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We show that the model wave functions used to describe the fractional quantum Hall effect have
exact representations as matrix product states (MPS). These MPS can be implemented numerically
in the orbital basis of both finite and infinite cylinders, which provides an efficient way of calculating
arbitrary observables. We extend this approach to the charged excitations and numerically compute
their Berry phases. Finally, we present an algorithm for numerically computing the real-space
entanglement spectrum starting from an arbitrary orbital basis MPS, which allows us to study
the scaling properties of the real-space entanglement spectra on infinite cylinders. The real-space
entanglement spectrum obeys a scaling form dictated by the edge conformal field theory, allowing
us to accurately extract the two entanglement velocities of the Moore-Read state. In contrast, the
orbital space spectrum is observed to scale according to a complex set of power laws that rule out
a similar collapse.

I. INTRODUCTION

The fractional quantum Hall (FQH) effects are exotic
phases of matter that appear when interacting 2D sys-
tems are subject to large magnetic fields. They are the
foremost example of topologically ordered phases, which
are characterized by their pattern of long range entan-
glement rather than by local order parameters.1 In addi-
tion to signatures such as gapless edge excitations, frac-
tional statistics, and topological ground state degener-
acy, recently ideas originating from quantum informa-
tion, such as the entanglement spectrum, have become
important tools for describing the topological order of
these states.2–4

Given a bipartition of the system into two sub-Hilbert
spaces, H = HA⊗HB, we can decompose any wave func-
tion |Ψ〉 in terms of wave functions which live solely in A
or B:

|Ψ〉 =
∑

a

e−
1
2Ea |ΨAa 〉 ⊗ |ΨBa 〉, (1)

with the restriction that the ‘entanglement spectrum’ Ea
is real and that the ‘Schmidt vectors’ |ΨAa 〉’s form an
orthonormal set (as do |ΨBa 〉’s). It was argued,2 and
later numerically verified,5 that when A,B are chosen
to be regions in space, the entanglement spectrum of the
FQH states are closely related to the conformal field the-
ory (CFT) describing their gapless edge excitations.6 In
fact, for the ‘model’ wave functions such as the Laughlin7

and Moore-Read (MR) states,8 the states of the Schmidt
spectrum are in exact correspondence with the states of
the associated CFT.
A second realm in which entanglement has come to

play an important role is for a set of variational wave
functions called ‘matrix products states’ (MPS)9 in one-
dimension (1D) or ‘tensor networks’10 in higher dimen-
sions. These are the variational states of the highly suc-
cessful density matrix renormalization group (DMRG)
method,11,12 which succeeds because MPS efficiently cap-
ture the structure of entanglement in many body wave

functions.13 The precise relationship between topological
order and tensor network representations is a subject of
ongoing work, but in 1D at least a complete classifica-
tion of symmetry protected topological (SPT) order for
both gapped 1D spin and fermion chains was recently ac-
complished using the MPS representation of the ground
state.14–17 Given a set of sites labeled by i, each with
local basis |mi〉, an MPS |ψ〉 is defined by a set of ‘B-
matrices’,

|ψ〉 =
∑

{α,m}

[

· · ·Bm2
α3α2

Bm1
α2α1

· · ·
]

|· · · ,m2,m1, · · ·〉. (2)

The indices 0 ≤ αi < χ to be traced over are called
‘auxiliary’ indices, which we consider to be states in an
‘auxiliary Hilbert space’ defined on the bonds between
sites. With the proper normalization, the auxiliary states
are in one to one correspondence with the entanglement
spectrum of a cut on the bond. An important insight
from the classification scheme is that a suitable renor-
malization procedure16,18 can be defined which produces
a representative state of the smallest possible χ. For ex-
ample, the χ = 2 state of Affleck, Lieb, Kennedy and
Tasaki (AKLT)19 is representative of the SPT ordered
Haldane phase20 of the spin-1 Heisenberg chain.
The observed simplicity of the FQH model states’ en-

tanglement spectrum suggests they play an analogous
role for the FQH effects as the AKLT state does for the
Haldane phase. To pursue the analogy further, the 1+1D
AKLT wave function can be written as a time ordered
correlation function of a single ‘0 + 1D’ spin- 12 , which
leads to its simple expression as an MPS whose χ = 2
auxiliary Hilbert space is a spin- 12 .

