
ar
X

iv
:1

20
8.

20
52

v1
  [

ph
ys

ic
s.

fl
u-

dy
n]

  9
 A

ug
 2

01
2

May 2, 2014 15:7 ijbc˙1d˙c˙s

International Journal of Bifurcation and Chaos
c© World Scientific Publishing Company

CUTTING AND SHUFFLING A LINE SEGMENT: MIXING BY

INTERVAL EXCHANGE TRANSFORMATIONS

MARISSA K. KROTTER
Department of Mechanical Engineering, Northwestern University,

Evanston, Illinois 60208, USA
MarissaKrotter2012@u.northwestern.edu

IVAN C. CHRISTOV*

Department of Engineering Sciences and Applied Mathematics, Northwestern University,
Evanston, Illinois 60208, USA
christov@u.northwestern.edu

JULIO M. OTTINO
Department of Chemical and Biological Engineering, and

The Northwestern Institute on Complex Systems (NICO), Northwestern University,
Evanston, Illinois 60208, USA
jm-ottino@northwestern.edu

RICHARD M. LUEPTOW†

Department of Mechanical Engineering, and
The Northwestern Institute on Complex Systems (NICO), Northwestern University,

Evanston, Illinois 60208, USA
r-lueptow@northwestern.edu

Received (to be inserted by publisher)

We present a computational study of finite-time mixing of a line segment by cutting and shuffling.
A family of one-dimensional interval exchange transformations is constructed as a model system
in which to study these types of mixing processes. Illustrative examples of the mixing behaviors,
including pathological cases that violate the assumptions of the known governing theorems and
lead to poor mixing, are shown. Since the mathematical theory applies as the number of iterations
of the map goes to infinity, we introduce practical measures of mixing (the percent unmixed and
the number of intermaterial interfaces) that can be computed over given (finite) numbers of
iterations. We find that good mixing can be achieved after a finite number of iterations of a one-
dimensional cutting and shuffling map, even though such a map cannot be considered chaotic
in the usual sense and/or it may not fulfill the conditions of the ergodic theorems for interval
exchange transformations. Specifically, good shuffling can occur with only six or seven intervals
of roughly the same length, as long as the rearrangement order is an irreducible permutation.
This study has implications for a number of mixing processes in which discontinuities arise either
by construction or due to the underlying physics.
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1. Introduction

The precise “symptoms” expressed by a chaotic dynamical system have been the subject of much discus-
sion over the years [Brown & Chua, 1996, 1998; Martelli et al., 1998; Brown & Chua, 1999]. A positive
leading Lyapunov exponent, computed analytically or from a time series, is one common requirement
[Baker & Gollub, 1996, Chap. 5]. Recently, piecewise-continuous and discontinuous dynamical systems
have provided examples and counterexamples to the “typical” notions associated with chaos, often lead-
ing to the development of new types of bifurcation phenomena [di Bernardo et al., 2008], and even the
possibility of nondeterministic chaos [Jeffrey, 2011]. An overview of the role of discontinuities in mixing,
illustrated by recent examples from the literature, is provided by Sturman [2012].

Piecewise isometries (PWIs) [Goetz, 2000, 2002] are one of the most recent examples of a discontinuous
dynamical system exhibiting nontrivial dynamics. Under some specific conditions, it can be shown that
the topological entropy [Buzzi, 2001] and all of the Lyapunov exponents [Fu & Duan, 2008] of a PWI
are equal to zero (wherever and whenever they exist). A smooth distance-preserving map does not lead
to complex dynamics in any sense of the word, but “gluing” together different isometries in a piecewise
manner across a line of discontinuity leads to highly nontrivial behavior of orbits. The resulting complex
dynamics include, but are not limited to, attractors and quasi-periodicity [Goetz, 1998; Scott et al., 2001;
Kahng, 2002; Mendes & Nicol, 2004; Ashwin & Goetz, 2005; Lowenstein & Vivaldi, 2010]. In fact, Kahng
[2009a,b] has shown that certain PWIs satisfy a modification of Devaney’s criterion for chaos [Devaney,
2003, §1.8]. A dynamical system is Devaney chaotic if it is (i) sensitive to initial conditions, (ii) topologically
transitive and (iii) has a set of periodic orbits that is dense in the domain; planar PWIs satisfy criteria (i)
and (ii).

PWIs also arise in the study of digital filters [Chua & Lin, 1988; Ogorza lek, 1992]. If one allows for the
more general class of piecewise contraction (non-area-preserving) maps, there are further applications to
electrical engineering [Deane, 2006]. More recently, PWI maps have been proposed as the skeleton of the
kinematics of the flow of granular materials in tumblers [Christov et al., 2010b,a; Juarez et al., 2010, 2012].
The PWI dynamics in granular mixing are termed cutting and shuffling to emphasize their fundamental
difference from the well-known stretching and folding mechanism of chaotic fluid mixing [Ottino, 1989].
Some illustrated examples of these differences are provided by Christov et al. [2011].

Laboratory experiments have shown [Juarez et al., 2010, 2012] that the mixing properties of granu-
lar flows can be predicted based on the underlying PWI framework. However, it is also worthwhile to
consider simpler PWI-type mixing problems. The one-dimensional (1D) version of a PWI is an interval
exchange transformation (IET) [Goetz, 1998]. In a 1D context, cutting and shuffling takes a particularly in-
tuitive form, well known to card players [Golomb, 1961; Aldous & Diaconis, 1986; Trefethen & Trefethen,
2000]. Recent work by Liang & West [2008] showing that 2D chaotic fluid mixing can exhibit cutoffs
(i.e., abrupt transitions from partially-mixed to well-mixed states) usually associated with card shuffling
[Aldous & Diaconis, 1986; Trefethen & Trefethen, 2000] provides further evidence for the relevance of 1D
cutting and shuffling. IETs, which replace the deck of cards with a set of subsegments of variable lengths,
are one of the simplest dynamical systems that can be successfully studied analytically in some detail
[Katok & Hasselblatt, 1995, §14.5]. More striking, however, is that IETs describe the dynamics along lines
of discontinuity in some planar PWIs [Kahng, 2009b].

