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We present a computational study of �nite-time mixing of a line segment by cutting and shu�ing.
A family of one-dimensional interval exchange transformations is constructed as a model system
in which to study these types of mixing processes. Illustrative examples of the mixing behaviors,
including pathological cases that violate the assumptions of the known governing theorems and
lead to poor mixing, are shown. Since the mathematical theory applies as the number of iterations
of the map goes to in�nity, we introduce practical measures of mixing (the percent unmixed and
the number of intermaterial interfaces) that can be computed over given (�nite) numbers of
iterations. We �nd that good mixing can be achieved after a �nite num ber of iterations of a one-
dimensional cutting and shu�ing map, even though such a map cannot be considered chaotic
in the usual sense and/or it may not ful�ll the conditions of the ergodic theorems for interval
exchange transformations. Speci�cally, good shu�ing can occur with only six or seven intervals
of roughly the same length, as long as the rearrangement order is an irreducible permutation.
This study has implications for a number of mixing processes in which discontinuities arise either
by construction or due to the underlying physics.

Keywords: Cutting and shu�ing; piecewise isometries; granular mixing; lamellar structures.

� Present address: Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA .
yAuthor to whom correspondence should be addressed.

1

http://arxiv.org/abs/1208.2052v1


May 2, 2014 15:7 ijbc_1d_c_s

2 M. K. Krotter et al.

1. Introduction

The precise \symptoms" expressed by a chaotic dynamical system have been the subject of much discus-
sion over the years [Brown & Chua, 1996, 1998; Martelli et al., 1998; Brown & Chua, 1999]. A positive
leading Lyapunov exponent, computed analytically or from a time series, is one common requirement
[Baker & Gollub , 1996, Chap. 5]. Recently, piecewise-continuous and discontinuous dynamical systems
have provided examples and counterexamples to the \typical" notions associated with chaos, often lead-
ing to the development of new types of bifurcation phenomena[di Bernardo et al., 2008], and even the
possibility of nondeterministic chaos [Je�rey , 2011]. An overview of the role of discontinuities in mixing,
illustrated by recent examples from the literature, is provided by Sturman [2012].

Piecewise isometries(PWIs) [ Goetz, 2000, 2002] are one of the most recent examples of a discontinuous
dynamical system exhibiting nontrivial dynamics. Under some speci�c conditions, it can be shown that
the topological entropy [Buzzi, 2001] and all of the Lyapunov exponents [Fu & Duan , 2008] of a PWI
are equal to zero (wherever and whenever they exist). A smooth distance-preserving map does not lead
to complex dynamics in any sense of the word, but \gluing" together di�erent isometries in a piecewise
manner across a line of discontinuity leads to highly nontrivial behavior of orbits. The resulting complex
dynamics include, but are not limited to, attractors and quasi-periodicity [Goetz, 1998; Scott et al., 2001;
Kahng, 2002; Mendes & Nicol, 2004; Ashwin & Goetz, 2005; Lowenstein & Vivaldi , 2010]. In fact, Kahng
[2009a,b] has shown that certain PWIs satisfy a modi�cation of Devaney's criterion for chaos [Devaney,
2003, x1.8]. A dynamical system is Devaney chaotic if it is (i) sensitive to initial conditions, (ii) topologically
transitive and (iii) has a set of periodic orbits that is dense in the domain; planar PWIs satisfy criteria (i)
and (ii).

PWIs also arise in the study of digital �lters [ Chua & Lin , 1988; Ogorza lek, 1992]. If one allows for the
more general class of piecewisecontraction (non-area-preserving) maps, there are further applications to
electrical engineering [Deane, 2006]. More recently, PWI maps have been proposed as the skeletonof the
kinematics of the 
ow of granular materials in tumblers [Christov et al., 2010b,a; Juarez et al., 2010, 2012].
The PWI dynamics in granular mixing are termed cutting and shu�ing to emphasize their fundamental
di�erence from the well-known stretching and folding mechanism of chaotic 
uid mixing [Ottino , 1989].
Some illustrated examples of these di�erences are provided by Christov et al. [2011].

Laboratory experiments have shown [Juarez et al., 2010, 2012] that the mixing properties of granu-
lar 
ows can be predicted based on the underlying PWI framework. However, it is also worthwhile to
consider simpler PWI-type mixing problems. The one-dimensional (1D) version of a PWI is an interval
exchange transformation(IET) [ Goetz, 1998]. In a 1D context, cutting and shu�ing takes a particularly i n-
tuitive form, well known to card players [Golomb, 1961; Aldous & Diaconis, 1986; Trefethen & Trefethen,
2000]. Recent work by Liang & West [2008] showing that 2D chaotic 
uid mixing can exhibit cuto�s
(i.e., abrupt transitions from partially-mixed to well-mi xed states) usually associated with card shu�ing
[Aldous & Diaconis, 1986; Trefethen & Trefethen, 2000] provides further evidence for the relevance of 1D
cutting and shu�ing. IETs, which replace the deck of cards wi th a set of subsegments of variable lengths,
are one of the simplest dynamical systems that can be successfully studied analytically in some detail
[Katok & Hasselblatt , 1995, x14.5]. More striking, however, is that IETs describe the dynamics along lines
of discontinuity in some planar PWIs [Kahng, 2009b].

To illustrate mixing by cutting and shu�ing in the context of granular 
ow, consider a spherical device
partially-�lled with two initially separate colors of gran ular material in which the mixing dynamics due
to short rotations about two axes can be observed from below [Meier et al., 2007; Sturman et al., 2008;
Juarez et al., 2010]. Figure 1(a) shows a bottom view of a PWI simulation of such a setup after several
iterations of these rotations. As the sphere rotates about an axis, material moves from one side of the surface
in Fig. 1(a) to the other, and re-enters the side it came from upon reaching the dashed edge. For the PWI
framework to be valid, we must �rst assume that the re-entry occurs instantaneously [Christov et al., 2010b;
Juarez et al., 2010], i.e., there is a discontinuous mapping from one side of thedotted circle in Fig. 1(a)
to the other across the axis of rotation (not shown and arbitrary). IET-like dynamics are evident if we
\unwrap" the boundary of the surface of discontinuity shown approximately by the dotted curve encircling
the mixing pattern in Fig. 1(a). The dynamics occurring on this interface are the sourceof complexity in
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(a) bottom view of a granular mixing
      PWI simulation in a sphere

