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CONJECTURES INVOLVING

ARITHMETICAL SEQUENCES

ZHI-WEI SUN

Abstract. We pose thirty conjectures on arithmetical sequences, most
of which are about monotonicity of sequences of the form ( n

√
an)n>1 or

the form ( n+1
√
an+1/ n

√
an)n>1, where (an)n>1 is a number-theoretic or

combinatorial sequence of positive integers. This material might stimu-
late further research.

1. Introduction

A sequence (an)n>0 of natural numbers is said to be log-concave (resp. log-

convex) if a2n+1 > anan+2 (resp. a2n+1 6 anan+2) for all n = 0, 1, 2, . . .. The

log-concavity or log-convexity of combinatorial sequences has been studied

extensively by many authors (see, e.g., [5, 7, 8, 15, 17]).

For n ∈ Z+ = {1, 2, 3, . . .} let pn denote the n-th prime. In 1982, Faride

Firoozbakht conjectured that

n
√
pn > n+1

√
pn+1 for all n ∈ Z+,

i.e., the sequence ( n
√
pn)n>1 is strictly decreasing (cf. [20, p. 185]). This was

verified for n up to 3.495× 1016 by Mark Wolf [34].

Mandl’s inequality (cf. [9, 21, 13]) asserts that Sn < npn/2 for all n > 9,

where Sn is the sum of the first n primes. Recently the author [31] proved

that the sequence ( n
√
Sn)n>2 is strictly decreasing and moreover the sequence

( n+1
√
Sn+1/

n
√
Sn)n>5 is strictly increasing. Motivated by this, here we pose

many conjectures on sequences ( n
√
an)n>1 and ( n+1

√
an+1/ n

√
an)n>1 for many

number-theoretic or combinatorial sequences (an)n>1 of positive integers.

Clearly, if ( n+1
√
an+1/ n

√
an)n>N is strictly increasing (decreasing) with limit

1, then the sequence ( n
√
an)n>N is strictly decreasing (resp., increasing).

Sections 2 and 3 are devoted to our conjectures involving number-theoretic

sequences and combinatorial sequences respectively.

Key words and phrases. Primes, Artin’s primitive root conjecture, Schinzel’s hypoth-
esis H, combinatorial sequences, monotonicity.
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2. Conjectures on number-theoretic sequences

2.1. Conjectures on sequences involving primes.

Conjecture 2.1. (2012-09-12) For any α > 0 we have

1

n

n
∑

k=1

pαk <
pαn

α + 1
for all n > 2⌈α⌉2 + ⌈α⌉+ 6.

Remark 2.1. We have verified the conjecture for α = 2, 3, . . . , 700 and n 6

106. Our numerical computation suggests that for α = 2, 3, . . . , 10 we may

replace ⌈α⌉2+⌈α⌉+6 in the inequality by 9, 15, 31, 47, 62, 92, 92, 122, 122

respectively. Note that Mandl’s inequality (corresponding to the case α = 1)

can be restated as
∑n

k=1 pk < n−1
2
pn+1 for n > 8, which provides a lower

bound for pn+1 in terms of p1, . . . , pn.

Our next conjecture is a refinement of Firoozbakht’s conjecture.

Conjecture 2.2. (2002-09-11) For any integer n > 4, we have the inequality
n+1
√
pn+1

n
√
pn

< 1− log log n

2n2
.

Remark 2.2. The author has verified the conjecture for all n 6 3500000

and all those n with pn < 4 × 1018 and pn+1 − pn 6= pk+1 − pk for all

1 6 k < n. Note that if n = 49749629143526 then pn = 1693182318746371,

pn+1 − pn = 1132 and (1− n+1
√
pn+1/ n

√
pn)n

2/ log log n ≈ 0.5229.

A well-known theorem of Dirichlet (cf. [14, pp. 249-268]) states that for

any relatively prime positive integers a and q the arithmetic progression

a, a+q, a+2q, . . . contains infinitely many primes; we use pn(a, q) to denote

the n-th prime in this progression.