To illustrate mixing by cutting and shuffling in the context of granular flow, consider a spherical device
partially-filled with two initially separate colors of granular material in which the mixing dynamics due
to short rotations about two axes can be observed from below [Meier et al., 2007; Sturman et al., 2008;
Juarez et al., 2010]. Figure 1(a) shows a bottom view of a PWI simulation of such a setup after several
iterations of these rotations. As the sphere rotates about an axis, material moves from one side of the surface
in Fig. 1(a) to the other, and re-enters the side it came from upon reaching the dashed edge. For the PWI
framework to be valid, we must first assume that the re-entry occurs instantaneously [Christov et al., 2010b;
Juarez et al., 2010], i.e., there is a discontinuous mapping from one side of the dotted circle in Fig. 1(a)
to the other across the axis of rotation (not shown and arbitrary). IET-like dynamics are evident if we
“unwrap” the boundary of the surface of discontinuity shown approximately by the dotted curve encircling
the mixing pattern in Fig. 1(a). The dynamics occurring on this interface are the source of complexity in



May 2, 2014 15:7 ijbc˙1d˙c˙s

CUTTING AND SHUFFLING A LINE SEGMENT 3

(a) bottom view of a granular mixing

      PWI simulation in a sphere

(b) fluid mixing experiment in a cavity
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Fig. 1. (a) View from below of a PWI granular mixing simulation in a “blinking spherical tumbler flow” [Juarez et al., 2010,
2012]. Initially, the black and gray materials occupy the left and right quarter-spheres, respectively. Inset shows the cutting
and shuffling dynamics occurring at the discontinuity interface (dotted curve). Shuffling occurs upon rotation about an axis,
while cutting results from changing the axis of rotation. (b) Photograph showing typical structures produced by chaotic mixing
in a cavity flow experiment using two fluids of similar viscosity and negligible interfacial tension. A lamellar structure with
striations of distributed thickness is generated by the chaotic flow. Inset shows a cross-section, which is the starting point
for a 1D model of the evolution of the lamellar structure. The strips in the insets in panels (a) and (b) have a finite vertical
extent for clarity of presentation. Images in panel (b) reproduced, with permission, from F.J. Muzzio & J.M. Ottino, Phys.
Rev. Lett., 63, 1989, 47–50. c© 1989 American Physical Society.

the PWI model of granular mixing in a spherical tumbler [Christov, 2011, §8.9]. Thus, an understanding
of the behavior of such IETs can shed light on the more complicated PWI dynamics in a plane or on a
sphere. Similar discontinuous changes in the flow also occur in a number of chaotic fluid mixing problems
such as the periodic reorientation of streamlines in a circular Hele-Shaw cell, which has been used as a
model for injection wells in porous geological formations [Metcalfe et al., 2010]. A detailed discussion of
how such flows fit into the PWI framework is given by Sturman [2012].

The concept of intermaterial area is central in the theory of chaotic mixing [Ottino, 1989]. A cross-
section of the mixing process reveals a pattern of pieces of material of different types and varying thickness.
Stretching and folding motions create fine lamellar structures, such as those seen in Fig. 1(b), across which
reaction and diffusion processes act. The distribution of the thickness of lamella along a 1D slice of the
domain (e.g., across the black line in Fig. 1(b)) has been studied, showing universal properties of the
evolution of the distribution toward a steady state [Muzzio & Ottino, 1989]. One-dimensional models of
the lamellar dynamics are useful, because precise numerical tracking of the intermaterial area in a chaotic
flow, even in 2D, is a difficult (if not impossible) task [Franjione & Ottino, 1987]. What is more, the
effective 1D dynamics across a cross-section (as in Fig. 1(b)) can be thought of as an IET with molecular
diffusion blurring the boundaries between subsegments before they are permuted. Different models of
“cutting” can lead to significant enhancement over a purely diffusive mixing process [Ottino et al., 1992;
Ashwin et al., 2002]. In an industrial setting, various designs of mixers have been proposed that create
such lamellar structures in a controlled and reproducible fashion [Hobbs & Muzzio, 1997; Neerincx et al.,
2011]. In such a device, the speed of a two-step chemical reaction depends sensitively on the arrangement
and thickness of the lamella [Clifford et al., 1999, 2000]. More importantly, in multiple reactions, the
final product distribution depends on the dynamics of mixing [Chella & Ottino, 1984]. Therefore, a better
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understanding of the practical details of IETs can lead to improvements in the design of devices that must
mix materials or allow them to react completely in a precise manner.

While the mathematical theory of IETs is mature (see, e.g., the recent review of Viana [2006]), few
computational examples and parameter space studies can be found in the literature. Moreover, theorems
focus on infinite-time concepts such as ergodicity, weak mixing and Lyapunov exponents. It is apparent,
however, that infinite-time concepts, while very useful, do not fully address the questions that arise in
practice. Mixing experiments and chemical reactions take place over a finite period of time. For mixing of
granular materials, the diameter d of a typical particle defines a “cut off” length scale beyond which further
mixing is impossible because smaller-scale structures cannot be produced. Similarly, in fluid mixing the
diffusion length scale ∼

√
Dt, where D is the molecular diffusivity and t is time, sets a lower-bound beyond

which it is not worthwhile to continue creating finer lamellar structures [Toussaint & Carrière, 1999].
Therefore, questions such as “How many iterations does it take to reduce longest continuous segment in
an IET to a given fraction of the interval?” cannot be answered by current theory on IETs.

The only previous detailed numerical study of mixing of a line segment is that of Ashwin et al. [2002],
who only consider protocols based on exchanges of equal-length subsegments, which do not necessarily
mix. Ashwin et al. [2002] noted that “mixing properties of interval exchange maps are very subtle and
relatively poorly understood and depend on parameters in a sensitive way.” Thus, the goal of the present
work is to extend the latter study to mixing by cutting and shuffling within the framework of the ergodic
theory developed for interval exchange transformations (IETs). Specifically, we aim to develop illustrative
examples of the behavior of 1D cutting and shuffling maps in order to clarify how the pathological cases
that lead to poor mixing (e.g., those that violate the known IET theorems). We shall do so in the context
of finite-time transport, characterizing the mixing properties of those maps over a given (fixed) number of
iterations. The proofs of the ergodic and mixing theorems for IETs are difficult, and similar questions for
PWIs remain open. As a result, computational studies have recently proven to be an important part of the
mathematical discovery process in this field [Bressaud & Poggiaspalla, 2007].

This paper is organized as follows. Section 2 introduces our IET construction and defines the parameter
space to be explored. Section 3 summarizes the relevant previous mathematical results regarding IETs,
their complexity and their mathematical mixing properties. In Sec. 4, we present practical numerical results
on mixing by 1D cutting and shuffling, and connect the behaviors to the mathematical theory from Sec. 3.
Section 5 summarizes the most important results of our study and presents our conclusions.