(b) fluid mixing experiment in a cavity
      with moving top wall
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Fig. 1. (a) View from below of a PWI granular mixing simulatio n in a \blinking spherical tumbler 
ow" [ Juarez et al., 2010,
2012]. Initially, the black and gray materials occupy the left an d right quarter-spheres, respectively. Inset shows the cutting
and shu�ing dynamics occurring at the discontinuity interf ace (dotted curve). Shu�ing occurs upon rotation about an ax is,
while cutting results from changing the axis of rotation. (b ) Photograph showing typical structures produced by chaoti c mixing
in a cavity 
ow experiment using two 
uids of similar viscosi ty and negligible interfacial tension. A lamellar structur e with
striations of distributed thickness is generated by the cha otic 
ow. Inset shows a cross-section, which is the starting point
for a 1D model of the evolution of the lamellar structure. The strips in the insets in panels (a) and (b) have a �nite vertica l
extent for clarity of presentation. Images in panel (b) repr oduced, with permission, from F.J. Muzzio & J.M. Ottino, Phys.
Rev. Lett. , 63, 1989, 47{50. c
 1989 American Physical Society.

the PWI model of granular mixing in a spherical tumbler [Christov, 2011, x8.9]. Thus, an understanding
of the behavior of such IETs can shed light on the more complicated PWI dynamics in a plane or on a
sphere. Similar discontinuous changes in the 
ow also occurin a number of chaotic 
uid mixing problems
such as the periodic reorientation of streamlines in a circular Hele-Shaw cell, which has been used as a
model for injection wells in porous geological formations [Metcalfe et al., 2010]. A detailed discussion of
how such 
ows �t into the PWI framework is given by Sturman [2012].

The concept of intermaterial area is central in the theory of chaotic mixing [Ottino , 1989]. A cross-
section of the mixing process reveals a pattern of pieces of material of di�erent types and varying thickness.
Stretching and folding motions create �ne lamellar structures, such as those seen in Fig.1(b), across which
reaction and di�usion processes act. The distribution of the thickness of lamella along a 1D slice of the
domain (e.g., across the black line in Fig.1(b)) has been studied, showing universal properties of the
evolution of the distribution toward a steady state [Muzzio & Ottino , 1989]. One-dimensional models of
the lamellar dynamics are useful, because precise numerical tracking of the intermaterial area in a chaotic

ow, even in 2D, is a di�cult (if not impossible) task [ Franjione & Ottino , 1987]. What is more, the
e�ective 1D dynamics across a cross-section (as in Fig.1(b)) can be thought of as an IET with molecular
di�usion blurring the boundaries between subsegments before they are permuted. Di�erent models of
\cutting" can lead to signi�cant enhancement over a purely d i�usive mixing process [Ottino et al., 1992;
Ashwin et al., 2002]. In an industrial setting, various designs of mixers have been proposed that create
such lamellar structures in a controlled and reproducible fashion [Hobbs & Muzzio, 1997; Neerincx et al.,
2011]. In such a device, the speed of a two-step chemical reactiondepends sensitively on the arrangement
and thickness of the lamella [Cli�ord et al., 1999, 2000]. More importantly, in multiple reactions, the
�nal product distribution depends on the dynamics of mixing [Chella & Ottino , 1984]. Therefore, a better



May 2, 2014 15:7 ijbc_1d_c_s

4 M. K. Krotter et al.

understanding of the practical details of IETs can lead to improvements in the design of devices that must
mix materials or allow them to react completely in a precise manner.

While the mathematical theory of IETs is mature (see, e.g., the recent review ofViana [2006]), few
computational examples and parameter space studies can be found in the literature. Moreover, theorems
focus on in�nite-time concepts such as ergodicity, weak mixing and Lyapunov exponents. It is apparent,
however, that in�nite-time concepts, while very useful, do not fully address the questions that arise in
practice. Mixing experiments and chemical reactions take place over a�nite period of time. For mixing of
granular materials, the diameter d of a typical particle de�nes a \cut o�" length scale beyond wh ich further
mixing is impossible because smaller-scale structures cannot be produced. Similarly, in 
uid mixing the
di�usion length scale �

p
Dt , whereD is the molecular di�usivity and t is time, sets a lower-bound beyond

which it is not worthwhile to continue creating �ner lamella r structures [Toussaint & Carri�ere , 1999].
Therefore, questions such as \How many iterations does it take to reduce longest continuous segment in
an IET to a given fraction of the interval?" cannot be answered by current theory on IETs.

The only previous detailed numerical study of mixing of a line segment is that ofAshwin et al. [2002],
who only consider protocols based on exchanges of equal-length subsegments, which do not necessarily
mix. Ashwin et al. [2002] noted that \mixing properties of interval exchange maps are very subtle and
relatively poorly understood and depend on parameters in a sensitive way." Thus, the goal of the present
work is to extend the latter study to mixing by cutting and shu �ing within the framework of the ergodic
theory developed for interval exchange transformations (IETs). Speci�cally, we aim to develop illustrative
examples of the behavior of 1D cutting and shu�ing maps in order to clarify how the pathological cases
that lead to poor mixing (e.g., those that violate the known IET theorems). We shall do so in the context
of �nite-time transport, characterizing the mixing proper ties of those maps over a given (�xed) number of
iterations. The proofs of the ergodic and mixing theorems for IETs are di�cult, and similar questions for
PWIs remain open. As a result, computational studies have recently proven to be an important part of the
mathematical discovery process in this �eld [Bressaud & Poggiaspalla, 2007].

This paper is organized as follows. Section2 introduces our IET construction and de�nes the parameter
space to be explored. Section3 summarizes the relevant previous mathematical results regarding IETs,
their complexity and their mathematical mixing properties . In Sec.4, we present practical numerical results
on mixing by 1D cutting and shu�ing, and connect the behavior s to the mathematical theory from Sec.3.
Section 5 summarizes the most important results of our study and presents our conclusions.

