An Equivalence Relation on the Symmetric Group and Multiplicity-free Flag h-Vectors

Richard P. Stanley*

August 15, 2012

Abstract

We consider the equivalence relation \sim on the symmetric group \mathfrak{S}_{n} generated by the interchange of two adjacent elements a_{i} and a_{i+1} of $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$ such that $\left|a_{i}-a_{i+1}\right|=1$. We count the number of equivalence classes and the sizes of the equivalence classes. The results are generalized to permutations of multisets. In the original problem, the equivalence class containing the identity permutation is the set of linear extensions of a certain poset. Further investigation yields a characterization of all finite graded posets whose flag h-vector takes on only the values $0, \pm 1$.

1 Introduction.

Let $k \geq 2$. Define two permutations u and v (regarded as words $a_{1} a_{2} \cdots a_{n}$) in the symmetric group \mathfrak{S}_{n} to be equivalent if v can be obtained from u by a sequence of interchanges of adjacent terms that differ by at least j. It is a nice exercise to show that the number $f_{j}(n)$ of equivalence classes of this relation (an obvious equivalence relation) is given by

$$
f_{j}(n)=\left\{\begin{aligned}
n!, & n \leq j \\
j!\cdot j^{n-j}, & n>j
\end{aligned}\right.
$$

Namely, one can show that every equivalence class contains a unique permutation $w=$ $b_{1} b_{2} \cdots b_{n}$ for which we never have $b_{i} \geq b_{i+1}+j$. To count these permutations w for $n>j$, we first have j ! ways of ordering $1,2, \ldots, j$ within w. Then insert $j+1$ in j ways,

[^0]i.e., at the end or preceding any $i \neq 1$. Next insert $j+2$ in j ways, etc. The case $j=3$ of this argument appears in [7, A025192] and is attributed to Joel Lewis, November 14, 2006. Some equivalence relations on \mathfrak{S}_{n} of a similar nature are pursued by Linton et al. [3].

The above result suggests looking at some similar equivalence relations on \mathfrak{S}_{n}. The one we will consider here is the following: define u and v to be equivalent, denoted $u \sim v$, if v can be obtained from u by interchanging adjacent terms that differ by exactly one. For instance, when $n=3$ we have the two equivalence classes $\{123,213,312\}$ and $\{321,231,312\}$. We will determine the number of classes, the number of one-element classes, and the sizes of the equivalence classes (always a product of Fibonacci numbers). It turns out that the class containing the identity permutation $12 \cdots n$ may be regarded as the set of linear extensions of a certain n-element poset P_{n}. Moreover, P_{n} has the most number of linear extensions of any n-element poset on the vertex set $[n]=\{1,2, \ldots, n\}$ such that $i<j$ in P implies $i<j$ in \mathbb{Z}, and such that all linear extensions of P (regarded as permutations of $[n]$) have a different descent set. This result leads to the complete classification and enumeration of finite graded posets of rank n whose flag h-vector is "multiplicity-free," i.e., assumes only the values 0 and ± 1.

2 The number of equivalence classes.

To obtain the number of equivalence classes, we first define a canonical element in each class. We then count these canonical elements by the Principle of Inclusion-Exclusion. We call a permutation $w=a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{n}$ salient if we never have $a_{i}=a_{i+1}+1$ $(1 \leq i \leq n-1)$ or $a_{i}=a_{i+1}+2=a_{i+2}+1(1 \leq i \leq n-2)$. For instance, there are eight salient permutations in $\mathfrak{S}_{4}: 1234,1342,2314,2341,2413,3142,3412,4123$.

Lemma 2.1. Every equivalence class with respect to the equivalence relation \sim contains exactly one salient permutation.

Proof. Let E be an equivalence class, and let $w=a_{1} a_{2} \cdots a_{n}$ be the lexicographically least element of E. Then we cannot have $a_{i}=a_{i+1}+1$ for some i; otherwise we could interchange a_{i} and a_{i+1} to obtain a lexicographically smaller permutation in E. Similarly if $a_{i}=a_{i+1}+2=a_{i+2}+1$ then we can replace $a_{i} a_{i+1} a_{i+2}$ with $a_{i+2} a_{i} a_{i+1}$. Hence w is salient.

It remains to show that a class E cannot contain a salient permutation $w=b_{1} b_{2} \cdots b_{n}$ that is not the lexicographically least element $v=a_{1} a_{2} \cdots a_{n}$ of E. Let i be the least index for which $a_{i} \neq b_{i}$. Since $v \sim w$, there must be some b_{j} satisfying $j>i$ and $b_{j}<b_{i}$ that is interchanged with b_{i} in the transformation of v to w by adjacent transpositions of consecutive integers. Hence $b_{j}=b_{i}+1$. If $j=i+1$ then v is not salient. If $j=i+2$ then we must have $b_{i+1}=b_{i}+2$ in order to move b_{j+2} past b_{j+1}, so again v is not salient. If $j>i+2$ then some element b_{k} between b_{i} and b_{j} in v satisfies $\left|b_{j}-b_{k}\right|>1$, so we cannot move b_{j} past b_{k} unless we first interchange b_{i} and b_{k} (which must therefore equal
$\left.b_{i}+1\right)$. But then after b_{i} and b_{j} are interchanged, we cannot move b_{k} back to the right of b_{i}. Hence v and w cannot be equivalent, a contradiction completing the proof.

Theorem 2.2. Let $f(n)$ be the number of equivalence classes of the relation \sim on \mathfrak{S}_{n}, with $f(0)=1$. Then

$$
\begin{equation*}
f(n)=\sum_{j=0}^{\lfloor n / 2\rfloor}(-1)^{j}(n-j)!\binom{n-j}{j} . \tag{2.1}
\end{equation*}
$$

Equivalently,

$$
\sum_{n \geq 0} f(n) x^{n}=\sum_{m \geq 0} m!(x(1-x))^{m}
$$

Proof. By Lemma [2.1, we need to count the number of salient permutations $w \in \mathfrak{S}_{n}$. The proof is by an inclusion-exclusion argument. Let $A_{i}, 1 \leq i \leq n-1$, be the set of permutations $v \in \mathfrak{S}_{n}$ that contain the factor (i.e., consecutive terms) $i+1, i$. Let B_{i}, $1 \leq i \leq n-2$, be the set of $v \in \mathfrak{S}_{n}$ that contain the factor $i+2, i, i+1$. Let $C_{1}, \ldots, C_{2 n-3}$ be some indexing of the A_{i} 's and B_{i} 's. By the Principle of Inclusion-Exclusion, we have

$$
\begin{equation*}
f(n)=\sum_{S \subseteq[2 n-3]}(-1)^{\# S} \# \bigcap_{i \in S} C_{i}, \tag{2.2}
\end{equation*}
$$