The following conjecture extends the Firoozbakht conjecture to primes in

arithmetic progressions.

Conjecture 2.3. (2012-08-11) Let q > a > 1 be positive integers with a

odd, q even and gcd(a, q) = 1. Then there is a positive integer n0(a, q) such

that the sequence ( n

√

pn(a, q))n>n0(a,q) is strictly decreasing. Moreover, we

may take n0(a, q) = 2 for q 6 45.

Remark 2.3. Note that 4
√

p4(13, 46) < 5
√

p5(13, 46). Also, 3
√

p3(3, 328) <
4
√

p4(3, 328) and
6
√

p6(23, 346) <
7
√

p7(23, 346).

A famous conjecture of E. Artin asserts that if a ∈ Z is neither −1 nor

a square then there are infinitely many primes p having a as a primitive

root modulo p. This is still open, the reader may consult the survey [18] for

known progress on this conjecture.
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Conjecture 2.4. (2012-08-17) Let a ∈ Z be not a perfect power (i.e., there

are no integers m > 1 and x with xm = a).

(i) Assume that a > 0. Then there are infinitely many primes p having a

as the smallest positive primitive root modulo p. Moreover, if p1(a), . . . , pn(a)

are the first n such primes, then the next such prime pn+1(a) is smaller than

pn(a)
1+1/n, i.e., n

√

pn(a) >
n+1
√

pn+1(a).

(ii) Suppose that a < 0. Then there are infinitely many primes p having a

as the largest negative primitive root modulo p. Moreover, if p1(a), . . . , pn(a)

are the first n such primes, then the next such prime pn+1(a) is smaller than

pn(a)
1+1/n (i.e., n

√

pn(a) >
n+1
√

pn+1(a)) with the only exception a = −2 and

n = 13.

(iii) The sequence ( n+1
√

Pn+1(a)/
n

√

Pn(a))n>3 is strictly increasing with

limit 1, where Pn(a) =
∑n

k=1 pk(a).

Remark 2.4. Let us look at two examples. The first 5 primes having 24 as

the smallest positive primitive root are p1(24) = 533821, p2(24) = 567631,

p3(24) = 672181, p4(24) = 843781 and p5(24) = 1035301, and we can easily

verify that

p1(24) >
√

p2(24) >
3
√

p3(24) >
4
√

p4(24) >
5
√

p5(24).

The first prime having −12 as the largest negative primitive root is p1(−12)

= 7841, and the second prime having −12 as the largest negative primitive

root is p2(−12) = 16061; it is clear that p1(−12) >
√

p2(−12).

Recall that the Proth numbers have the form k × 2n + 1 with k odd and

0 < k < 2n. In 1878 F. Proth proved that a Proth number p is a prime if

(and only if) a(p−1)/2 ≡ −1 (mod p) for some integer a (cf. Ex. 4.10 of [6,

p. 220]). A Proth prime is a Proth number which is also a prime number;

the Fermat primes are a special kind of Proth primes.

Conjecture 2.5. (2012-09-07) (i) The number of Proth primes not exceed-

ing a large integer x is asymptotically equivalent to c
√
x/ log x for a suitable

constant c ∈ (3, 4).

(ii) If Pr(1), . . . ,Pr(n) are the first n Proth primes, then the next Proth

prime Pr(n+1) is smaller than Pr(n)1+1/n (i.e., n

√

Pr(n) > n+1
√

Pr(n + 1))

unless n = 2, 4, 5. If we set PR(n) =
∑n

k=1Pr(k), then PR(n) < nPr(n)/3

for all n > 50, and the sequence ( n+1
√

PR(n+ 1)/ n

√

PR(n))n>34 is strictly

increasing with limit 1.