2. IET construction and simulation methodology

To study 1D cutting and shu�ing, i.e., the \mixing" of a line s egment I , we construct a speci�c type of
IET, which we denote as TS;� : I ! I , with a well-de�ned parameter space that we can systematically
explore. To this end, without loss of generality, we take theline segment to be an interval of the real line,
speci�cally I = [0 ; 1]. Then, cutting and shu�ing proceeds by dividing I into a collection of N disjoint
subsegments given by the setS = fI 1; : : : ; I N g. Speci�cally, the interval is divided into N subsegments
of length jI i j and the ratio r i = jI i j=jI i � 1j between the lengths of consecutive subsegments is taken to be
constant (i.e., r i = r � 1 8i ), as shown in Fig. 2. Now, we specifyr and require the length of the interval
I to be 1, which gives

NX

i =1

r i � 1x = 1 ) x =
r � 1

r N � 1
; (1)

where x = jI 1j is the primary interval length.
To visualize the process of cutting and shu�ing, the initial subsegments (afterI is �rst subdivided

into the set S) are each assigned a di�erent color, as shown in Fig.2. One application of the IET TS;�
shu�es the subsegments according to the prescribed rearrangement order given by the permutation �. The
subsegments after the initial subdivision ofI are consecutively numbered from left to right, as shown in the
top row of Fig. 3. Hence, the rearrangement order de�nes a one-to-one mapping from the set f 1; 2; : : : ; N g
into itself. The image of f 1; 2; : : : ; N g under � is the order of the subsegments after one iteration of the
cutting and shu�ing process, i.e., after one application of the IET. For example, in Fig. 3, the rearrangement
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x rx r2x r3x

Fig. 2. (Color online.) Sketch of how an interval I is subdivided in our IET construction with N = 4 and r = 1 :5.

order is given by �([1234]) = [3142], where the bracket notation (rather than set notation) is used for the
permutation to emphasize that the order of both the input and output integers is important and �xed.

After the initial subdivision and shu�ing of I , the line segment is reassembled, then it is cut once again
at the same locations, and the process continues. The resultof a second application of the IET is shown
in the bottom row of Fig. 3. The cutting and shu�ing process continues until either a certain number of
iterations have been completed, or the line segment is \mixed" to a predetermined level, pending a proper
de�nition of \mixed." Details of the numerical procedure us ed to simulate cutting and shu�ing of a line
segment are provided in Appendix A.

To quantify the degree of mixing after n iterations, we use two measures: the percent unmixedUn and
number of distinct cuts (i.e., interfaces) Cn . The percent unmixed is the longest continuous subsegment
of like color, even if that subsegment comes about as a resultof two like-color subsegments having been
recombined. Since the length ofI was normalized to 1, the length of longest piece of material of like color
corresponds to the largest percent of the material that is \unmixed." Ideally, Un ! 0 as n ! 1 would
imply complete mixing. For example, in Fig. 3, the central unmixed portion after n = 2 iterations is the
longer white interval, giving U2 = 23%.

The number of interfaces Cn , on the other hand, is the number of locations where subsegments of
di�erent initial color are in contact. Locations where pieces of subsegments of like color reassemble are not
included in the calculation of Cn , even though a cut was formally made there at some previous iteration.
In contrast to Un , a larger value ofCn corresponds to better mixing because many pieces of di�eringcolor
are in contact. In Fig. 3, after 2 iterations, we haveC2 = 6.

1 2 3 4

13 4 2

initial
configuration

iteration 1

iteration 2

cut cut cut

0.23

Fig. 3. (Color online.) Illustration of how the �rst two iter ations of our IET construction with N = 4, r = 1 :5 and �([1234]) =
[3142] proceed. After the second iteration, the maximum percent unmixed (corresponding to the subsegment delineated by
the curly brace in the bottom row) is U2 = 23%, and number the number of interfaces (denoted by arrows at the bottom) is
C2 = 6.

A number of alternative mathematical de�nitions of the qual ity of mixing can found in the literature
(see, e.g., [Ashwin et al., 2002, x1.2]). Recently, mathematically-rigorous measures of mixing capable of
quantifying the \multiscale" nature of the self-similar la mellar structures developed by stretching and
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folding in chaotic 
ows [ Muzzio et al., 1992] have been developed using the tools of dynamical systems
[Mathew et al., 2005] and partial di�erential equations [ Thi�eault , 2012]. For our purposes, however,Un
and Cn are easy to compute, require few assumptions, are conceptually simple, and have concrete physical
meaning. Thus, we use them to quantify the complexity generated by cutting and shu�ing a line segment.

3. Summary of mathematical results on IETs

In this section, we review the pertinent previous mathematical results that characterise IETs to aid in the
interpretation of our computational results. Speci�cally , we introduce the necessary terminology and the
key theorems applicable to our study.

An in-depth discussion of theergodic hierarchy that de�nes \levels" of mixing using mathematically-
precise concepts from dynamical systems theory can be foundin [Sturman et al., 2006, x3.7] and
[Berkovitz et al., 2006]. An elementary discussion in relation to IETs and PWIs can be found in
[Christov et al., 2011, xV]. Keane's minimality condition [ Keane, 1975, x2] is an important result in this
respect as it guarantees (unique) ergodicity, the \weakest" form of mixing, of (almost all) IETs [ Masur,
1982; Veech, 1982]. The \almost all" part the latter result is strict as non-tr ivial IETs that are minimal but
not (uniquely) ergodic have been constructed [Keane, 1977]. We give a short summary of the background
on these results through some equivalent and easy-to-statetheorems due toViana [2006], after providing
some necessary de�nitions.

De�nition 3.1. A permutation � is said to be irreducible if applying � to any of the subsets f 1g, f 1; 2g,
f 1; 2; 3g up to f 1; 2; : : : ; N � 1g does not yield a permutation of just the elements ofthat subset.

By �( i ) we denote the value that the integer i is mapped to by the permutation, while the compacted
notation �([123 : : :]) is used to show (all at once) the image under the action of � of the integersf 1; 2; 3; : : :g.
For example, the permutation �([12345]) = [31254] is reducible (i.e., not irreducible) because the �rst three
elements (and the last two elements) are a permutation of only themselves (neither 1, 2, nor 3 maps to 4
or 5). In contrast, �([12345]) = [31524] is irreducible. See Appendix B for further details.

De�nition 3.2. A permutation � of f 1; 2; : : : ; N g is said to be a rotation if �( i + 1) � �( i ) + 1 mod N .

For example, it easy to show that �([12345]) = [34512] satis� es this de�nition, hence it is a rotation.
On the other hand, �([12345]) = [54312] violates the de�niti on for i = 1 because 2 maps to �(2) = 4 while
1 maps to �(1) = 5 and 4 6= 5 + 1 mod 5 = 1, hence �([12345]) = [54312] is not a rotation.

Theorem 1 [Viana, 2006, Proposition 3.2]. If the lengths of the subsegmentsI i 2 S are rationally inde-
pendent and� is irreducible, then S and � satisfy the Keane minimality condition .