where the empty intersection of the C_{i} 's is \mathfrak{S}_{n}. A little thought shows that any intersection of the C_{i} 's consists of permutations that contain some set of nonoverlapping factors $j, j-1, \ldots, i+1, i$ and $j, j-1, \ldots, i+3, i+2, i, i+1$. Now permutations containing the factor $j, j-1, \ldots, i+1, i$ are those in $A_{j-1} \cap A_{j-2} \cap \cdots \cap A_{i}$ (an intersection of $j-i$ sets), while permutations containing $j, j-1, \ldots, i+3, i+2, i, i+1$ are those in $A_{j-1} \cap A_{j-2} \cap \cdots \cap A_{i+2} \cap B_{i}$ (an intersection of $j-i-1$ sets). Since $(-1)^{j-i}+(-1)^{j-i-1}=0$, it follows that all terms on the right-hand side of equation (2.2) involving such intersections will cancel out. The only surviving terms will be the intersections $A_{i_{1}} \cap \cdots \cap A_{i_{j}}$ where the numbers $i_{1}, i_{1}+1, i_{2}, i_{2}+1, \ldots, i_{j}, i_{j}+1$ are all distinct. The number of ways to choose such terms for a given j is the number of sequences of $j 2$'s and $n-2 j 1$'s, i.e., $\binom{n-j}{2 j}$. The number of permutations of the j factors $i_{r}, i_{r+1}, 1 \leq r \leq j$, and the remaining $n-2 j$ elements of $[n]$ is $(n-j)$!. Hence equation (2.2) reduces to equation (2.1), completing the proof.

Note. There is an alternative proof based on the Cartier-Foata theory of partially commutative monoids [1]. Let M be the monoid with generators g_{1}, \ldots, g_{n} subject only to relations of the form $g_{i} g_{j}=g_{j} g_{i}$ for certain i and j. Let x_{1}, \ldots, x_{n} be commuting variables. If $w=g_{i_{1}} \cdots g_{i_{m}} \in M$, then set $x^{w}=x_{i_{1}} \cdots x_{i_{m}}$. Define

$$
F_{M}(x)=\sum_{w \in M} x^{w} .
$$

Then a fundamental result (equivalent to [1, Thm. 2.4]) of the theory asserts that

$$
\begin{equation*}
F_{M}(x)=\frac{1}{\sum_{S}(-1)^{\# S} \prod_{g_{i} \in S} x_{i}}, \tag{2.3}
\end{equation*}
$$

where S ranges over all subsets of $\left\{g_{1}, \ldots, g_{n}\right\}$ (including the empty set) whose elements pairwise commute. Consider now the case where the relations are given by $g_{i} g_{i+1}=$ $g_{i+1} g_{i}, 1 \leq i \leq n-1$. Thus $f(n)$ is the coefficient of $x_{1} x_{2} \cdots x_{n}$ in $F(x)$. Writing $\left[x^{\alpha}\right] G(x)$ for the coefficient of $x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ in the power series $G(x)$, it follows from equation (2.3) that

$$
\begin{aligned}
f(n) & =\left[x_{1} \cdots x_{n}\right] \frac{1}{1-\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n-1} x_{i} x_{i+1}} \\
& =\left[x_{1} \cdots x_{n}\right] \sum_{j \geq 0}\left(\sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n-1} x_{i} x_{i+1}\right)^{j} .
\end{aligned}
$$

A straightforward argument shows that

$$
\left[x_{1} \cdots x_{n}\right]\left(\sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n-1} x_{i} x_{i+1}\right)^{n-j}=(-1)^{j}(n-j)!\binom{n-j}{j}
$$

and the proof follows.
Note. The numbers $f(n)$ for $n \geq 0$ begin $1,1,1,2,8,42,258,1824,14664, \ldots$ This sequence appears in [7, A013999] but without a combinatorial interpretation before the present paper.

Various generalizations of Theorem 2.2 suggest themselves. Here we will say a few words about the situation where \mathfrak{S}_{n} is replaced by all permutations of a multiset on the set $[n]$ with the same definition of equivalence as before. For instance, for the multiset $M=\left\{1^{2}, 2,3^{2}\right\}$ (short for $\{1,1,2,3,3\}$), there are six equivalence classes, each with five elements, obtained by fixing a word in $1,1,3,3$ and inserting 2 in five different ways. Suppose that the multiset is given by $M=\left\{1^{r_{1}}, \ldots, n^{r_{n}}\right\}$. According to equation (2.3), the number f_{M} of equivalence classes of permutations of M is the coefficient of $x_{1}^{r_{1}} \cdots x_{n}^{r_{n}}$ in the generating function

$$
F_{n}(x)=\frac{1}{1-\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n-1} x_{i} x_{i+1}} .
$$

For the case $n=4$ (and hence $n \leq 4$) we can give an explicit formula for the coefficients of $F_{n}(x)$, or in fact (as suggested by I. Gessel) for $F_{n}(x)^{t}$ where t is an indeterminate. We use the falling factorial notation $(y)_{r}=y(y-1) \cdots(y-r+1)$.

Theorem 2.3. We have

$$
\begin{equation*}
F_{4}(x)^{t}=\sum_{h, i, j, k \geq 0} \frac{(t+h+j-1)_{j}(t+h+k-1)_{h}(t+i+k-1)_{i+k}}{h!i!j!k!} x_{1}^{h} x_{2}^{i} x_{3}^{k} x_{4}^{k} \tag{2.4}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
F_{4}(x)=\sum_{h, i, j, k \geq 0}\binom{h+j}{j}\binom{h+k}{k}\binom{i+k}{i} x_{1}^{h} x_{2}^{i} x_{3}^{j} x_{4}^{k} \tag{2.5}
\end{equation*}
$$

Proof. Since the coefficient of $x_{1}^{h} x_{2}^{i} x_{3}^{j} x_{4}^{k}$ in $F_{4}(x)^{t}$ is a polynomial in t, it suffices to assume that t is a nonnegative integer. The result can then be proved straightforwardly by induction on t. Namely, the case $t=0$ is trivial. Assume for $t-1$ and let $G(x)$ be the right-hand side of equation (2.4). Check that

$$
\left(1-x_{1}-x_{2}-x_{3}-x_{4}+x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}\right) G(x)=F_{4}(x)^{t-1}
$$

and verify suitable initial conditions.
Ira Gessel points out (private communication) that we can prove the theorem without guessing the answer in advance by writing

$$
\begin{gathered}
\frac{1}{1-x_{1}-x_{2}-x_{3}-x_{4}+x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}}= \\
\frac{1}{\left(1-x_{2}\right)\left(1-x_{3}\right)\left(1-\frac{x_{1}}{1-x_{3}}\right)\left(1-\frac{x_{4}}{\left(1-x_{2}\right)\left(1-\frac{x_{1}}{1-x_{3}}\right)}\right)},
\end{gathered}
$$

and then expanding one variable at a time in the order $x_{4}, x_{1}, x_{2}, x_{3}$.
For multisets supported on sets with more than four elements there are no longer simple explicit formulas for the number of equivalence classes. However, we can still say something about the multisets $\left\{1^{k}, 2^{k}, \ldots, n^{k}\right\}$ for k fixed or n fixed. The simplest situation is when n is fixed.

