Number Theory: Arithmetic in Shangri-La (eds., S. Kanemitsu, H. Li and J. Liu), Proc. 6th China-Japan Seminar (Shanghai, August 15-17, 2011), World Sci., Singapore, 2013, pp. 244-258.

CONJECTURES INVOLVING ARITHMETICAL SEQUENCES

ZHI-WEI SUN

Abstract

We pose thirty conjectures on arithmetical sequences, most of which are about monotonicity of sequences of the form $\left(\sqrt[n]{a_{n}}\right)_{n \geqslant 1}$ or the form $\left(\sqrt[n+1]{a_{n+1}} / \sqrt[n]{a_{n}}\right)_{n \geqslant 1}$, where $\left(a_{n}\right)_{n \geqslant 1}$ is a number-theoretic or combinatorial sequence of positive integers. This material might stimulate further research.

1. Introduction

A sequence $\left(a_{n}\right)_{n \geqslant 0}$ of natural numbers is said to be log-concave (resp. logconvex) if $a_{n+1}^{2} \geqslant a_{n} a_{n+2}$ (resp. $a_{n+1}^{2} \leqslant a_{n} a_{n+2}$) for all $n=0,1,2, \ldots$ The log-concavity or log-convexity of combinatorial sequences has been studied extensively by many authors (see, e.g., $[5,7,8,15,17]$).

For $n \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$ let p_{n} denote the n-th prime. In 1982, Faride Firoozbakht conjectured that

$$
\sqrt[n]{p_{n}}>\sqrt[n+1]{p_{n+1}} \quad \text { for all } n \in \mathbb{Z}^{+}
$$

i.e., the sequence $\left(\sqrt[n]{p_{n}}\right)_{n \geqslant 1}$ is strictly decreasing (cf. [20, p. 185]). This was verified for n up to 3.495×10^{16} by Mark Wolf [34].

Mandl's inequality (cf. [9, 21, 13]) asserts that $S_{n}<n p_{n} / 2$ for all $n \geqslant 9$, where S_{n} is the sum of the first n primes. Recently the author [31] proved that the sequence $\left(\sqrt[n]{S_{n}}\right)_{n \geqslant 2}$ is strictly decreasing and moreover the sequence $\left(\sqrt[n+1]{S_{n+1}} / \sqrt[n]{S_{n}}\right)_{n \geqslant 5}$ is strictly increasing. Motivated by this, here we pose many conjectures on sequences $\left(\sqrt[n]{a_{n}}\right)_{n \geqslant 1}$ and $\left(\sqrt[n+1]{a_{n+1}} / \sqrt[n]{a_{n}}\right)_{n \geqslant 1}$ for many number-theoretic or combinatorial sequences $\left(a_{n}\right)_{n \geqslant 1}$ of positive integers. Clearly, if $\left(\sqrt[n+1]{a_{n+1}} / \sqrt[n]{a_{n}}\right)_{n \geqslant N}$ is strictly increasing (decreasing) with limit 1, then the sequence $\left(\sqrt[n]{a_{n}}\right)_{n \geqslant N}$ is strictly decreasing (resp., increasing).

Sections 2 and 3 are devoted to our conjectures involving number-theoretic sequences and combinatorial sequences respectively.

Key words and phrases. Primes, Artin's primitive root conjecture, Schinzel's hypothesis H, combinatorial sequences, monotonicity.

2010 Mathematics Subject Classification. Primary 11A41, 05A10; Secondary 11B39, 11B68, 11B73, 11B83.

Supported by the National Natural Science Foundation (grant 11171140) of China.

2. CONJECTURES ON NUMBER-THEORETIC SEQUENCES

2.1. Conjectures on sequences involving primes.

Conjecture 2.1. (2012-09-12) For any $\alpha>0$ we have

$$
\frac{1}{n} \sum_{k=1}^{n} p_{k}^{\alpha}<\frac{p_{n}^{\alpha}}{\alpha+1} \quad \text { for all } n \geqslant 2\lceil\alpha\rceil^{2}+\lceil\alpha\rceil+6
$$

Remark 2.1. We have verified the conjecture for $\alpha=2,3, \ldots, 700$ and $n \leqslant$ 10^{6}. Our numerical computation suggests that for $\alpha=2,3, \ldots, 10$ we may replace $\lceil\alpha\rceil^{2}+\lceil\alpha\rceil+6$ in the inequality by $9,15,31,47,62,92,92,122,122$ respectively. Note that Mandl's inequality (corresponding to the case $\alpha=1$) can be restated as $\sum_{k=1}^{n} p_{k}<\frac{n-1}{2} p_{n+1}$ for $n \geqslant 8$, which provides a lower bound for p_{n+1} in terms of p_{1}, \ldots, p_{n}.

Our next conjecture is a refinement of Firoozbakht's conjecture.
Conjecture 2.2. (2002-09-11) For any integer $n>4$, we have the inequality

$$
\frac{\sqrt[n+1]{p_{n+1}}}{\sqrt[n]{p_{n}}}<1-\frac{\log \log n}{2 n^{2}}
$$

Remark 2.2. The author has verified the conjecture for all $n \leqslant 3500000$ and all those n with $p_{n}<4 \times 10^{18}$ and $p_{n+1}-p_{n} \neq p_{k+1}-p_{k}$ for all $1 \leqslant k<n$. Note that if $n=49749629143526$ then $p_{n}=1693182318746371$, $p_{n+1}-p_{n}=1132$ and $\left(1-\sqrt[n+1]{p_{n+1}} / \sqrt[n]{p_{n}}\right) n^{2} / \log \log n \approx 0.5229$.

A well-known theorem of Dirichlet (cf. [14, pp. 249-268]) states that for any relatively prime positive integers a and q the arithmetic progression $a, a+q, a+2 q, \ldots$ contains infinitely many primes; we use $p_{n}(a, q)$ to denote the n-th prime in this progression.