For example, to ensure that the lengths of subsegmentsI i 2 S are rationally independent, we could
require that the lengths of adjacent intervals r i = jI i j=jI i � 1j be irrational numbers. Here, we will not state
Keane's condition in its original form [Keane, 1975, x2] because Theorem1 is more accessible. Furthermore,
Theorems2 and 3 below characterize all IETs satisfying Keane's condition,which allows us to bypass its
cumbersome mathematical de�nition.

Theorem 2 [Viana, 2006, Proposition 4.1]. If S and � satisfy the Keane condition, then every orbit of
TS;� is dense in the whole domain; such an IET is termedminimal .

Here, by \orbit" we mean the set of points f y; TS;� (y); T2
S;� (y); : : : ; Tn

S;� (y); : : : g for a given y 2 I . An
orbit is dense in the domain if, for somen, it comes arbitrarily close to any given point in the domain.

Theorem 3 [Viana, 2006, Lemma 4.4]. If S and � satisfy the Keane condition, thenTS;� has no periodic
points.

Thus, if an IET satis�es the conditions of Theorem 1, it satis�es the Keane condition, meaning (by
Theorems 2 and 3) that \all its orbits visit all of the domain" and, speci�cal ly, none are periodic. This
would suggest good mixing because material is distributed throughout all of the interval. However, we could
be more precise if we consider the map's behavior in the limitas the number of iterations goes to in�nity.
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Let A 1; A 2 � I be any two subintervals of I , where I = [0 ; 1] in our construction. (These subintervals are
arbitrary and do not have to coincide with the subsegmentsI i .) Denoting the cutting and shu�ing process
(i.e., the IET TS;� ) simply by T, the condition for strong mixing can be stated mathematically as

lim
n!1

�
�
Tn (A 1) \ A 2

�
= � (A 1)� (A 2); (2)

where � (�) is the appropriate invariant measure, e.g., length in 1D, andTn(A 1) \ A 2 denotes the material
in common betweenTn(A 1) and A 2. In other words, as any subintervalA 1 is cut and shu�ed throughout
the domain I , we would expect to �nd the same amount of material from A 1 in any other subinterval A 2.

A cutting and shu�ing map based on an IET cannot be strongly mi xing [Katok , 1980]. However, the
following can be shown.

Theorem 4 [Avila & Forni , 2007, Theorem A]. Let � be an irreducible permutation that is not a rotation.
Then, for almost every S, TS;� is weakly mixing, i.e.,

lim
n!1

1
n

n� 1X

i =0

�
� �

�
T i (A 1) \ A 2

�
� � (A 1)� (A 2)

�
� = 0 : (3)

Put simply, Theorem 4 relaxes the requirement that the same amount of material from the subinterval
A 1 be found in any other subinterval A 2, to the requirement that Eq. ( 2) hold except for a countable
number of n 2 N [Walters, 1982, p. 45]. Still, weak mixing is a stronger result than the ergodicity property
mentioned previously that an IET acquires by satisfying Keane's minimality condition. Again, the \almost
all" requirement is strict as there are non-trivial minimal IETs that are (uniquely) ergodic but not weakly
mixing [Hmili , 2010]. The situation becomes much more complicated in 2D, where only a few results are
known for rectangle exchange transformations[Haller, 1981] and almost none for PWIs. However, there is
at least one example, due toKahng [2002], of a PWI that is not weakly-mixing.

The last mathematical result we review concerns the growth of the number of interfacesCn with n. It
is characterized by the following theorem due toNovak [2009].

Theorem 5 [Novak, 2009, Theorem 1.1]. For any interval exchange transformation TS;� , either Cn (T)
exhibits linear growth in n or Cn(T) is bounded above independently ofn.

In the case whenCn exhibits linear growth, the slope is given by the number ofnonresolving funda-
mental discontinuities [Novak, 2009, Proposition 2.3], i.e., those cuts at which two like colorsare never
\glued back together," as n ! 1 . Unlike chaotic dynamical systems in which any analog ofCn grows ex-
ponentially with n, quickly leading to an intractable numerical problem in 2D or 3D [Franjione & Ottino ,
1987], Theorem 5 ensures that keeping track of the interfaces generated by anIET is feasible. Finally, it is
important to note that the dichotomy of the growth of Cn does not correspond directly to the dichotomy
of whether TS;� satis�es Keane's condition or not. We explore the relationship between the two through
the numerical examples below.

4. Numerical results

Given the simple system of an interval divided into subsegments that we constructed in Section 2, we can
set about to explore the relationship between the mathematical results on IETs summarized in Section3
and mixing by cutting and shu�ing. For example, a natural que stion to ask is what happens when Keane's
condition is violated? Finite-precision arithmetic ensures that, on a computer, there are no \truly irrational"
choices for ratio r between adjacent subsegment lengths. We would like to determine how this a�ects the
mixing properties of IETs. In this section, we investigate several examples of IETs constructed as described
in Sec.2 with the goal of understanding the impact of the theorems from Sec.3 on �nite-time mixing by
cutting and shu�ing. The latter is an aspect of IETs that is no t covered by the mathematical theory. To
make the computational analysis easier, we restrict ourselves to a relatively small number of subsegments
N 2 f 4; 5; 6; 7g and a ratio between subsegment lengthsr 2 [1; 2:5].
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To visually analyze the impact of the various parameters on the mixing properties of our IET, we
construct space-time plots of the cut and shu�ed line segment I as shown in Fig. 4. In such space-time
plots, the initial subdivision of I into N di�erently-colored subsegments is at the top. The cut and shu�ed
versions ofI resulting from subsequent applications of the IET, i.e.,Tn (I ), are stacked below the initial
condition. A small number of pieces of di�erent colors at the bottom of a space-time plot indicates poor
mixing. This is one of the most useful aspects of the space-time plot: repeating patterns in the graph
correlate with poor mixing. For instance, in Fig. 4(a), periodic dynamics, which leads to poor mixing, are
immediately evident. An IET that can produce signi�cant mix ing, on the other hand, leads to the bottom
row of the space-time plot having many subsegments of di�erent colors, as shown in Fig.4(b).
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(a) N = 4, r = 1.5, ! = [3142] (b) N = 6, r = 1.25, ! = [653241]

Fig. 4. (Color online.) Space-time plots over 100 iteration s of our IET-based cutting and shu�ing map for two di�erent
combinations of parameters. (a) Periodic dynamics and poor mixing result from choosing N = 4, r = 1 :5 and �([1234]) =
[3142]. (b) Substantial mixing is observed for N = 6, r = 1 :25 and �([123456]) = [653241].