2. IET construction and simulation methodology

To study 1D cutting and shuffling, i.e., the “mixing” of a line segment I, we construct a specific type of
IET, which we denote as TS,Π: I → I, with a well-defined parameter space that we can systematically
explore. To this end, without loss of generality, we take the line segment to be an interval of the real line,
specifically I = [0, 1]. Then, cutting and shuffling proceeds by dividing I into a collection of N disjoint
subsegments given by the set S = {I1, . . . ,IN}. Specifically, the interval is divided into N subsegments
of length |Ii| and the ratio ri = |Ii|/|Ii−1| between the lengths of consecutive subsegments is taken to be
constant (i.e., ri = r ≥ 1 ∀i), as shown in Fig. 2. Now, we specify r and require the length of the interval
I to be 1, which gives

N
∑

i=1

ri−1x = 1 ⇒ x =
r − 1

rN − 1
, (1)

where x = |I1| is the primary interval length.
To visualize the process of cutting and shuffling, the initial subsegments (after I is first subdivided

into the set S) are each assigned a different color, as shown in Fig. 2. One application of the IET TS,Π

shuffles the subsegments according to the prescribed rearrangement order given by the permutation Π. The
subsegments after the initial subdivision of I are consecutively numbered from left to right, as shown in the
top row of Fig. 3. Hence, the rearrangement order defines a one-to-one mapping from the set {1, 2, . . . , N}
into itself. The image of {1, 2, . . . , N} under Π is the order of the subsegments after one iteration of the
cutting and shuffling process, i.e., after one application of the IET. For example, in Fig. 3, the rearrangement
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x rx r2x r3x

Fig. 2. (Color online.) Sketch of how an interval I is subdivided in our IET construction with N = 4 and r = 1.5.

order is given by Π([1234]) = [3142], where the bracket notation (rather than set notation) is used for the
permutation to emphasize that the order of both the input and output integers is important and fixed.

After the initial subdivision and shuffling of I, the line segment is reassembled, then it is cut once again
at the same locations, and the process continues. The result of a second application of the IET is shown
in the bottom row of Fig. 3. The cutting and shuffling process continues until either a certain number of
iterations have been completed, or the line segment is “mixed” to a predetermined level, pending a proper
definition of “mixed.” Details of the numerical procedure used to simulate cutting and shuffling of a line
segment are provided in Appendix A.

To quantify the degree of mixing after n iterations, we use two measures: the percent unmixed Un and
number of distinct cuts (i.e., interfaces) Cn. The percent unmixed is the longest continuous subsegment
of like color, even if that subsegment comes about as a result of two like-color subsegments having been
recombined. Since the length of I was normalized to 1, the length of longest piece of material of like color
corresponds to the largest percent of the material that is “unmixed.” Ideally, Un → 0 as n → ∞ would
imply complete mixing. For example, in Fig. 3, the central unmixed portion after n = 2 iterations is the
longer white interval, giving U2 = 23%.

The number of interfaces Cn, on the other hand, is the number of locations where subsegments of
different initial color are in contact. Locations where pieces of subsegments of like color reassemble are not
included in the calculation of Cn, even though a cut was formally made there at some previous iteration.
In contrast to Un, a larger value of Cn corresponds to better mixing because many pieces of differing color
are in contact. In Fig. 3, after 2 iterations, we have C2 = 6.

1 2 3 4

13 4 2

initial

configuration

iteration 1

iteration 2

cut cut cut

0.23

Fig. 3. (Color online.) Illustration of how the first two iterations of our IET construction with N = 4, r = 1.5 and Π([1234]) =
[3142] proceed. After the second iteration, the maximum percent unmixed (corresponding to the subsegment delineated by
the curly brace in the bottom row) is U2 = 23%, and number the number of interfaces (denoted by arrows at the bottom) is
C2 = 6.

A number of alternative mathematical definitions of the quality of mixing can found in the literature
(see, e.g., [Ashwin et al., 2002, §1.2]). Recently, mathematically-rigorous measures of mixing capable of
quantifying the “multiscale” nature of the self-similar lamellar structures developed by stretching and
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folding in chaotic flows [Muzzio et al., 1992] have been developed using the tools of dynamical systems
[Mathew et al., 2005] and partial differential equations [Thiffeault, 2012]. For our purposes, however, Un

and Cn are easy to compute, require few assumptions, are conceptually simple, and have concrete physical
meaning. Thus, we use them to quantify the complexity generated by cutting and shuffling a line segment.

3. Summary of mathematical results on IETs

In this section, we review the pertinent previous mathematical results that characterise IETs to aid in the
interpretation of our computational results. Specifically, we introduce the necessary terminology and the
key theorems applicable to our study.

An in-depth discussion of the ergodic hierarchy that defines “levels” of mixing using mathematically-
precise concepts from dynamical systems theory can be found in [Sturman et al., 2006, §3.7] and
[Berkovitz et al., 2006]. An elementary discussion in relation to IETs and PWIs can be found in
[Christov et al., 2011, §V]. Keane’s minimality condition [Keane, 1975, §2] is an important result in this
respect as it guarantees (unique) ergodicity, the “weakest” form of mixing, of (almost all) IETs [Masur,
1982; Veech, 1982]. The “almost all” part the latter result is strict as non-trivial IETs that are minimal but
not (uniquely) ergodic have been constructed [Keane, 1977]. We give a short summary of the background
on these results through some equivalent and easy-to-state theorems due to Viana [2006], after providing
some necessary definitions.

Definition 3.1. A permutation Π is said to be irreducible if applying Π to any of the subsets {1}, {1, 2},
{1, 2, 3} up to {1, 2, . . . , N − 1} does not yield a permutation of just the elements of that subset.

By Π(i) we denote the value that the integer i is mapped to by the permutation, while the compacted
notation Π([123 . . .]) is used to show (all at once) the image under the action of Π of the integers {1, 2, 3, . . .}.
For example, the permutation Π([12345]) = [31254] is reducible (i.e., not irreducible) because the first three
elements (and the last two elements) are a permutation of only themselves (neither 1, 2, nor 3 maps to 4
or 5). In contrast, Π([12345]) = [31524] is irreducible. See Appendix B for further details.

Definition 3.2. A permutation Π of {1, 2, . . . , N} is said to be a rotation if Π(i + 1) ≡ Π(i) + 1 mod N .

For example, it easy to show that Π([12345]) = [34512] satisfies this definition, hence it is a rotation.
On the other hand, Π([12345]) = [54312] violates the definition for i = 1 because 2 maps to Π(2) = 4 while
1 maps to Π(1) = 5 and 4 6= 5 + 1 mod 5 = 1, hence Π([12345]) = [54312] is not a rotation.

Theorem 1 [Viana, 2006, Proposition 3.2]. If the lengths of the subsegments Ii ∈ S are rationally inde-
pendent and Π is irreducible, then S and Π satisfy the Keane minimality condition.