Remark 2.5. We have verified that n

√

Pr(n) > n+1
√

Pr(n+ 1) for all n =

6, . . . , 4000, PR(n) < nPr(n)/3 for all n = 51, . . . , 3500, and

n+1
√

PR(n+ 1)/ n

√

PR(n) < n+2
√

PR(n+ 2)/ n+1
√

PR(n + 1)
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for all n = 34, . . . , 3200.

In the remaining part of this section, we usually list certain primes of

special types in ascending order as q1, q2, q3, . . ., and write Q(n) for
∑n

k=1 qk.

Note that the inequality n

√

Q(n)/ n−1
√

Q(n− 1) < n+1
√

Q(n+ 1)/ n

√

Q(n)

yields a lower bound for qn+1.

Conjecture 2.6. (i) (2012-08-18) Let q1, q2, q3, . . . be the list (in ascending

order) of those primes of the form x2+1 with x ∈ Z. Then we have qn+1 <

q
1+1/n
n unless n = 1, 2, 4, 351. Also, the sequence ( n+1

√

Q(n + 1)/ n

√

Q(n))n>13

is strictly increasing with limit 1.

(ii) (2012-09-07) Let q1, q2, q3, . . . be the list (in ascending order) of those

primes of the form x2 + x + 1 with x ∈ Z. Then we have qn+1 < q
1+1/n
n

unless n = 3, 6. Also, the sequence ( n+1
√

Q(n+ 1)/ n

√

Q(n))n>20 is strictly

increasing with limit 1.

Remark 2.6. If we use the notation in part (i) of Conj. 2.6, then q351 =

35362 + 1 = 12503297, q352 = 36242 + 1 = 13133377, and 351
√
q351 < 352

√
q352.

Schinzel’s Hypothesis H (cf. [6, pp. 17-18]) states that if f1(x), . . . , fk(x)

are irreducible polynomials with integer coefficients and positive leading co-

efficients such that there is no prime dividing the product f1(q) · · ·fk(q) for
all q ∈ Z, then there are infinitely many n ∈ Z+ such that f1(n), . . . , fk(n)

are all primes.

Here is a general conjecture related to Hypothesis H.

Conjecture 2.7. (2012-09-08) Let f1(x), . . . , fk(x) be irreducible polynomi-

als with integer coefficients and positive leading coefficients such that there

is no prime dividing
∏k

j=1 fj(q) for all q ∈ Z. Let q1, q2, . . . be the list (in

ascending order) of those q ∈ Z+ such that f1(q), . . . , fk(q) are all primes.

Then, for all sufficiently large positive integers n, we have

2

n− 1
Q(n) < qn+1 < q1+1/n

n .

Also, for some N ∈ Z+ the sequence ( n+1
√

Q(n + 1)/ n

√

Q(n))n>N is strictly

increasing with limit 1.

Remark 2.7. Obviously 2Q(n) < (n − 1)qn+1 if and only if Q(n + 1) <

(n + 1)qn+1/2.

For convenience, under the condition of Conj. 2.7, below we set

E(f1(x), . . . , fk(x)) = {n ∈ Z+ : n
√
qn > n+1

√
qn+1 fails}

and let N0(f1(x), . . . , fk(x)) stand for the least positive integer n0 such that

2Q(n) < (n− 1)qn+1 for all n > n0, and let N(f1(x), . . . , fk(x)) denote the
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smallest positive integer N such that ( n+1
√

Q(n + 1)/ n

√

Q(n))n>N is strictly

increasing with limit 1.

If p and p+2 are both primes, then {p, p+2} is said to be a pair of twin

primes. The famous twin prime conjecture states that there are infinitely

many twin primes.

Conjecture 2.8. (2012-08-18) We have

E(x, x+ 2) = ∅, N0(x, x+ 2) = 4, and N(x, x+ 2) = 9.

Remark 2.8. Let q1, q2, . . . be the list of those primes p with p+2 also prime.