It is worthwhile comparing space-time diagrams toPoincar�e sections, a common diagnostic of mixing.
A Poincar�e section consists of the collection of locationsof \tracers" after each application of a map
representing the action of, say, one period of a 
ow. When each tracer is assigned a di�erent color, the
Poincar�e section takes a particularly visually appealing form (see, e.g., [Ottino , 1989, Chap. 6]). In this one-
dimensional context, however, the \tracers" can be thought of as points distributed along a line segment,
�lling it densely in the case of good mixing, or leaving gaps (depending on their seed locations) in the case
of poor mixing. Constructing a space-time diagram as in Fig.4 is a clearer way of visualizing the same
information: any row represents a mixing pattern that can be compared to a previous or later iteration
showing where colors, which correspond to di�erent initial locations, are distributed under the action of
cutting and shu�ing.

4.1. E�ect of rearrangement order

The choice of the subsegment rearrangement order, represented by the permutation �, obviously a�ects the
quality of mixing as made precise by the theorems in Sec.3. Permutations that are reducible, as described
in De�nition 3.1, result in poor mixing and, often, periodic dynamics. Figure 5 illustrates this behavior for
three choices of � with N and r �xed.

The simplest reducible permutations are those for which either �(1) = 1 (meaning the �rst subsegment
remains in place throughout the cutting and shu�ing process) or �( N ) = N (meaning the last subsegment
remains in place, as shown in Fig.5(a)). In either case, the percent unmixedUn is equal (or becomes equal at
somen > 1) to the length of this �xed subsegment; no further reduction in Un can be achieved. Figure5(b),
on the other hand, displays a di�erent type of reducible rearrangement order in which subsegments 1, 2
and 3, 4 are exchanged pairwise. Again,Un does not tend to zero during the cutting and shu�ing process.
Additionally, the number of interfaces Cn is easily seen to remain between 3 and 5. This is, of course,
indicative of poor mixing. Permutations that are rotations , as described in De�nition 3.2, also result in poor
mixing, though they do not explicitly violate Keane's condition (our choice of r , however, does). Figure4(c)
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shows such a case, with the space-time plot clearly illustrating why this � is termed a \rotation." In each
iteration the last two subsegments are shifted to the beginning of the line segment, resulting in periodic
dynamics and poor mixing.
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Fig. 5. (Color online.) Cutting and shu�ing of a line segment with rearrangement order given by reducible permutations:
(a) �([1234]) = [3124] for which the last subsegment remains in place, (b) �([1234]) = [2143] in which the �rst and last pai r
of subsegments are exchanged pairwise and (c) �([1234]) = [3412] which is a rotation. In all three cases N = 4 and r = 1 :5.
On the right are space-time plots of the �rst 10 iterations of the cutting and shu�ing process.

So far, as expected, we have shown that choices of � andr that violate Keane's condition lead to trivial
dynamics and poor mixing. It is worthwhile to also consider cases when the permutation isirreducible (as
required by Theorem1) but r is still chosen to violate Keane's condition. Now, as shown in Fig. 6, we �nd
that a slight change in the rearrangement order can have a signi�cant impact on the quality of mixing by
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cutting and shu�ing.
Having performed a number of numerical experiments, we �nd that �ve typical outcomes can be

observed. First, as shown in Fig.6(a), there can be signi�cant mixing. The percent unmixed Un decays to
a small value quickly, and the number of interfacesCn grows to a large value. However, there is a clear
bound (lower for Un , upper for Cn) on the quality of mixing that can be achieved becauser = 3=2 is
a rational number. By switching the location of only two subsegments in the rearrangement order, we
observe a second kind of mixing behavior, shown in Fig.6(b). Now, the quality of mixing remains poor
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(a) Signi�cant mixing for �([12345]) = [52413]. (b) Un and Cn oscillate under the rearrangement order = �([1234]) = [5214 3].
(c) Periodic dynamics result for �([1234]) = [52341] with Un and Cn oscillating at a high frequency. (d) Signi�cant mixing
can be achieved but the dynamics are ultimately periodic (ju mps in Un , dips in Cn always occur after a �xed number of
iterations) for �([12345]) = [52314]. (e) Un remains constant and Cn is bounded above by a small number under the reducible
rearrangement order �([12345]) = [42315].
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with large-amplitude oscillations present in Un and Cn . This occurs because subsegments that are cut
and shu�ed can become reassembled at a later iteration. Uponswitching another two elements in the
rearrangement order, a third type of behavior is observed inFig. 6(c): Un and Cn now oscillate at a much
higher frequency;Un remains high andCn remains low, indicating poor mixing. Again, this results because
the subsegments are reassembling into their initial con�guration every few iterations due to the periodic
dynamics of this IET. The fourth type of behavior, produced by another small change in the rearrangement
order, results in the dynamics shown in Fig.6(d), where Un and Cn now exhibit two distinct time scales
of oscillation. One is at high frequency and with low amplitude (\local" changes every few iterations), the
other at low frequency and with large amplitude (\global" re assemblies of the initial condition). At the
iteration corresponding to a peak inUn , the interval has reassembled into its original state. Though there
is, apparently, signi�cant mixing at certain n, periodic dynamics still exist becauser = 3=2 is a rational
number, which violates Keane's condition. Finally, Fig. 6(e) presents the �fth type of behavior observed. In
this case, the rearrangement order is a reducible permutation with �( N ) = N . As expected, there is very
poor mixing; Un remains constant (because the last, and longest, subsegment is never cut and shu�ed)
and Cn is bounded above by a small integer for alln.

4.2. E�ect of interval length ratio

Both the interval length ratio r and the number of subsegmentsN signi�cantly a�ect the quality of mixing
by cutting and shu�ing. In Fig. 7, the percent unmixed Un (averaged over all irreducible permutations for
a given N ) is plotted as a function of the number of iterations n for several choices ofr and N . As expected
for such irreducible permutations, Un decreases withn; the greatest decrease occurs within the �rst 20
or so iterations. For larger N , the curves in Fig. 7 are systematically lower. This indicates that starting
with more subsegments leads to faster mixing. Furthermore,the change in Un resulting from adding an
additional segment is greater when going fromN = 4 to N = 5 than when going from N = 5 to N = 6
or from N = 6 to N = 7. This illustrates that there is a point of diminishing ret urns. The errors bars are
larger for smaller N because there are more protocols that mix poorly in those cases. Thus, in practice, at
least 6 or 7 subsegments are necessary to obtain signi�cant mixing across a range of protocols, but starting
with more subsegments than that has minimal impact on the overall mixing. With a larger number of
subsegments, the precise rearrangement order chosen in theprotocol has less impact than for smallerN ,
as long as the permutation is irreducible.