For example, to ensure that the lengths of subsegments Ii ∈ S are rationally independent, we could
require that the lengths of adjacent intervals ri = |Ii|/|Ii−1| be irrational numbers. Here, we will not state
Keane’s condition in its original form [Keane, 1975, §2] because Theorem 1 is more accessible. Furthermore,
Theorems 2 and 3 below characterize all IETs satisfying Keane’s condition, which allows us to bypass its
cumbersome mathematical definition.

Theorem 2 [Viana, 2006, Proposition 4.1]. If S and Π satisfy the Keane condition, then every orbit of
TS,Π is dense in the whole domain; such an IET is termed minimal.

Here, by “orbit” we mean the set of points {y, TS,Π(y), T 2
S,Π(y), . . . , T n

S,Π(y), . . . } for a given y ∈ I. An
orbit is dense in the domain if, for some n, it comes arbitrarily close to any given point in the domain.

Theorem 3 [Viana, 2006, Lemma 4.4]. If S and Π satisfy the Keane condition, then TS,Π has no periodic
points.

Thus, if an IET satisfies the conditions of Theorem 1, it satisfies the Keane condition, meaning (by
Theorems 2 and 3) that “all its orbits visit all of the domain” and, specifically, none are periodic. This
would suggest good mixing because material is distributed throughout all of the interval. However, we could
be more precise if we consider the map’s behavior in the limit as the number of iterations goes to infinity.
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Let A1,A2 ⊂ I be any two subintervals of I, where I = [0, 1] in our construction. (These subintervals are
arbitrary and do not have to coincide with the subsegments Ii.) Denoting the cutting and shuffling process
(i.e., the IET TS,Π) simply by T , the condition for strong mixing can be stated mathematically as

lim
n→∞

µ
(

T n(A1) ∩A2

)

= µ(A1)µ(A2), (2)

where µ(·) is the appropriate invariant measure, e.g., length in 1D, and T n(A1)∩A2 denotes the material
in common between T n(A1) and A2. In other words, as any subinterval A1 is cut and shuffled throughout
the domain I, we would expect to find the same amount of material from A1 in any other subinterval A2.

A cutting and shuffling map based on an IET cannot be strongly mixing [Katok, 1980]. However, the
following can be shown.

Theorem 4 [Avila & Forni, 2007, Theorem A]. Let Π be an irreducible permutation that is not a rotation.
Then, for almost every S, TS,Π is weakly mixing, i.e.,

lim
n→∞

1

n

n−1
∑

i=0

∣

∣µ
(

T i(A1) ∩ A2

)

− µ(A1)µ(A2)
∣

∣ = 0. (3)

Put simply, Theorem 4 relaxes the requirement that the same amount of material from the subinterval
A1 be found in any other subinterval A2, to the requirement that Eq. (2) hold except for a countable
number of n ∈ N [Walters, 1982, p. 45]. Still, weak mixing is a stronger result than the ergodicity property
mentioned previously that an IET acquires by satisfying Keane’s minimality condition. Again, the “almost
all” requirement is strict as there are non-trivial minimal IETs that are (uniquely) ergodic but not weakly
mixing [Hmili, 2010]. The situation becomes much more complicated in 2D, where only a few results are
known for rectangle exchange transformations [Haller, 1981] and almost none for PWIs. However, there is
at least one example, due to Kahng [2002], of a PWI that is not weakly-mixing.

The last mathematical result we review concerns the growth of the number of interfaces Cn with n. It
is characterized by the following theorem due to Novak [2009].

Theorem 5 [Novak, 2009, Theorem 1.1]. For any interval exchange transformation TS,Π, either Cn(T )
exhibits linear growth in n or Cn(T ) is bounded above independently of n.

In the case when Cn exhibits linear growth, the slope is given by the number of nonresolving funda-
mental discontinuities [Novak, 2009, Proposition 2.3], i.e., those cuts at which two like colors are never
“glued back together,” as n → ∞. Unlike chaotic dynamical systems in which any analog of Cn grows ex-
ponentially with n, quickly leading to an intractable numerical problem in 2D or 3D [Franjione & Ottino,
1987], Theorem 5 ensures that keeping track of the interfaces generated by an IET is feasible. Finally, it is
important to note that the dichotomy of the growth of Cn does not correspond directly to the dichotomy
of whether TS,Π satisfies Keane’s condition or not. We explore the relationship between the two through
the numerical examples below.

4. Numerical results

Given the simple system of an interval divided into subsegments that we constructed in Section 2, we can
set about to explore the relationship between the mathematical results on IETs summarized in Section 3
and mixing by cutting and shuffling. For example, a natural question to ask is what happens when Keane’s
condition is violated? Finite-precision arithmetic ensures that, on a computer, there are no “truly irrational”
choices for ratio r between adjacent subsegment lengths. We would like to determine how this affects the
mixing properties of IETs. In this section, we investigate several examples of IETs constructed as described
in Sec. 2 with the goal of understanding the impact of the theorems from Sec. 3 on finite-time mixing by
cutting and shuffling. The latter is an aspect of IETs that is not covered by the mathematical theory. To
make the computational analysis easier, we restrict ourselves to a relatively small number of subsegments
N ∈ {4, 5, 6, 7} and a ratio between subsegment lengths r ∈ [1, 2.5].
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To visually analyze the impact of the various parameters on the mixing properties of our IET, we
construct space-time plots of the cut and shuffled line segment I as shown in Fig. 4. In such space-time
plots, the initial subdivision of I into N differently-colored subsegments is at the top. The cut and shuffled
versions of I resulting from subsequent applications of the IET, i.e., T n(I), are stacked below the initial
condition. A small number of pieces of different colors at the bottom of a space-time plot indicates poor
mixing. This is one of the most useful aspects of the space-time plot: repeating patterns in the graph
correlate with poor mixing. For instance, in Fig. 4(a), periodic dynamics, which leads to poor mixing, are
immediately evident. An IET that can produce significant mixing, on the other hand, leads to the bottom
row of the space-time plot having many subsegments of different colors, as shown in Fig. 4(b).
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(a) N = 4, r = 1.5, Π = [3142] (b) N = 6, r = 1.25, Π = [653241]

Fig. 4. (Color online.) Space-time plots over 100 iterations of our IET-based cutting and shuffling map for two different
combinations of parameters. (a) Periodic dynamics and poor mixing result from choosing N = 4, r = 1.5 and Π([1234]) =
[3142]. (b) Substantial mixing is observed for N = 6, r = 1.25 and Π([123456]) = [653241].