We have verified that n
√
qn > n+1

√
qn+1 for all n = 1, . . . , 500000, qn+1 >

2Q(n)/(n − 1) for all n = 4, . . . , 2000000, and n+1
√

Q(n + 1)/ n

√

Q(n) <
n+2
√

Q(n+ 2)/ n+1
√

Q(n + 1) for all n = 9, . . . , 500000. See also Conjecture

2.10 of the author [31].

Conjecture 2.9. (2012-08-20) We have

E(x, x+ 2, x+ 6) = E(x, x+ 4, x+ 6) = ∅,
N0(x, x+ 2, x+ 6) = 3, N0(x, x+ 4, x+ 6) = 6,

N(x, x + 2, x+ 6) = N(x, x+ 4, x+ 6) = 13.

Remark 2.9. Recall that a prime triplet is a set of three primes of the form

{p, p+2, p+6} or {p, p+4, p+6}. It is conjectured that there are infinitely

many prime triplets.

A prime p is called a Sophie Germain prime if 2p+1 is also a prime. It is

conjectured that there are infinitely many Sophie Germain primes, but this

has not been proved yet.

Conjecture 2.10. (2012-08-18) We have

E(x, 2x+ 1) = {3, 4}, N0(x, 2x+ 1) = 3, and N(x, 2x+ 1) = 13.

Also,

E(x, 2x− 1) = {2, 3, 6}, N0(x, 2x− 1) = 3, and N(x, 2x− 1) = 9.

Remark 2.10. When q1, q2, . . . gives the list of Sophie Germain primes in as-

cending order, we have verified that n
√
qn > n+1

√
qn+1 for all n = 5, . . . , 200000,

and n+1
√

Q(n + 1)/ n

√

Q(n) < n+2
√

Q(n+ 2)/ n+1
√

Q(n + 1) for every n =

13, . . . , 200000.

One may wonder whether E(x, x+ d) or E(x, 2x+ d) with small d ∈ Z+

may contain relatively large elements. We have checked this for d 6 100.
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Here are few extremal examples suggested by our computation:

E(x, x+ 60) = {187, 3976, 58956}, E(x, x+ 66) = {58616},
E(x, 2x+ 11) = {1, 39593}, E(x, 2x+ 81) = {104260}.

Conjecture 2.11. (2012-09-07) We have

E(x, x2 + x+ 1) = {3, 4, 12, 14},
N0(x, x

2 + x+ 1) = 3, N(x, x2 + x+ 1) = 17.

Also,

E(x4 + 1) = {1, 2, 4}, N0(x
4 + 1) = 4, and N(x4 + 1) = 10.

Remark 2.11. Note that those primes p with p2 + p + 1 prime are sparser

than twin primes and Sophie Germain primes.

2.2. Conjectures on other number-theoretic sequences.

A positive integer n is called squarefree if p2 ∤ n for any prime p. Here

is the list of all squarefree positive integers not exceeding 30 in ascending

order:

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30.

Conjecture 2.12. (2012-08-14) Let s1, s2, s3, . . . be the list of squarefree

positive integer in ascending order. Then the sequence ( n
√
sn)n>7 is strictly

decreasing, and the sequence ( n+1
√

S(n+ 1)/ n

√

S(n))n>7 is strictly increas-

ing, where S(n) =
∑n

k=1 sk.

Remark 2.12. We have verified that n
√
sn > n+1

√
sn+1 for all n = 7, . . . , 500000.

Note that limn→∞
n

√

S(n) = 1 since S(n) does not exceed the sum of the

first n primes.

Conjecture 2.13. (2012-08-25) Let an be the n-th positive integer that

can be written as a sum of two squares. Then the sequence ( n
√
an)n>6 is

strictly decreasing, and the sequence ( n+1
√

A(n+ 1)/ n

√

A(n))n>6 is strictly

increasing, where A(n) =
∑n

k=1 ak.

Remark 2.13. Similar things happen if we replace sums of squares in Conj.

2.13 by integers of the form x2 + dy2 with x, y ∈ Z, where d is any positive

integer.

