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An Equivalence Relation on the Symmetric Group

and Multiplicity-free Flag h-Vectors
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Abstract

We consider the equivalence relation ∼ on the symmetric group Sn generated

by the interchange of two adjacent elements ai and ai+1 of w = a1 · · · an ∈ Sn such

that |ai − ai+1| = 1. We count the number of equivalence classes and the sizes of

the equivalence classes. The results are generalized to permutations of multisets.

In the original problem, the equivalence class containing the identity permutation

is the set of linear extensions of a certain poset. Further investigation yields a

characterization of all finite graded posets whose flag h-vector takes on only the

values 0,±1.

1 Introduction.

Let k ≥ 2. Define two permutations u and v (regarded as words a1a2 · · · an) in the
symmetric group Sn to be equivalent if v can be obtained from u by a sequence of
interchanges of adjacent terms that differ by at least j. It is a nice exercise to show that
the number fj(n) of equivalence classes of this relation (an obvious equivalence relation)
is given by

fj(n) =







n!, n ≤ j

j! · jn−j , n > j.

Namely, one can show that every equivalence class contains a unique permutation w =
b1b2 · · · bn for which we never have bi ≥ bi+1 + j. To count these permutations w for
n > j, we first have j! ways of ordering 1, 2, . . . , j within w. Then insert j+1 in j ways,
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i.e., at the end or preceding any i 6= 1. Next insert j + 2 in j ways, etc. The case j = 3
of this argument appears in [7, A025192] and is attributed to Joel Lewis, November 14,
2006. Some equivalence relations on Sn of a similar nature are pursued by Linton et al.
[3].

The above result suggests looking at some similar equivalence relations on Sn. The
one we will consider here is the following: define u and v to be equivalent, denoted
u ∼ v, if v can be obtained from u by interchanging adjacent terms that differ by exactly
one. For instance, when n = 3 we have the two equivalence classes {123, 213, 312} and
{321, 231, 312}. We will determine the number of classes, the number of one-element
classes, and the sizes of the equivalence classes (always a product of Fibonacci numbers).
It turns out that the class containing the identity permutation 12 · · ·n may be regarded
as the set of linear extensions of a certain n-element poset Pn. Moreover, Pn has the most
number of linear extensions of any n-element poset on the vertex set [n] = {1, 2, . . . , n}
such that i < j in P implies i < j in Z, and such that all linear extensions of P (regarded
as permutations of [n]) have a different descent set. This result leads to the complete
classification and enumeration of finite graded posets of rank n whose flag h-vector is
“multiplicity-free,” i.e., assumes only the values 0 and ±1.

2 The number of equivalence classes.

To obtain the number of equivalence classes, we first define a canonical element in each
class. We then count these canonical elements by the Principle of Inclusion-Exclusion.
We call a permutation w = a1a2 · · · an ∈ Sn salient if we never have ai = ai+1 + 1
(1 ≤ i ≤ n− 1) or ai = ai+1 +2 = ai+2 +1 (1 ≤ i ≤ n− 2). For instance, there are eight
salient permutations in S4: 1234, 1342, 2314, 2341, 2413, 3142, 3412, 4123.

Lemma 2.1. Every equivalence class with respect to the equivalence relation ∼ contains
exactly one salient permutation.

Proof. Let E be an equivalence class, and let w = a1a2 · · ·an be the lexicographically
least element of E. Then we cannot have ai = ai+1 + 1 for some i; otherwise we could
interchange ai and ai+1 to obtain a lexicographically smaller permutation in E. Similarly
if ai = ai+1 + 2 = ai+2 + 1 then we can replace aiai+1ai+2 with ai+2aiai+1. Hence w is
salient.

It remains to show that a class E cannot contain a salient permutation w = b1b2 · · · bn
that is not the lexicographically least element v = a1a2 · · · an of E. Let i be the least
index for which ai 6= bi. Since v ∼ w, there must be some bj satisfying j > i and bj < bi
that is interchanged with bi in the transformation of v to w by adjacent transpositions
of consecutive integers. Hence bj = bi + 1. If j = i+ 1 then v is not salient. If j = i+ 2
then we must have bi+1 = bi+2 in order to move bj+2 past bj+1, so again v is not salient.
If j > i + 2 then some element bk between bi and bj in v satisfies |bj − bk| > 1, so we
cannot move bj past bk unless we first interchange bi and bk (which must therefore equal
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bi + 1). But then after bi and bj are interchanged, we cannot move bk back to the right
of bi. Hence v and w cannot be equivalent, a contradiction completing the proof.

Theorem 2.2. Let f(n) be the number of equivalence classes of the relation ∼ on Sn,
with f(0) = 1. Then

f(n) =

⌊n/2⌋
∑

j=0

(−1)j(n− j)!

(

n− j

j

)

. (2.1)

Equivalently,
∑

n≥0

f(n)xn =
∑

m≥0

m!(x(1− x))m.

