
ar
X

iv
:1

20
8.

12
27

v1
  [

m
at

h.
N

T
] 

 6
 A

ug
 2

01
2

ON TWO ELLIPTIC CURVES

ASSOCIATED WITH PERFECT CUBOIDS.

Ruslan Sharipov

Abstract. A rational perfect cuboid is a rectangular parallelepiped whose edges
and face diagonals are given by rational numbers and whose space diagonal is equal
to unity. Finding such a cuboid is equivalent to finding a perfect cuboid with all
integer edges and diagonals, which is an old unsolved problem. Recently, based on a
symmetry approach, it was shown that edges and face diagonals of rational perfect
cuboid are roots of two cubic equations whose coefficients depend on two rational
parameters. Six special cases where these cubic equations are reducible have been
already found. Two more possible cases of reducibility for these cubic equations are
considered in the present paper. They lead to a pair of elliptic curves.

1. Introduction.

The problem of a perfect cuboid is known since 1719. For the history of cuboid
studies the reader is referred to [1–44]. Let x1, x2, x3 be edges of a cuboid and d1,
d2, d3 be its face diagonals. Recently, as a result of the series of papers [45–50],
two cubic equations for x1, x2, x3 and d1, d2, d3 were derived:

x3 − E10 x
2 + E20 x− E30 = 0, (1.1)

d3 − E01 d
2 + E02 d− E03 = 0. (1.2)

The numbers x1, x2, x3 are roots of the equation (1.1), while d1, d2, d3 are roots
of the equation (1.2). Apart from (1.1) and (1.2), the numbers x1, x2, x3 and d1,
d2, d3 should obey the following auxiliary equations:

x1 x2 d3 + x2 x3 d1 + x3 x1 d2 = E21,

x1 d2 + d1 x2 + x2 d3 + d2 x3 + x3 d1 + d3 x1 = E11,

x1 d2 d3 + x2 d3 d1 + x3 d1 d2 = E12.

(1.3)

The left hand sides of the equations (1.3) are three of nine elementary multisym-
metric polynomials that correspond to the permutation group S3 acting upon the
numbers x1, x2, x3 and d1, d2, d3 broken into pairs: (x1, d1), (x2, d2), (x3, d3). For
the theory of general multisymmetric polynomials the reader is referred to [51–71].

The coefficients of the cubic equations (1.1) and (1.2) and the right hand sides of
the equations (1.3) are rational functions of two rational parameters b and c. They
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are given by explicit formulas. Here are the formulas for E01, E10, and E11:

E11 = −
b (c2 + 2− 4 c)

b2 c2 + 2 b2 − 3 b2 c+ c− b c2 + 2 b
, (1.4)

E01 = −
b (c2 + 2− 2 c)

b2 c2 + 2 b2 − 3 b2 c+ c− b c2 + 2 b
, (1.5)

E10 = −
b2 c2 + 2 b2 − 3 b2 c − c

b2 c2 + 2 b2 − 3 b2 c+ c− b c2 + 2 b
. (1.6)

The formulas (1.4), (1.5), and (1.6), were derived in [49] by solving the equation1

(2E11)
2 + (E2

01
+ L2 − E2

10
)2 − 8E2

01
L2 = 0, (1.7)

which was derived in [48]. Below are the formulas for E02, E21, E12:

E02 =
1

2
(28 b2 c2 − 16 b2 c− 2 c2 − 4 b2 − b2 c4 + 4 b3 c4 − 12 b3 c3 +

+4 b c3 + 24 b3 c− 8 b c− 2 b4 c4 + 12 b4 c3 − 26 b4 c2 − 8 b2 c3 +

+24 b4 c− 16 b3 − 8 b4) (b c− 1− b)−2 (b c− c− 2 b)−2,
(1.8)

E21 =
b

2
(5 c6 b− 2 c6 b2 + 52 c5 b2 − 16 c5 b− 2 c7 b2 + 2 b4 c8 +

+142 b4 c6 − 26 b4 c7 − 426 b4 c5 − 61 b3 c6 + 100 b3 c5 + 14 c7 b3 −

− c8 b3 − 20 b c2 − 8 b2 c2 − 16 b2 c− 128 b2 c4 − 200 b3 c3 +

+244 b3 c2 + 32 b c3 − 112 b3 c+ 768 b4 c4 − 852 b4 c3 + 568 b4 c2 +

+104 b2 c3 − 208 b4 c+ 8 c4 − 4 c3 + 16 b3 + 32 b4 − 2 c5)×

× (b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)−1 ×

× (b c− 1− b)−2 (b c− c− 2 b)−2,

(1.9)