Recall that a partition of a positive integer n is a way of writing n as a

sum of positive integers with the order of addends ignored. Also, a strict

partition of n ∈ Z+ is a way of writing n as a sum of distinct positive integers

with the order of addends ignored. For n = 1, 2, 3, . . . we denote by p(n)
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and p∗(n) the number of partitions of n and the number of strict partitions

of n respectively. It is known that

p(n) ∼ eπ
√

2n/3

4
√
3n

and p∗(n) ∼
eπ
√

n/3

4(3n3)1/4
as n → +∞

(cf. [12] and [1, p. 826]) and hence

lim
n→∞

n

√

p(n) = lim
n→∞

n

√

p∗(n) = 1.

Conjecture 2.14. (2012-08-02) Both ( n

√

p(n))n>6 and ( n

√

p∗(n))n>9 are

strictly decreasing. Furthermore, the sequences ( n+1
√

p(n+ 1)/ n

√

p(n))n>26

and ( n+1
√

p∗(n + 1)/ n

√

p∗(n))n>45 are strictly increasing.

Remark 2.14. The author has verified the conjecture for n up to 105. [31]

contains a stronger version of this conjecture.

The Bernoulli numbers B0, B1, B2, . . . are rational numbers given by

B0 = 1, and

n
∑

k=0

(

n + 1

k

)

Bk = 0 for n ∈ Z+.

It is well known that B2n+1 = 0 for all n ∈ Z+ and

x

ex − 1
=

∞
∑

n=0

Bn
xn

n!
(|x| < 2π) .

(See, e.g., [14, pp. 228-232].) The Euler numbers E0, E1, E2, . . . are integers

defined by

E0 = 1, and
n

∑

k=0

2|k

(

n

k

)

En−k = 0 for n ∈ Z+.

It is well known that E2n+1 = 0 for all n = 0, 1, 2, . . . and

sec x =
∞
∑

n=0

(−1)nE2n
x2n

(2n)!

(

|x| < π

2

)

.

Conjecture 2.15. (2012-08-02) ( n

√

(−1)n−1B2n)n>1 and n

√

(−1)nE2n)n>1

are strictly increasing, where B0, B1, . . . are Bernoulli numbers and E0, E1, . . .

are Euler numbers. Moreover, the sequences
(

n+1
√

(−1)nB2n+2/
n

√

(−1)n−1B2n

)

n>2

and
(

n+1
√

(−1)n+1E2n+2/
n

√

(−1)nE2n

)

n>1

are strictly decreasing.
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Remark 2.15. It is known that both (−1)n−1B2n and (−1)nE2n are positive

for all n = 1, 2, 3, . . ..

For m,n ∈ Z+ the n-th harmonic number H
(m)
n of order m is defined as

∑n
k=1 1/k

m.

Conjecture 2.16. (2012-08-12) For any positive integer m, the sequence
(

n+1

√

H
(m)
n+1

/ n

√

H
(m)
n

)

n>3

is strictly increasing.

Remark 2.16. It is easy to show that
(

n

√

H
(m)
n

)

n>2
is strictly decreasing for

any m ∈ Z+. Some fundamental congruences on harmonic numbers can be

found in [29].

Conjecture 2.17. (2012-09-01) Let q > 1 be a prime power and let Fq be

the finite field of order q. Let Mn(q) denote the number of monic irreducible

polynomials of degree at most n over Fq.

(i) We have Mq(n + 1)/Mq(n) < Mq(n + 2)/Mq(n + 1) unless q < 5 and

n ∈ {2, 4, 6, 8, 10, 12}.
(ii) If n > 2, then n

√

Mq(n) <
n+1
√

Mq(n + 1) unless q < 7 and n ∈ {3, 5}.
(iii) When n > 3, we have

n+1

√

Mq(n+ 1)
/

n

√

Mq(n) >
n+2

√

Mq(n + 2)
/

n+1

√

Mq(n+ 1)

unless (q < 8 & n ∈ {5, 7, 9, 11, 13}) or (9 < q < 14 & n = 4).

