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ON SINGULARITIES OF THE INVERSE PROBLEMS

ASSOCIATED WITH PERFECT CUBOIDS.

John Ramsden, Ruslan Sharipov

Abstract. Two cubic equations and three auxiliary equations for edges and face
diagonals of a rational perfect cuboid have been recently derived. They constitute a
background for two inverse problems. The coefficients of cubic equations and the right
hand sides of auxiliary equations are rational functions of two rational parameters,
i. e. they have denominators. Hence the inverse problems have singular points. These
singular points are studied in the present paper.

1. Introduction.

A rational perfect cuboid is a rectangular parallelepiped whose edges and face
diagonals are rational numbers and whose space diagonal is equal to unity: L = 1.
Finding such a cuboid is equivalent to finding a cuboid with all integer edges and
diagonals, which is an unsolved problem for many years (see [1–44]).

Let x1, x2, x3 be edges of a cuboid and let d1, d2, d3 be its face diagonals. Then
x1, x2, x3 are roots of the cubic equation

x3 − E10 x
2 + E20 x− E30 = 0. (1.1)

Similarly, d1, d2, d3 are roots of the other cubic equation

d3 − E01 d
2 + E02 d− E03 = 0. (1.2)

Apart from (1.1) and (1.2), the rational numbers x1, x2, x3 and d1, d2, d3 should
obey the following three auxiliary equations:

x1 x2 d3 + x2 x3 d1 + x3 x1 d2 = E21,

x1 d2 + d1 x2 + x2 d3 + d2 x3 + x3 d1 + d3 x1 = E11,

x1 d2 d3 + x2 d3 d1 + x3 d1 d2 = E12.

(1.3)

The cubic equations (1.1), (1.2) and the auxiliary equations (1.3) were obtained as
a result of the series of papers [45–50]). The coefficients E10, E20, E30, E01, E02,
E03 in (1.1) and (1.2) as well as the right hand sides E21, E11, E12 in (1.3) are
given by explicit formulas. Here is the formula for E11:

E11 = −
b (c2 + 2− 4 c)

b2 c2 + 2 b2 − 3 b2 c+ c− b c2 + 2 b
. (1.4)
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The formulas for E10, E01 are similar to the formula (1.4) for E11:

E10 = −
b2 c2 + 2 b2 − 3 b2 c − c

b2 c2 + 2 b2 − 3 b2 c+ c− b c2 + 2 b
, (1.5)

E01 = −
b (c2 + 2− 2 c)

b2 c2 + 2 b2 − 3 b2 c+ c− b c2 + 2 b
. (1.6)

Below are the formulas for E20, E02, E30, E03, E21, E12 in (1.1), (1.2), and (1.3):

E20 =
b

2
(b c2 − 2 c− 2 b) (2 b c2 − c2 − 6 b c+ 2 + 4 b)×

× (b c− 1− b)−2 (b c− c− 2 b)−2,

(1.7)

E02 =
1

2
(28 b2 c2 − 16 b2 c− 2 c2 − 4 b2 − b2 c4 + 4 b3 c4 − 12 b3 c3 +

+4 b c3 + 24 b3 c− 8 b c− 2 b4 c4 + 12 b4 c3 − 26 b4 c2 − 8 b2 c3 +

+24 b4 c− 16 b3 − 8 b4) (b c− 1− b)−2 (b c− c− 2 b)−2,

(1.8)

E30 = c b2 (1− c) (c− 2) (b c2 − 4 b c+ 2 + 4 b) (2 b c2 − c2 − 4 b c+

+2 b) (b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)−1 ×

× (b c− 1− b)−2 (−c+ b c− 2 b)−2,

(1.9)

E03 =
b

2
(b2 c4 − 5 b2 c3 + 10 b2 c2 − 10 b2 c+ 4 b2 + 2 b c+ 2 c2 −

− b c3) (2 b2 c4 − 12 b2 c3 + 26 b2 c2 − 24 b2 c+ 8 b2 − c4 b + 3 b c3−

− 6 b c+ 4 b+ c3 − 2 c2 + 2 c) (b2 c4 − 6 b2 c3 + 13 b2 c2 −

−12 b2 c+ 4 b2 + c2)−1 (b c− 1− b)−2 (−c+ b c− 2 b)−2,

(1.10)

E21 =
b

2
(5 c6 b− 2 c6 b2 + 52 c5 b2 − 16 c5 b− 2 c7 b2 + 2 b4 c8 −

− 26 b4 c7 − 426 b4 c5 − 61 b3 c6 + 100 b3 c5 + 14 c7 b3 − c8 b3 − 20 b c2−

− 8 b2 c2 − 16 b2 c− 128 b2 c4 − 200 b3 c3 + 244 b3 c2 + 32 b c3+

+768 b4 c4 − 852 b4 c3 + 568 b4 c2 + 104 b2 c3 − 208 b4 c+ 8 c4+

+16 b3 − 112 b3 c+ 142 b4 c6 + 32 b4 − 2 c5) (b2 c4 − 6 b2 c3 + 13 b2 c2 −

−12 b2 c− 4 c3 + 4 b2 + c2)−1 (b c− 1− b)−2 (b c− c− 2 b)−2,

(1.11)

E12 = (16 b6 + 32 b5 − 6 c5 b2 + 2 c5 b− 62 b5 c6 + 62 b6 c6 + 16 b4−

− 180 b6 c5 − c7 b3 + 18 b5 c7 − 12 b6 c7 − 2 b5 c8 + b6 c8 + 248 b5 c2 +

+248 b6 c2 − 96 b6 c+ 321 b6 c4 − 180 b5 c3 − 144 b5 c− 360 b6 c3 +

+ b4 c8 + 8 b4 c6 − 6 b4 c7 + 18 b4 c5 + 7 b3 c6 + 90 b5 c5 − 14 b3 c5 +

+17 b2 c4 + 32 b4 c2 + 28 b3 c3 − 28 b3 c2 − 4 b c3 + 8 b3 c− 57 b4 c4 +

+36 b4 c3 − 12 b2 c3 − 48 b4 c− c4) (b2 c4 − 6 b2 c3 + 13 b2 c2 −

− 12 b2 c+ 4 b2 + c2)−1 (b c− 1− b)−2 (b c− c− 2 b)−2.