E12 = (16 b6 + 32 b5 − 6 c5 b2 + 2 c5 b − 62 b5 c6 + 62 b6 c6 −

− 180 b6 c5 + 18 b5 c7 − 12 b6 c7 − 2 b5 c8 + b6 c8 + 248 b5 c2 +

+248 b6 c2 − 96 b6 c+ 321 b6 c4 − 180 b5 c3 − 144 b5 c− 360 b6 c3 +

+ b4 c8 + 8 b4 c6 − 6 b4 c7 + 18 b4 c5 + 7 b3 c6 + 90 b5 c5 − 14 b3 c5 −

− c7 b3 + 17 b2 c4 + 28 b3 c3 − 28 b3 c2 − 4 b c3 + 8 b3 c− 57 b4 c4 +

+36 b4 c3 + 32 b4 c2 − 12 b2 c3 − 48 b4 c− c4 + 16 b4)×

× (b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)−1 ×

× (b c− 1− b)−2 (b c− c− 2 b)−2.

(1.10)

1 In deriving (1.4), (1.5), (1.6) the parameter L in the equation (1.7) was taken for the unity.
However, the corresponding solution for the general case L 6= 1 easily follows from (1.4), (1.5),
(1.6) by homogeneity.
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The formulas (1.8), (1.9), (1.10) were derived in [50] by substituting (1.4), (1.5),
(1.6) and the length of the space diagonal L = 1 into the appropriate formulas from
[48]. The formulas for E20, E30, and E03 are similar:

E20 =
b

2
(b c2 − 2 c− 2 b) (2 b c2 − c2 − 6 b c+ 2 + 4 b)×

× (b c− 1− b)−2 (b c− c− 2 b)−2,

(1.11)

E30 = c b2 (1− c) (c− 2) (b c2 − 4 b c+ 2 + 4 b)×

× (2 b c2 − c2 − 4 b c+ 2 b)×

× (b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)−1 ×

× (b c− 1− b)−2 (−c+ b c− 2 b)−2,

(1.12)

E03 =
b

2
(b2 c4 − 5 b2 c3 + 10 b2 c2 − 10 b2 c+ 4 b2 + 2 b c+

+2 c2 − b c3) (2 b2 c4 − 12 b2 c3 + 26 b2 c2 − 24 b2 c+

+8 b2 − c4 b+ 3 b c3 − 6 b c+ 4 b+ c3 − 2 c2 + 2 c)×

× ((b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)−1 ×

× (b c− 1− b)−2 (−c+ b c− 2 b)−2.

(1.13)

The formulas (1.11), (1.12), (1.13) were also derived in [50] by substituting (1.4),
(1.5), (1.6) into the appropriate formulas from [48].

Based on the formulas (1.4) through (1.6) and (1.8) through (1.13), the following
two problems were formulated.

Problem 1.1. Find all pairs of rational numbers b and c for which the cubic

equations (1.1) and (1.2) with the coefficients given by the formulas (1.6), (1.11),
(1.12) and (1.5), (1.8), (1.13) possess positive rational roots x1, x2, x3, d1, d2, d3
obeying the auxiliary polynomial equations (1.3) whose right hand sides are given

by the formulas (1.9), (1.4), (1.10).

Problem 1.2. Find at least one pair of rational numbers b and c for which the

cubic equations (1.1) and (1.2) with the coefficients given by the formulas (1.6),
(1.11), (1.12) and (1.5), (1.8), (1.13) possess positive rational roots x1, x2, x3, d1,

d2, d3 obeying the auxiliary polynomial equations (1.3) whose right hand sides are

given by the formulas (1.9), (1.4), (1.10).

The problems 1.1 and 1.2 are equivalent to the appropriate problems for perfect
cuboids. Therefore they are equally difficult. However, now we can consider more
simple problems, e. g. we can search for the cases where the polynomials in the left
hand sides of the equations (1.1) and (1.2) are reducible.

Definition 1.1. A polynomial with rational coefficients is called reducible over Q
if it splits into a product of two or more polynomials with rational coefficients.