21 The 2+1D FQH
model wave functions can be written as the correlation
function of a 1+1D CFT. Does it follow that the model
FQH states have exact representations as an MPS with
an auxiliary Hilbert space in one to one correspondence
with the CFT, and if so, can they be implemented and
manipulated numerically?
In this paper we show that the model FQH wave func-

tions and their quasiparticle excitations indeed have ex-
act representations as MPSs. As expected the requisite
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structure of the model states is that their wave functions
are the correlation functions of a 1+1D CFT, which im-
plies essentially by definition that they are MPSs whose
auxiliary Hilbert space is the CFT. We also explain how
the edge excitations and ground state degeneracy arise
in the MPS picture.
Working on a cylinder in the Landau gauge, we can

view the system as a 1D chain of orbitals for which the
B-matrices of Eq. (2) are the matrix elements of lo-
cal operators of the CFT. We have implemented these
MPSs numerically for both the fermionic Laughlin and
Moore-Read states on the geometry of an infinitely long
cylinder of circumference L, allowing us to measure ar-
bitrary real-space correlation functions using the stan-
dard infinite MPS algorithms. The infinite cylinder has
a number numerical advantages, including the absence
of boundaries, full translation invariance and no curva-
ture effects. Compared to the torus geometry,22–24 only a
single cut is required to study the entanglement, greatly
simplifying the identification of the entanglement spec-
trum. As we show in Sec. III, the computational com-
plexity of the MPS representation is on the order O(bL)
for b ∼ O(1). However, to achieve the same type of scal-
ing in the traditional Hilbert space representation (say on
a sphere5,25–29) would require N ∼ O(L2) particles and

a Hilbert space dimension scaling as bL
2

. We also note
that previously a conceptually distinct approach found
an MPS for the Laughlin state in which there is one ma-
trix per particle, rather than per orbital.30 However, the
construction does not generalize to other FQH states and
again results in a complexity bN , which implies it cannot
be implemented on the infinite cylinder geometry.
In addition, we introduce an algorithm for calculat-

ing the real-space entanglement spectrum of any state
given as an MPS in the orbital basis. We first use the
larger system sizes provided by the MPS representation
to extract the topological entanglement entropy (TEE) γ
using four different methods; first using the conventional
scaling of the entanglement entropy,2,3

S =
∑

a

Eae
−Ea = aSL− γ +O(L−1), (3)

and second from a similar scaling form we derive for the
lowest entanglement energy, E0 = aEL − γ + O(L−1),
for both the orbital and real-space cuts. We find using
E0 in the orbital cut converges most quickly, and as this
form is applicable to other topologically ordered phases,
it may prove useful in cases where small system sizes are a
constraint. We are able to definitively determine γ using
all four methods for the q = 3, 5 and 7 Laughlin states,
as well as the q = 2 Moore-Read state (cf. Tab. I), which
proved difficult in previous studies.23,25,26,28

Finally, we perform a detailed scaling analysis of the
spectrum for both the orbital and real-space cuts. Dur-
ing the final preparation of this work, a recent preprint31

has conclusively demonstrated earlier arguments that
the real-space entanglement spectrum of the model wave
functions takes the form of the chiral Hamiltonian H per-

FIG. 1. The infinite cylinder geometry for model FQH wave
functions. L is the circumference, x and τ are the coordinates

around and along the cylinder respectively. δτ =
2πℓ2B

L
is the

spacing between Landau level orbitals. A real-space entan-
glement cut between regions A,B would be made along some
fixed τ .

Filling vφ vχ D2 = e2γ

Laughlin

1 2.2568 ± 0.0003 |γ| < 10−7

1/3 1.2956 ± 0.0006 2.996

1/5 0.672 ± 0.009 4.96

1/7 0.28 ± 0.02 6.88

Moore-Read 1/2 1.33 ± 0.01 0.21± 0.01 7.77

TABLE I. Extracted real-space entanglement velocities and
TEE γ for various model wave functions. vφ is the veloc-
ity of the chiral boson, and for the MR case, vχ the veloc-
ity of the chiral Majorana, in units of the magnetic length
ℓB = (~/qB)1/2. For the ν = 1 integer quantum Hall state,
the exact value of the velocity is known to be 4/

√
π. In the

column for total quantum dimension D, we present the value
extracted via the orbital cut E0 around L = 25ℓB . (For ν = 1
integer case, we use the real-space cut S instead.) Refer to
Sec. VI for details on our numerical methods.

turbed by local, irrelevant boundary operators.6,29 This
implies a scaling collapse of the entanglement spectrum in
the limit L→ ∞ for fixed CFT level n. The large system
sizes available here give the first detailed demonstration
of this principle, allowing us to extract the entanglement
velocities for both the Majorana and U(1) modes of the
MR state, as well as the form of the leading irrelevant
corrections.