(1.12)
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Based on the equations (1.1), (1.2), (1.3) and on the formulas (1.4), (1.5), (1.6),
(1.7), (1.8), (1.9), (1.10), (1.11), (1.12), in [50] the following two inverse problems
were formulated.

Problem 1.1. Find all pairs of rational numbers b and c for which the cubic

equations (1.1) and (1.2) with the coefficients given by the formulas (1.5), (1.7),
(1.9), (1.6), (1.8), (1.10) possess positive rational roots x1, x2, x3, d1, d2, d3 obeying

the auxiliary polynomial equations (1.3) whose right hand sides are given by the

formulas (1.4), (1.11), (1.12).

Problem 1.2. Find at least one pair of rational numbers b and c for which the

cubic equations (1.1) and (1.2) with the coefficients given by the formulas (1.5),
(1.7), (1.9), (1.6), (1.8), (1.10) possess positive rational roots x1, x2, x3, d1, d2, d3
obeying the auxiliary polynomial equations (1.3) whose right hand sides are given

by the formulas (1.4), (1.11), (1.12).

The formulas (1.4) through (1.12) possess denominators. Therefore the inverse
problems are singular for some values of b and c. The main goal of the present
paper is to study these singularities.

2. The common denominator and its reduction.

Let’s calculate the common denominator of the fractions (1.4) through (1.12):

(b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2) (b c− 1− b)2 ×

× (b c− c− 2 b)2 (b2 c2 + 2 b2 − 3 b2 c+ c− b c2 + 2 b) = 0.
(2.1)

The vanishing condition (2.1) determines all singular points of the inverse prob-
lems 1.1 and 1.2. The last multiplicand in the left hand side of the formula (2.1) is
taken from the denominators of (1.4), (1.5), and (1.6). Studying this multiplicand
we find that it is factorable. It factors as follows:

b2 c2 + 2 b2 − 3 b2 c+ c− b c2 + 2 b = (b c− 1− b) (b c− c− 2 b).

Applying this formula to (2.1), we reduce the equality (2.1) to

(b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)×

× (b c− 1− b)3 (b c− c− 2 b)3 = 0.
(2.2)

Some multiplicands in (2.1) are raised to the third power. But the exponents do
not really affect the vanishing condition (2.2). Therefore we reduce it to

(b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)×

× (b c− 1− b) (b c− c− 2 b) = 0.
(2.3)

The left hand side of the formula (2.3) is the reduced common denominator of
the fractions (1.4) through (1.12). It is broken into the product of three terms.
Therefore singular points of the inverse problems 1.1 and 1.2 are subdivided into
three singularity subvarieties.
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3. The first singularity subvariety.

The first subvariety of singular points is the most simple. It is determined by
the most simple factor in (2.2) through the following equation:

b c− 1− b = 0. (3.1)

The equation (3.1) is linear with respect to both b and c. Resolving it for b, we get

b =
1

c− 1
, where c 6= 1. (3.2)

The formula (3.2) means that the first subvariety of singular points of the inverse
problems 1.1 and 1.2 is a rational curve birationally equivalent to a straight line.

4. The second singularity subvariety.

The second subvariety of singular points is similar to the first one and is also
very simple. It is determined by the following equation:

b c− c− 2 b = 0. (4.1)

Like in (3.2), resolving the equation (4.1) with respect to b, we get

b =
c

c− 2
, where c 6= 2. (4.2)

The formula (4.2) means that the second subvariety of singular points of the inverse
problems 1.1 and 1.2 is a rational curve birationally equivalent to a straight line.

5. The third singularity subvariety.

The third subvariety of singular points is different from the first two. It is
determined by the following equation which is quadratic with respect to b:

b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2 = 0. (5.1)

The discriminant of the quadratic equation (5.1) with respect to b is

D = −4 (c− 1)2 (c− 2)2 c2. (5.2)

Looking at the discriminant formula (5.2), we see that we can expect to find rational
solutions only in one of the following three cases:

c = 0, c = 1, c = 2. (5.3)

Substituting c = 0 into the formula (5.1) we derive 4 b2 = 0. This yields one
rational point at the origin ob the (b, c) plane:

b = 0, c = 0. (5.4)
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Substituting c = 1 and c = 2 into (5.1), we get two equalities 1 = 0 and 4 = 0 which
are contradictory. Thus two of the three options in (5.3) do not actually produce
any rational solutions for the equation (5.1). This result is not surprising since the
equation (5.1) turns out to be reducible to (c− 1)2 (c− 2)2 b2 + c2 = 0.

6. Conclusions.

Despite being a fourth order equation in c, the equation (5.1) does not produce
elliptic curves. Therefore the structure of the set of singular points of the inverse
problems 1.1 and 1.2 is very simple. It comprises one isolated point (5.4) and two
parametric subsets given by the formulas (3.2) and (4.2). This fact can be useful
in computerized search for a solution of at least one of the problems 1.1 and 1.2,
or in solving both of them if somehow it will be proved that the number of perfect
cuboids is finite and they are in a certain range.
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