Proof. By Lemma 2.1, we need to count the number of salient permutations w ∈ Sn.
The proof is by an inclusion-exclusion argument. Let Ai, 1 ≤ i ≤ n − 1, be the set of
permutations v ∈ Sn that contain the factor (i.e., consecutive terms) i + 1, i. Let Bi,
1 ≤ i ≤ n−2, be the set of v ∈ Sn that contain the factor i+2, i, i+1. Let C1, . . . , C2n−3

be some indexing of the Ai’s and Bi’s. By the Principle of Inclusion-Exclusion, we have

f(n) =
∑

S⊆[2n−3]

(−1)#S#
⋂

i∈S

Ci, (2.2)

where the empty intersection of the Ci’s is Sn. A little thought shows that any intersec-
tion of the Ci’s consists of permutations that contain some set of nonoverlapping factors
j, j − 1, . . . , i + 1, i and j, j − 1, . . . , i + 3, i + 2, i, i + 1. Now permutations containing
the factor j, j − 1, . . . , i + 1, i are those in Aj−1 ∩ Aj−2 ∩ · · · ∩ Ai (an intersection of
j − i sets), while permutations containing j, j − 1, . . . , i + 3, i + 2, i, i + 1 are those in
Aj−1∩Aj−2∩· · ·∩Ai+2∩Bi (an intersection of j−i−1 sets). Since (−1)j−i+(−1)j−i−1 = 0,
it follows that all terms on the right-hand side of equation (2.2) involving such intersec-
tions will cancel out. The only surviving terms will be the intersections Ai1 ∩ · · · ∩ Aij

where the numbers i1, i1 + 1, i2, i2 + 1, . . . , ij , ij + 1 are all distinct. The number of ways
to choose such terms for a given j is the number of sequences of j 2’s and n−2j 1’s, i.e.,
(

n−j
2j

)

. The number of permutations of the j factors ir, ir+1, 1 ≤ r ≤ j, and the remain-

ing n − 2j elements of [n] is (n − j)!. Hence equation (2.2) reduces to equation (2.1),
completing the proof.

Note. There is an alternative proof based on the Cartier-Foata theory of partially
commutative monoids [1]. Let M be the monoid with generators g1, . . . , gn subject only
to relations of the form gigj = gjgi for certain i and j. Let x1, . . . , xn be commuting
variables. If w = gi1 · · · gim ∈ M , then set xw = xi1 · · ·xim . Define

FM(x) =
∑

w∈M

xw.

Then a fundamental result (equivalent to [1, Thm. 2.4]) of the theory asserts that

FM (x) =
1

∑

S(−1)#S
∏

gi∈S
xi
, (2.3)
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where S ranges over all subsets of {g1, . . . , gn} (including the empty set) whose elements
pairwise commute. Consider now the case where the relations are given by gigi+1 =
gi+1gi, 1 ≤ i ≤ n − 1. Thus f(n) is the coefficient of x1x2 · · ·xn in F (x). Writing
[xα]G(x) for the coefficient of xα = xα1

1 · · ·xαn
n in the power series G(x), it follows from

equation (2.3) that

f(n) = [x1 · · ·xn]
1

1−∑n
i=1 xi +

∑n−1
i=1 xixi+1

= [x1 · · ·xn]
∑

j≥0

(

n
∑

i=1

xi −
n−1
∑

i=1

xixi+1

)j

.

A straightforward argument shows that

[x1 · · ·xn]

(

n
∑

i=1

xi −
n−1
∑

i=1

xixi+1

)n−j

= (−1)j(n− j)!

(

n− j

j

)

,

and the proof follows.

Note. The numbers f(n) for n ≥ 0 begin 1, 1, 1, 2, 8, 42, 258, 1824, 14664, . . . .
This sequence appears in [7, A013999] but without a combinatorial interpretation before
the present paper.

Various generalizations of Theorem 2.2 suggest themselves. Here we will say a few
words about the situation where Sn is replaced by all permutations of a multiset on the
set [n] with the same definition of equivalence as before. For instance, for the multiset
M = {12, 2, 32} (short for {1, 1, 2, 3, 3}), there are six equivalence classes, each with five
elements, obtained by fixing a word in 1, 1, 3, 3 and inserting 2 in five different ways.
Suppose that the multiset is given by M = {1r1, . . . , nrn}. According to equation (2.3),
the number fM of equivalence classes of permutations of M is the coefficient of xr1

1 · · ·xrn
n

in the generating function

Fn(x) =
1

1−∑n
i=1 xi +

∑n−1
i=1 xixi+1

.

For the case n = 4 (and hence n ≤ 4) we can give an explicit formula for the coefficients
of Fn(x), or in fact (as suggested by I. Gessel) for Fn(x)

t where t is an indeterminate.
We use the falling factorial notation (y)r = y(y − 1) · · · (y − r + 1).

Theorem 2.3. We have

F4(x)
t =

∑

h,i,j,k≥0

(t+ h+ j − 1)j(t + h+ k − 1)h(t + i+ k − 1)i+k

h! i! j! k!
xh
1x

i
2x

k
3x

k
4. (2.4)

In particular,

F4(x) =
∑

h,i,j,k≥0

(

h + j

j

)(

h+ k

k

)(

i+ k

i

)

xh
1x

i
2x

j
3x

k
4. (2.5)
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Proof. Since the coefficient of xh
1x

i
2x

j
3x

k
4 in F4(x)

t is a polynomial in t, it suffices to
assume that t is a nonnegative integer. The result can then be proved straightforwardly
by induction on t. Namely, the case t = 0 is trivial. Assume for t − 1 and let G(x) be
the right-hand side of equation (2.4). Check that

(1− x1 − x2 − x3 − x4 + x1x2 + x2x3 + x3x4)G(x) = F4(x)
t−1,

and verify suitable initial conditions.