Proposition 2.4. Let $g(n, k)$ be the number of equivalence classes of permutations of the multiset $\left\{1^{k}, \ldots, n^{k}\right\}$. For fixed $n, g(n, k)$ is a P-recursive function of k, i.e., for some integer $d \geq 1$ and polynomials $P_{0}(k), \ldots, P_{d}(k)$ (depending on n), we have

$$
P_{0}(k) g(n, k+d)+P_{1}(k) g(n, k+d-1)+\cdots+P_{d}(k) g(n, k)=0
$$

for all $k \geq 0$.
Proof. The proof is an immediate consequence of equation (2.3), the result of Lipshitz [4] that the diagonal of a rational function (or even a D-finite function) is D-finite, and the elementary result [8, Thm. 1.5] [10, Prop. 6.4.3] that the coefficients of D-finite series are P-recursive.

To deal with permutations of the multiset $\left\{1^{k}, \ldots, n^{k}\right\}$ when k is fixed, let $\mathbb{C}\{\{x\}\}$ denote the field of fractional Laurent series $f(x)$ over \mathbb{C} with finitely many terms having a negative exponent, i.e., for some $j_{0} \in \mathbb{Z}$ and some $N \geq 1$ we have $f(x)=\sum_{j \geq j_{0}} a_{j} x^{j / N}$, $a_{j} \in \mathbb{C}$. A series $y \in \mathbb{C}\{\{x\}\}$ is algebraic if it satisfies a nontrivial polynomial equation whose coefficients are polynomials in x. Any such polynomial equation of degree n has n zeros (including multiplicity) belonging to the field $\mathbb{C}\{\{x\}\}$. In fact, this field is algebraically closed (Puiseux' theorem). For further information, see for instance [10,
$\S 6.1]$. Write $\mathbb{C}_{\text {alg }}\{\{x\}\}$ for the field of algebraic fractional (Laurent) series. The next result is a direct generalization of Theorem 2.2. The main point is that the series $z_{i}(x)$ and $y_{j}(x)$ are algebraic.

Theorem 2.5. Let k be fixed. Then there exist finitely many algebraic fractional series $y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{q} \in \mathbb{C}_{\text {alg }}\{\{x\}\}$ and polynomials $P_{1}, \ldots, P_{q} \in \mathbb{C}_{\text {alg }}\{\{x\}\}[m]$ (i.e., polynomials in m whose coefficients lie in $\mathbb{C}_{\text {alg }}\{\{x\}\}$) such that

$$
\sum_{n \geq 0} g(n, k) x^{n}=\sum_{j=1}^{q} z_{j}(x) \sum_{m \geq 0} m!P_{j}(m) y_{j}(x)^{m}
$$

Proof. Our proof will involve "umbral" methods. By the work of Rota et al. [5] [6], this means that we will be dealing with polynomials in t (whose coefficients will be fractional Laurent series in x) and will apply a linear functional $\varphi: \mathbb{C}[t]\{\{x\}\} \rightarrow \mathbb{C}\{\{x\}\}$. For our situation φ is defined by $\varphi\left(t^{m}\right)=m!$.

Note. The ring $\mathbb{C}[t]\{\{x\}\}$ consists of all series of the form $\sum_{j>j_{0}} a_{j}(t) x^{j / N}$ for some $j_{0} \in \mathbb{Z}$ and $N \geq 1$, where $a_{j}(t) \in \mathbb{C}[t]$. When we replace t^{m} with m !, the coefficient of each $x^{j / N}$ is a well-defined complex number. The function φ is not merely linear; it commutes with infinite linear combinations of the form $\sum_{j \geq j_{0}} a_{j}(t) x^{j / N}$. In other words, φ is continuous is the standard topology on $\mathbb{C}[t]\{\{x\}\}$ defined by $f_{n}(x, t) \rightarrow 0$ if $\operatorname{deg}_{t} f_{n}(x, t) \rightarrow \infty$ as $n \rightarrow \infty$. See [9, p. 7].

By equation (2.3), we have

$$
\begin{aligned}
g(n, k) & =\left[x_{1}^{k} \cdots x_{n}^{k}\right] \frac{1}{1-\sum x_{i}+\sum x_{i} x_{i+1}} \\
& =\left[x_{1}^{k} \cdots x_{n}^{k}\right] \sum_{r \geq 0}\left(\sum x_{i}-\sum x_{i} x_{i+1}\right)^{r}
\end{aligned}
$$

We obtain a term τ in the expansion of $\left(\sum x_{i}-\sum x_{i} x_{i+1}\right)^{r}$ by picking a term x_{i} or $-x_{i} x_{i+1}$ from each factor. Associate with τ the graph G_{τ} on the vertex set [n] where we put a loop at i every time we choose the term x_{i}, and we put an edge between i and $i+1$ whenever we choose the term $-x_{i} x_{i+1}$. Thus G_{τ} is regular of degree k with r edges, and each connected component has a vertex set which is an interval $\{a, a+1, \ldots, a+b\}$. Let $\mu(i)$ be the number of loops at vertex i and $\mu(i, i+1)$ the number of edges between vertices i and $i+1$. Let $\nu=\sum \mu(i, i+1)$, the total number of nonloop edges. Then

$$
\begin{equation*}
[\tau]\left(\sum x_{i}-\sum x_{i} x_{i+1}\right)^{r}=\frac{(-1)^{\nu} r!}{\prod_{i=1}^{r} \mu_{i}!\cdot \prod_{i=1}^{r-1} \mu(i, i+1)!} . \tag{2.6}
\end{equation*}
$$

Define the umbralized weight $w(G)$ of $G=G_{\tau}$ by

$$
w(G)=\frac{(-1)^{\nu} t^{r}}{\prod_{i=1}^{r} \mu_{i}!\cdot \prod_{i=1}^{r-1} \mu(i, i+1)!} .
$$

Thus $w(G)$ is just the right-hand side of equation (2.6) with the numerator factor r ! replaced by t^{r}. At the end of the proof we will "deumbralize" by applying the functional φ, thus replacing t^{r} with r !.

Regarding k as fixed, let

$$
\begin{equation*}
c(m)=\sum_{H} w(H) \tag{2.7}
\end{equation*}
$$

summed over all connected graphs H on a linearly ordered m-element vertex set, say [m], that are regular of degree k and such that every edge is either a loop or is between two consecutive vertices i and $i+1$. It is easy to see by transfer-matrix arguments (as discussed in [9, §4.7]) that

$$
F(x, t):=\sum_{m \geq 1} c(m) x^{m}
$$

is a rational function of x whose coefficients are integer polynomials in t. The point is that we can build up H one vertex at a time in the order $1,2, \ldots, m$, and the information we need to see what new edges are allowed at vertex i (that is, loops at i and edges between i and $i+1$) depends only on a bounded amount of prior information (in fact, the edges at $i-1$). Moreover, the contribution to the umbralized weight $w(G)$ from adjoining vertex i and its incident edges is simply the weight obtained thus far multiplied by $(-1)^{\mu(i, i+1)}(t / 2)^{\mu(i)+\mu(i, i+1)}$. Hence we are counting weighted walks on a certain edgeweighted graph with vertex set $[k-1]$ (the possible values of $\mu(i, i+1)$) with certain initial conditions. We have to add a term for one exceptional graph: the graph with two vertices and k edges between them. This extra term does not affect rationality.