Remark 2.17. It is known that the number of monic irreducible polynomials

of degree n over the finite field Fq equals 1
n

∑

d|n µ(d)q
n/d, where µ is the

Möbius function (cf. [14, p. 84]).

3. Conjectures on combinatorial sequences

The Fibonacci sequence (Fn)n>0 is given by

F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1 (n = 1, 2, 3, . . .).

the reader may consult [24, p. 46] for combinatorial interpretations of Fi-

bonacci numbers.

Conjecture 3.1. (2012-08-11) The sequence ( n
√
Fn)n>2 is strictly increas-

ing, and moreover the sequence ( n+1
√
Fn+1/

n
√
Fn)n>4 is strictly decreasing.

Also, for any integers A > 1 and B 6= 0 with A2 > 4B and (A > 2 or
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B > −9), the sequence ( n+1
√
un+1/ n

√
un)n>4 is strictly decreasing with limit

1, where

u0 = 0, u1 = 1, and un+1 = Aun −Bun−1 (n = 1, 2, 3, . . .).

Remark 3.1. By [25, Lemma 4], if A > 1 and B 6= 0 are integers with

A2 > 4B then the sequence (un)n>0 defined in Conjecture 3.1 is strictly

increasing.

For n = 1, 2, 3, . . . the n-th Bell number Bn denotes the number of

partitions of {1, . . . , n} into disjoint nonempty subsets. It is known that

Bn+1 =
∑n

k=0

(

n
k

)

Bk (with B0 = 1) and Bn = e−1
∑∞

k=0 k
n/k! for all

n = 0, 1, 2, . . . (cf. [22, A000110]).

Conjecture 3.2. (2012-08-11) The sequence ( n
√
Bn)n>1 is strictly increas-

ing, and moreover the sequence ( n+1
√
Bn+1/

n
√
Bn)n>1 is strictly decreasing

with limit 1, where Bn is the n-th Bell number.

Remark 3.2. In 1994 K. Engel [10] proved the log-convexity of (Bn)n>1. [32]

contains a curious congruence property of the Bell numbers.

For n ∈ Z+ the n-th derangement number Dn denotes the number of

permutations σ of {1, . . . , n} with σ(i) = i for no i = 1, . . . , n. It has the

following explicit expression (cf. [24, p. 67]):

Dn =
n

∑

k=0

(−1)k
n!

k!
.

Conjecture 3.3. (2012-08-11) The sequence ( n
√
Dn)n>2 is strictly increas-

ing, and the sequence ( n+1
√
Dn+1/

n
√
Dn)n>3 is strictly decreasing.

Remark 3.3. As Dn = nDn−1 + (−1)n for n ∈ Z+, it is easy to see that

(Dn+1/Dn)n>1 is strictly increasing.

During his study of irreducible root systems of a special type related to

Weyl groups, T. A. Springer [23] introduced the Springer numbers S0, S1, . . .

defined by
1

cosx− sin x
=

∞
∑

n=0

Sn
xn

n!
.

The reader may consult [22, A001586] for various combinatorial interpreta-

tions of Springer numbers.

Conjecture 3.4. (2012-08-05) The sequence (Sn+1/Sn)n>0 is strictly in-

creasing, and the sequence ( n+1
√
Sn+1/

n
√
Sn)n>1 is strictly decreasing with

limit 1, where Sn is the n-th Springer number.
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Remark 3.4. It is known (cf. [22, A001586]) that Sn coincides with the

numerator of |En(1/4)|, where En(x) is the Euler polynomial of degree n.