Ira Gessel points out (private communication) that we can prove the theorem without
guessing the answer in advance by writing

1

1− x1 − x2 − x3 − x4 + x1x2 + x2x3 + x3x4
=

1

(1− x2)(1− x3)

(

1− x1

1− x3

)



1− x4

(1− x2)
(

1− x1

1−x3

)





,

and then expanding one variable at a time in the order x4, x1, x2, x3.

For multisets supported on sets with more than four elements there are no longer
simple explicit formulas for the number of equivalence classes. However, we can still
say something about the multisets {1k, 2k, . . . , nk} for k fixed or n fixed. The simplest
situation is when n is fixed.

Proposition 2.4. Let g(n, k) be the number of equivalence classes of permutations of
the multiset {1k, . . . , nk}. For fixed n, g(n, k) is a P -recursive function of k, i.e., for
some integer d ≥ 1 and polynomials P0(k), . . . , Pd(k) (depending on n), we have

P0(k)g(n, k + d) + P1(k)g(n, k + d− 1) + · · ·+ Pd(k)g(n, k) = 0

for all k ≥ 0.

Proof. The proof is an immediate consequence of equation (2.3), the result of Lipshitz
[4] that the diagonal of a rational function (or even a D-finite function) is D-finite, and
the elementary result [8, Thm. 1.5][10, Prop. 6.4.3] that the coefficients of D-finite series
are P -recursive.

To deal with permutations of the multiset {1k, . . . , nk} when k is fixed, let C{{x}}
denote the field of fractional Laurent series f(x) over C with finitely many terms having
a negative exponent, i.e., for some j0 ∈ Z and some N ≥ 1 we have f(x) =

∑

j≥j0
ajx

j/N ,
aj ∈ C. A series y ∈ C{{x}} is algebraic if it satisfies a nontrivial polynomial equation
whose coefficients are polynomials in x. Any such polynomial equation of degree n
has n zeros (including multiplicity) belonging to the field C{{x}}. In fact, this field is
algebraically closed (Puiseux’ theorem). For further information, see for instance [10,
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§6.1]. Write Calg{{x}} for the field of algebraic fractional (Laurent) series. The next
result is a direct generalization of Theorem 2.2. The main point is that the series zi(x)
and yj(x) are algebraic.

Theorem 2.5. Let k be fixed. Then there exist finitely many algebraic fractional se-
ries y1, . . . , yq, z1, . . . , zq ∈ Calg{{x}} and polynomials P1, . . . , Pq ∈ Calg{{x}}[m] (i.e.,
polynomials in m whose coefficients lie in Calg{{x}}) such that

∑

n≥0

g(n, k)xn =

q
∑

j=1

zj(x)
∑

m≥0

m!Pj(m)yj(x)
m.

Proof. Our proof will involve “umbral” methods. By the work of Rota et al. [5][6], this
means that we will be dealing with polynomials in t (whose coefficients will be fractional
Laurent series in x) and will apply a linear functional ϕ : C[t]{{x}} → C{{x}}. For our
situation ϕ is defined by ϕ(tm) = m!.

Note. The ring C[t]{{x}} consists of all series of the form
∑

j≥j0
aj(t)x

j/N for some
j0 ∈ Z and N ≥ 1, where aj(t) ∈ C[t]. When we replace tm with m!, the coefficient
of each xj/N is a well-defined complex number. The function ϕ is not merely linear;
it commutes with infinite linear combinations of the form

∑

j≥j0
aj(t)x

j/N . In other
words, ϕ is continuous is the standard topology on C[t]{{x}} defined by fn(x, t) → 0 if
degt fn(x, t) → ∞ as n → ∞. See [9, p. 7].

By equation (2.3), we have

g(n, k) = [xk
1 · · ·xk

n]
1

1−∑ xi +
∑

xixi+1

= [xk
1 · · ·xk

n]
∑

r≥0

(

∑

xi −
∑

xixi+1

)r

.

We obtain a term τ in the expansion of (
∑

xi −
∑

xixi+1)
r by picking a term xi or

−xixi+1 from each factor. Associate with τ the graph Gτ on the vertex set [n] where
we put a loop at i every time we choose the term xi, and we put an edge between i and
i+1 whenever we choose the term −xixi+1. Thus Gτ is regular of degree k with r edges,
and each connected component has a vertex set which is an interval {a, a+1, . . . , a+ b}.
Let µ(i) be the number of loops at vertex i and µ(i, i+ 1) the number of edges between
vertices i and i+ 1. Let ν =

∑

µ(i, i+ 1), the total number of nonloop edges. Then

[τ ]
(

∑

xi −
∑

xixi+1

)r

=
(−1)νr!

∏r
i=1 µi! ·

∏r−1
i=1 µ(i, i+ 1)!

. (2.6)

Define the umbralized weight w(G) of G = Gτ by

w(G) =
(−1)νtr

∏r
i=1 µi! ·

∏r−1
i=1 µ(i, i+ 1)!