The following conjecture extends the Firoozbakht conjecture to primes in arithmetic progressions.

Conjecture 2.3. (2012-08-11) Let $q \geqslant a \geqslant 1$ be positive integers with a odd, q even and $\operatorname{gcd}(a, q)=1$. Then there is a positive integer $n_{0}(a, q)$ such that the sequence $\left(\sqrt[n]{p_{n}(a, q)}\right)_{n \geqslant n_{0}(a, q)}$ is strictly decreasing. Moreover, we may take $n_{0}(a, q)=2$ for $q \leqslant 45$.
Remark 2.3. Note that $\sqrt[4]{p_{4}(13,46)}<\sqrt[5]{p_{5}(13,46)}$. Also, $\sqrt[3]{p_{3}(3,328)}<$ $\sqrt[4]{p_{4}(3,328)}$ and $\sqrt[6]{p_{6}(23,346)}<\sqrt[7]{p_{7}(23,346)}$.

A famous conjecture of E . Artin asserts that if $a \in \mathbb{Z}$ is neither -1 nor a square then there are infinitely many primes p having a as a primitive root modulo p. This is still open, the reader may consult the survey [18] for known progress on this conjecture.

Conjecture 2.4. (2012-08-17) Let $a \in \mathbb{Z}$ be not a perfect power (i.e., there are no integers $m>1$ and x with $x^{m}=a$).
(i) Assume that $a>0$. Then there are infinitely many primes p having a as the smallest positive primitive root modulo p. Moreover, if $p_{1}(a), \ldots, p_{n}(a)$ are the first n such primes, then the next such prime $p_{n+1}(a)$ is smaller than $p_{n}(a)^{1+1 / n}$, i.e., $\sqrt[n]{p_{n}(a)}>\sqrt[n+1]{p_{n+1}(a)}$.
(ii) Suppose that $a<0$. Then there are infinitely many primes p having a as the largest negative primitive root modulo p. Moreover, if $p_{1}(a), \ldots, p_{n}(a)$ are the first n such primes, then the next such prime $p_{n+1}(a)$ is smaller than $p_{n}(a)^{1+1 / n}$ (i.e., $\left.\sqrt[n]{p_{n}(a)}>\sqrt[n+1]{p_{n+1}(a)}\right)$ with the only exception $a=-2$ and $n=13$.
(iii) The sequence $\left(\sqrt[n+1]{P_{n+1}(a)} / \sqrt[n]{P_{n}(a)}\right)_{n \geqslant 3}$ is strictly increasing with limit 1, where $P_{n}(a)=\sum_{k=1}^{n} p_{k}(a)$.
Remark 2.4. Let us look at two examples. The first 5 primes having 24 as the smallest positive primitive root are $p_{1}(24)=533821, p_{2}(24)=567631$, $p_{3}(24)=672181, p_{4}(24)=843781$ and $p_{5}(24)=1035301$, and we can easily verify that

$$
p_{1}(24)>\sqrt{p_{2}(24)}>\sqrt[3]{p_{3}(24)}>\sqrt[4]{p_{4}(24)}>\sqrt[5]{p_{5}(24)} .
$$

The first prime having -12 as the largest negative primitive root is $p_{1}(-12)$ $=7841$, and the second prime having -12 as the largest negative primitive root is $p_{2}(-12)=16061$; it is clear that $p_{1}(-12)>\sqrt{p_{2}(-12)}$.

Recall that the Proth numbers have the form $k \times 2^{n}+1$ with k odd and $0<k<2^{n}$. In 1878 F . Proth proved that a Proth number p is a prime if (and only if) $a^{(p-1) / 2} \equiv-1(\bmod p)$ for some integer $a(c f . ~ E x .4 .10$ of $[6$, p. 220]). A Proth prime is a Proth number which is also a prime number; the Fermat primes are a special kind of Proth primes.

Conjecture 2.5. (2012-09-07) (i) The number of Proth primes not exceeding a large integer x is asymptotically equivalent to $c \sqrt{x} / \log x$ for a suitable constant $c \in(3,4)$.
(ii) If $\operatorname{Pr}(1), \ldots, \operatorname{Pr}(n)$ are the first n Proth primes, then the next Proth prime $\operatorname{Pr}(n+1)$ is smaller than $\operatorname{Pr}(n)^{1+1 / n}$ (i.e., $\left.\sqrt[n]{\operatorname{Pr}(n)}>\sqrt[n+1]{\operatorname{Pr}(n+1)}\right)$ unless $n=2,4,5$. If we set $\operatorname{PR}(n)=\sum_{k=1}^{n} \operatorname{Pr}(k)$, then $\operatorname{PR}(n)<n \operatorname{Pr}(n) / 3$ for all $n>50$, and the sequence $(\sqrt[n+1]{\mathrm{PR}(n+1)} / \sqrt[n]{\mathrm{PR}(n)})_{n \geqslant 34}$ is strictly increasing with limit 1.
Remark 2.5. We have verified that $\sqrt[n]{\operatorname{Pr}(n)}>\sqrt[n+1]{\operatorname{Pr}(n+1)}$ for all $n=$ $6, \ldots, 4000, \operatorname{PR}(n)<n \operatorname{Pr}(n) / 3$ for all $n=51, \ldots, 3500$, and

$$
\sqrt[n+1]{\mathrm{PR}(n+1)} / \sqrt[n]{\mathrm{PR}(n)}<\sqrt[n+2]{\mathrm{PR}(n+2)} / \sqrt[n+1]{\mathrm{PR}(n+1)}
$$

for all $n=34, \ldots, 3200$.
In the remaining part of this section, we usually list certain primes of special types in ascending order as $q_{1}, q_{2}, q_{3}, \ldots$, and write $Q(n)$ for $\sum_{k=1}^{n} q_{k}$. Note that the inequality $\sqrt[n]{Q(n)} / \sqrt[n-1]{Q(n-1)}<\sqrt[n+1]{Q(n+1)} / \sqrt[n]{Q(n)}$ yields a lower bound for q_{n+1}.