It is also clear from Fig. 7 that reducing r results in better mixing. To further analyze the impact of
r , we plot Un |averaged over all irreducible rearrangement orders for a given N and then averaged from
iteration 50 to 100|as a function of r in Fig. 8(a). Clearly this average Un increases asr increases, with
a larger number of subsegments e�ecting better mixing. The upward trend in Fig. 8(a) can be understood
by recalling that larger r leads to an increase in the length di�erence between adjacentinitial subsegments.
In particular, it is easy to show that the longest initial sub segment, which takes the most \e�ort" to cut
and shu�e, has length

Un;max (r; N ) = r N � 1
�

r � 1
r N � 1

�
: (4)

We use the notation Un;max because, by construction, the length of the longest initialsubsegment of a
given color is the upper bound on the percent unmixed for alln. Note that Un;max is well behaved at
r = 1, speci�cally lim r ! 1 Un;max (r; N ) = 1 =N. Thus, for a �xed number of iterations (as in Fig. 8, where
all averages are calculated from iteration 50 to 100), increasing r should increase the average percent
unmixed. To account for this e�ect, in Fig. 8(b), we divide the average percent unmixed byUn;max (r; N ).
Clearly, this normalization eliminates part of the upward t rend. It is natural to interpret the normalized
average Un in Fig. 8(b) as a mixing e�ciency , i.e., a measure of the average shortest segment length
produced by cutting and shu�ing compared to the initial long est segment length. On the other hand, from
a practical standpoint, we want the unmixed portion to be as short as possible, leading to a preference for
r being close, but not exactly equal, to one, as indicated in Fig. 8(a) and discussed shortly.

In addition, it is evident that certain ratios, e.g., r = 3=2, 2=1, 5=2 or 3=1, lead to particularly
poor mixing, resulting in peaks in Fig. 8, similar to the resonances leading toArnold tongues in a chaotic
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Fig. 7. (Color online.) Average (across all irreducible rea rrangement orders) percent unmixed Un for (a) r = 1 :5 and N = 4
to 7, (b) r = 1 :2 and N = 4 to 7, (c) r = 1 :1 and N = 4 to 6. Error bars represent one standard deviation about th e mean.
N = 6 appears to be a point of diminishing returns, and r closer to 1 (a more uniform distribution of initial subsegme nt
lengths) leads to better mixing on average.

dynamical system [Pikovsky & Rosenblum, 2007]. This corroborates the theoretical results from Sec.3 that
in order to get the best mixing possible (speci�cally, to eliminate periodic orbits and ensure ergodicity),r
should be an irrational number. Furthermore, for the present IET construction, Fig. 8(a) suggests that an
irrational number close to unity is preferable. The reason for this is the manner in which we de�ne r . For r
close to unity, the initial distribution of subsegment lengths is almost uniform, meaning no subsegment is
very long compared to any other. The opposite case case (r � 1) is undesirable because long subsegments
can take many iterations to be cut and shu�ed. After normaliz ing by Un;max in Fig. 8(b), we observe
that the mixing e�ciency is still better for ratios closer to one. However, there is little di�erence in the
normalized unmixed portion for r 2 [1; 2]. It is quite evident that as r increases beyond 2, the second longest
subsegment is only a small fraction of the longest subsegment. Hence, it takes many more iterations to
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signi�cantly reduce the length of the longest subsegment. In the opposite extreme, asr ! 1, the di�erence
in length between the longest subsegment and the shortest subsegment becomes small, which makes it
possible to accomplish good mixing after an adequate numberof iterations. Overall, we can conclude that
the mixing quality and e�ciency are improved (on average) by starting with a more uniform distribution
of subsegment lengths.

4.3. Growth of the number of interfaces

As discussed earlier, an important aspect of the mixing properties of a cutting and shu�ing process is
the number of interfaces it generates between materials of di�erent color. Such interfaces arise from the
discontinuities in the cutting and shu�ing map, speci�call y where the cuts are placed in the interval
exchange transformation. For PWIs, the higher-dimensional analogue of IETs that arise in the context of
granular mixing in a spherical container, it was shown that the discontinuities in the map are the sole source
of intermaterial interfaces in the absence of the \usual" chaotic dynamics [Christov, 2011, x8.9]. The recent
work by Novak [2009] on the growth of the number of discontinuities asn ! 1 , which we summarized
in Sec.3, is the only mathematical characterization of the set of interfaces. Beyond that, determining the
growth of Cn is, in general, an open problem.

In this section, we aim to better understand the behavior ofCn by supplementing the mathematical
theorems with numerical results. Speci�cally, we wish to determine what e�ect violating Keane's condition
has on the growth of Cn , and whether violating it to di�erent \degrees" matters. To t his end, we take
N �xed and consider the two cases of a given reducible or a givenirreducible rearrangement order �. In
each case, we vary the value ofr . Ideally, r should be irrational to observe the asymptotic results ofNovak
[2009]. To approach this limit, we take r to be increasingly \more irrational" and compute the evolut ion
of Cn for the given N and �.

To make the idea of \more irrational" precise, we apply the concept of a �nite continued fraction of k
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partial denominators, which is de�ned as

[a0; a1; : : : ; ak ] := a0 +
1

a1 +
1

a2 +
1

. . . +
1
ak

: (5)

The continued fraction is simple if f a0; : : : ; akg are all integers. Every real number has a unique simple
continued fraction representation; rational numbers correspond to �nite continued fractions, while irrational
numbers correspond to in�nite continued fractions [Burton , 2007, Chap. 15]. We call one rational number
\more irrational" than another if it has a longer continued f raction expansion.

Thus, in Fig. 9, we consider the following three choices for the ratio of subsegment lengths:r =
1:25 = 5=4 = [1; 4] as the \least irrational," r = 1 :3 = 13=10 = [1; 3; 3] as the \more irrational" and
r = 1 :35 = 27=20 = [1; 2; 1; 6] as the \most irrational." Figure 9(a) shows the growth ofCn for the protocol
generated by the reducible permutation �([12345]) = [13524]. In this case, the dynamics is eventually
periodic for all three choices ofr with the period of Cn becoming longer asr becomes \more irrational."
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Fig. 9. (Color online.) Number of interfaces Cn plotted as a function of iterations for N = 5, ratios r = 1 :25 (orange), 1:3
(green), 1:35 (brown) and (a) the reducible rearrangement order �([123 45]) = [13524] and (b) the irreducible rearrangement
order �([12345]) = [25413]. Note that, for clarity, di�eren t vertical scales are used in panels (a) and (b).