We may describe the vertex sets of the connected components of G_{τ} by a composition $\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ of n, i.e., a sequence of positive integers summing to n. Thus the vertex sets are

$$
\left\{1, \ldots, \alpha_{1}\right\},\left\{\alpha_{1}+1, \ldots, \alpha_{1}+\alpha_{2}\right\}, \ldots,\left\{\alpha_{1}+\cdots+\alpha_{s-1}+1, \ldots, n\right\} .
$$

Now set

$$
f(n)=\sum_{G} w(G),
$$

summed over all graphs G on a linearly ordered n-element vertex set, say $[n$], that are regular of degree k and such that every edge is either a loop or is between two consecutive vertices i and $i+1$. Thus

$$
f(n)=\sum_{\left(\alpha_{1}, \ldots, \alpha_{r}\right)} g\left(\alpha_{1}\right) \cdots g\left(\alpha_{s}\right)
$$

where the sum ranges over all compositions of n. Note the crucial fact that if G has r edges and the connected components have r_{1}, \ldots, r_{s} edges, then $t^{r}=t^{r_{1}+\cdots+r_{s}}$. It therefore follows that if

$$
G(x, t)=\sum_{n \geq 0} f(n) x^{n}
$$

then

$$
G(x, t)=\frac{1}{1-F(x, t)}
$$

It follows from equation (2.6) that

$$
\begin{equation*}
\sum_{n \geq 0} g(n, k) x^{n}=\varphi G(x, t) \tag{2.8}
\end{equation*}
$$

where φ is the linear functional mentioned above which is defined by $\varphi\left(t^{r}\right)=r!$.
By Puiseux' theorem we can write

$$
G(x, t)=\frac{1}{\left(1-y_{1} t\right)^{d_{1}} \cdots\left(1-y_{q} t\right)^{d_{q}}}
$$

for certain distinct algebraic fractional Laurent series $y_{i} \in \mathbb{C}_{\text {alg }}\{\{x\}\}$ and integers $d_{j} \geq 1$. By partial fractions we have

$$
\begin{align*}
G(x, t) & =\sum_{j=1}^{q} \sum_{i=1}^{d_{j}} \frac{u_{i j}}{\left(1-y_{j} t\right)^{i}} \\
& =\sum_{j=1}^{q} \sum_{i=1}^{d_{j}} u_{i j} \sum_{m \geq 0}\binom{i+m-1}{i} y_{j}^{m} t^{m} \\
& =\sum_{j=1}^{q} \sum_{m \geq 0} \sum_{j=1}^{q} \sum_{m \geq 0} P_{j}(m) z_{j} y_{j}^{m} t^{m} \tag{2.9}
\end{align*}
$$

where $u_{i j}, z_{i} \in \mathbb{C}_{\text {alg }}\{\{x\}\}$ and $P_{j}(m) \in \mathbb{C}_{\text {alg }}\{\{x\}\}[m]$. Apply the functional φ to complete the proof.

Example 2.6. Consider the case $k=2$. Let G be a connected regular graph of degree 2 with vertex set $[m]$ and edges that are either loops or are between vertices i and $i+1$ for some $1 \leq i \leq m-1$. Then G is either a path with vertices $1,2, \ldots, m$ (in that order) with a loop at both ends (allowing a double loop when $m=1$), or a double edge when $m=2$. Hence

$$
\begin{aligned}
F(x, t) & =\frac{1}{2} t^{2} x+\left(\frac{1}{2} t^{2}-t^{3}\right) x^{2}+t^{4} x^{3}-t^{5} x^{4}+\cdots \\
& =\frac{1}{2} t^{2} x-\left(t^{3}-\frac{1}{2} t^{2}\right) x^{2}+\frac{t^{4} x^{3}}{1+t x}
\end{aligned}
$$

and

$$
\begin{aligned}
G(x, t) & =\frac{1}{1-F(x, t)} \\
& =\frac{1+t x}{1+x t-\frac{1}{2}\left(x+x^{2}\right) t^{2}+\frac{1}{2}\left(x^{2}-x^{3}\right) t^{3}}
\end{aligned}
$$

The denominator of $G(x, t)$ factors as $\left(1-y_{1} t\right)\left(1-y_{2} t\right)\left(1-y_{3} t\right)$, where

$$
\begin{aligned}
y_{1}= & x+2 x^{2}+18 x^{3}+194 x^{4}+2338 x^{5}+30274 x^{6}+411698 x^{7} \\
& +5800066 x^{8}+\cdots \\
y_{2}= & \frac{1}{2} \sqrt{2} x^{1 / 2}-x-\frac{1}{4} \sqrt{2} x^{3 / 2}-x^{2}-\frac{33}{16} \sqrt{2} x^{5 / 2}-9 x^{3} \\
& \quad-\frac{657}{32} \sqrt{2} x^{7 / 2}-97 x^{4}-\cdots \\
y_{3}=- & \frac{1}{2} \sqrt{2} x^{1 / 2}-x+\frac{1}{4} \sqrt{2} x^{3 / 2}-x^{2}+\frac{33}{16} \sqrt{2} x^{5 / 2}-9 x^{3} \\
& +\frac{657}{32} \sqrt{2} x^{7 / 2}-97 x^{4}+\cdots
\end{aligned}
$$

Since the y_{i} 's are distinct we can take each $P_{i}(m)=1$. The coefficients z_{1}, z_{2}, z_{3} are given by

$$
\begin{aligned}
z_{1}= & -4 x-48 x^{2}-676 x^{3}-10176 x^{4}-158564 x^{5}-2523696 x^{6}+\cdots \\
z_{2}=\frac{1}{2}+ & \frac{1}{2} \sqrt{2} x^{1 / 2}+2 x+\frac{19}{4} \sqrt{2} x^{3 / 2}+24 x^{4}+\frac{1007}{16} \sqrt{2} x^{5 / 2}+338 x^{3} \\
& +\frac{29507}{32} \sqrt{2} x^{7 / 2}+\cdots \\
z_{3}= & \frac{1}{2}-\frac{1}{2} \sqrt{2} x^{1 / 2}+2 x-\frac{19}{4} \sqrt{2} x^{3 / 2}+24 x^{4}-\frac{1007}{16} \sqrt{2} x^{5 / 2}+338 x^{3} \\
& -\frac{29507}{32} \sqrt{2} x^{7 / 2}+\cdots .
\end{aligned}
$$

Finally we obtain

$$
\sum_{n \geq 0} g(n, 2) x^{n}=\sum_{m \geq 0} m!\left(z_{1} y_{1}^{m}+z_{2} y_{2}^{m}+z_{3} y_{3}^{m}\right)
$$

In Theorem [2.2 we determined the number of equivalence classes of the equivalence relation \sim on \mathfrak{S}_{n}. Let us now turn to the structure of the individual equivalence classes. Given $w \in \mathfrak{S}_{n}$, write $\langle w\rangle$ for the class containing w. First we consider the case where w is the identity permutation $\mathrm{id}_{n}=12 \cdots n$ or its reverse $\overline{\mathrm{id}}_{n}=n \cdots 21$. (Clearly for any w and its reverse \bar{w} we have $\#\langle w\rangle=\#\langle\bar{w}\rangle$.) Let F_{n} denote the nth Fibonacci number, i.e., $F_{1}=F_{2}=1, F_{n}=F_{n-1}+F_{n-2}$.