Conjecture 2.6. (i) (2012-08-18) Let $q_{1}, q_{2}, q_{3}, \ldots$ be the list (in ascending order) of those primes of the form $x^{2}+1$ with $x \in \mathbb{Z}$. Then we have $q_{n+1}<$ $q_{n}^{1+1 / n}$ unless $n=1,2,4$, 351. Also, the sequence $(\sqrt[n+1]{Q(n+1)} / \sqrt[n]{Q(n)})_{n \geqslant 13}$ is strictly increasing with limit 1.
(ii) (2012-09-07) Let $q_{1}, q_{2}, q_{3}, \ldots$ be the list (in ascending order) of those primes of the form $x^{2}+x+1$ with $x \in \mathbb{Z}$. Then we have $q_{n+1}<q_{n}^{1+1 / n}$ unless $n=3,6$. Also, the sequence $(\sqrt[n+1]{Q(n+1)} / \sqrt[n]{Q(n)})_{n \geqslant 20}$ is strictly increasing with limit 1.

Remark 2.6. If we use the notation in part (i) of Conj. 2.6, then $q_{351}=$ $3536^{2}+1=12503297, q_{352}=3624^{2}+1=13133377$, and $\sqrt[351]{q_{351}}<\sqrt[352]{q_{352}}$.

Schinzel's Hypothesis H (cf. [6, pp. 17-18]) states that if $f_{1}(x), \ldots, f_{k}(x)$ are irreducible polynomials with integer coefficients and positive leading coefficients such that there is no prime dividing the product $f_{1}(q) \cdots f_{k}(q)$ for all $q \in \mathbb{Z}$, then there are infinitely many $n \in \mathbb{Z}^{+}$such that $f_{1}(n), \ldots, f_{k}(n)$ are all primes.

Here is a general conjecture related to Hypothesis H.
Conjecture 2.7. (2012-09-08) Let $f_{1}(x), \ldots, f_{k}(x)$ be irreducible polynomials with integer coefficients and positive leading coefficients such that there is no prime dividing $\prod_{j=1}^{k} f_{j}(q)$ for all $q \in \mathbb{Z}$. Let q_{1}, q_{2}, \ldots be the list (in ascending order) of those $q \in \mathbb{Z}^{+}$such that $f_{1}(q), \ldots, f_{k}(q)$ are all primes. Then, for all sufficiently large positive integers n, we have

$$
\frac{2}{n-1} Q(n)<q_{n+1}<q_{n}^{1+1 / n} .
$$

Also, for some $N \in \mathbb{Z}^{+}$the sequence $(\sqrt[n+1]{Q(n+1)} / \sqrt[n]{Q(n)})_{n \geqslant N}$ is strictly increasing with limit 1.

Remark 2.7. Obviously $2 Q(n)<(n-1) q_{n+1}$ if and only if $Q(n+1)<$ $(n+1) q_{n+1} / 2$.

For convenience, under the condition of Conj. 2.7, below we set

$$
E\left(f_{1}(x), \ldots, f_{k}(x)\right)=\left\{n \in \mathbb{Z}^{+}: \sqrt[n]{q_{n}}>\sqrt[n+1]{q_{n+1}} \text { fails }\right\}
$$

and let $N_{0}\left(f_{1}(x), \ldots, f_{k}(x)\right)$ stand for the least positive integer n_{0} such that $2 Q(n)<(n-1) q_{n+1}$ for all $n \geqslant n_{0}$, and let $N\left(f_{1}(x), \ldots, f_{k}(x)\right)$ denote the
smallest positive integer N such that $(\sqrt[n+1]{Q(n+1)} / \sqrt[n]{Q(n)})_{n \geqslant N}$ is strictly increasing with limit 1.

If p and $p+2$ are both primes, then $\{p, p+2\}$ is said to be a pair of twin primes. The famous twin prime conjecture states that there are infinitely many twin primes.

Conjecture 2.8. (2012-08-18) We have

$$
E(x, x+2)=\emptyset, \quad N_{0}(x, x+2)=4, \quad \text { and } N(x, x+2)=9
$$

Remark 2.8. Let q_{1}, q_{2}, \ldots be the list of those primes p with $p+2$ also prime. We have verified that $\sqrt[n]{q_{n}}>\sqrt[n+1]{q_{n+1}}$ for all $n=1, \ldots, 500000, q_{n+1}>$ $2 Q(n) /(n-1)$ for all $n=4, \ldots, 2000000$, and $\sqrt[n+1]{Q(n+1)} / \sqrt[n]{Q(n)}<$ $\sqrt[n+2]{Q(n+2)} / \sqrt[n+1]{Q(n+1)}$ for all $n=9, \ldots, 500000$. See also Conjecture 2.10 of the author [31].

Conjecture 2.9. (2012-08-20) We have

$$
\begin{gathered}
E(x, x+2, x+6)=E(x, x+4, x+6)=\emptyset, \\
N_{0}(x, x+2, x+6)=3, \quad N_{0}(x, x+4, x+6)=6, \\
N(x, x+2, x+6)=N(x, x+4, x+6)=13
\end{gathered}
$$

Remark 2.9. Recall that a prime triplet is a set of three primes of the form $\{p, p+2, p+6\}$ or $\{p, p+4, p+6\}$. It is conjectured that there are infinitely many prime triplets.

A prime p is called a Sophie Germain prime if $2 p+1$ is also a prime. It is conjectured that there are infinitely many Sophie Germain primes, but this has not been proved yet.