In contrast, in the orbital cut each entanglement eigen-
value scales as Ea−E0 ∼ L−ζa which precludes the pos-
sibility of collapsing the spectrum. This is contrary to
earlier indications that the orbital spectrum showed the
same linear dispersion,27 though the case studied there
was the ‘conformal limit’ of bosonic wave functions on
a finite sphere. Taking the analogous conformal limit of
the cylinder is trivial, so our results apply to the confor-
mal limit of fermionic wave functions on an infinite cylin-
der. Whether this is a difference between the bosonic and
fermionic cases or due to the smaller system sizes of the
earlier analysis is left open.



3

II. MODEL WAVEFUNCTIONS AND MATRIX

PRODUCT STATES

A number of gapped model wave functions, including
those of the FQH, can be written as the correlation func-
tions of a field theory in one lower dimension.32 In the
2+1D FQH effect, for example, the model wave func-
tions are correlation functions of a 1+1D chiral conformal
field theory (CFT).8 Other examples with this structure
include the AKLT states, the Toric code,33 and certain
BCS superconductors.34 As we will illustrate in the case
of the FQH effect, this structure implies that the state has
an exact implementation as an MPS or a tensor network.
The auxiliary Hilbert space of the tensor network is in
correspondence with the Hilbert space of the associated
lower dimensional field theory. In turn, the edge excita-
tions and the entanglement spectrum of tensor networks
are known to be closely related;35 this relationship takes
a particularly elegant form for the FQH effect due to the
stringent constraints of conformal invariance in 2D.31

The simplest example is the Laughlin state on an in-
finite cylinder, which can be written as the correlation
function of a chiral boson φ(z),8

ΨL(zi) =

N
∏

i<j

sinh
(

(zi − zj)
π
L

)q
e
− 1

2ℓ2
B

∑

i
τ2
i

(4)

=

〈

exp

[

i
√
q
N
∑

a=1

φ(za)− i
√
qρ

∫

d2z φ(z)

]

〉

φ

.

Throughout we will use z = x + iτ as a complex co-
ordinate on the cylinder, where x runs around its cir-
cumference of length L and τ runs along its length, as
illustrated in Fig. 1. The filling fraction is ν = 1

q , the

magnetic length is ℓ2B = ~

eB , and the density of electrons

is ρ = 1
2πℓ2

B
q
.

The chiral boson φ is a free field characterized by its
correlation function on the plane or cylinder,

〈φ(z)φ(z′)〉plane = − log(z − z′),

〈φ(z)φ(z′)〉cyl = − log sinh
[

π
L(z − z′)

]

. (5)

In addition to an insertion ei
√
qφ(zi) for each electron, it is

necessary to include a neutralizing ‘background charge’
Obc = −i√qρ

∫

d2z φ(z). The background charge intro-
duces some subtleties, as the branch cut in the bosonic
propagator has a phase ambiguity equivalent to a choice
of gauge for the electrons, which we will address at a later
point.
We can write a second quantized version of Eq. (4)

using a coherent state wave function in the vari-
able ψ (which is a complex/Grassmann number for
bosons/fermions), which in the thermodynamic limit is

ΨL[ψ] = 〈0|e
∫

d2z ψ(z)Ψ̂(z)|ΨL〉

=
〈

e
∫

d2z[ei
√

qφ(z)ψ(z)−i√qρφ(z)]
〉

φ
. (6)

The notation is rather subtle as we are tying together
two theories: the physical particles in 2+1D, with coher-
ent state coordinate ψ(z), and the path integral over the
auxiliary space of the 1+1D chiral boson φ, characterized
by the correlation functions 〈·〉φ. Number conservation

is enforced by the U(1) symmetry of the chiral boson.
The structure of Eq. (6) is identical to that of a ‘con-

tinuous matrix product state’ (cMPS) defined in Ref. 36,
which we review briefly. Starting with a lattice system of
bosons or fermions at sites with positions τ , we first pass
from the occupation basis {|mτ 〉} to the coherent state
basis {|ψτ 〉} by defining