Meanwhile, for the irreducible permutation �([12345]) = [2 5413] in Fig. 9(b), we do not observe
periodic dynamics for r = 1 :3 and r = 1 :35 over the 105 iterations considered. Forr = 1 :3, however,Cn is
bounded above independently ofn, which leads us to conjecture that this case of Theorem5 corresponds to
IETs that violate Keane's condition. For r = 1 :35, we expect that there is also an upper bound forCn that
is independent ofn, but it is not achieved over the 105 iterations considered. Thus, this last protocol can
be considered, for all practical purposes, to behave as if Keane's condition were satis�ed. As a consequence,
this is strong evidence that the dichotomy of grow{no growth in Theorem 5 corresponds to the dichotomy
of satisfying{violating the assumptions of Theorem 1 (equivalently, Keane's minimality condition).

The inset in Fig. 9(b) shows that the slope of all threeCn curves for smalln is essentially independent
of r . This suggests the interesting possibility that the slope is �xed by the number of fundamental disconti-
nuities (in the language ofNovak [2009]), which is encoded by the chosen irreducible permutation � alone.
All three protocols in Fig. 9(b) violate Keane's condition to various \degrees," and thus the number of
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fundamental discontinuities is, technically speaking, zero because these protocols must be eventually peri-
odic. Indeed, the linear growth of Cn is sustained over a shorter range ofn as r is made \more rational."
Nevertheless, we observe a similar slope initially, which suggests that if r were irrational, then this is the
growth rate of Cn and is thus the number of fundamental (non-resolvable) discontinuities permitted for
this choice ofN and �.

4.4. Statistics on �nite-time mixing

As mentioned in the Introduction, the mathematical theory ( Sec.3) does not provide an answer to questions
such as \How many iterations does it take to reduce the longest continuous-color segment in an IET to a
given fraction of the interval?". In this section, we address this question through numerical simulations.
Following [Juarez et al., 2012], we evaluate the quality of mixing of all the cutting and shu�ing protocols
that can be constructed for given N and r by plotting the percentage of protocols (i.e., percentage of
permutations � for �xed N and r ) that achieve a given percent unmixed valueUn after n = 50 iterations.

Figure 10 shows the �nite-time mixing statistics for the protocols wi th r = 1 :5 (a \bad" choice,
corresponding to a local maximum in Fig.8) and r = 1 :35 (a \better" choice) with N = 4, 5 and 6. Both
of these ratios are rational numbers, and we have thus violated the assumptions of Theorems1 and 4.
Consequently, these IETs are neither ergodic nor weakly mixing in the mathematical sense. Nevertheless,
the majority of these protocols achieve a substantial amount of mixing (as quanti�ed by Un ) over 50
iterations. Furthermore, there is a clear bene�t to picking r to be \more irrational" (as discussed in
Sec.4.3) because the curves forr = 1 :35 (solid) consistently lie below those forr = 1 :5 (dashed), indicating
a higher degree of mixing across all protocols after 50 iterations.
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Fig. 10. (Color online.) Statistics on �nite-time mixing by cutting and shu�ing showing the percent unmixed achieved by
a given percentage of protocols after 50 iterations, where the ratio r and number of initial subsegments N is given and (a)
all permutations or (b) only irreducible permutations are c onsidered for the rearrangement order. Solid and dashed curves
correspond to r = 1 :35 and r = 1 :5, respectively.

The \worst case scenario" corresponds to the intersection of a curve with the vertical line at 100% of
protocols. No protocols can mix any less than the percent of the domain corresponding to the longest initial
subsegment. Based on the IET construction from Sec.2, we know that the length of longest subsegment
at n = 0 is Un = Un;max as de�ned in Eq. (4). Thus, 100% of protocols must achieveat least this value
of Un . From Eq. (4) we �nd that Un;max (r = 1 :35; N = 4 ; 5; 6) � 37; 33; 31% and Un;max (r = 1 :5; N =
4; 5; 6) � 41:5; 38; 36:5%. Indeed, these are the highest values (i.e.,Un at 100% of protocols) observed in
Fig. 10(a). However, it is clear that most protocols do much better, and the percentage of protocols that
e�ect signi�cant mixing, say those falling below the 5% unmixed line in the shaded area, is much higher
when only irreducible permutations are considered in Fig.10(b). No protocols achieve complete mixing over
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the 50 iterations considered, therefore all the curves havea non-zero limiting value on the left. However, it
is evident that in all cases there exists at least one protocol that achieves Un < 5% because limiting value
as % of protocols! 0 is always in the shaded portion of the graph.

This last observation allows us to determine bounds on the95% mixing time, which is de�ned as the
�rst iteration n� for which Un � < 5% [Ashwin et al., 2002]. The shaded portions of Fig.10 correspond to
Un < 5%, and it is evident that for N = 5 and 6 (and both r = 1 :5 and 1:35), the majority (i.e., over 50%)
of all protocols achieve this value ofUn in at most 50 iterations. Therefore, the 95% mixing time is, on
average,. 50 iterations. When only irreducible permutations are considered for the rearrangement order
(Fig. 10(b)), we see that nearly 80% of the protocols forN = 5 and 6 (and both r = 1 :5 and 1:35) reduce
Un below 5% over 50 iterations. Consequently, if a cutting and shu�ing map can achieve the 95% mixing
time, then, in practice, we expect the presence of di�usion (or other kind of irreversibility) to result in
complete and thorough mixing, even if the cutting and shu�in g protocol may be eventually periodic (see,
e.g., the relevant discussion and examples in [Ashwin et al., 2002; Sturman, 2012]).

5. Conclusion

Although the problem of mixing a line segment by cutting and shu�ing seems simple at a �rst glance,
this �rst comprehensive numerical study of cutting and shu� ing protocols based on interval exchange
transformations (IETs) demonstrates a breadth of possibledynamical behaviors. Some of these behaviors
can be predicted by the mathematical theory of IETs, while others could only be found through numerical
experimentation. In addition to observing and classifyingthe dynamics of this cutting and shu�ing process,
we quanti�ed its �nite-time mixing properties within a well -de�ned parameter space. This is not only of
practical interest in determining how cutting and shu�ing l eads to complex dynamics but is also of abstract
interest because it could stimulate new theoretical results in the area of IETs.