Conjecture 2.10. (2012-08-18) We have

$$
E(x, 2 x+1)=\{3,4\}, \quad N_{0}(x, 2 x+1)=3, \text { and } N(x, 2 x+1)=13
$$

Also,

$$
E(x, 2 x-1)=\{2,3,6\}, \quad N_{0}(x, 2 x-1)=3, \text { and } N(x, 2 x-1)=9 .
$$

Remark 2.10. When q_{1}, q_{2}, \ldots gives the list of Sophie Germain primes in ascending order, we have verified that $\sqrt[n]{q_{n}}>\sqrt[n+1]{q_{n+1}}$ for all $n=5, \ldots, 200000$, and $\sqrt[n+1]{Q(n+1)} / \sqrt[n]{Q(n)}<\sqrt[n+2]{Q(n+2)} / \sqrt[n+1]{Q(n+1)}$ for every $n=$ $13, \ldots, 200000$.

One may wonder whether $E(x, x+d)$ or $E(x, 2 x+d)$ with small $d \in \mathbb{Z}^{+}$ may contain relatively large elements. We have checked this for $d \leqslant 100$.

Here are few extremal examples suggested by our computation:

$$
\begin{gathered}
E(x, x+60)=\{187,3976,58956\}, E(x, x+66)=\{58616\}, \\
E(x, 2 x+11)=\{1,39593\}, E(x, 2 x+81)=\{104260\} .
\end{gathered}
$$

Conjecture 2.11. (2012-09-07) We have

$$
\begin{gathered}
E\left(x, x^{2}+x+1\right)=\{3,4,12,14\} \\
N_{0}\left(x, x^{2}+x+1\right)=3, \quad N\left(x, x^{2}+x+1\right)=17 .
\end{gathered}
$$

Also,

$$
E\left(x^{4}+1\right)=\{1,2,4\}, \quad N_{0}\left(x^{4}+1\right)=4, \text { and } N\left(x^{4}+1\right)=10 .
$$

Remark 2.11. Note that those primes p with $p^{2}+p+1$ prime are sparser than twin primes and Sophie Germain primes.

2.2. Conjectures on other number-theoretic sequences.

A positive integer n is called squarefree if $p^{2} \nmid n$ for any prime p. Here is the list of all squarefree positive integers not exceeding 30 in ascending order:
$1,2,3,5,6,7,10,11,13,14,15,17,19,21,22,23,26,29,30$.
Conjecture 2.12. (2012-08-14) Let $s_{1}, s_{2}, s_{3}, \ldots$ be the list of squarefree positive integer in ascending order. Then the sequence $\left(\sqrt[n]{s_{n}}\right)_{n \geqslant 7}$ is strictly decreasing, and the sequence $(\sqrt[n+1]{S(n+1)} / \sqrt[n]{S(n)})_{n \geqslant 7}$ is strictly increasing, where $S(n)=\sum_{k=1}^{n} s_{k}$.

Remark 2.12. We have verified that $\sqrt[n]{s_{n}}>\sqrt[n+1]{s_{n+1}}$ for all $n=7, \ldots, 500000$. Note that $\lim _{n \rightarrow \infty} \sqrt[n]{S(n)}=1$ since $S(n)$ does not exceed the sum of the first n primes.

Conjecture 2.13. (2012-08-25) Let a_{n} be the n-th positive integer that can be written as a sum of two squares. Then the sequence $\left(\sqrt[n]{a_{n}}\right)_{n \geqslant 6}$ is strictly decreasing, and the sequence $(\sqrt[n+1]{A(n+1)} / \sqrt[n]{A(n)})_{n \geqslant 6}$ is strictly increasing, where $A(n)=\sum_{k=1}^{n} a_{k}$.

Remark 2.13. Similar things happen if we replace sums of squares in Conj. 2.13 by integers of the form $x^{2}+d y^{2}$ with $x, y \in \mathbb{Z}$, where d is any positive integer.

Recall that a partition of a positive integer n is a way of writing n as a sum of positive integers with the order of addends ignored. Also, a strict partition of $n \in \mathbb{Z}^{+}$is a way of writing n as a sum of distinct positive integers with the order of addends ignored. For $n=1,2,3, \ldots$ we denote by $p(n)$
and $p_{*}(n)$ the number of partitions of n and the number of strict partitions of n respectively. It is known that

$$
p(n) \sim \frac{e^{\pi \sqrt{2 n / 3}}}{4 \sqrt{3} n} \text { and } p_{*}(n) \sim \frac{e^{\pi \sqrt{n / 3}}}{4\left(3 n^{3}\right)^{1 / 4}} \quad \text { as } n \rightarrow+\infty
$$

(cf. [12] and [1, p. 826]) and hence

$$
\lim _{n \rightarrow \infty} \sqrt[n]{p(n)}=\lim _{n \rightarrow \infty} \sqrt[n]{p_{*}(n)}=1
$$

Conjecture 2.14. (2012-08-02) Both $(\sqrt[n]{p(n)})_{n \geqslant 6}$ and $\left(\sqrt[n]{p_{*}(n)}\right)_{n \geqslant 9}$ are strictly decreasing. Furthermore, the sequences $(\sqrt[n+1]{p(n+1)} / \sqrt[n]{p(n)})_{n \geqslant 26}$ and $\left(\sqrt[n+1]{p_{*}(n+1)} / \sqrt[n]{p_{*}(n)}\right)_{n \geqslant 45}$ are strictly increasing.

Remark 2.14. The author has verified the conjecture for n up to 10^{5}. [31] contains a stronger version of this conjecture.