It is worthwhile comparing space-time diagrams to Poincaré sections, a common diagnostic of mixing.
A Poincaré section consists of the collection of locations of “tracers” after each application of a map
representing the action of, say, one period of a flow. When each tracer is assigned a different color, the
Poincaré section takes a particularly visually appealing form (see, e.g., [Ottino, 1989, Chap. 6]). In this one-
dimensional context, however, the “tracers” can be thought of as points distributed along a line segment,
filling it densely in the case of good mixing, or leaving gaps (depending on their seed locations) in the case
of poor mixing. Constructing a space-time diagram as in Fig. 4 is a clearer way of visualizing the same
information: any row represents a mixing pattern that can be compared to a previous or later iteration
showing where colors, which correspond to different initial locations, are distributed under the action of
cutting and shuffling.

4.1. Effect of rearrangement order

The choice of the subsegment rearrangement order, represented by the permutation Π, obviously affects the
quality of mixing as made precise by the theorems in Sec. 3. Permutations that are reducible, as described
in Definition 3.1, result in poor mixing and, often, periodic dynamics. Figure 5 illustrates this behavior for
three choices of Π with N and r fixed.

The simplest reducible permutations are those for which either Π(1) = 1 (meaning the first subsegment
remains in place throughout the cutting and shuffling process) or Π(N) = N (meaning the last subsegment
remains in place, as shown in Fig. 5(a)). In either case, the percent unmixed Un is equal (or becomes equal at
some n > 1) to the length of this fixed subsegment; no further reduction in Un can be achieved. Figure 5(b),
on the other hand, displays a different type of reducible rearrangement order in which subsegments 1, 2
and 3, 4 are exchanged pairwise. Again, Un does not tend to zero during the cutting and shuffling process.
Additionally, the number of interfaces Cn is easily seen to remain between 3 and 5. This is, of course,
indicative of poor mixing. Permutations that are rotations, as described in Definition 3.2, also result in poor
mixing, though they do not explicitly violate Keane’s condition (our choice of r, however, does). Figure 4(c)
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shows such a case, with the space-time plot clearly illustrating why this Π is termed a “rotation.” In each
iteration the last two subsegments are shifted to the beginning of the line segment, resulting in periodic
dynamics and poor mixing.
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Fig. 5. (Color online.) Cutting and shuffling of a line segment with rearrangement order given by reducible permutations:
(a) Π([1234]) = [3124] for which the last subsegment remains in place, (b) Π([1234]) = [2143] in which the first and last pair
of subsegments are exchanged pairwise and (c) Π([1234]) = [3412] which is a rotation. In all three cases N = 4 and r = 1.5.
On the right are space-time plots of the first 10 iterations of the cutting and shuffling process.

So far, as expected, we have shown that choices of Π and r that violate Keane’s condition lead to trivial
dynamics and poor mixing. It is worthwhile to also consider cases when the permutation is irreducible (as
required by Theorem 1) but r is still chosen to violate Keane’s condition. Now, as shown in Fig. 6, we find
that a slight change in the rearrangement order can have a significant impact on the quality of mixing by
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cutting and shuffling.
Having performed a number of numerical experiments, we find that five typical outcomes can be

observed. First, as shown in Fig. 6(a), there can be significant mixing. The percent unmixed Un decays to
a small value quickly, and the number of interfaces Cn grows to a large value. However, there is a clear
bound (lower for Un, upper for Cn) on the quality of mixing that can be achieved because r = 3/2 is
a rational number. By switching the location of only two subsegments in the rearrangement order, we
observe a second kind of mixing behavior, shown in Fig. 6(b). Now, the quality of mixing remains poor
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Fig. 6. (Color online.) When Keane’s condition is violated by choosing r = 1.5 for N = 5, switching the locations of only 2
elements in the rearrangement order can have a significant impact on the mixing dynamics. There are five typical outcomes.
(a) Significant mixing for Π([12345]) = [52413]. (b) Un and Cn oscillate under the rearrangement order = Π([1234]) = [52143].
(c) Periodic dynamics result for Π([1234]) = [52341] with Un and Cn oscillating at a high frequency. (d) Significant mixing
can be achieved but the dynamics are ultimately periodic (jumps in Un, dips in Cn always occur after a fixed number of
iterations) for Π([12345]) = [52314]. (e) Un remains constant and Cn is bounded above by a small number under the reducible
rearrangement order Π([12345]) = [42315].
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with large-amplitude oscillations present in Un and Cn. This occurs because subsegments that are cut
and shuffled can become reassembled at a later iteration. Upon switching another two elements in the
rearrangement order, a third type of behavior is observed in Fig. 6(c): Un and Cn now oscillate at a much
higher frequency; Un remains high and Cn remains low, indicating poor mixing. Again, this results because
the subsegments are reassembling into their initial configuration every few iterations due to the periodic
dynamics of this IET. The fourth type of behavior, produced by another small change in the rearrangement
order, results in the dynamics shown in Fig. 6(d), where Un and Cn now exhibit two distinct time scales
of oscillation. One is at high frequency and with low amplitude (“local” changes every few iterations), the
other at low frequency and with large amplitude (“global” reassemblies of the initial condition). At the
iteration corresponding to a peak in Un, the interval has reassembled into its original state. Though there
is, apparently, significant mixing at certain n, periodic dynamics still exist because r = 3/2 is a rational
number, which violates Keane’s condition. Finally, Fig. 6(e) presents the fifth type of behavior observed. In
this case, the rearrangement order is a reducible permutation with Π(N) = N . As expected, there is very
poor mixing; Un remains constant (because the last, and longest, subsegment is never cut and shuffled)
and Cn is bounded above by a small integer for all n.

4.2. Effect of interval length ratio

Both the interval length ratio r and the number of subsegments N significantly affect the quality of mixing
by cutting and shuffling. In Fig. 7, the percent unmixed Un (averaged over all irreducible permutations for
a given N) is plotted as a function of the number of iterations n for several choices of r and N . As expected
for such irreducible permutations, Un decreases with n; the greatest decrease occurs within the first 20
or so iterations. For larger N , the curves in Fig. 7 are systematically lower. This indicates that starting
with more subsegments leads to faster mixing. Furthermore, the change in Un resulting from adding an
additional segment is greater when going from N = 4 to N = 5 than when going from N = 5 to N = 6
or from N = 6 to N = 7. This illustrates that there is a point of diminishing returns. The errors bars are
larger for smaller N because there are more protocols that mix poorly in those cases. Thus, in practice, at
least 6 or 7 subsegments are necessary to obtain significant mixing across a range of protocols, but starting
with more subsegments than that has minimal impact on the overall mixing. With a larger number of
subsegments, the precise rearrangement order chosen in the protocol has less impact than for smaller N ,
as long as the permutation is irreducible.