Based on our study, the following design rules for mixing a line segment by cutting and shu�ing can
be drawn:

(i) The rearrangement order should be an irreducible permutation (see Appendix B for more technical
details on this topic).

(ii) An IET with N = 6 subsegments is the most practical number of subsegments.The improvement in
mixing diminishes with larger N .

(iii) The ratio of adjacent subsegment lengths should not belarge, speci�cally it should be an irrational
number slightly larger than 1. (Continued fraction expansions can be used to systematically maker
\more irrational.")

Thus, an important result of the present work is that even if a cutting and shu�ing map cannot be
proven to be mixing in the mathematical sense, it can generate signi�cant complexity over a �nite number
of iterations. Speci�cally, for all practical purposes it can behave (over a �nite number of iterations)
as if satis�ed the mathematical requirements for mixing (see Sec.4.3). Thus, in physical systems where
cutting and shu�ing is one of several underlying mixing mechanisms (e.g., in granular 
ows [Christov et al.,
2010b,a; Juarez et al., 2010, 2012] as motivated in the Introduction), optimizing for cutting and shu�ing
is bene�cial and, indeed, desirable. If the cutting and shu� ing process is in some sense \optimal," then
the additional mixing mechanisms that become relevant at later times can achieve greater e�ciency. The
design rules listed above can have an impact in performing such optimization of physical mixing processes,
once the underlying cutting and shu�ing skeleton is uncovered.

At the same time, the present study suggests several mathematical questions regarding IETs that have
not been answered in the pure mathematics literature:

(i) Is there a rigorous connection between resonances in chaotic dynamical systems and the spikes of the
average ofUn in Fig. 8 at values of r that are simple fractions?

(ii) Is the number of nonresolving fundamental discontinuities of an IET solely a function of �? If so,
what kind?

(iii) Are there conditions that can be imposed on subsegmentlength ratios r i and the permutation � so
that Un is less than a given percentage aftern iterations?
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Finally, a possible avenue of future research is to extend the present methodology to study mixing
by cutting and shu�ing of the unit square I � I = [0 ; 1]2. This could be accomplished by, for example,
applying an interval exchange transformation in the y-direction and extending it in the x-direction by
making each subintervalI i into a rectangle of unit horizontal length [Christov et al., 2011]. More generally,
such an interval exchange in they-direction can be sequentially composed with another in thex-direction
to produce a special case of the more general class ofrectangle exchange transformations(RETs) [ Haller,
1981]. In comparison to IETs, for which there are a number of de�nitive theoretical results (recall Sec.3),
RETs are poorly understood. Thus, providing concrete numerical results could be quite useful. In addition,
adding irreversibility to the cutting and shu�ing process, e.g., through di�usion as in [Ashwin et al., 2002;
Sturman, 2012], opens further possibilities. It is conceivable that the competition between cutting and
shu�ing and di�usion would lead to one-dimensional strange eigenmodes, which have been found to be
important in understanding mixing in open chaotic 
ows [ Gouillart et al., 2009].
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Appendices

Appendix A

In this Appendix, we outline how a numerical simulation of the cutting and shu�ing of a line segment
by an interval exchange transformation (IET) as constructed in Sec.2 can be performed. The code takes the
following inputs: the adjacent subsegment ratior (a �nite-precision decimal), the number of subsegments
N (an integer > 1), the rearrangement order � (a permutation of the integers f 1; : : : ; N g) and the desired
number of iterations nmax of the process (an integer> 1). Then, it proceeds through the steps below.

(1) Convert r to a fraction rn=rd and compute the least common denominator (LCD) of the fractions
f r i � 1xgN

i =1 (x is given by Eq. (1)), which correspond to the lengths of the subsegments in theIET
construction. The LCD can be found to be lcd = ( r N

n � r N
d )=(rn � rd). (Note that rn � rd is always a

factor of r N
n � r N

d for integer N , so that lcd is an integer.) The shortest piece that can be created by
cutting and shu�ing is thus 1 unit out of lcd.

(2) Create two vectors of length lcd, which we call segmentand newsegment, to represent the line segment
before and after shu�ing, respectively. Accordingly, the i nitial subsegment divisions are located between
cells r i � 1 � x � lcd and r i � 1 � x � lcd+ 1 ( i = 1 ; : : : ; N � 1) in the array.

(3) \Color" the interval to be shu�ed by assigning all elemen ts between 1 andx � lcd (the �rst subsegment)
of the array segmentthe value of 1, all elements betweenx � lcd+1 and r �x � lcd (the second subsegment)
the value of 2, and so on.

(4) Using the rearrangement order �, copy all elements corresponding to the �rst ( i = 1) subsegment
portion of the array segment into the appropriate parts of newsegment; for example, for �(1) 6= 1,

newsegment
�

(r �(1) � 1 � x � lcd+ 1) : r �(1) � x � lcd
�

= segment(1 : x � lcd): (A.1)

(Here, a colon is used in the sense of theMatlab array subscripting operator.) Repeat for all i =
1; : : : ; N to complete one iteration of the shu�ing process.
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(5) Determine the longest number of consecutive elements ofnewsegmentcontaining the same value and
divide this number by the total number of elements (lcd) to obtain the percent unmixed Un for this
(say, the nth) iteration.

(6) Calculate the number of adjacent elements ofnewsegmentthat have di�erent values to obtain the
number of distinct cuts Cn at this iteration.

(7) Set segment = newsegmentand repeat Steps (4) through (7) until the desired number of iterations
nmax is reached.

Appendix B

In this Appendix, we give some remarks on irreducible permutations. The following Mathematica
code determines whetherp is an irreducible permutation of f 1; 2; : : : ; N g (i.e., it returns 0 for false or 1 for
true):

<< Combinatorica`
IsReducibleQ[p_] := Module[{j, ans = 0},

For[j = 1, j <= Length[p] - 1, j++,
If[PermutationQ[Take[p, j]], ans = 1; Break[];];

];
ans

];

Table B.1 lists the number of total and irreducible permutat ions as a function of N . Klazar [2003]
gives a discussion of the integer sequence corresponding tothe number of irreducible permutations of
length N and its properties (see also entry A003319 in the On-Line Encyclopedia of Integer Sequences
[OEIS Foundation Inc., 2012]) .

Table B.1. Number of permutations of the integers f 1; 2; : : : ; N g.

N 1 2 3 4 5 6 7 8 9 10

total = N ! 1 2 6 24 120 720 5 040 40 320 362 880 3 628 800
irreducible 1 1 3 13 71 461 3 447 29 093 27 3343 2 829 325
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