The Bernoulli numbers $B_{0}, B_{1}, B_{2}, \ldots$ are rational numbers given by

$$
B_{0}=1, \quad \text { and } \quad \sum_{k=0}^{n}\binom{n+1}{k} B_{k}=0 \quad \text { for } n \in \mathbb{Z}^{+}
$$

It is well known that $B_{2 n+1}=0$ for all $n \in \mathbb{Z}^{+}$and

$$
\frac{x}{e^{x}-1}=\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!} \quad(|x|<2 \pi)
$$

(See, e.g., [14, pp. 228-232].) The Euler numbers $E_{0}, E_{1}, E_{2}, \ldots$ are integers defined by

$$
E_{0}=1, \text { and } \sum_{\substack{k=0 \\ 2 \mid k}}^{n}\binom{n}{k} E_{n-k}=0 \quad \text { for } n \in \mathbb{Z}^{+}
$$

It is well known that $E_{2 n+1}=0$ for all $n=0,1,2, \ldots$ and

$$
\sec x=\sum_{n=0}^{\infty}(-1)^{n} E_{2 n} \frac{x^{2 n}}{(2 n)!} \quad\left(|x|<\frac{\pi}{2}\right) .
$$

Conjecture 2.15. (2012-08-02) $\left(\sqrt[n]{(-1)^{n-1} B_{2 n}}\right)_{n \geqslant 1}$ and $\left.\sqrt[n]{(-1)^{n} E_{2 n}}\right)_{n \geqslant 1}$ are strictly increasing, where B_{0}, B_{1}, \ldots are Bernoulli numbers and E_{0}, E_{1}, \ldots are Euler numbers. Moreover, the sequences

$$
\left(\sqrt[n+1]{(-1)^{n} B_{2 n+2}} / \sqrt[n]{(-1)^{n-1} B_{2 n}}\right)_{n \geqslant 2}
$$

and

$$
\left(\sqrt[n+1]{(-1)^{n+1} E_{2 n+2}} / \sqrt[n]{(-1)^{n} E_{2 n}}\right)_{n \geqslant 1}
$$

are strictly decreasing.

Remark 2.15. It is known that both $(-1)^{n-1} B_{2 n}$ and $(-1)^{n} E_{2 n}$ are positive for all $n=1,2,3, \ldots$.

For $m, n \in \mathbb{Z}^{+}$the n-th harmonic number $H_{n}^{(m)}$ of order m is defined as $\sum_{k=1}^{n} 1 / k^{m}$.

Conjecture 2.16. (2012-08-12) For any positive integer m, the sequence

$$
\left(\sqrt[n+1]{H_{n+1}^{(m)}} / \sqrt[n]{H_{n}^{(m)}}\right)_{n \geqslant 3}
$$

is strictly increasing.
Remark 2.16. It is easy to show that $\left(\sqrt[n]{H_{n}^{(m)}}\right)_{n \geqslant 2}$ is strictly decreasing for any $m \in \mathbb{Z}^{+}$. Some fundamental congruences on harmonic numbers can be found in [29].

Conjecture 2.17. (2012-09-01) Let $q>1$ be a prime power and let \mathbb{F}_{q} be the finite field of order q. Let $M_{n}(q)$ denote the number of monic irreducible polynomials of degree at most n over \mathbb{F}_{q}.
(i) We have $M_{q}(n+1) / M_{q}(n)<M_{q}(n+2) / M_{q}(n+1)$ unless $q<5$ and $n \in\{2,4,6,8,10,12\}$.
(ii) If $n>2$, then $\sqrt[n]{M_{q}(n)}<\sqrt[n+1]{M_{q}(n+1)}$ unless $q<7$ and $n \in\{3,5\}$.
(iii) When $n>3$, we have

$$
\sqrt[n+1]{M_{q}(n+1)} / \sqrt[n]{M_{q}(n)}>\sqrt[n+2]{M_{q}(n+2)} / \sqrt[n+1]{M_{q}(n+1)}
$$

unless $(q<8 \& n \in\{5,7,9,11,13\})$ or $(9<q<14 \& n=4)$.
Remark 2.17. It is known that the number of monic irreducible polynomials of degree n over the finite field \mathbb{F}_{q} equals $\frac{1}{n} \sum_{d \mid n} \mu(d) q^{n / d}$, where μ is the Möbius function (cf. [14, p. 84]).

3. Conjectures on combinatorial sequences

The Fibonacci sequence $\left(F_{n}\right)_{n \geqslant 0}$ is given by

$$
F_{0}=0, F_{1}=1, \text { and } F_{n+1}=F_{n}+F_{n-1}(n=1,2,3, \ldots)
$$

the reader may consult [24, p. 46] for combinatorial interpretations of Fibonacci numbers.

Conjecture 3.1. (2012-08-11) The sequence $\left(\sqrt[n]{F_{n}}\right)_{n \geqslant 2}$ is strictly increasing, and moreover the sequence $\left(\sqrt[n+1]{F_{n+1}} / \sqrt[n]{F_{n}}\right)_{n \geqslant 4}$ is strictly decreasing. Also, for any integers $A>1$ and $B \neq 0$ with $A^{2}>4 B$ and $(A>2$ or
$B \geqslant-9)$, the sequence $\left(\sqrt[n+1]{u_{n+1}} / \sqrt[n]{u_{n}}\right)_{n \geqslant 4}$ is strictly decreasing with limit 1, where

$$
u_{0}=0, u_{1}=1, \text { and } u_{n+1}=A u_{n}-B u_{n-1}(n=1,2,3, \ldots)
$$

Remark 3.1. By [25, Lemma 4], if $A>1$ and $B \neq 0$ are integers with $A^{2}>4 B$ then the sequence $\left(u_{n}\right)_{n \geqslant 0}$ defined in Conjecture 3.1 is strictly increasing.

For $n=1,2,3, \ldots$ the n-th Bell number B_{n} denotes the number of partitions of $\{1, \ldots, n\}$ into disjoint nonempty subsets. It is known that $B_{n+1}=\sum_{k=0}^{n}\binom{n}{k} B_{k}\left(\right.$ with $\left.B_{0}=1\right)$ and $B_{n}=e^{-1} \sum_{k=0}^{\infty} k^{n} / k$! for all $n=0,1,2, \ldots$ (cf. [22, A000110]).