Bαα′ [ψτ ] ≡
∑

mτ

〈ψτ |Bmτ

αα′ |mτ 〉. (7)

Second, we note that the trace over the auxiliary states
{α} is formally equivalent to a path integral over a 1D
system, with the B playing the role of transfer matrices.
Anticipating the continuum limit, we assume there are
matrices H,V in the auxiliary Hilbert space such that
B[ψ(τ)] = eH(τ)+V (τ)ψ(τ). We can then take the con-
tinuum limit of the MPS by analogy to the usual time-
ordered path integral, which defines a cMPS,

Ψ[ψ] = Traux

[

T e
∫

Lτ
0

dτ [H(τ)+V (τ)ψ(τ)]
]

. (8)

Comparing the cMPS to the second quantized version of
the Laughlin state, (6), we see that they are equivalent if
we take the physical Hilbert space at each slice to be that
of particles on a ring of circumference L, and the auxil-
iary Hilbert space to be that of a chiral boson. In this
case, H is precisely the Hamiltonian of the chiral boson
(plus the background charge Obc), while V is a vertex op-
erator, ei

√
qφ. This structure was also recently noted in

Ref. 31, where, in the MPS language, they find the dom-
inant eigenvector of the ‘transfer matrix’13 of the cMPS,
from which the entanglement Hamiltonian follows.
While the cMPS representation is convenient from an

analytic perspective, computationally it is desirable to
have the discrete version expressed in the basis of lowest

Landau level (LLL) orbitals. Letting w = e−
2πi
L
z , in

Landau gauge the orbitals can be written as

ϕn(z) ∝ e
− 1

ℓ2
B
(iτnx+ 1

2 (τ−τn)
2)

= wne
− 1

2ℓ2
B
(τ2

n+τ
2)
, (9)

where τn = 2πn
L ℓ2B is the guiding center for the nth or-

bital. Viewing the orbitals as the sites of an infinite 1D
chain, we want to arrive at a discrete MPS as defined
in (2), which requires finding the appropriate matrices
Bmαα′ . Based on the cMPS, we expect α will be in one-
to-one correspondence with the states of the associated
CFT.
In order to extract the occupation number at orbital

n, we take advantage of the fact that orbitals of the LLL
(in the Landau gauge) are labeled by momentum. When
acting on a many-body state in the LLL, we can then
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replace the destruction operator ψ̂n for orbital n with a
contour integral around the cylinder,

ψ̂n −→ e
τ2
n

ℓ2
B

∮

τ=τn

dw

2πi
w−n−1ψ̂(w). (10)

We chose to perform the integrals at τn, though with an
appropriate change in normalization a different location
could be chosen.
The gauge of the cMPS, however, depends on a branch

cut prescription for the background charge. It is conve-
nient to choose the cut to consistently occur at some fixed
x coordinate, such as the boundary of −L/2 < x < L/2.
This choice of gauge does not produce the Landau gauge;

they differ by a phase eixτℓ
−2
B . Choosing this branch cut

prescription for φ(z), but keeping ψn to be the destruc-
tion operators for the Landau gauge, we find the Laughlin
and Moore-Read states can be brought to the form

Ψ[ψn] =

〈

e

∑

n

∮

τ=τn

dw
2πi

w−1
[

V(w)ψn− i√
q
φ(w)

]〉

CFT

, (11)

where

V(w) = ei
√
qφ(w) (Laughlin), (12a)

V(w) = χ(w)ei
√
qφ(w) (Moore-Read). (12b)

Eq. (11) looks like free time evolution governed by the
Hamiltonian of the chiral CFT, H , punctuated by inter-
actions at τn. As orbital ordering coincides with time
ordering, we can pass to the Hamiltonian picture by in-
serting resolutions of the identity 11 =

∑

α |α〉〈α| at po-
sitions τ = τn ± ǫ, where α label all states of the CFT.
A resulting unit cell looks like

Ψ[ψn] =
∑

{α}

[

· · · 〈αn+1|e−δτH |αn〉

〈αn|eV0ψn− i√
q
φ0 |αn−1〉 · · ·

]