It is also clear from Fig. 7 that reducing r results in better mixing. To further analyze the impact of
r, we plot Un—averaged over all irreducible rearrangement orders for a given N and then averaged from
iteration 50 to 100—as a function of r in Fig. 8(a). Clearly this average Un increases as r increases, with
a larger number of subsegments effecting better mixing. The upward trend in Fig. 8(a) can be understood
by recalling that larger r leads to an increase in the length difference between adjacent initial subsegments.
In particular, it is easy to show that the longest initial subsegment, which takes the most “effort” to cut
and shuffle, has length

Un,max(r,N) = rN−1

(

r − 1

rN − 1

)

. (4)

We use the notation Un,max because, by construction, the length of the longest initial subsegment of a
given color is the upper bound on the percent unmixed for all n. Note that Un,max is well behaved at
r = 1, specifically limr→1 Un,max(r,N) = 1/N . Thus, for a fixed number of iterations (as in Fig. 8, where
all averages are calculated from iteration 50 to 100), increasing r should increase the average percent
unmixed. To account for this effect, in Fig. 8(b), we divide the average percent unmixed by Un,max(r,N).
Clearly, this normalization eliminates part of the upward trend. It is natural to interpret the normalized
average Un in Fig. 8(b) as a mixing efficiency, i.e., a measure of the average shortest segment length
produced by cutting and shuffling compared to the initial longest segment length. On the other hand, from
a practical standpoint, we want the unmixed portion to be as short as possible, leading to a preference for
r being close, but not exactly equal, to one, as indicated in Fig. 8(a) and discussed shortly.

In addition, it is evident that certain ratios, e.g., r = 3/2, 2/1, 5/2 or 3/1, lead to particularly
poor mixing, resulting in peaks in Fig. 8, similar to the resonances leading to Arnold tongues in a chaotic
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Fig. 7. (Color online.) Average (across all irreducible rearrangement orders) percent unmixed Un for (a) r = 1.5 and N = 4
to 7, (b) r = 1.2 and N = 4 to 7, (c) r = 1.1 and N = 4 to 6. Error bars represent one standard deviation about the mean.
N = 6 appears to be a point of diminishing returns, and r closer to 1 (a more uniform distribution of initial subsegment
lengths) leads to better mixing on average.

dynamical system [Pikovsky & Rosenblum, 2007]. This corroborates the theoretical results from Sec. 3 that
in order to get the best mixing possible (specifically, to eliminate periodic orbits and ensure ergodicity), r
should be an irrational number. Furthermore, for the present IET construction, Fig. 8(a) suggests that an
irrational number close to unity is preferable. The reason for this is the manner in which we define r. For r
close to unity, the initial distribution of subsegment lengths is almost uniform, meaning no subsegment is
very long compared to any other. The opposite case case (r ≫ 1) is undesirable because long subsegments
can take many iterations to be cut and shuffled. After normalizing by Un,max in Fig. 8(b), we observe
that the mixing efficiency is still better for ratios closer to one. However, there is little difference in the
normalized unmixed portion for r ∈ [1, 2]. It is quite evident that as r increases beyond 2, the second longest
subsegment is only a small fraction of the longest subsegment. Hence, it takes many more iterations to
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Fig. 8. (Color online.) Average (across iterations 50 to 100 and across all irreducible rearrangement orders) percent unmixed
Un versus the subsegment ratio r for N = 4, 5 and 6. Arnold tongue-like phenomena are seen at the resonances 2/1, 3/1,
3/2, 5/2, etc. The best mixing (on average) occurs for r close, but not equal, to 1 because the distribution of lengths of the
initial subsegments is close to uniform. The fact that the length of the longest initial subsegment increases with r, meaning
that (on average) more iterations are needed to reach the same percent unmixed (upward trend in (a)), can be accounted by
normalizing with Un,max, as shown in (b).

significantly reduce the length of the longest subsegment. In the opposite extreme, as r → 1, the difference
in length between the longest subsegment and the shortest subsegment becomes small, which makes it
possible to accomplish good mixing after an adequate number of iterations. Overall, we can conclude that
the mixing quality and efficiency are improved (on average) by starting with a more uniform distribution
of subsegment lengths.

4.3. Growth of the number of interfaces

As discussed earlier, an important aspect of the mixing properties of a cutting and shuffling process is
the number of interfaces it generates between materials of different color. Such interfaces arise from the
discontinuities in the cutting and shuffling map, specifically where the cuts are placed in the interval
exchange transformation. For PWIs, the higher-dimensional analogue of IETs that arise in the context of
granular mixing in a spherical container, it was shown that the discontinuities in the map are the sole source
of intermaterial interfaces in the absence of the “usual” chaotic dynamics [Christov, 2011, §8.9]. The recent
work by Novak [2009] on the growth of the number of discontinuities as n → ∞, which we summarized
in Sec. 3, is the only mathematical characterization of the set of interfaces. Beyond that, determining the
growth of Cn is, in general, an open problem.

In this section, we aim to better understand the behavior of Cn by supplementing the mathematical
theorems with numerical results. Specifically, we wish to determine what effect violating Keane’s condition
has on the growth of Cn, and whether violating it to different “degrees” matters. To this end, we take
N fixed and consider the two cases of a given reducible or a given irreducible rearrangement order Π. In
each case, we vary the value of r. Ideally, r should be irrational to observe the asymptotic results of Novak
[2009]. To approach this limit, we take r to be increasingly “more irrational” and compute the evolution
of Cn for the given N and Π.

To make the idea of “more irrational” precise, we apply the concept of a finite continued fraction of k
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partial denominators, which is defined as

[a0; a1, . . . , ak] := a0 +
1

a1 +
1

a2 +
1

. . . +
1

ak

. (5)

The continued fraction is simple if {a0, . . . , ak} are all integers. Every real number has a unique simple
continued fraction representation; rational numbers correspond to finite continued fractions, while irrational
numbers correspond to infinite continued fractions [Burton, 2007, Chap. 15]. We call one rational number
“more irrational” than another if it has a longer continued fraction expansion.