Proposition 2.7. We have $\#\left\langle\mathrm{id}_{n}\right\rangle=\#\left\langle\overline{\mathrm{id}}_{n}\right\rangle=F_{n+1}$.
Proof. Let $g(n)=\#\left\langle\mathrm{id}_{n}\right\rangle=\#\left\langle\overline{\mathrm{id}}_{n}\right\rangle$, so $g(1)=1=F_{2}$ and $g(2)=2=F_{3}$. If $w=$ $a_{1} a_{2} \cdots a_{n} \sim \mathrm{id}$, then either $a_{n}=n$ with $g(n-1)$ possibilities for $a_{1} a_{2} \cdots a_{n-1}$, or else $a_{n-1}=n$ and $a_{n}=n-1$ with $g(n-2)$ possibilities for $a_{1} a_{2} \cdots a_{n-2}$. Hence $g(n)=$ $g(n-1)+g(n-2)$, and the proof follows.

We now consider an arbitrary equivalence class. Proposition 2.9 below is due to Joel Lewis (private communication).

Lemma 2.8. Each equivalence class $\langle w\rangle$ of permutations of any finite subset S of $\{1,2, \ldots\}$ contains a permutation $v=v_{1} v_{2} \cdots v_{k}$ (concatenation of words) such that (a) each v_{i} is an increasing or decreasing sequence of consecutive integers, and (b) every $u \sim w$ has the form $u=v_{1}^{\prime} v_{2}^{\prime} \cdots v_{k}^{\prime}$, where $v_{i}^{\prime} \sim v_{i}$. Moreover, the permutation v is unique up to reversing v_{i} 's of length two.

Proof. Let j be the largest integer for which some $v \sim w$ has the property that $v_{1} v_{2} \cdots v_{j}$ is either an increasing or decreasing sequence of consecutive integers. It is easy to see that v_{k} for $k>j$ can never be interchanged with some v_{i} for $1 \leq i \leq j$ in a sequence of transpositions of adjacent consecutive integers. Moreover, $v_{1} v_{2} \cdots v_{j}$ cannot be converted to the reverse $v_{j} \cdots v_{2} v_{1}$ unless $j \leq 2$. The result follows by induction.
Proposition 2.9. Let m_{i} be the length of v_{i} in Lemma 2.8. Then

$$
\#\langle w\rangle=F_{m_{1}+1} \cdots F_{m_{k}+1} .
$$

Proof. Immediate from Proposition 2.7 and Lemma 2.8.

We can also ask for the number of equivalence classes of a given size r. Here we consider $r=1$. Let $N(n)$ denote the number of one-element equivalence classes of permutations in \mathfrak{S}_{n}. Thus $N(n)$ is also the number of permutations $a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{n}$ for which $\left|a_{i}-a_{i+1}\right| \geq 2$ for $1 \leq i \leq n-1$. This problem is discussed in OEIS [7, A002464]. In particular, we have the generating function

$$
\begin{aligned}
\sum_{n \geq 0} N(n) x^{n} & =\sum_{m \geq 0} m!\left(\frac{x(1-x)}{1+x}\right)^{m} \\
& =1+x+2 x^{4}+14 x^{5}+90 x^{6}+646 x^{7}+5242 x^{8}+\cdots
\end{aligned}
$$

3 Multiplicity-free flag h-vectors of distributive lattices.

Let P be a finite graded poset of rank n with $\hat{0}$ and $\hat{1}$, and let ρ be the rank function of P. (Unexplained poset terminology may be found in [9, Ch. 3].) Write $2^{[n-1]}$ for the set of all subsets of $[n-1]$. The flag f-vector of P is the function $\alpha_{P}: 2^{[n-1]} \rightarrow \mathbb{Z}$ defined as follows: if $S \subseteq[n-1]$, then $\alpha_{P}(S)$ is the number of chains C of P such that $S=\{\rho(t): t \in C\}$. For instance, $\alpha_{P}(\emptyset)=1, \alpha_{P}(i)$ (short for $\left.\alpha_{P}\{i\}\right)$) is the number of elements of P of rank i, and $\alpha_{P}([n-1])$ is the number of maximal chains of P. Define the flag h-vector $\beta_{P}: 2^{[n-1]} \rightarrow \mathbb{Z}$ by

$$
\beta_{P}(S)=\sum_{T \subseteq S}(-1)^{\#(S-T)} \alpha_{P}(T) .
$$

Figure 1: The poset Q_{12345}

Equivalently,

$$
\alpha_{P}(S)=\sum_{T \subseteq S} \beta_{P}(T)
$$

We say that β_{P} is multiplicity-free if $\beta_{P}(S)=0, \pm 1$ for all $S \subseteq[n-1]$.
In this section we will classify and enumerate all P for which β_{P} is multiplicity-free. First we consider the case when P is a distributive lattice, so $P=J(Q)$ (the lattice of order ideals of Q) for some n-element poset Q (see [9, Thm. 3.4.1]). Suppose that Q is a natural partial ordering of $[n]$, i.e., if $i<j$ in Q, then $i<j$ in \mathbb{Z}. We may regard a linear extension of Q as a permutation $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$ for which i precedes j in w if $i<j$ in Q. Write $\mathcal{L}(Q)$ for the set of linear extensions of Q, and let

$$
D(w)=\left\{i: a_{i}>a_{i+1}\right\} \subseteq[n-1],
$$

the descent set of w. A basic result in the theory of P-partitions [9, Thm. 3.13.1] asserts that

$$
\beta_{P}(S)=\#\{w \in \mathcal{L}(Q): D(w)=S\} .
$$

It will follow from our results that the equivalence class containing $12 \cdots n$ of the equivalence relation \sim on \mathfrak{S}_{n} is the set $\mathcal{L}(Q)$ for a certain natural partial ordering Q of [n] for which $\beta_{J(Q)}$ is multiplicity-free, and that Q has the most number of linear extensions of any n-element poset for which $\beta_{J(Q)}$ is multiplicity-free.