Conjecture 3.5. (2012-08-18) For the tangent numbers T (1), T (2), . . . given

by

tan x =

∞
∑

n=1

T (n)
x2n−1

(2n− 1)!
,

the sequences (T (n + 1)/T (n))n>1 and ( n

√

T (n))n>1 are strictly increasing,

and the sequence ( n+1
√

T (n+ 1)/ n

√

T (n))n>2 is strictly decreasing.

Remark 3.5. The tangent numbers are all integral, see [22, A000182] for the

sequence (T (n))n>1. It is known that T (n) = (−1)n−122n(22n − 1)B2n/(2n)

for all n ∈ Z+, where B2n is the 2n-th Bernoulli number.

The n-th central trinomial coefficient Tn is the coefficient of xn in the

expansion of (x2 + x+ 1)n. Here is an explicit expression:

Tn =
n

∑

k=0

(

n

k

)(

n− k

k

)

=

⌊n/2⌋
∑

k=0

(

n

2k

)(

2k

k

)

.

In combinatorics, Tn is the number of lattice paths from the point (0, 0) to

(n, 0) with only allowed steps (1, 0), (1, 1) and (1,−1) (cf. [22, A002426]).

It is known that (n + 1)Tn+1 = (2n+ 1)Tn + 3nTn−1 for all n ∈ Z+.

Conjecture 3.6. (2012-08-11) The sequence ( n
√
Tn)n>1 is strictly increas-

ing, and the sequence ( n+1
√
Tn+1/

n
√
Tn)n>1 is strictly decreasing.

Remark 3.6. Via the Laplace-Heine formula (cf. [33, p. 194]) for Legendre

polynomials, Tn ∼ 3n+1/2/(2
√
nπ) as n → +∞. In 2011, the author [28]

found many series for 1/π involving generalized central trinomial coeffi-

cients.

The n-th Motzkin number

Mn =

⌊n/2⌋
∑

k=0

(

n

2k

)(

2k

k

)

1

k + 1

is the number of lattice paths from (0, 0) to (n, 0) which never dip below the

line y = 0 and are made up only of the allowed steps (1, 0), (1, 1) and (1,−1)

(cf. [22, A001006]). It is known that (n+ 3)Mn+1 = (2n+ 3)Mn + 3nMn−1

for all n ∈ Z+.

Conjecture 3.7. (2012-08-11) The sequence ( n
√
Mn)n>1 is strictly increas-

ing, and moreover the sequence ( n+1
√
Mn+1/

n
√
Mn)n>1 is strictly decreasing.
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Remark 3.7. The log-convexity of the sequence (Mn)n>1 was first established

by M. Aigner [2] in 1998.

For r = 2, 3, 4, . . . define

f (r)
n :=

n
∑

k=0

(

n

k

)r

(n = 0, 1, 2, . . .).

Note that f
(2)
n =

(

2n
n

)

, and those fn = f
(3)
n are called Franel numbers (cf.

[22, A000172]).

Conjecture 3.8. (2012-08-11) For each r = 2, 3, 4, . . . there is a positive

integer N(r) such that the sequence
(

n+1

√

f
(r)
n+1/

n

√

f
(r)
n

)

n>N(r)
is strictly de-

creasing with limit 1. Moreover, we may take

N(2) = · · · = N(6) = 1, N(7) = N(8) = N(9) = 3, N(10) = N(11) = 5,

N(12) = N(13) = 7, N(14) = N(15) = N(16) = 9, N(17) = N(18) = 11.

Remark 3.8. It is known that (f
(r)
n )n>1 is log-convex for r = 2, 3, 4 (cf. [7]).

[27] contains some fundamental congruences for Franel numbers.

Conjecture 3.9. (2012-08-15) Set gn =
∑n

k=0

(

n
k

)2(2k
k

)

for n = 0, 1, 2, . . ..

Then ( n
√
gn)n>1 is strictly increasing and the sequence ( n+1

√
gn+1/ n

√
gn)n>1 is

strictly decreasing.