The polynomials (1.1) and (1.2) can be reducible simultaneously or in a separate
way. Six simple cases of reducibility were found in [72]. In each of these six cases the
polynomials (1.1) and (1.2) are reducible simultaneously. Unfortunately, or maybe
fortunately, since otherwise the problem would be closed, none of them leads to a
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perfect cuboid. Here is the list of reducibility conditions for all of these cases:

1) b = 0 and c 6= 0; 4) c = 2 and b 6= 1;

2) c = 0 and b (1 + b) 6= 0; 5) b (c− 2)2 = −2 and c 6= 2; (1.14)

3) c = 1 and b 6= −1; 6) 2 b (c− 1)2 = c2 and c (c− 1) 6= 0.

In addition to (1.14), there are two more options that could lead to reducibility of
the second polynomial (1.2). They are considered in this paper. As for the first
polynomial (1.1), until the converse is proved, the reducibility of (1.2) does not
imply the reducibility of (1.1) in general.

2. Elliptic reducibility curves.

Let’s consider the formula (1.13) for the last term E03 in the of the polynomial
(1.2). If E03 = 0, then the polynomial (1.2) has the rational root d = 0, i. e. it is
reducible over Q. Looking at (1.13), we see that the numerator in this formula is
the product of three terms. One of them is b. The vanishing condition b = 0 for
E03 is already listed in (1.14). Let’s consider the other two vanishing conditions:

b2 c4 − 5 b2 c3 + 10 b2 c2 − 10 b2 c+ 4 b2 − b c3 + 2 b c+ 2 c2 = 0, (2.1)

2 b2 c4 − 12 b2 c3 + 26 b2 c2 − 24 b2 c+

+8 b2 − b c4 + 3 b c3 − 6 b c+ 4 b+ c3 − 2 c2 + 2 c = 0.
(2.2)

The equations (2.1) and (2.2) are quadratic with respect to b. Their discriminants
with respect to b are given by the following formulas:

D7 = −(7 c4 − 40 c3 + 84 c2 − 80 c+ 28) c2, (2.3)

D8 = (c4 − 8 c3 + 12 c2 − 16 c+ 4) (c− 1)2 (c− 2)2. (2.4)

The indices 7 and 8 in (2.3) and (2.4) mean that we consider the seventh and the
eighth reducibility cases continuing the list (1.14).

Let’s denote through P7 and P8 the square free factors of the discriminants D7

and D8 respectively. Both of them are fourth order polynomials of c:

P7(c) = −7 c4 + 40 c3 − 84 c2 + 80 c− 28, (2.5)

P8(c) = c4 − 8 c3 + 12 c2 − 16 c+ 4. (2.6)

Using the polynomials (2.5) and (2.6), we can write the polynomial equations

y2 = −7 c4 + 40 c3 − 84 c2 + 80 c− 28, (2.7)

y2 = c4 − 8 c3 + 12 c2 − 16 c+ 4, (2.8)

which are more simple than the equations (2.1) and (2.2). The equations (2.5) and
(2.6) define two elliptic curves on the (y, c) plane (see [73]). The discriminants of
the quartic polynomials P7(c) and P8(c) do coincide and are nonzero:

D(P7) = D(P8) = −1048576 = −220 6= 0. (2.9)
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Due to (2.9) the elliptic curves defined by the equations (2.7) and (2.8) both are
non-degenerate.

In Number Theory an elliptic curve is understood as a genus 1 curve with at
least one rational point either finite or at infinity (see [73]). In the case of the curve
(2.8) such a rational point is obvious:

y = 2, c = 0. (2.10)

In the case of the curve (2.7) it is not obvious, but it does exist:

y = 1, c = 1. (2.11)

Theorem 2.1. Each rational point (y, c) of the curve (2.7) with c 6= 1 and c 6= 2
produces a rational solution (b, c) for the equation (2.1), where

b =
c (c2 + y − 2)

2 (c− 1) (c− 2) ((c− 1)2 + 1)
. (2.12)

Theorem 2.2. Each rational point (y, c) of the curve (2.8) with c 6= 1 and c 6= 2
produces a rational solution (b, c) for the equation (2.2), where

b =
c2 + y − 2

4 (c− 2) (c− 1)
. (2.13)

The proof for both theorems 2.1 and 2.2 is pure calculations. Note that the
equalities (2.12) and (2.13) in them are linear with respect to y. Resolving these
equalities for y, we can formulate the following converse theorems.