.
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Thus w(G) is just the right-hand side of equation (2.6) with the numerator factor r!
replaced by tr. At the end of the proof we will “deumbralize” by applying the functional
ϕ, thus replacing tr with r!.

Regarding k as fixed, let

c(m) =
∑

H

w(H), (2.7)

summed over all connected graphs H on a linearly ordered m-element vertex set, say
[m], that are regular of degree k and such that every edge is either a loop or is between
two consecutive vertices i and i + 1. It is easy to see by transfer-matrix arguments (as
discussed in [9, §4.7]) that

F (x, t) :=
∑

m≥1

c(m)xm

is a rational function of x whose coefficients are integer polynomials in t. The point is that
we can build up H one vertex at a time in the order 1, 2, . . . , m, and the information we
need to see what new edges are allowed at vertex i (that is, loops at i and edges between
i and i+ 1) depends only on a bounded amount of prior information (in fact, the edges
at i − 1). Moreover, the contribution to the umbralized weight w(G) from adjoining
vertex i and its incident edges is simply the weight obtained thus far multiplied by
(−1)µ(i,i+1)(t/2)µ(i)+µ(i,i+1). Hence we are counting weighted walks on a certain edge-
weighted graph with vertex set [k − 1] (the possible values of µ(i, i + 1)) with certain
initial conditions. We have to add a term for one exceptional graph: the graph with two
vertices and k edges between them. This extra term does not affect rationality.

We may describe the vertex sets of the connected components of Gτ by a composition
(α1, . . . , αs) of n, i.e., a sequence of positive integers summing to n. Thus the vertex sets
are

{1, . . . , α1}, {α1 + 1, . . . , α1 + α2}, . . . , {α1 + · · ·+ αs−1 + 1, . . . , n}.
Now set

f(n) =
∑

G

w(G),

summed over all graphs G on a linearly ordered n-element vertex set, say [n], that are
regular of degree k and such that every edge is either a loop or is between two consecutive
vertices i and i+ 1. Thus

f(n) =
∑

(α1,...,αr)

g(α1) · · · g(αs),

where the sum ranges over all compositions of n. Note the crucial fact that if G has
r edges and the connected components have r1, . . . , rs edges, then tr = tr1+···+rs. It
therefore follows that if

G(x, t) =
∑

n≥0

f(n)xn,

then

G(x, t) =
1

1− F (x, t)
.
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It follows from equation (2.6) that

∑

n≥0

g(n, k)xn = ϕG(x, t), (2.8)

where ϕ is the linear functional mentioned above which is defined by ϕ(tr) = r!.

By Puiseux’ theorem we can write

G(x, t) =
1

(1− y1t)d1 · · · (1− yqt)dq

for certain distinct algebraic fractional Laurent series yi ∈ Calg{{x}} and integers dj ≥ 1.
By partial fractions we have

G(x, t) =

q
∑

j=1

dj
∑

i=1

uij

(1− yjt)i

=

q
∑

j=1

dj
∑

i=1

uij

∑

m≥0

(

i+m− 1

i

)

ymj t
m

=

q
∑

j=1

∑

m≥0

q
∑

j=1

∑

m≥0

Pj(m)zjy
m
j t

m, (2.9)

where uij, zi ∈ Calg{{x}} and Pj(m) ∈ Calg{{x}}[m]. Apply the functional ϕ to complete
the proof.

Example 2.6. Consider the case k = 2. Let G be a connected regular graph of degree
2 with vertex set [m] and edges that are either loops or are between vertices i and i+ 1
for some 1 ≤ i ≤ m−1. Then G is either a path with vertices 1, 2, . . . , m (in that order)
with a loop at both ends (allowing a double loop when m = 1), or a double edge when
m = 2. Hence

F (x, t) =
1

2
t2x+ (

1

2
t2 − t3)x2 + t4x3 − t5x4 + · · ·

=
1

2
t2x− (t3 − 1

2
t2)x2 +

t4x3

1 + tx
,

and

G(x, t) =
1

1− F (x, t)

=
1 + tx

1 + xt− 1
2
(x+ x2)t2 + 1

2
(x2 − x3)t3

.
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The denominator of G(x, t) factors as (1− y1t)(1− y2t)(1− y3t), where

y1 = x+ 2x2 + 18x3 + 194x4 + 2338x5 + 30274x6 + 411698x7

+5800066x8 + · · ·

y2 =
1

2

√
2x1/2 − x− 1

4

√
2x3/2 − x2 − 33

16

√
2x5/2 − 9x3

−657

32

√
2x7/2 − 97x4 − · · ·

y3 = −1

2

√
2x1/2 − x+

1

4

√
2x3/2 − x2 +

33

16

√
2x5/2 − 9x3

+
657

32

√
2x7/2 − 97x4 + · · · .

Since the yi’s are distinct we can take each Pi(m) = 1. The coefficients z1, z2, z3 are
given by

z1 = −4x− 48x2 − 676x3 − 10176x4 − 158564x5 − 2523696x6 + · · ·

z2 =
1

2
+

1

2

√
2x1/2 + 2x+

19

4

√
2x3/2 + 24x4 +

1007

16

√
2x5/2 + 338x3

+
29507

32

√
2x7/2 + · · ·

z3 =
1

2
− 1

2

√
2x1/2 + 2x− 19

4

√
2x3/2 + 24x4 − 1007

16

√
2x5/2 + 338x3

−29507

32

√
2x7/2 + · · · .