Remark 3.9. It is known that gn =
∑n

k=0

(

n
k

)

fk, where fk =
∑k

j=0

(

k
j

)3
is

the k-th Franel number. Both (fn)n>0 and (gn)n>0 are related to the theory

of modular forms, see D. Zagier [35].

For r = 1, 2, 3, . . . define

A(r)
n =

n
∑

k=0

(

n

k

)r(
n + k

k

)r

(n = 0, 1, 2, . . .).

Those A
(1)
n and An = A

(2)
n are called central Delannoy numbers and Apéry

numbers respectively. The Apéry numbers play a key role in Apéry’s proof

of the irrationality of ζ(3) =
∑∞

n=1 1/n
3 (cf. [3, 19]).

Conjecture 3.10. (2012-08-11) For each r = 1, 2, 3, . . . there is a positive

integer M(r) such that the sequence
(

n+1

√

A
(r)
n+1/

n

√

A
(r)
n

)

n>M(r)
is strictly

decreasing with limit 1. Moreover, we may take

M(1) = · · · = M(16) = 1, M(17) = M(18) = M(19) = 9, M(20) = 12.

Remark 3.10. The log-convexity of (An)n>0 was proved by T. Došlić [7].

The reader may consult [30] for some congruences involving Apéry numbers

and Apéry polynomials.
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The n-th Schröder number

Sn =
n

∑

k=0

(

n

k

)(

n + k

k

)

1

k + 1
=

n
∑

k=0

(

n+ k

2k

)(

2k

k

)

1

k + 1

is the number of lattice paths from the point (0, 0) to (n, n) with steps

(1, 0), (0, 1) and (1, 1) that never rise above the line y = x (cf. [22, A006318]

and [24, p. 185]).

Conjecture 3.11. (2012-08-11) The sequence ( n
√
Sn)n>1 is strictly increas-

ing, and moreover the sequence ( n+1
√
Sn+1/

n
√
Sn)n>1 is strictly decreasing,

where Sn stands for the n-th Schröder number.

Remark 3.11. The reader may consult [26] for some congruences involving

central Delannoy numbers and Schröder numbers.

Conjecture 3.12. (2012-08-13) For the Domb numbers

D(n) =

n
∑

k=0

(

n

k

)2(
2k

k

)(

2(n− k)

n− k

)

(n = 0, 1, 2, . . .),

the sequences (D(n+ 1)/D(n))n>0 and ( n

√

D(n))n>1 are strictly increasing.

Moreover, the sequence ( n+1
√

D(n+ 1)/ n

√

D(n))n>1 is strictly decreasing.

Remark 3.12. For combinatorial interpretations of the Domb number D(n),

the reader may consult [22, A002895]. [4] contains some series for 1/π

involving Domb numbers.

The Catalan-Larcombe-French numbers P0, P1, P2, . . . (cf. [16]) are given

by

Pn =
n

∑

k=0

(

2k
k

)2(2(n−k)
n−k

)2

(

n
k

) = 2n
⌊n/2⌋
∑

k=0

(

n

2k

)(

2k

k

)2

4n−2k,

they arose from the theory of elliptic integrals (see [11]). It is known that

(n+1)Pn+1 = (24n(n+1)+8)Pn−128n2Pn−1 for all n ∈ Z+. The sequence

(Pn)n>0 is also related to the theory of modular forms, see D. Zagier [35].

Conjecture 3.13. (2012-08-14) The sequences (Pn+1/Pn)n>0 and ( n
√
Pn)n>1

are strictly increasing. Moreover, the sequence ( n+1
√
Pn+1/

n
√
Pn)n>1 is strictly

decreasing.

Remark 3.13. We also have the following conjecture related to Euler num-

bers:
p−1
∑

k=0

Pk

8k
≡ 1 + 2

(−1

p

)

p2Ep−3 (mod p3)
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and
p−1
∑

k=0

Pk

16k
≡

(−1

p

)

− p2Ep−3 (mod p3)

for any odd prime p, where ( ·
p
) is the Legendre symbol.
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