Conjecture 3.2. (2012-08-11) The sequence $\left(\sqrt[n]{B_{n}}\right)_{n \geqslant 1}$ is strictly increasing, and moreover the sequence $\left(\sqrt[n+1]{B_{n+1}} / \sqrt[n]{B_{n}}\right)_{n \geqslant 1}$ is strictly decreasing with limit 1, where B_{n} is the n-th Bell number.

Remark 3.2. In 1994 K. Engel [10] proved the log-convexity of $\left(B_{n}\right)_{n \geqslant 1}$. [32] contains a curious congruence property of the Bell numbers.

For $n \in \mathbb{Z}^{+}$the n-th derangement number D_{n} denotes the number of permutations σ of $\{1, \ldots, n\}$ with $\sigma(i)=i$ for no $i=1, \ldots, n$. It has the following explicit expression (cf. [24, p. 67]):

$$
D_{n}=\sum_{k=0}^{n}(-1)^{k} \frac{n!}{k!} .
$$

Conjecture 3.3. (2012-08-11) The sequence $\left(\sqrt[n]{D_{n}}\right)_{n \geqslant 2}$ is strictly increasing, and the sequence $\left(\sqrt[n+1]{D_{n+1}} / \sqrt[n]{D_{n}}\right)_{n \geqslant 3}$ is strictly decreasing.

Remark 3.3. As $D_{n}=n D_{n-1}+(-1)^{n}$ for $n \in \mathbb{Z}^{+}$, it is easy to see that $\left(D_{n+1} / D_{n}\right)_{n \geqslant 1}$ is strictly increasing.

During his study of irreducible root systems of a special type related to Weyl groups, T. A. Springer [23] introduced the Springer numbers S_{0}, S_{1}, \ldots defined by

$$
\frac{1}{\cos x-\sin x}=\sum_{n=0}^{\infty} S_{n} \frac{x^{n}}{n!}
$$

The reader may consult [22, A001586] for various combinatorial interpretations of Springer numbers.

Conjecture 3.4. (2012-08-05) The sequence $\left(S_{n+1} / S_{n}\right)_{n \geqslant 0}$ is strictly increasing, and the sequence $\left(\sqrt[n+1]{S_{n+1}} / \sqrt[n]{S_{n}}\right)_{n \geqslant 1}$ is strictly decreasing with limit 1, where S_{n} is the n-th Springer number.

Remark 3.4. It is known (cf. [22, A001586]) that S_{n} coincides with the numerator of $\left|E_{n}(1 / 4)\right|$, where $E_{n}(x)$ is the Euler polynomial of degree n.

Conjecture 3.5. (2012-08-18) For the tangent numbers $T(1), T(2), \ldots$ given by

$$
\tan x=\sum_{n=1}^{\infty} T(n) \frac{x^{2 n-1}}{(2 n-1)!},
$$

the sequences $(T(n+1) / T(n))_{n \geqslant 1}$ and $(\sqrt[n]{T(n)})_{n \geqslant 1}$ are strictly increasing, and the sequence $(\sqrt[n+1]{T(n+1)} / \sqrt[n]{T(n)})_{n \geqslant 2}$ is strictly decreasing.

Remark 3.5. The tangent numbers are all integral, see [22, A000182] for the sequence $(T(n))_{n \geqslant 1}$. It is known that $T(n)=(-1)^{n-1} 2^{2 n}\left(2^{2 n}-1\right) B_{2 n} /(2 n)$ for all $n \in \mathbb{Z}^{+}$, where $B_{2 n}$ is the $2 n$-th Bernoulli number.

The n-th central trinomial coefficient T_{n} is the coefficient of x^{n} in the expansion of $\left(x^{2}+x+1\right)^{n}$. Here is an explicit expression:

$$
T_{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{n-k}{k}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k}\binom{2 k}{k} .
$$

In combinatorics, T_{n} is the number of lattice paths from the point $(0,0)$ to $(n, 0)$ with only allowed steps $(1,0),(1,1)$ and $(1,-1)$ (cf. [22, A002426]). It is known that $(n+1) T_{n+1}=(2 n+1) T_{n}+3 n T_{n-1}$ for all $n \in \mathbb{Z}^{+}$.

Conjecture 3.6. (2012-08-11) The sequence $\left(\sqrt[n]{T_{n}}\right)_{n \geqslant 1}$ is strictly increasing, and the sequence $\left(\sqrt[n+1]{T_{n+1}} / \sqrt[n]{T_{n}}\right)_{n \geqslant 1}$ is strictly decreasing.

Remark 3.6. Via the Laplace-Heine formula (cf. [33, p. 194]) for Legendre polynomials, $T_{n} \sim 3^{n+1 / 2} /(2 \sqrt{n \pi})$ as $n \rightarrow+\infty$. In 2011, the author [28] found many series for $1 / \pi$ involving generalized central trinomial coefficients.

The n-th Motzkin number

$$
M_{n}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k}\binom{2 k}{k} \frac{1}{k+1}
$$

is the number of lattice paths from $(0,0)$ to $(n, 0)$ which never dip below the line $y=0$ and are made up only of the allowed steps $(1,0),(1,1)$ and $(1,-1)$ (cf. [22, A001006]). It is known that $(n+3) M_{n+1}=(2 n+3) M_{n}+3 n M_{n-1}$ for all $n \in \mathbb{Z}^{+}$.

Conjecture 3.7. (2012-08-11) The sequence $\left(\sqrt[n]{M_{n}}\right)_{n \geqslant 1}$ is strictly increasing, and moreover the sequence $\left(\sqrt[n+1]{M_{n+1}} / \sqrt[n]{M_{n}}\right)_{n \geqslant 1}$ is strictly decreasing.