In general, if we have a partially commutative monoid M with generators g_{1}, \ldots, g_{n} and if $w=g_{i_{1}} g_{i_{2}} \cdots g_{i_{r}} \in M$, then the set of all words in the g_{i} 's that are equal to w correspond to the linear extensions of a poset Q_{w} with elements $1, \ldots, r$ [9, Exer. 3.123]. Namely, if $1 \leq a<b \leq r$ in \mathbb{Z}, then let $a<b$ in Q_{w} if $g_{i_{a}}=g_{i_{b}}$ or if $g_{i_{a}} g_{i_{b}} \neq g_{i_{b}} g_{i_{a}}$. In the case $g_{i}=i$ and $w=12 \cdots n$, then the set of all words equal to w are themselves the linear extensions of Q_{w}. For instance, if $n=5, g_{i}=i$, and the commuting relations are $12=21,23=32,34=43$, and $45=54$, then the poset Q_{12345} is shown in Figure 1, The linear extensions are the words equivalent to 12345 under \sim, namely 12345,12354 , $12435,21345,21354,21435,13245,13254$. Write Q_{n} for the poset $Q_{12 \cdots n}$. Define a subset S of \mathbb{Z} to be sparse if it does not contain two consecutive integers.

Lemma 3.10. For each sparse $S \subset[n-1]$, there is exactly one $w \in\langle 12 \cdots n\rangle$ (the equivalence class containing $12 \cdots n$ of the equivalence relation \sim) satisfying $D(w)=S$. Conversely, if $w \in\langle 12 \cdots n\rangle$ then $D(w)$ is sparse.

Proof. The permutations $w \in\langle 12 \cdots n\rangle$ are obtained by taking the identity permutation $\mathrm{id}=12 \cdots n$, choosing a sparse subset $S \subset[n-1]$, and transposing i and $i+1 \mathrm{in}$ id when $i \in S$. The proof follows.

Proposition 3.11. Let Q be an n-element poset for which the flag h-vector of $J(Q)$ is multiplicity-free. Then $e(Q) \leq F_{n+1}$ (a Fibonacci number). Moreover, the unique such poset (up to isomorphism) for which equality holds is Q_{n}.

We will prove Proposition 3.11 as a consequence of a stronger result: the complete classification of all posets Q for which the flag h-vector of $J(Q)$ is multiplicity-free. The key observation is the following trivial result.

Lemma 3.12. Let P be any graded poset whose flag h-vector β_{P} is multiplicity-free. Then P has at most two elements of each rank.

Proof. Let P have rank n and $1 \leq i \leq n-1$. Then $\beta_{P}(i)=\alpha_{P}(i)-1$, i.e., one less than the number of elements of rank i. The proof follows.

Thus we need to consider only distributive lattices $J(Q)$ of rank n with at most two elements of each rank. A poset Q is said to be $(\mathbf{2}+\mathbf{2})$-free if it does not have an induced subposet isomorphic to the disjoint union of two 2-element chains. Such a poset is also an interval order [2] [9, Exer. 3.15] [11]. Similarly a poset is $(\mathbf{1}+\mathbf{1}+\mathbf{1})$-free or of width at most two if it does not have a 3 -element antichain.

Theorem 3.13. Let Q be an n-element poset. The following conditions are equivalent.
(a) The flag h-vector $\beta_{J(Q)}$ of $J(Q)$ is multiplicity-free (in which case if $\beta_{J(Q)}(S) \neq 0$, then S is sparse).
(b) For $0 \leq i \leq n, J(Q)$ has at most two elements of rank i. Equivalently, Q has at most two i-element order ideals.
(c) Q is $(\mathbf{2}+\mathbf{2})$-free and $(\mathbf{1}+\mathbf{1}+\mathbf{1})$-free.

Moreover, if $f(n)$ is the number of nonisomorphic n-element posets satisfying the above conditions, then

$$
\sum_{n \geq 0} f(n) x^{n}=\frac{1-2 x}{(1-x)\left(1-2 x-x^{2}\right)}
$$

If $g(n)$ is the number of such posets which are not a nontrivial ordinal sum (equivalently, $J(Q)$ has exactly two elements of each rank $1 \leq i \leq n-1)$, then

$$
\begin{equation*}
g(1)=g(2)=1 \text { and } g(n)=2^{n-3}, n \geq 3 \tag{3.1}
\end{equation*}
$$

Figure 2: A distributive lattice of rank three

Figure 3: Extending a lattice of rank three

Proof. Consider first a distributive lattices $J(Q)$ of rank n with exactly two elements of rank i for $1 \leq i \leq n-1$. Such lattices are described in [9, Exer. 3.35(a)]. There is one for $n \leq 3$. The unique such lattice of rank three is shown in Figure 2. Once we have such a lattice L of rank $n \geq 3$, we can obtain two of rank $n+1$ by adjoining an element covering the left or right coatom (element covered by $\hat{1}$) of L and a new maximal element, as illustrated in Figure 3 for $n=3$. When $n=1$ (so L is a 2 -element chain), we say by convention that the $\hat{0}$ of L is a left coatom. When $n=2$ (so L is the boolean algebra B_{2}) we obtain isomorphic posets by adjoining an element covering either the left or right coatom, so again by convention we always choose the right coatom. Thus every such L of rank $n \geq 1$ can be described by a word $\gamma=\gamma_{1} \gamma_{2} \cdots \gamma_{n-1}$, where $\gamma_{1}=0$ (when $n \geq 2$), $\gamma_{2}=1$ (when $n \geq 3$), and $\gamma_{i}=0$ or 1 for $i \geq 3$. If $\gamma_{i}=0$, then at rank i we adjoin an element on the left, otherwise on the right. Write $L(\gamma)$ for this lattice. Figure 4 shows $L(01001)$.

Figure 4: The distributive lattice $L(01001)$

Suppose that $n \geq 3$ and γ has the form $\delta j i^{r}$, where $r \geq 1, i=0$ or 1 , and $j=1-i$. For example, if $\gamma=0111$ then $\delta=\emptyset$ (the empty word) and $r=3$. If $\gamma=0101100$, then $\delta=0101$ and $r=2$. Consider the lattice $L=L\left(\delta j i^{r}\right)$. Then for one coatom t of L we have $[\hat{0}, t] \cong L\left(\delta j i^{r-1}\right)$. For the other coatom u of L there is an element $v<u$ such that $[v, u]$ is a chain and $[\hat{0}, v] \cong L(\delta)$. It follows easily that for $S \subseteq[n-1]$ we have the recurrence

$$
\beta_{L\left(\delta i j^{r}\right)}(S)=\left\{\begin{align*}
\beta_{L\left(\delta i j^{r-1}\right)}(S), & n-1 \notin S \tag{3.2}\\
\beta_{L(\delta)}(S), & n-1 \in S
\end{align*}\right.
$$

Hence by induction β_{L} is multiplicity-free. Morever, if $\beta_{L}(S) \neq 0$, then S is sparse.
Suppose now that $J(Q)$ has exactly one element t of some rank $1 \leq i \leq n-1$. Let $[\hat{0}, t] \cong J\left(Q_{q}\right)$ and $[t, \hat{1}] \cong J\left(Q_{2}\right)$. Then $Q=Q_{1} \oplus Q_{2}$ (ordinal sum), and

$$
\begin{equation*}
\beta_{J(Q)}(S)=\beta_{J\left(Q_{1}\right)}(S \cap[i-1]) \cdot \beta_{J\left(Q_{1}\right)}\left(S^{\prime} \cap[n-i-1]\right), \tag{3.3}
\end{equation*}
$$

where $S^{\prime}=\{j: i+j \in S\}$. In particular, $\beta_{J(Q)}(S)=0$ if $i \in S$. It follows from ?? Lemma 3.12 and equations (3.2) and (3.3) that (a) and (b) are equivalent.