Theorem 2.3. Each rational solution (b, c) of the equation (2.1) with c 6= 0 pro-

duces a rational point (y, c) for the elliptic curve (2.7), where

y =
(2 c4 − 10 c3 + 20 c2 − 20 c+ 8) b− c3 + 2 c

c
. (2.14)

Theorem 2.4. Each rational solution (b, c) of the equation (2.2) produces a ratio-

nal point (y, c) for the elliptic curve (2.8), where

y = (4 c2 − 12 c+ 8) b− c2 + 2. (2.15)

The formulas (2.12), (2.13), (2.14), and (2.15) mean that the curve (2.1) is
birationally equivalent to the elliptic curve (2.7), while the curve (2.2) is birationally
equivalent to the elliptic curve (2.8).

3. Exceptional solutions and points.

Let’s return to the cubic equations (1.1) and (1.2) and to the auxiliary equations
(1.3). We can call them cuboid equations since they were derived from the original
cuboid equations through the symmetry factorization procedure as a result of the
series of papers [45–50]. The simultaneous non-vanishing condition for all denomi-
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nators in the formulas (1.4) through (1.6) and in the formulas (1.8) through (1.13)
is written as the following inequality:

(b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2) (b c− 1− b)×

× (b c− c− 2 b) (b2 c2 + 2 b2 − 3 b2 c+ c− b c2 + 2 b) 6= 0.
(3.1)

Combining the inequality (3.1) with the equation (2.1), we find the only rational
exceptional point on the curve (2.1). It is the origin:

b = 0, c = 0. (3.2)

Similarly, combining (3.1) with the equation (2.2), we find the only rational excep-
tional point on the curve (2.2). It coincides with the point (3.2).

If c = 0, the equation (2.1) has the only rational solution with b = 0, i. e. this
solution coincides with (3.2). It contradicts the inequality (3.1).

For c = 1 and c = 2 the equation (2.1) has the following rational solutions:

b = −2, c = 1, (3.3)

b = 2, c = 2. (3.4)

The solutions (3.3) and (3.4) do not contradict the inequality (3.1). But they are
covered by the cases 3 and 4 listed in (1.14). Therefore we call them exceptional
solutions of the equation (2.1) or exceptional points of the curve (2.1).

The formula (2.14) maps the solutions (3.3) and (3.4) of the equation (2.1) to
the following rational points of the elliptic curve (2.7):

y = 1, c = 1, (3.5)

y = −2, c = 2. (3.6)

The point (3.5) coincides with (2.11). Along with (3.5) and (3.6), the elliptic curve
(2.7) has the following two solutions being mirror images of the previous two:

y = −1, c = 1, (3.7)

y = 2, c = 2. (3.8)

Note that the rational points (3.5), (3.6), (3.7), and (3.8) are exceptional in the
sense of the theorem 2.1. And finally, note that the elliptic curve (2.7) has no
rational points with c = 0. Then we can formulate the following result.

Theorem 3.1. Non-exceptional rational solutions of the equation (2.1), if they

exist, are in one-to-one correspondence with non-exceptional rational points of the

curve (2.7). The correspondence is established by the formulas (2.14) and (2.12).

Let’s proceed to the equation (2.2) associated with the curve (2.8). Along with
the solution (3.2), it has the following rational solution with c = 0:

b = −
1

2
, c = 0. (3.9)
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The solution (3.9) does not contradict the inequality (3.1). But it is covered by the
case 2 listed in (1.14). Therefore we call it an exceptional solution of the equation
(2.2) or an exceptional point of the curve (2.2).

The formula (2.15) maps the solution (3.9) of the equation (2.2) to the following
rational point of the elliptic curve (2.8):

y = −2, c = 0, (3.10)

Along with (3.10), the elliptic curve (2.8) has the following solution being a mirror
image of (3.10) and coinciding with (2.10):

y = 2, c = 0. (3.11)

The points (3.10) and (3.11) of the curve (2.8) are not exceptional in the sense of
the theorem 2.2. The formula (2.13) maps them to the solutions (3.9) and (3.2)
of the equation (2.2) respectively. But the latter ones are exceptional. Therefore
we call the points (3.10) and (3.11) exceptional by convention. Note also that the
the equations (2.2) has no solutions with c = 1 or c = 2 and the curve (2.8) has
no rational points with c = 1 or c = 2 as well. Therefore we can formulate the
following theorem similar to the theorem 3.1.