Remark 3.7. The log-convexity of the sequence $\left(M_{n}\right)_{n \geqslant 1}$ was first established by M. Aigner [2] in 1998.

For $r=2,3,4, \ldots$ define

$$
f_{n}^{(r)}:=\sum_{k=0}^{n}\binom{n}{k}^{r} \quad(n=0,1,2, \ldots)
$$

Note that $f_{n}^{(2)}=\binom{2 n}{n}$, and those $f_{n}=f_{n}^{(3)}$ are called Franel numbers (cf. [22, A000172]).

Conjecture 3.8. (2012-08-11) For each $r=2,3,4, \ldots$ there is a positive integer $N(r)$ such that the sequence $\left(\sqrt[n+1]{f_{n+1}^{(r)}} / \sqrt[n]{f_{n}^{(r)}}\right)_{n \geqslant N(r)}$ is strictly decreasing with limit 1. Moreover, we may take

$$
\begin{aligned}
& N(2)=\cdots=N(6)=1, \quad N(7)=N(8)=N(9)=3, \quad N(10)=N(11)=5 \\
& N(12)=N(13)=7, \quad N(14)=N(15)=N(16)=9, \quad N(17)=N(18)=11
\end{aligned}
$$

Remark 3.8. It is known that $\left(f_{n}^{(r)}\right)_{n \geqslant 1}$ is log-convex for $r=2,3,4$ (cf. [7]). [27] contains some fundamental congruences for Franel numbers.
Conjecture 3.9. (2012-08-15) Set $g_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{2 k}{k}$ for $n=0,1,2, \ldots$. Then $\left(\sqrt[n]{g_{n}}\right)_{n \geqslant 1}$ is strictly increasing and the sequence $\left(\sqrt[n+1]{g_{n+1}} / \sqrt[n]{g_{n}}\right)_{n \geqslant 1}$ is strictly decreasing.
Remark 3.9. It is known that $g_{n}=\sum_{k=0}^{n}\binom{n}{k} f_{k}$, where $f_{k}=\sum_{j=0}^{k}\binom{k}{j}^{3}$ is the k-th Franel number. Both $\left(f_{n}\right)_{n \geqslant 0}$ and $\left(g_{n}\right)_{n \geqslant 0}$ are related to the theory of modular forms, see D. Zagier [35].

For $r=1,2,3, \ldots$ define

$$
A_{n}^{(r)}=\sum_{k=0}^{n}\binom{n}{k}^{r}\binom{n+k}{k}^{r} \quad(n=0,1,2, \ldots)
$$

Those $A_{n}^{(1)}$ and $A_{n}=A_{n}^{(2)}$ are called central Delannoy numbers and Apéry numbers respectively. The Apéry numbers play a key role in Apéry's proof of the irrationality of $\zeta(3)=\sum_{n=1}^{\infty} 1 / n^{3}$ (cf. [3, 19]).
Conjecture 3.10. (2012-08-11) For each $r=1,2,3, \ldots$ there is a positive integer $M(r)$ such that the sequence $\left(\sqrt[n+1]{A_{n+1}^{(r)}} / \sqrt[n]{A_{n}^{(r)}}\right)_{n \geqslant M(r)}$ is strictly decreasing with limit 1. Moreover, we may take

$$
M(1)=\cdots=M(16)=1, \quad M(17)=M(18)=M(19)=9, \quad M(20)=12 .
$$

Remark 3.10. The log-convexity of $\left(A_{n}\right)_{n \geqslant 0}$ was proved by T. Došlić [7]. The reader may consult [30] for some congruences involving Apéry numbers and Apéry polynomials.

The n-th Schröder number

$$
S_{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} \frac{1}{k+1}=\sum_{k=0}^{n}\binom{n+k}{2 k}\binom{2 k}{k} \frac{1}{k+1}
$$

is the number of lattice paths from the point $(0,0)$ to (n, n) with steps $(1,0),(0,1)$ and $(1,1)$ that never rise above the line $y=x$ (cf. [22, A006318] and [24, p. 185]).

Conjecture 3.11. (2012-08-11) The sequence $\left(\sqrt[n]{S_{n}}\right)_{n \geqslant 1}$ is strictly increasing, and moreover the sequence $\left(\sqrt[n+1]{S_{n+1}} / \sqrt[n]{S_{n}}\right)_{n \geqslant 1}$ is strictly decreasing, where S_{n} stands for the n-th Schröder number.

Remark 3.11. The reader may consult [26] for some congruences involving central Delannoy numbers and Schröder numbers.

Conjecture 3.12. (2012-08-13) For the Domb numbers

$$
D(n)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{2 k}{k}\binom{2(n-k)}{n-k}(n=0,1,2, \ldots),
$$

the sequences $(D(n+1) / D(n))_{n \geqslant 0}$ and $(\sqrt[n]{D(n)})_{n \geqslant 1}$ are strictly increasing. Moreover, the sequence $(\sqrt[n+1]{D(n+1)} / \sqrt[n]{D(n)})_{n \geqslant 1}$ is strictly decreasing.

Remark 3.12. For combinatorial interpretations of the Domb number $D(n)$, the reader may consult [22, A002895]. [4] contains some series for $1 / \pi$ involving Domb numbers.

The Catalan-Larcombe-French numbers $P_{0}, P_{1}, P_{2}, \ldots$ (cf. [16]) are given by

$$
P_{n}=\sum_{k=0}^{n} \frac{\binom{2 k}{k}^{2}\binom{2(n-k)}{n-k}^{2}}{\binom{n}{k}}=2^{n} \sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k}\binom{2 k}{k}^{2} 4^{n-2 k},
$$

they arose from the theory of elliptic integrals (see [11]). It is known that $(n+1) P_{n+1}=(24 n(n+1)+8) P_{n}-128 n^{2} P_{n-1}$ for all $n \in \mathbb{Z}^{+}$. The sequence $\left(P_{n}\right)_{n \geqslant 0}$ is also related to the theory of modular forms, see D. Zagier [35].