Finally we obtain
∑

n≥0

g(n, 2)xn =
∑

m≥0

m!(z1y
m
1 + z2y

m
2 + z3y

m
3 ).

In Theorem 2.2 we determined the number of equivalence classes of the equivalence
relation ∼ on Sn. Let us now turn to the structure of the individual equivalence classes.
Given w ∈ Sn, write 〈w〉 for the class containing w. First we consider the case where w
is the identity permutation idn = 12 · · ·n or its reverse idn = n · · · 21. (Clearly for any
w and its reverse w̄ we have #〈w〉 = #〈w̄〉.) Let Fn denote the nth Fibonacci number,
i.e., F1 = F2 = 1, Fn = Fn−1 + Fn−2.

Proposition 2.7. We have #〈idn〉 = #〈idn〉 = Fn+1.

Proof. Let g(n) = #〈idn〉 = #〈idn〉, so g(1) = 1 = F2 and g(2) = 2 = F3. If w =
a1a2 · · · an ∼ id, then either an = n with g(n − 1) possibilities for a1a2 · · · an−1, or else
an−1 = n and an = n− 1 with g(n − 2) possibilities for a1a2 · · · an−2. Hence g(n) =
g(n− 1) + g(n− 2), and the proof follows.
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We now consider an arbitrary equivalence class. Proposition 2.9 below is due to Joel
Lewis (private communication).

Lemma 2.8. Each equivalence class 〈w〉 of permutations of any finite subset S of
{1, 2, . . . } contains a permutation v = v1v2 · · · vk (concatenation of words) such that
(a) each vi is an increasing or decreasing sequence of consecutive integers, and (b) every
u ∼ w has the form u = v′1v

′
2 · · · v′k, where v′i ∼ vi. Moreover, the permutation v is unique

up to reversing vi’s of length two.

Proof. Let j be the largest integer for which some v ∼ w has the property that v1v2 · · · vj
is either an increasing or decreasing sequence of consecutive integers. It is easy to see
that vk for k > j can never be interchanged with some vi for 1 ≤ i ≤ j in a sequence of
transpositions of adjacent consecutive integers. Moreover, v1v2 · · · vj cannot be converted
to the reverse vj · · · v2v1 unless j ≤ 2. The result follows by induction.

Proposition 2.9. Let mi be the length of vi in Lemma 2.8. Then

#〈w〉 = Fm1+1 · · ·Fmk+1.

Proof. Immediate from Proposition 2.7 and Lemma 2.8.

We can also ask for the number of equivalence classes of a given size r. Here we
consider r = 1. Let N(n) denote the number of one-element equivalence classes of
permutations in Sn. Thus N(n) is also the number of permutations a1a2 · · · an ∈ Sn for
which |ai − ai+1| ≥ 2 for 1 ≤ i ≤ n− 1. This problem is discussed in OEIS [7, A002464].
In particular, we have the generating function

∑

n≥0

N(n)xn =
∑

m≥0

m!

(

x(1− x)

1 + x

)m

= 1 + x+ 2x4 + 14x5 + 90x6 + 646x7 + 5242x8 + · · · .

3 Multiplicity-free flag h-vectors of distributive lat-

tices.

Let P be a finite graded poset of rank n with 0̂ and 1̂, and let ρ be the rank function
of P . (Unexplained poset terminology may be found in [9, Ch. 3].) Write 2[n−1] for
the set of all subsets of [n − 1]. The flag f -vector of P is the function αP : 2

[n−1] → Z

defined as follows: if S ⊆ [n− 1], then αP (S) is the number of chains C of P such that
S = {ρ(t) : t ∈ C}. For instance, αP (∅) = 1, αP (i) (short for αP{i})) is the number of
elements of P of rank i, and αP ([n− 1]) is the number of maximal chains of P . Define
the flag h-vector βP : 2

[n−1] → Z by

βP (S) =
∑

T⊆S

(−1)#(S−T )αP (T ).

10
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Figure 1: The poset Q12345

Equivalently,

αP (S) =
∑

T⊆S

βP (T ).

We say that βP is multiplicity-free if βP (S) = 0,±1 for all S ⊆ [n− 1].

In this section we will classify and enumerate all P for which βP is multiplicity-free.
First we consider the case when P is a distributive lattice, so P = J(Q) (the lattice of
order ideals of Q) for some n-element poset Q (see [9, Thm. 3.4.1]). Suppose that Q is
a natural partial ordering of [n], i.e., if i < j in Q, then i < j in Z. We may regard a
linear extension of Q as a permutation w = a1 · · ·an ∈ Sn for which i precedes j in w if
i < j in Q. Write L(Q) for the set of linear extensions of Q, and let

D(w) = {i : ai > ai+1} ⊆ [n− 1],

the descent set of w. A basic result in the theory of P -partitions [9, Thm. 3.13.1] asserts
that

βP (S) = #{w ∈ L(Q) : D(w) = S}.
It will follow from our results that the equivalence class containing 12 · · ·n of the equiv-
alence relation ∼ on Sn is the set L(Q) for a certain natural partial ordering Q of [n]
for which βJ(Q) is multiplicity-free, and that Q has the most number of linear extensions
of any n-element poset for which βJ(Q) is multiplicity-free.