Theorem 3.2. Non-exceptional rational solutions of the equation (2.2), if they

exist, are in one-to-one correspondence with non-exceptional rational points of the

curve (2.8). The correspondence is established by the formulas (2.15) and (2.13).

4. The seventh reducibility case.

The seventh and the eighth reducibility cases considered below are based on
non-exceptional rational solutions of the equations (2.1) and (2.2) or, which is
equivalent, on non-exceptional rational points of the elliptic curves (2.7) and (2.8).
We do not study the problem of existence for such solutions and/or such points in
the present paper. Therefore the results below are conditional provided these point
and these solutions do exist.

Like in [72], let’s denote through P (x) and Q(d) the cubic polynomials in the left
hand sides of the equations (1.1) and (1.2) respectively. Then due to (1.6), (1.11),
and (1.12) the coefficients of the polynomial P (x) are functions of b and c. Due to
(1.5), (1.8), and (1.13) the coefficients of Q(d) are also functions of b and c.

The seventh reducibility case occurs if (b, c) is a non-exceptional rational solu-
tion of the equation (2.1). This solution is produced from some non-exceptional
rational point (y, c) on the elliptic curve (2.7) by means of the formula (2.12). Let’s
substitute (2.12) into the coefficients of the polynomials P (x) and Q(d) and take
into account the equation (2.7) in calculating y2, y3, y4, y5, etc. As a result we get
two very huge expressions for P (x) and Q(d), but they turn out to be factorable in
x and d so that we can formulate the following theorem.

Theorem 4.1. If the rational numbers b and c are produced from some non-

exceptional rational point (y, c) of the elliptic curve (2.7) by means of the formula

(2.12), then the cubic polynomials in (1.1) and (1.2) are reducible over Q and the

equations (1.1) and (1.2) are factored as

P7.2(x) (x + 1) = 0, Q7.2(d) d = 0. (4.1)
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The second formula (4.1) is not surprising since the equation (2.1), and hence the
equation (2.7), were derived from the condition E03 = 0. As for the first formula
(4.1), it is proved by substituting x = −1 into the formula for P (x) transformed by
means of the formula (2.12) as described above. Selecting those rational points of
the curve (2.7) where the polynomials P (x) = P7.2(x) (x+1) and Q(d) = Q7.2(d) d
split into three linear factors is a separate problem. We do not consider this problem
in the present paper.

5. The eighth reducibility case.

The eighth reducibility case occurs if (b, c) is a non-exceptional rational solution
of the equation (2.2). This solution is produced from some non-exceptional ratio-
nal point (y, c) on the elliptic curve (2.8) by means of the formula (2.13). Let’s
substitute (2.13) into the coefficients of the polynomials P (x) and Q(d) and take
into account the equation (2.8) in calculating y2, y3, y4, y5, etc. As a result we get
two very huge expressions for P (x) and Q(d), but they turn out to be factorable in
x and d so that we can formulate the following theorem.

Theorem 5.1. If the rational numbers b and c are produced from some non-

exceptional rational point (y, c) of the elliptic curve (2.8) by means of the formula

(2.13), then the cubic polynomials in (1.1) and (1.2) are reducible over Q and the

equations (1.1) and (1.2) are factored as

P8.2(x) (x − 1) = 0, Q8.2(d) d = 0. (5.1)

The second formula (5.1) is not surprising since the equation (2.2), and hence the
equation (2.8), were derived from the condition E03 = 0. As for the first formula
(5.1), it is proved by substituting x = 1 into the formula for P (x) transformed by
means of the formula (2.13) as described above. Selecting those non-exceptional
rational points of the curve (2.8) where the polynomials P (x) = P8.2(x) (x−1) and
Q(d) = Q8.2(d) d split into three linear factors is a separate problem. We do not
consider this problem in the present paper.

9. Concluding remarks.

The theory of rational points on elliptic curves is a very advanced and still devel-
oping area in modern mathematics. It comprises some intriguing open questions,
e. g. the Birch and Swinnerton-Dyer conjecture, which is one of the seven Millen-
nium Prize Problems (see [74] and [75]). The author expects that the observations
and results of the present paper will make the perfect cuboid problem closer to this
fascinating area of mathematics.
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