Let us now consider condition (c). One can easily check that if $L(\gamma)=J(Q(\gamma))$, then $Q(\gamma)$ is $(\mathbf{2}+\mathbf{2})$-free and $(\mathbf{1}+\mathbf{1}+\mathbf{1})$-free. (Alternatively, if a poset Q contains an induced $\mathbf{2}+\mathbf{2}$ or $\mathbf{1}+\mathbf{1}+\mathbf{1}$ then it contains them as a convex subset, i.e., as a subset $I-I^{\prime}$ where $I \leq I^{\prime}$ in $J(Q)$. By considering linear extensions of Q that first use the elements of I^{\prime} and then those of $I^{\prime}-I$, one sees that at least two linear extensions have the same descent set.) Thus $(\mathrm{b}) \Rightarrow(\mathrm{c})$.

Conversely, suppose that $J(Q)$ has three elements of the same rank i. It is easy to see that the restriction of $J(Q)$ to ranks i and $i+1$ is a connected bipartite graph. If an element t of rank $i+1$ covers at least three elements of rank i, then Q contains an induced $\mathbf{1 + 1 + 1}$. Otherwise there must be elements s, t of rank $i+1$ and u, v, w of rank i for which $u, v<s$ and $v, w<t$. The interval $[u \wedge v \wedge w, u \vee v \vee w]$ is either isomorphic to a boolean algebra B_{3}, in which case Q contains an induced $\mathbf{1}+\mathbf{1}+\mathbf{1}$, or to $\mathbf{3} \times \mathbf{3}$, in which case P contains an induced $\mathbf{2}+\mathbf{2}$. Hence $(\mathrm{c}) \Rightarrow(\mathrm{b})$, completing the proof of the equivalence of (a), (b), and (c).

We have already observed that $g(n)$ is given by equation (3.1). Thus

$$
A(x):=\sum_{n \geq 1} g(n) x^{n}=x+x^{2}+\frac{x^{3}}{1-2 x} .
$$

Elementary combinatorial reasoning shows that

$$
\begin{aligned}
\sum_{n \geq 0} f(n) x^{n} & =\frac{1}{1-A(x)} \\
& =\frac{1-2 x}{(1-x)\left(1-2 x-x^{2}\right)}
\end{aligned}
$$

completing the proof.

Figure 5: Two consecutive ranks

Corollary 3.14. Let Q be an n-element poset for which $\beta_{J(Q)}$ is multiplicity-free. Then $e(Q) \leq F_{n+1}$ (a Fibonacci number), with equality if and only if $Q=Q(0101 \cdots$) where $0101 \cdots$ is an alternating sequence of $n-1$ 0's and 1's.

Proof. There are F_{n+1} sparse subsets of $[n-1]$. It follows from the parenthetical comment in Theorem 3.13(a) that $e(Q) \leq F_{n+1}$. Moreover, equations (3.2) and (3.3) make it clear that $\beta_{J(Q)}(S)=1$ for all sparse $S \subset[n-1]$ if and only if $Q=Q(0101 \cdots)$, so the proof follows.

Proposition 3.15. The n-element poset $Q(0101 \cdots)$ is isomorphic to $Q_{12 \cdots n}$. Hence The set $\mathcal{L}(Q(0101 \cdots)$ of linear extensions of $Q(0101 \cdots)$ is equal to the equivalence class $\langle 12 \cdots n\rangle$.

Proof. Immediate from Lemma 3.10.

4 Multiplicity-free flag h-vectors of graded posets.

We now consider any graded poset P of rank n for which β_{P} is multiplicity-free. By Lemma 3.12 there are at most two elements of each rank. If there is just one element t of some rank $1 \leq i \leq n-1$, then let $P_{1}=[\hat{0}, t]$ and $P_{2}=[t, \hat{1}]$. Equation (3.3) generalizes easily to

$$
\beta_{P}(S)=\left\{\begin{array}{r}
0, \quad i \in S \\
\beta_{P_{1}}(S \cap[i-1]) \cdot \beta_{P_{2}}\left(S^{\prime} \cap[n-i-1], i \notin S,\right.
\end{array}\right.
$$

where $S_{1}=\{j: i+j \in S\}$. Hence β_{P} is multiplicity-free if and only if both $\beta_{P_{1}}$ and $\beta_{P_{2}}$ are multiplicity-free.

By the previous paragraph we may assume that P has exactly two elements of each rank $1 \leq i \leq n-1$, i.e., of each interior rank. There are up to isomorphism three possibilities for the restriction of P to two consecutive interior ranks i and $i+1(1 \leq$ $i \leq n-2$). See Figure 5. If only type (b) occurs, then we obtain the distributive lattice $L(\gamma)$ for some γ. Hence all graded posets with two elements of each interior rank can be obtained from some $L(\gamma)$ by a sequence of replacing the two elements of some interior rank with one of the posets in Figure 5(a) or (c).

Figure 6: An example of R and its stretching $R[2]$

First consider the situation where we replace the two elements of some interior rank of P with the poset of Figure $5(\mathrm{a})$. We can work with the following somewhat more general setup. Let R be any graded poset of rank n with $\hat{0}$ and $\hat{1}$. For $1 \leq i \leq n-1$ let $R[i]$ denote the stretching of R at rank i, namely, for each element $t \in R$ of rank i, adjoin a new element $t^{\prime}>t$ such that $t^{\prime}<u$ whenever $t<u$ (and no additional relations not implied by these conditions). Figure 6 shows an example. Regarding i as fixed, let $S \subset[n]$. If not both $i, i+1 \in S$ then let S° be obtained from S by replacing each element $j \in S$ satisfying $j \geq i+1$ with $j-1$. On the other hand, if both $i, i+1 \in S$ then let S° be obtained from S by removing $i+1$ and replacing each $j \in S$ such that $j>i+1$ with $j-1$. It is easily checked that

$$
\beta_{R[i]}(S)=\left\{\begin{aligned}
\beta_{R}\left(S^{\circ}\right), & \text { if not both } i, i+1 \in S \\
-\beta_{R}\left(S^{\circ}\right), & \text { if both } i, i+1 \in S
\end{aligned}\right.
$$