, (13)

where the operator

V̂0 ≡
∮

dw

2πi
w−1V(w) (14)

is precisely the ‘0th mode’ of the operator V(w), and like-
wise φ0 is the zero-mode of the chiral boson.
The resulting transfer operators are of two types. For

the ‘free’ segments τ ∈ (τn, τn−1), the transfer operator
is

U(δτ) ≡ e−δτH , U(δτ)αβ = δαβe
−δτEα (15)

where α again runs over states of the CFT, with energies
Eα, and δτ = 2π

L ℓ
2
B. At the location of each site we define

a transfer operator

Tαα′ [ψn] ≡ 〈α|e V̂0ψn− i√
q
φ0 |α′〉 (16)

(a)Structure of the orbital MPS.

(b)Definition of the B-matrix.

(c)Structure of MPS with a quasihole insertion Q.

FIG. 2. The structure of the orbital MPS. (a) U is free time
evolution of the CFT, punctuated by perturbations T at τ =
τn. (b) The B-matrices are defined by combining U and T .
(c) A quasiparticle is inserted by placing the matrix elements
of the vertex operator Q in the correct time-ordered positions.
It can be absorbed into either of the adjoining B-matrices.

Stringing the transfer matrices together, we arrive at
the exact MPS,

Ψ[ψn] =
∏

n

U(δτ)T [ψn]. (17)

as illustrated in Fig. 2(a). We have suppressed the im-
plicit summation over the CFT states α. The above is in
‘coherent state’ form; to convert to the occupation basis,
{|m〉} we define the usual occupation basis B-matrices
as

∑

m

Bm(m!)
3
2ψm ≡ U(12δτ)T [ψ]U(12δτ) (18)

as shown in Fig. 2(b). Because the Laughlin and Moore-
Read states are described by free CFTs, both T and U ,
and hence B, can be calculated exactly at negligible nu-
merical cost (for the details of this calculation, we refer to
Appendices A and B). For an arbitrary CFT, their calcu-
lation is more involved but nevertheless tractable using
formulas developed for the ‘truncated conformal space’
approach to perturbed CFTs.37

In order to obtain wave functions on a half or finite
cylinder, one simply truncates the MPS using the vac-
uum of the CFT as a boundary condition for the severed
auxiliary bonds. If neutral excited states are used as
the boundary condition, these produce the correspond-
ing model edge excitations.38 This structure is analogous
to the spin- 12 degree of freedom at the boundary of an
AKLT chain, which arises from the two choices of bound-
ary condition for the χ = 2 MPS.
The ground state degeneracy of the phase can also

be understood. If the phase is d-fold degenerate, it is
known39 that there are d-primary fields in the CFT, and
the states of the CFT partition into d families which ‘de-
scend’ from each of these primary fields. Each family is
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invariant under the action of the electron operator V(w),
so it follows that a given bond can be consistently trun-
cated to one of these d families. The d choices on the
bond provide the d ‘minimal entanglement states’.40 Ap-
pendices A and B include a more detailed explanation.
The ‘thin torus’ wave functions can also be understood

as a limiting case of our construction.41,42 If we truncate
the MPS by keeping only the ‘highest weight’ states of
the CFT, i.e., those of the lowest energy within each
family of the CFT, we arrive at a χ = 1 MPS. We also
note that an approximate χ = 2 MPS for the Laughlin
state was recently found;43 in our language this can be
understood as truncating the CFT to the states |P | ≤ 1.
We now explain how the two conserved quantities

of the LLL problem, particle number and momentum
(sometimes called ‘center of mass’), can be assigned to
the states of the CFT. In the orbital basis we define the
conserved quantities to be

Ĉ =
∑

j

qN̂j − p (particle number), (19a)

K̂ =
∑

j

j(qN̂j − p) (momentum), (19b)

where j is the orbital index and we have included a filling
factor dependent scaling (ν = p/q) so that both remain
finite in the thermodynamic limit. If a state is invariant
under a U(1) symmetry transformation, the states of the
Schmidt spectrum can be assigned definite charge. Con-
sequently, the entanglement spectrum on bond n̄ ∈ Z+ 1

2
can be labeled by pairs (Cn̄,Kn̄). The states of the aux-
iliary CFT have quantum numbers as well, in particular
the total momentum |P | of the CFT and the winding
number N of the boson (see Appendix A for detailed
definitions). The pairs (N, |P |) and (Cn̄,Kn̄) are related
by

Cn̄ = N, (20a)

Kn̄ = q|P |+ 1

2
N2 + n̄N, (20b)

which explains how the previously observed offsets of the
|P | = 0 levels depend on the number sector and bond
location.