In general, if we have a partially commutative monoid M with generators g1, . . . , gn
and if w = gi1gi2 · · · gir ∈ M , then the set of all words in the gi’s that are equal to w
correspond to the linear extensions of a poset Qw with elements 1, . . . , r [9, Exer. 3.123].
Namely, if 1 ≤ a < b ≤ r in Z, then let a < b in Qw if gia = gib or if giagib 6= gibgia . In
the case gi = i and w = 12 · · ·n, then the set of all words equal to w are themselves the
linear extensions of Qw. For instance, if n = 5, gi = i, and the commuting relations are
12 = 21, 23 = 32, 34 = 43, and 45 = 54, then the poset Q12345 is shown in Figure 1.
The linear extensions are the words equivalent to 12345 under ∼, namely 12345, 12354,
12435, 21345, 21354, 21435, 13245, 13254. Write Qn for the poset Q12···n. Define a subset
S of Z to be sparse if it does not contain two consecutive integers.

11



Lemma 3.10. For each sparse S ⊂ [n − 1], there is exactly one w ∈ 〈12 · · ·n〉 (the
equivalence class containing 12 · · ·n of the equivalence relation ∼) satisfying D(w) = S.
Conversely, if w ∈ 〈12 · · ·n〉 then D(w) is sparse.

Proof. The permutations w ∈ 〈12 · · ·n〉 are obtained by taking the identity permutation
id = 12 · · ·n, choosing a sparse subset S ⊂ [n − 1], and transposing i and i + 1 in id
when i ∈ S. The proof follows.

Proposition 3.11. Let Q be an n-element poset for which the flag h-vector of J(Q) is
multiplicity-free. Then e(Q) ≤ Fn+1 (a Fibonacci number). Moreover, the unique such
poset (up to isomorphism) for which equality holds is Qn.

We will prove Proposition 3.11 as a consequence of a stronger result: the complete
classification of all posets Q for which the flag h-vector of J(Q) is multiplicity-free. The
key observation is the following trivial result.

Lemma 3.12. Let P be any graded poset whose flag h-vector βP is multiplicity-free.
Then P has at most two elements of each rank.

Proof. Let P have rank n and 1 ≤ i ≤ n− 1. Then βP (i) = αP (i)− 1, i.e., one less than
the number of elements of rank i. The proof follows.

Thus we need to consider only distributive lattices J(Q) of rank n with at most two
elements of each rank. A poset Q is said to be (2+2)-free if it does not have an induced
subposet isomorphic to the disjoint union of two 2-element chains. Such a poset is also
an interval order [2][9, Exer. 3.15][11]. Similarly a poset is (1 + 1 + 1)-free or of width
at most two if it does not have a 3-element antichain.

Theorem 3.13. Let Q be an n-element poset. The following conditions are equivalent.

(a) The flag h-vector βJ(Q) of J(Q) is multiplicity-free (in which case if βJ(Q)(S) 6= 0,
then S is sparse).

(b) For 0 ≤ i ≤ n, J(Q) has at most two elements of rank i. Equivalently, Q has at
most two i-element order ideals.

(c) Q is (2+ 2)-free and (1+ 1+ 1)-free.

Moreover, if f(n) is the number of nonisomorphic n-element posets satisfying the above
conditions, then

∑

n≥0

f(n)xn =
1− 2x

(1− x)(1− 2x− x2)
.

If g(n) is the number of such posets which are not a nontrivial ordinal sum (equivalently,
J(Q) has exactly two elements of each rank 1 ≤ i ≤ n− 1), then

g(1) = g(2) = 1 and g(n) = 2n−3, n ≥ 3. (3.1)

12



Figure 2: A distributive lattice of rank three

Figure 3: Extending a lattice of rank three

Proof. Consider first a distributive lattices J(Q) of rank n with exactly two elements of
rank i for 1 ≤ i ≤ n − 1. Such lattices are described in [9, Exer. 3.35(a)]. There is one
for n ≤ 3. The unique such lattice of rank three is shown in Figure 2. Once we have
such a lattice L of rank n ≥ 3, we can obtain two of rank n+ 1 by adjoining an element
covering the left or right coatom (element covered by 1̂) of L and a new maximal element,
as illustrated in Figure 3 for n = 3. When n = 1 (so L is a 2-element chain), we say by
convention that the 0̂ of L is a left coatom. When n = 2 (so L is the boolean algebra
B2) we obtain isomorphic posets by adjoining an element covering either the left or right
coatom, so again by convention we always choose the right coatom. Thus every such L
of rank n ≥ 1 can be described by a word γ = γ1γ2 · · · γn−1, where γ1 = 0 (when n ≥ 2),
γ2 = 1 (when n ≥ 3), and γi = 0 or 1 for i ≥ 3. If γi = 0, then at rank i we adjoin an
element on the left, otherwise on the right. Write L(γ) for this lattice. Figure 4 shows
L(01001).