Thus, in Fig. 9, we consider the following three choices for the ratio of subsegment lengths: r =
1.25 = 5/4 = [1; 4] as the “least irrational,” r = 1.3 = 13/10 = [1; 3, 3] as the “more irrational” and
r = 1.35 = 27/20 = [1; 2, 1, 6] as the “most irrational.” Figure 9(a) shows the growth of Cn for the protocol
generated by the reducible permutation Π([12345]) = [13524]. In this case, the dynamics is eventually
periodic for all three choices of r with the period of Cn becoming longer as r becomes “more irrational.”
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Fig. 9. (Color online.) Number of interfaces Cn plotted as a function of iterations for N = 5, ratios r = 1.25 (orange), 1.3
(green), 1.35 (brown) and (a) the reducible rearrangement order Π([12345]) = [13524] and (b) the irreducible rearrangement
order Π([12345]) = [25413]. Note that, for clarity, different vertical scales are used in panels (a) and (b).

Meanwhile, for the irreducible permutation Π([12345]) = [25413] in Fig. 9(b), we do not observe
periodic dynamics for r = 1.3 and r = 1.35 over the 105 iterations considered. For r = 1.3, however, Cn is
bounded above independently of n, which leads us to conjecture that this case of Theorem 5 corresponds to
IETs that violate Keane’s condition. For r = 1.35, we expect that there is also an upper bound for Cn that
is independent of n, but it is not achieved over the 105 iterations considered. Thus, this last protocol can
be considered, for all practical purposes, to behave as if Keane’s condition were satisfied. As a consequence,
this is strong evidence that the dichotomy of grow–no growth in Theorem 5 corresponds to the dichotomy
of satisfying–violating the assumptions of Theorem 1 (equivalently, Keane’s minimality condition).

The inset in Fig. 9(b) shows that the slope of all three Cn curves for small n is essentially independent
of r. This suggests the interesting possibility that the slope is fixed by the number of fundamental disconti-
nuities (in the language of Novak [2009]), which is encoded by the chosen irreducible permutation Π alone.
All three protocols in Fig. 9(b) violate Keane’s condition to various “degrees,” and thus the number of
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fundamental discontinuities is, technically speaking, zero because these protocols must be eventually peri-
odic. Indeed, the linear growth of Cn is sustained over a shorter range of n as r is made “more rational.”
Nevertheless, we observe a similar slope initially, which suggests that if r were irrational, then this is the
growth rate of Cn and is thus the number of fundamental (non-resolvable) discontinuities permitted for
this choice of N and Π.

4.4. Statistics on finite-time mixing

As mentioned in the Introduction, the mathematical theory (Sec. 3) does not provide an answer to questions
such as “How many iterations does it take to reduce the longest continuous-color segment in an IET to a
given fraction of the interval?”. In this section, we address this question through numerical simulations.
Following [Juarez et al., 2012], we evaluate the quality of mixing of all the cutting and shuffling protocols
that can be constructed for given N and r by plotting the percentage of protocols (i.e., percentage of
permutations Π for fixed N and r) that achieve a given percent unmixed value Un after n = 50 iterations.

Figure 10 shows the finite-time mixing statistics for the protocols with r = 1.5 (a “bad” choice,
corresponding to a local maximum in Fig. 8) and r = 1.35 (a “better” choice) with N = 4, 5 and 6. Both
of these ratios are rational numbers, and we have thus violated the assumptions of Theorems 1 and 4.
Consequently, these IETs are neither ergodic nor weakly mixing in the mathematical sense. Nevertheless,
the majority of these protocols achieve a substantial amount of mixing (as quantified by Un) over 50
iterations. Furthermore, there is a clear benefit to picking r to be “more irrational” (as discussed in
Sec. 4.3) because the curves for r = 1.35 (solid) consistently lie below those for r = 1.5 (dashed), indicating
a higher degree of mixing across all protocols after 50 iterations.
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Fig. 10. (Color online.) Statistics on finite-time mixing by cutting and shuffling showing the percent unmixed achieved by
a given percentage of protocols after 50 iterations, where the ratio r and number of initial subsegments N is given and (a)
all permutations or (b) only irreducible permutations are considered for the rearrangement order. Solid and dashed curves
correspond to r = 1.35 and r = 1.5, respectively.

The “worst case scenario” corresponds to the intersection of a curve with the vertical line at 100% of
protocols. No protocols can mix any less than the percent of the domain corresponding to the longest initial
subsegment. Based on the IET construction from Sec. 2, we know that the length of longest subsegment
at n = 0 is Un = Un,max as defined in Eq. (4). Thus, 100% of protocols must achieve at least this value
of Un. From Eq. (4) we find that Un,max(r = 1.35, N = 4, 5, 6) ≈ 37, 33, 31% and Un,max(r = 1.5, N =
4, 5, 6) ≈ 41.5, 38, 36.5%. Indeed, these are the highest values (i.e., Un at 100% of protocols) observed in
Fig. 10(a). However, it is clear that most protocols do much better, and the percentage of protocols that
effect significant mixing, say those falling below the 5% unmixed line in the shaded area, is much higher
when only irreducible permutations are considered in Fig. 10(b). No protocols achieve complete mixing over



May 2, 2014 15:7 ijbc˙1d˙c˙s

16 M. K. Krotter et al.

the 50 iterations considered, therefore all the curves have a non-zero limiting value on the left. However, it
is evident that in all cases there exists at least one protocol that achieves Un < 5% because limiting value
as % of protocols → 0 is always in the shaded portion of the graph.

This last observation allows us to determine bounds on the 95% mixing time, which is defined as the
first iteration n∗ for which Un∗ < 5% [Ashwin et al., 2002]. The shaded portions of Fig. 10 correspond to
Un < 5%, and it is evident that for N = 5 and 6 (and both r = 1.5 and 1.35), the majority (i.e., over 50%)
of all protocols achieve this value of Un in at most 50 iterations. Therefore, the 95% mixing time is, on
average, . 50 iterations. When only irreducible permutations are considered for the rearrangement order
(Fig. 10(b)), we see that nearly 80% of the protocols for N = 5 and 6 (and both r = 1.5 and 1.35) reduce
Un below 5% over 50 iterations. Consequently, if a cutting and shuffling map can achieve the 95% mixing
time, then, in practice, we expect the presence of diffusion (or other kind of irreversibility) to result in
complete and thorough mixing, even if the cutting and shuffling protocol may be eventually periodic (see,
e.g., the relevant discussion and examples in [Ashwin et al., 2002; Sturman, 2012]).

5. Conclusion

Although the problem of mixing a line segment by cutting and shuffling seems simple at a first glance,
this first comprehensive numerical study of cutting and shuffling protocols based on interval exchange
transformations (IETs) demonstrates a breadth of possible dynamical behaviors. Some of these behaviors
can be predicted by the mathematical theory of IETs, while others could only be found through numerical
experimentation. In addition to observing and classifying the dynamics of this cutting and shuffling process,
we quantified its finite-time mixing properties within a well-defined parameter space. This is not only of
practical interest in determining how cutting and shuffling leads to complex dynamics but is also of abstract
interest because it could stimulate new theoretical results in the area of IETs.