III. CONVERGENCE PROPERTIES AND

COMPUTATIONAL COMPLEXITY

For numerical purposes we must truncate the MPS by
keeping only the χ most important states in the entan-
glement spectrum. Most MPS algorithms (such as mea-
suring correlation functions) can then be computed with
time O(Mχ3) and storageO(χ2), whereM is the number
of sites involved in the measurement. We argue that to
simulate the state at some fixed precision we must keep
χ ∼ eαcL/v(cL/v)−1/2 where c is the central charge of the
entanglement spectrum, v is its ‘entanglement velocity,’
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FIG. 3. Numerically computing the TEE γ for the ν = 1/5
Laughlin state (top) and the ν = 1/2 Moore-Read state (bot-
tom). γ is extracted from both orbital (squares) and real-
space (circles) cut, via the entanglement entropy S (filled)
and the lowest entanglement energy E0 (empty), by perform-
ing windowed fits to the form S(L), E0(L) = aS,EL − γ at
various circumferences L. The horizontal lines marks the val-
ues of γ = logD where D2 = 4, 5, 6 (top) and 7, 8, 9 (bottom).
As L → ∞, the extracted value of γ approaches their theo-
retical values of 1

2
log 5 and 1

2
log 8 respectively. In the latter

case we can see that L & 20ℓB is required for the TEE to be
extracted with reasonable accuracy. (Insets) S vs. L/ℓB for
the four cases.

and α is a non-universal constant of order 1. In contrast
to exact diagonalization, the complexity scales exponen-
tially only in the circumference of the cylinder, rather
than its area. Use of the conserved quantum numbers
drastically reduces the computational time, but does not
alter the exponential complexity.

Following Kitaev and Preskill’s derivation of the topo-
logical entanglement entropy,2 we proceed under the as-
sumption that the ‘thermodynamic’ properties of the en-
tanglement spectrum, such as the entanglement entropy,
take the same form as those of the auxiliary CFT. How-
ever, there is no reason to expect the velocities that ap-
pear will be universal, so in what follows all powers of L/v
should be understood to have non-universal coefficients.
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The exact status of this assumption for the orbital basis
is somewhat unclear, because as we will show the orbital
spectrum does not collapse to the CFT; nevertheless the
appearance of γ in the entropy S, the scaling form of
the lowest eigenvalue E0, and the collapse we find for the
convergence of S with increased χ appear to behave as
expected.
The density of states ρ(E) for a modularly invariant

CFT is given by the ‘Cardy’ formula.44 However, we must
take into account the fact that only the identity sector
of the CFT, ‘11’, belongs to the entanglement spectrum
(at least for the ‘minimally entangled’40 ground states).
The corresponding partition function and density opera-
tor are defined as

Z1 = Tr11 e
−βHe , (21)

ρ̂ = Z−1
1 Tr11 e

−He . (22)

The derivation of the Cardy formula requires a modular
transformation, but the required partition function is not
modularly invariant. This results in the explicit appear-
ance of the modular S matrix, − log(S1

1) = γ, where γ is
the topological entanglement entropy. Taking this term
into account, the density of states is

ρ(E)dE =
dE

4E

√

2

π
e−γe

√

π(c+c̄)EL

3v

(

π(c+ c̄)EL

3v

)1/4

.