1

0

0

1

0

Figure 4: The distributive lattice L(01001)

13



Suppose that n ≥ 3 and γ has the form δjir, where r ≥ 1, i = 0 or 1, and j = 1− i.
For example, if γ = 0111 then δ = ∅ (the empty word) and r = 3. If γ = 0101100, then
δ = 0101 and r = 2. Consider the lattice L = L(δjir). Then for one coatom t of L
we have [0̂, t] ∼= L(δjir−1). For the other coatom u of L there is an element v < u such
that [v, u] is a chain and [0̂, v] ∼= L(δ). It follows easily that for S ⊆ [n− 1] we have the
recurrence

βL(δijr)(S) =







βL(δijr−1)(S), n− 1 6∈ S

βL(δ)(S), n− 1 ∈ S.
(3.2)

Hence by induction βL is multiplicity-free. Morever, if βL(S) 6= 0, then S is sparse.

Suppose now that J(Q) has exactly one element t of some rank 1 ≤ i ≤ n − 1. Let
[0̂, t] ∼= J(Qq) and [t, 1̂] ∼= J(Q2). Then Q = Q1 ⊕Q2 (ordinal sum), and

βJ(Q)(S) = βJ(Q1)(S ∩ [i− 1]) · βJ(Q1)(S
′ ∩ [n− i− 1]), (3.3)

where S ′ = {j : i + j ∈ S}. In particular, βJ(Q)(S) = 0 if i ∈ S. It follows from ??
Lemma 3.12 and equations (3.2) and (3.3) that (a) and (b) are equivalent.

Let us now consider condition (c). One can easily check that if L(γ) = J(Q(γ)), then
Q(γ) is (2+2)-free and (1+1+1)-free. (Alternatively, if a poset Q contains an induced
2 + 2 or 1 + 1 + 1 then it contains them as a convex subset, i.e., as a subset I − I ′

where I ≤ I ′ in J(Q). By considering linear extensions of Q that first use the elements
of I ′ and then those of I ′ − I, one sees that at least two linear extensions have the same
descent set.) Thus (b)⇒(c).

Conversely, suppose that J(Q) has three elements of the same rank i. It is easy to
see that the restriction of J(Q) to ranks i and i + 1 is a connected bipartite graph. If
an element t of rank i + 1 covers at least three elements of rank i, then Q contains an
induced 1+1+1. Otherwise there must be elements s, t of rank i+1 and u, v, w of rank
i for which u, v < s and v, w < t. The interval [u∧ v ∧w, u∨ v ∨w] is either isomorphic
to a boolean algebra B3, in which case Q contains an induced 1+ 1+ 1, or to 3× 3, in
which case P contains an induced 2 + 2. Hence (c)⇒(b), completing the proof of the
equivalence of (a), (b), and (c).

We have already observed that g(n) is given by equation (3.1). Thus

A(x) :=
∑

n≥1

g(n)xn = x+ x2 +
x3

1− 2x
.

Elementary combinatorial reasoning shows that

∑

n≥0

f(n)xn =
1

1− A(x)

=
1− 2x

(1− x)(1− 2x− x2)
,

completing the proof.
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(c)(a) (b)

Figure 5: Two consecutive ranks

Corollary 3.14. Let Q be an n-element poset for which βJ(Q) is multiplicity-free. Then
e(Q) ≤ Fn+1 (a Fibonacci number), with equality if and only if Q = Q(0101 · · · ) where
0101 · · · is an alternating sequence of n− 1 0’s and 1’s.

Proof. There are Fn+1 sparse subsets of [n−1]. It follows from the parenthetical comment
in Theorem 3.13(a) that e(Q) ≤ Fn+1. Moreover, equations (3.2) and (3.3) make it clear
that βJ(Q)(S) = 1 for all sparse S ⊂ [n− 1] if and only if Q = Q(0101 · · · ), so the proof
follows.

Proposition 3.15. The n-element poset Q(0101 · · · ) is isomorphic to Q12···n. Hence
The set L(Q(0101 · · · ) of linear extensions of Q(0101 · · · ) is equal to the equivalence
class 〈12 · · ·n〉.

Proof. Immediate from Lemma 3.10.

4 Multiplicity-free flag h-vectors of graded posets.

We now consider any graded poset P of rank n for which βP is multiplicity-free. By
Lemma 3.12 there are at most two elements of each rank. If there is just one element t of
some rank 1 ≤ i ≤ n− 1, then let P1 = [0̂, t] and P2 = [t, 1̂]. Equation (3.3) generalizes
easily to

βP (S) =

{

0, i ∈ S

βP1
(S ∩ [i− 1]) · βP2

(S ′ ∩ [n− i− 1], i 6∈ S,

where S1 = {j : i+ j ∈ S}. Hence βP is multiplicity-free if and only if both βP1
and βP2

are multiplicity-free.

