−1

(
n + pk−1

2j

)
.

Use the induction hypothesis to substitute an expression for a
(k−1)
j,231,pk−1

.

a
(k)
n,231,j =

∑

j≥pk−1≥0
pk−1≥ik−2≥···≥i1≥0

(
k−4∏

m=0

(
im+2 + im
2im+1

))(
pk−1 + ik−3

2ik−2

)(
j + ik−2

2pk−1

)(
n + pk−1

2j

)
.

The result now follows from replacing pk−1 with ik−1.

We translate Theorem 12 into a an explicit formula for N(n, j, k) (which may be inter-
preted in terms of ordered trees, or in terms of Dyck paths).

Corollary 6. For n ≥ j ≥ 0 and k ≥ 3 we have

N(n, j, k) = a
(k−1)
n,231,n−j =

∑

n−j≥ik−2≥···≥i1≥0

(
k−2∏

m=0

(
im+2 + im
2im+1

))
,

where i0 := 0, ik−1 := n− j, ik := n.

5 Resulting Identities

In the previous section we proved that the set of permutations in Sn(231) with j descents
and maximum drop less than or equal to k, is in bijective correspondence with the set of
ordered trees with n edges, j+1 internal nodes, and height less than or equal to k+1. We
also found two seemingly different closed form expressions for the number of such trees:
one due to Kemp [5] (Theorem 8 and Corollary 1), and another resulting from iterating
our recurrence (Theorem 12). This leads to some remarkable identities.

Theorem 13. For n ≥ 1 and j ≥ 0 we have

a
(1)
n,231,j = h3(n + 1, n− j). (13)
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Consequently

(
n

2j

)
= N(n, j + 1)−

[
Q̃1(n, j, 3)− 2Q̃0(n, j, 3) + Q̃−1(n, j, 3)

]
, (14)

where

N(n, j + 1) =
1

n

(
n

j + 1

)(
n

j

)
,

and

Q̃a(n, j, 3) =
∑

s≥1

(
n− 2s− 1

j − 3s− a

)(
n + 2s− 1

j + 3s+ a

)
.

Proof. First note that (13) is just a special case of Corollary 1 with k = 1.
The left hand side of (14) follows from Theorem 2. While the right hand side of (14)

follows from Theorem 8, noting that

N(n, n− j) = N(n, j + 1),

and

Qa(n + 1, n− j, 3) =
∑

s≥1

(
n− 2s− 1

n− j + s+ a− 1

)(
n+ 2s− 1

n− j − s− a− 1

)
= Q̃a(n, j, 3),

using the symmetry of the Narayana numbers and the binomial coefficients.

Remark 2. If j = 0, 1, then Q̃a(n, j, 3) = 0 for a = −1, 0, 1, and equation (14) follows
immediately.

However, for j ≥ 2 there will be nonzero contributions from Q̃a(n, j, 3) for a ≤ j − 3.
For example, if j = 2 then

Q̃−1(n, 2, 3) =
∑

s≥1

(
n− 2s− 1

2− 3s+ 1

)(
n + 2s− 1

2 + 3s− 1

)
=

(
n+ 1

4

)
,

and the right hand side of (14) becomes

1

n

(
n

3

)(
n

2

)
−
(
n+ 1

4

)
=

1

n

(
n

3

)(
n

2

)
−
(
n

4

)
−
(
n

3

)

=

(
n

3

)[
n− 1

2
− 1

]
−
(
n

4

)
= 2

(
n

3

)[
n− 3

4

]
−
(
n

4

)
=

(
n

4

)

as expected.

More generally, we can use Theorem 12 when k ≥ 2.

34



Theorem 14. For n ≥ 1, j ≥ 0, and k ≥ 2 we have

∑

j≥ik−1≥···≥i1≥0

(
k−1∏

m=0

(
im+2 + im
2im+1

))

= N(n, j + 1)−
[
Q̃1(n, j, k + 2)− 2Q̃0(n, j, k + 2) + Q̃−1(n, j, k + 2)

]
,

where

N(n, j + 1) =
1

n

(
n

j + 1

)(
n

j

)
,

and

Q̃a(n, j, k + 2) =
∑

s≥1

(
n− (k + 1)s− 1

j − (k + 2)s− a

)(
n + (k + 1)s− 1

j + (k + 2)s+ a

)
.

Proof. From Corollary 1 we have

a
(k)
n,231,j = hk+2(n+ 1, n− j).

The left hand side of Theorem 14 follows from Theorem 12. And the right hand side of
Theorem 14 follows from Theorem 8, noting that

Qa(n + 1, n− j, k + 2) =
∑

s≥1

(
n− (k + 1)s− 1

n− j + s + a− 1

)(
n+ (k + 1)s− 1

n− j − s− a− 1

)

= Q̃a(n, j, k + 2).
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of mesh patterns of short length, in preparation.

[4] M. Hyatt, Descent polynomials for k bubble-sortable permutations of type B, preprint
arXiv:1205.1014v1 [math.CO]

[5] R. Kemp, The average height of planted plane trees with m leaves, J. Combin. Theory

Ser. B 34 (1983), no. 2, 191-208

35

http://arxiv.org/abs/1205.1014


[6] S. Kitaev, Patterns in permutations and words, Monographs in Theoretical Computer

Science (with a foreword by Jeffrey B. Remmel), Springer-Verlag, ISBN 978-3-642-
17332-5, 2011.

[7] S. Kitaev and J. Remmel, Quadrant marked mesh patterns, preprint.

[8] S. Kitaev, J. Remmel and M. Tiefenbruck, Quadrant marked mesh patterns in 132-
avoiding permutations I, in preparation.

[9] S. Kitaev, J. Remmel and M. Tiefenbruck, Quadrant marked mesh patterns in 132-
avoiding permutations II, in preparation.

[10] D. Knuth, The Art of Computer Programming, Vol. 1 Fundamental Algorithms, Read-
ing, Massachusetts: Addison-Wesley, 1969.

[11] D. Knuth, The Art of Computer Programming, Vol. 3 Sorting and Searching, second
edition, Reading, Massachusetts: Addison-Wesley, 1998.

[12] A. Micheli, D. Rossin, Edit distance between unlabaled ordered trees, Theor. Inform.

Appl. 40 (2006), no. 4, 593-609

[13] N. J. A. Sloane, The on-line encyclopedia of integer sequences, published electronically
at http://www.research.att.com/~njas/sequences/.

[14] R. P. Stanley, Enumerative combinatorics, Vol. 1, 2nd ed., Cambridge Studies in Ad-
vanced Mathematics, 49, Cambridge University Press, Cambridge, 2000.

[15] R.P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, (1999).
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