Based on our study, the following design rules for mixing a line segment by cutting and shuffling can
be drawn:

(i) The rearrangement order should be an irreducible permutation (see Appendix B for more technical
details on this topic).

(ii) An IET with N = 6 subsegments is the most practical number of subsegments. The improvement in
mixing diminishes with larger N .

(iii) The ratio of adjacent subsegment lengths should not be large, specifically it should be an irrational
number slightly larger than 1. (Continued fraction expansions can be used to systematically make r
“more irrational.”)

Thus, an important result of the present work is that even if a cutting and shuffling map cannot be
proven to be mixing in the mathematical sense, it can generate significant complexity over a finite number
of iterations. Specifically, for all practical purposes it can behave (over a finite number of iterations)
as if satisfied the mathematical requirements for mixing (see Sec. 4.3). Thus, in physical systems where
cutting and shuffling is one of several underlying mixing mechanisms (e.g., in granular flows [Christov et al.,
2010b,a; Juarez et al., 2010, 2012] as motivated in the Introduction), optimizing for cutting and shuffling
is beneficial and, indeed, desirable. If the cutting and shuffling process is in some sense “optimal,” then
the additional mixing mechanisms that become relevant at later times can achieve greater efficiency. The
design rules listed above can have an impact in performing such optimization of physical mixing processes,
once the underlying cutting and shuffling skeleton is uncovered.

At the same time, the present study suggests several mathematical questions regarding IETs that have
not been answered in the pure mathematics literature:

(i) Is there a rigorous connection between resonances in chaotic dynamical systems and the spikes of the
average of Un in Fig. 8 at values of r that are simple fractions?

(ii) Is the number of nonresolving fundamental discontinuities of an IET solely a function of Π? If so,
what kind?

(iii) Are there conditions that can be imposed on subsegment length ratios ri and the permutation Π so
that Un is less than a given percentage after n iterations?
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Finally, a possible avenue of future research is to extend the present methodology to study mixing
by cutting and shuffling of the unit square I × I = [0, 1]2. This could be accomplished by, for example,
applying an interval exchange transformation in the y-direction and extending it in the x-direction by
making each subinterval Ii into a rectangle of unit horizontal length [Christov et al., 2011]. More generally,
such an interval exchange in the y-direction can be sequentially composed with another in the x-direction
to produce a special case of the more general class of rectangle exchange transformations (RETs) [Haller,
1981]. In comparison to IETs, for which there are a number of definitive theoretical results (recall Sec. 3),
RETs are poorly understood. Thus, providing concrete numerical results could be quite useful. In addition,
adding irreversibility to the cutting and shuffling process, e.g., through diffusion as in [Ashwin et al., 2002;
Sturman, 2012], opens further possibilities. It is conceivable that the competition between cutting and
shuffling and diffusion would lead to one-dimensional strange eigenmodes, which have been found to be
important in understanding mixing in open chaotic flows [Gouillart et al., 2009].
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Appendices

Appendix A

In this Appendix, we outline how a numerical simulation of the cutting and shuffling of a line segment
by an interval exchange transformation (IET) as constructed in Sec. 2 can be performed. The code takes the
following inputs: the adjacent subsegment ratio r (a finite-precision decimal), the number of subsegments
N (an integer > 1), the rearrangement order Π (a permutation of the integers {1, . . . , N}) and the desired
number of iterations nmax of the process (an integer > 1). Then, it proceeds through the steps below.

(1) Convert r to a fraction rn/rd and compute the least common denominator (LCD) of the fractions
{ri−1x}Ni=1 (x is given by Eq. (1)), which correspond to the lengths of the subsegments in the IET
construction. The LCD can be found to be lcd = (rNn − rNd )/(rn − rd). (Note that rn − rd is always a
factor of rNn − rNd for integer N , so that lcd is an integer.) The shortest piece that can be created by
cutting and shuffling is thus 1 unit out of lcd.

(2) Create two vectors of length lcd, which we call segment and newsegment, to represent the line segment
before and after shuffling, respectively. Accordingly, the initial subsegment divisions are located between
cells ri−1 · x · lcd and ri−1 · x · lcd + 1 (i = 1, . . . , N − 1) in the array.

(3) “Color” the interval to be shuffled by assigning all elements between 1 and x · lcd (the first subsegment)
of the array segment the value of 1, all elements between x · lcd+1 and r ·x · lcd (the second subsegment)
the value of 2, and so on.

(4) Using the rearrangement order Π, copy all elements corresponding to the first (i = 1) subsegment
portion of the array segment into the appropriate parts of newsegment; for example, for Π(1) 6= 1,

newsegment
(

(rΠ(1)−1 · x · lcd + 1) : rΠ(1) · x · lcd
)

= segment(1 : x · lcd). (A.1)

(Here, a colon is used in the sense of the Matlab array subscripting operator.) Repeat for all i =
1, . . . , N to complete one iteration of the shuffling process.
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(5) Determine the longest number of consecutive elements of newsegment containing the same value and
divide this number by the total number of elements (lcd) to obtain the percent unmixed Un for this
(say, the nth) iteration.

(6) Calculate the number of adjacent elements of newsegment that have different values to obtain the
number of distinct cuts Cn at this iteration.

(7) Set segment = newsegment and repeat Steps (4) through (7) until the desired number of iterations
nmax is reached.

Appendix B

In this Appendix, we give some remarks on irreducible permutations. The following Mathematica

code determines whether p is an irreducible permutation of {1, 2, . . . , N} (i.e., it returns 0 for false or 1 for
true):

<< Combinatorica‘

IsReducibleQ[p_] := Module[{j, ans = 0},

For[j = 1, j <= Length[p] - 1, j++,

If[PermutationQ[Take[p, j]], ans = 1; Break[];];

];

ans

];

Table B.1 lists the number of total and irreducible permutations as a function of N . Klazar [2003]
gives a discussion of the integer sequence corresponding to the number of irreducible permutations of
length N and its properties (see also entry A003319 in the On-Line Encyclopedia of Integer Sequences
[OEIS Foundation Inc., 2012]) .

Table B.1. Number of permutations of the integers {1, 2, . . . , N}.

N 1 2 3 4 5 6 7 8 9 10

total = N ! 1 2 6 24 120 720 5 040 40 320 362 880 3 628 800

irreducible 1 1 3 13 71 461 3 447 29 093 27 3343 2 829 325
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