By the previous paragraph we may assume that P has exactly two elements of each
rank 1 ≤ i ≤ n − 1, i.e., of each interior rank. There are up to isomorphism three
possibilities for the restriction of P to two consecutive interior ranks i and i + 1 (1 ≤
i ≤ n− 2). See Figure 5. If only type (b) occurs, then we obtain the distributive lattice
L(γ) for some γ. Hence all graded posets with two elements of each interior rank can be
obtained from some L(γ) by a sequence of replacing the two elements of some interior
rank with one of the posets in Figure 5(a) or (c).
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Figure 6: An example of R and its stretching R[2]

First consider the situation where we replace the two elements of some interior rank
of P with the poset of Figure 5(a). We can work with the following somewhat more
general setup. Let R be any graded poset of rank n with 0̂ and 1̂. For 1 ≤ i ≤ n − 1
let R[i] denote the stretching of R at rank i, namely, for each element t ∈ R of rank i,
adjoin a new element t′ > t such that t′ < u whenever t < u (and no additional relations
not implied by these conditions). Figure 6 shows an example. Regarding i as fixed, let
S ⊂ [n]. If not both i, i+1 ∈ S then let S◦ be obtained from S by replacing each element
j ∈ S satisfying j ≥ i+ 1 with j − 1. On the other hand, if both i, i+ 1 ∈ S then let S◦

be obtained from S by removing i+1 and replacing each j ∈ S such that j > i+1 with
j − 1. It is easily checked that

βR[i](S) =







βR(S
◦), if not both i, i+ 1 ∈ S

−βR(S
◦), if both i, i+ 1 ∈ S.

It follows immediately that if βR is multiplicity-free, then so is βR[i].

Now consider the situation where we replace the two elements of some interior rank
of P with the poset of Figure 5(c). Again we can work in the generality of any graded
poset R of rank n with 0̂ and 1̂. If 1 ≤ i ≤ n− 1, let R〈i〉 denote the proliferation of R
at rank i, namely, for each element t ∈ R of rank i, adjoin a new element t′ > s for every
s of rank i such that t′ < u whenever t < u (and no additional relations not implied by
these conditions). Figure 7 shows an example. Note that if R1 denotes the restriction of
R to ranks 0, 1, . . . , i, and if R2 denotes the restriction of R to ranks i, i+ 1, . . . , n, then
R〈i〉 = R1 ⊕ R2 (ordinal sum). Let R̄1 denote R1 with a 1̂ adjoined and R̄2 denote R2

with a 0̂ adjoined. It is then clear (in fact, a simple variant of equation (3.3)) that

βR〈i〉(S) = βR1
(S ∩ [i]) · βR2

(S ′),

where S ′ = {j : i+ j ∈ S}. ??

We have therefore proved the following result.

Theorem 4.16. Let P be a finite graded poset with 0̂ and 1̂. The following conditions
are equivalent:
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Figure 7: An example of R and its proliferation R〈2〉

(a) The flag h-vector βP is multiplicity-free.

(b) P has at most two elements of each rank.

The above description of graded posets with multiplicity-free flag h-vectors allows us
to enumerate such posets.

Theorem 4.17. Let h(n, k) denote the number of k-element graded posets P of rank n
with 0̂ and 1̂ for which βP is multiplicity-free. Let

U(x, y) =
∑

n≥1

∑

k≥2

h(n, k)xkyn.

Then

U(x, y) =
xy2(1− xy2)(1− 3xy3)

1− xy − 5xy2 + 4x2y3 + 5x2y4 − 3x3y5
.

Proof. The factor xy2 in the numerator accounts for the 0̂ and 1̂ of P . Write P ′ =
P − {0̂, 1̂}. We first consider those P ′ that are not an ordinal sum of smaller nonempty
posets. These will be the one-element poset 1 and posets for which every rank has two
elements, with the restrictions to two consecutive ranks given by Figure 5(a,b). We
obtain P ′ by first choosing a poset R whose consecutive ranks are given by Figure 5(b)
and then doing a sequence of stretches. By equation (3.1), the number of ways to choose
R with m levels is 1 for m = 1 and 2m−2 for m ≥ 2. We can stretch such an R by
choosing a sequence (j1, . . . , jm) of nonnegative integers and stretching the ith level of
R ji times. Hence the generating function for the posets P ′ is given by

R(x, y) = xy +
xy2

1− xy2
+
∑

m≥2

2m−2(xy2)m

(1− xy2)m

= xy +
xy2

1− xy2
+

x2y4

(1− xy2)(1− 3xy2)
.
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All posets being enumerated are unique ordinal sums of posets P ′, with a 0̂ and 1̂ adjoined
at the end. Thus

U(x, y) =
xy2

1− R(x, y)

=
xy2(1− xy2)(1− 3xy2)

1− xy − 5xy2 + 4x2y3 + 5x2y4 − 3x3y5
.

As special cases, the enumeration by rank of graded posets P with 0̂ and 1̂ for which
βP is multiplicity-free is given by

R(x, 1) =
x(1− x)(1 − 3x)

1− 6x+ 9x2 − 3x3

= x+ 2x2 + 6x3 + 21x4 + 78x5 + 297x6 + 1143x7 + 4419x8 + · · · .

Similarly, if we enumerate by number of elements we get

R(1, y) =
y2(1− y2)(1− 3y2)

1− y − 5y2 + 4y3 + 5y4 − 3y5

= y2 + y3 + 2y4 + 3y5 + 7y6 + 12y7 + 28y8 + 51y9 + 117y10 + · · · .
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[1] P. Cartier and D. Foata, Problèmes combinatoires de commutation et
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