Conjecture 3.13. (2012-08-14) The sequences $\left(P_{n+1} / P_{n}\right)_{n \geqslant 0}$ and $\left(\sqrt[n]{P_{n}}\right)_{n \geqslant 1}$ are strictly increasing. Moreover, the sequence $\left(\sqrt[n+1]{P_{n+1}} / \sqrt[n]{P_{n}}\right)_{n \geqslant 1}$ is strictly decreasing.

Remark 3.13. We also have the following conjecture related to Euler numbers:

$$
\sum_{k=0}^{p-1} \frac{P_{k}}{8^{k}} \equiv 1+2\left(\frac{-1}{p}\right) p^{2} E_{p-3}\left(\bmod p^{3}\right)
$$

and

$$
\sum_{k=0}^{p-1} \frac{P_{k}}{16^{k}} \equiv\left(\frac{-1}{p}\right)-p^{2} E_{p-3}\left(\bmod p^{3}\right)
$$

for any odd prime p, where $(\dot{\bar{p}})$ is the Legendre symbol.
Acknowledgments. The initial work was done during the author's visit to the University of Illinois at Urbana-Champaign, so the author wishes to thank Prof. Bruce Berndt for his kind invitation and hospitality. The author is also grateful to the referee for helpful comments.

References

[1] M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, New York, Dover, 1972.
[2] M. Aigner, Motzkin numbers, European J. Combin. 19 (1998), 663-675.
[3] R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, Astérisque 61 (1979), 11-13.
[4] H. H. Chan, S. H. Chan and Z.-G. Liu, Domb's numbers and Ramanujan-Sato type series for $1 / \pi$, Adv. in Math. 186 (2004), 396-410.
[5] W. Y. C. Chen, Recent developments on log-concavity and q-log-concavity of combinatorial polynomials, a talk given at the 22nd Inter. Confer. on Formal Power Series and Algebraic Combin. (San Francisco, 2010).
[6] R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, 2nd Edition, Springer, New York, 2005.
[7] T. Došlić, Log-balanced combinatorial sequences, Int. J. Math. Math. Sci. 4 (2005), 507-522.
[8] T. Došlić, Log-convexity of combinatorial sequences from their convexity, J. Math. Inequal. 3 (2009), 437-442.
[9] P. Dusart, Sharper bounds for ψ, θ, π, p_{k}, Rapport de Recherche, 1998.
[10] K. Engel, On the average rank of an element in a filter of the partition lattice, J. Comb. Theory Ser. A 65 (1994), 67-78.
[11] P. Larcombe and D. French, On the 'other' Catalan numbers: a historical formulation re-examined, Congr. Numer. 143 (2000), 33-64.
[12] G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatorial analysis, Proc. London Math. Soc. 17 (1918), 75-115.
[13] M. Hassani, A remark on the Mandl's inequality, Octogon Math. Magazine 15 (2007), 567-572.
[14] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd Edition, Springer, New York, 1990.
[15] J. E. Janoski, A collection of problems in combinatorics, PhD Thesis, Clemson Univ., May 2012.
[16] F. Jarvis and H. A. Verrill, Supercongruences for the Catalan-Larcombe-French numbers, Ramanujan J. 22 (2010), 171-186.
[17] L. L. Liu and Y. Wang, On the log-convexity of combinatorial sequences, Adv. in Appl. Math. 39 (2007), 453-476 .
[18] R. Murty, Artin's conjecture for primitive roots, Math. Intelligencer 10 (1988), 5967.
[19] A. van der Poorten, A proof that Euler missed...Apéry's proof of the irrationality of $\zeta(3)$, Math. Intelligencer 1 (1978/79), 195-203.
[20] P. Ribenboim, The Little Book of Bigger Primes, 2nd Edition, Springer, New York, 2004.
[21] J. B. Rosser and L. Schoenfeld, Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$, Math. Comp. 29 (1975), 243-269.
[22] N. J. A. Sloane, Sequences A000110, A000172, A000182, A001006, A001586, A002426, A002895, A006318 in OEIS (On-Line Encyclopedia of Integer Sequences), http://www.oeis.org.
[23] T. A. Springer, Remarks on a combinatorial problem, Nieuw Arch. Wisk. 19 (1971), 30-36.
[24] R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge Univ. Press, Cambridge, 1997.
[25] Z. W. Sun, Reduction of unknowns in diophantine representations, Sci. China Ser. A 35 (1992), 257-269.
[26] Z. W. Sun, On Delannoy numbers and Schröder numbers, J. Number Theory 131 (2011), 2387-2397.
[27] Z. W. Sun, Congruences for Franel numbers, preprint, arXiv:1112.1034.
[28] Z. W. Sun, List of conjectural series for powers of π and other constants, preprint, arXiv:1102.5649.
[29] Z. W. Sun, Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc. 140 (2012), 415-428.
[30] Z. W. Sun, On sums of Apéry polynomials and related congruences, J. Number Theory 132 (2012), 2673-2699.
[31] Z. W. Sun, On a sequence involving sums of primes, Bull. Aust. Math. Soc., to appear.
[32] Z. W. Sun and D. Zagier, On a curious property of Bell numbers, Bull. Aust. Math. Soc. 84 (2011), 153-158.
[33] G. Szegö, Orthogonal Polynomials, 4th Edition, Amer. Math. Soc., Providence, RI, 1975.
[34] M. Wolf, Personal communications, August 15, 2012.
[35] D. Zagier, Integral solutions of Apéry-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

E-mail address: zwsun@nju.edu.cn