It follows immediately that if β_{R} is multiplicity-free, then so is $\beta_{R[i]}$.
Now consider the situation where we replace the two elements of some interior rank of P with the poset of Figure 5(c). Again we can work in the generality of any graded poset R of rank n with $\hat{0}$ and $\hat{1}$. If $1 \leq i \leq n-1$, let $R\langle i\rangle$ denote the proliferation of R at rank i, namely, for each element $t \in R$ of rank i, adjoin a new element $t^{\prime}>s$ for every s of rank i such that $t^{\prime}<u$ whenever $t<u$ (and no additional relations not implied by these conditions). Figure 7 shows an example. Note that if R_{1} denotes the restriction of R to ranks $0,1, \ldots, i$, and if R_{2} denotes the restriction of R to ranks $i, i+1, \ldots, n$, then $R\langle i\rangle=R_{1} \oplus R_{2}$ (ordinal sum). Let \bar{R}_{1} denote R_{1} with a $\hat{1}$ adjoined and \bar{R}_{2} denote R_{2} with a $\hat{0}$ adjoined. It is then clear (in fact, a simple variant of equation (3.3)) that

$$
\beta_{R\langle i\rangle}(S)=\beta_{R_{1}}(S \cap[i]) \cdot \beta_{R_{2}}\left(S^{\prime}\right),
$$

where $S^{\prime}=\{j: i+j \in S\}$.
We have therefore proved the following result.
Theorem 4.16. Let P be a finite graded poset with $\hat{0}$ and $\hat{1}$. The following conditions are equivalent:

Figure 7: An example of R and its proliferation $R\langle 2\rangle$
(a) The flag h-vector β_{P} is multiplicity-free.
(b) P has at most two elements of each rank.

The above description of graded posets with multiplicity-free flag h-vectors allows us to enumerate such posets.

Theorem 4.17. Let $h(n, k)$ denote the number of k-element graded posets P of rank n with $\hat{0}$ and $\hat{1}$ for which β_{P} is multiplicity-free. Let

$$
U(x, y)=\sum_{n \geq 1} \sum_{k \geq 2} h(n, k) x^{k} y^{n} .
$$

Then

$$
U(x, y)=\frac{x y^{2}\left(1-x y^{2}\right)\left(1-3 x y^{3}\right)}{1-x y-5 x y^{2}+4 x^{2} y^{3}+5 x^{2} y^{4}-3 x^{3} y^{5}} .
$$

Proof. The factor $x y^{2}$ in the numerator accounts for the $\hat{0}$ and $\hat{1}$ of P. Write $P^{\prime}=$ $P-\{\hat{0}, \hat{1}\}$. We first consider those P^{\prime} that are not an ordinal sum of smaller nonempty posets. These will be the one-element poset 1 and posets for which every rank has two elements, with the restrictions to two consecutive ranks given by Figure $5(a, b)$. We obtain P^{\prime} by first choosing a poset R whose consecutive ranks are given by Figure 5(b) and then doing a sequence of stretches. By equation (3.1), the number of ways to choose R with m levels is 1 for $m=1$ and 2^{m-2} for $m \geq 2$. We can stretch such an R by choosing a sequence $\left(j_{1}, \ldots, j_{m}\right)$ of nonnegative integers and stretching the i th level of $R j_{i}$ times. Hence the generating function for the posets P^{\prime} is given by

$$
\begin{aligned}
R(x, y) & =x y+\frac{x y^{2}}{1-x y^{2}}+\sum_{m \geq 2} \frac{2^{m-2}\left(x y^{2}\right)^{m}}{\left(1-x y^{2}\right)^{m}} \\
& =x y+\frac{x y^{2}}{1-x y^{2}}+\frac{x^{2} y^{4}}{\left(1-x y^{2}\right)\left(1-3 x y^{2}\right)}
\end{aligned}
$$

All posets being enumerated are unique ordinal sums of posets P^{\prime}, with a $\hat{0}$ and $\hat{1}$ adjoined at the end. Thus

$$
\begin{aligned}
U(x, y) & =\frac{x y^{2}}{1-R(x, y)} \\
& =\frac{x y^{2}\left(1-x y^{2}\right)\left(1-3 x y^{2}\right)}{1-x y-5 x y^{2}+4 x^{2} y^{3}+5 x^{2} y^{4}-3 x^{3} y^{5}} .
\end{aligned}
$$

As special cases, the enumeration by rank of graded posets P with $\hat{0}$ and $\hat{1}$ for which β_{P} is multiplicity-free is given by

$$
\begin{aligned}
R(x, 1) & =\frac{x(1-x)(1-3 x)}{1-6 x+9 x^{2}-3 x^{3}} \\
& =x+2 x^{2}+6 x^{3}+21 x^{4}+78 x^{5}+297 x^{6}+1143 x^{7}+4419 x^{8}+\cdots
\end{aligned}
$$

Similarly, if we enumerate by number of elements we get

$$
\begin{aligned}
R(1, y) & =\frac{y^{2}\left(1-y^{2}\right)\left(1-3 y^{2}\right)}{1-y-5 y^{2}+4 y^{3}+5 y^{4}-3 y^{5}} \\
& =y^{2}+y^{3}+2 y^{4}+3 y^{5}+7 y^{6}+12 y^{7}+28 y^{8}+51 y^{9}+117 y^{10}+\cdots
\end{aligned}
$$

References

[1] P. Cartier and D. Foata, Problèmes combinatoires de commutation et réarrangements, Lecture Notes in Mathematics 85, Springer-Verlag, Berlin, 1969.
[2] P. C. Fishburn, Intransitive indifference with unequal indifference intervals, J. Math. Psych. 7 (1970), 144-149.
[3] S. Linton, J. Propp, T. Roby, and J. West, Equivalence classes of permutations under various relations generated by constrained transpositions, preprint, arXiv:1111. 3920.
[4] L. Lipshitz, The diagonal of a D-finite power series is D-finite, J. Algebra $\mathbf{1 1 3}(2)$ (1988), 373-378.
[5] S. Roman, The Umbral Calculus, Academic Press, Orlando, FL, 1984.
[6] G.-C. Rota and B. D. Taylor, The classical umbral calculus, SIAM J. Math. Anal. 25 (1994), 694-711.
[7] The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org.
[8] R. Stanley, Differentiably finite power series, European J. Combinatorics 1 (1980), 175-188.
[9] R. Stanley, Enumerative Combinatorics, vol. 1, second ed., Cambridge University Press, New York/Cambridge, 2011.
[10] R. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, New York/Cambridge, 1999.
[11] W. T. Trotter, Combinatorics and Partially Ordered Sets: Dimension Theory, Johns Hopkins University Press, Baltimore, MD, 1992.

[^0]: *Department of Mathematics, Massachusetts Institute of Mathematics, Cambridge, MA 02139, USA. Email: rstan@math.mit.edu. The author's contribution is based upon work supported by the National Science Foundation under grants nos. DMS-0604423 and DMS-1068625.