(23)

All the other thermodynamic properties follow from
ρ(E). It is convenient to introduce the dimensionless
variable µ,

µ ≡
(

π(c+ c̄)EL

3v

)1/4

. (24)

We can calculate the partition function and entanglement
entropy,

Z(β) =

∫

ρ(E)e−βEdE

=

√

2

π
e−γ

∫

eµ
2− 3v

π(c+c̄)
β
L
µ4

dµ

= e
π(c+c̄)

12
L
βv

−γ+..., (25)

S = ∂β−1(−β−1 lnZ)
∣

∣

β=1

=
π(c+ c̄)

6

L

v
− γ + . . . . (26)

The partition function (25) is evaluated via steepest de-

scent about the saddle point µ∗ =
√

π(c+c̄)
6v

L
β . As the

entanglement spectrum is pi = e−Ei/Z(1), a particular
consequence of Eq. (25) is that the lowest entanglement
level is p0 = e−[aEL−γ] for some non-universal aE . A
similar result was recently obtained in.31 As illustrated
in Fig. 3, for both the orbital and real-space cuts γ can
be extracted from the scaling of p0 with equivalent or
better accuracy as from S.
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FIG. 4. Convergence of the orbital entanglement entropy SΛ

for the q = 3 Laughlin state as the number of Virasoro levels
kept (nΛ) is increased. (Inset) For various circumferences
19ℓB ≤ L ≤ 40ℓB , we calculate the entanglement SΛ of the
MPS keeping only the lowest nΛ Virasoro levels of the CFT.
For large enough nΛ, SΛ converges to the exact entanglement
entropy S∞. We expect the convergence to be controlled by

the parameter µ − µ∗ ∝ n
1/4
Λ

− (aL)1/2 for some a. (Main
figure) We plot the convergence of the entanglement entropy,

eSΛ−S∞ as a function of n
1/4
Λ

−(aL)1/2, with a ≈ 0.0875 giving
a good collapse.

The steepest descent analysis shows that the bulk of
the probability comes from a region within O(1) of the
saddle point µ∗. At this point the number of states χ
with E < E∗ is

χ(E∗) =

∫ E∗

ρ(E) dE ∼ e−γ√
2π

e
π(c+c̄)

6
L
v

√

π(c+c̄)
6

L
v

. (27)

Alternately, we can define the number of CFT Virasoro
levels n∗ required above the vacuum state,

n∗ ≡ E∗L

2πv
=

(c+ c̄)

24

(

L

v

)2

. (28)

To study the convergence properties, suppose we only
keep states such that E < EΛ. The cutoff partition func-
tion ZΛ is

ZΛ(β) =

∫ EΛ

dE ρ(E) e−βE

∼ Z∞(β)
1

2
erfc

(

−
√
2(µΛ − µ∗)

)

, (29)

with resulting truncation error

ǫΛ ≡ 1− ZΛ(1)

Z∞(1)
=

1

2
erfc

(
√
2(µΛ − µ∗)

)

. (30)

While the specific functional form may not remain uni-
versal, it suggests that convergence is controlled by the

dimensionless factor µΛ − µ∗ ∼ n
1/4
Λ − (aL)1/2. In the
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inset of Fig. 4, we plot the convergence of the entangle-
ment entropy SΛ as a function of the number of Vira-
soro levels nΛ kept at various circumferences L. We then
scale the data horizontally by plotting as a function of

n
1/4
Λ − (aL)1/2 for a numerically fit value of a. Without

any further vertical scaling, the data appears to collapse.
This is somewhat surprising given the irregular structure
of the orbital spectrum, but does validate the predicted
form nΛ ∼ L2. Choosing an acceptable fractional error
for SΛ, in large L limit we then conclude from the Cardy
formula the required dimension of the MPS to simulate
at fixed accuracy is

χ ∼ eαcL/v(cL/v)−1/2 (31)

as claimed.

IV. QUASI-PARTICLE EXCITATIONS

We now discuss how to introduce quasiparticles into
the MPS. In the ‘conformal block’ approach to model
wave functions,8 a quasiparticle excitation at η is intro-
duced by inserting an appropriate operator Q(η) into the
CFT correlator,

Ψ[ψn; η] =

〈

Q(η) e
∑

n

[

V0(τn)ψn− i√
q
φ0(τn)

]
〉

CFT

. (32)

We will focus on the Laughlin and Moore-Read quasi-
holes, for which Q is a local operator that takes a partic-
ularly simple form,

Q(η) = eiφ(η)/
√
q (Laughlin), (33a)

Q(η) = σ(η)eiφ(η)/2
√
q (Moore-Read). (33b)

Here σ(η) is the chiral part of the Ising order oper-
ator. Quasiparticles require ‘quasi-local’ operators,45

which can also be included in the MPS, but we have
deferred their implementation.
To incorporate the quasihole into the MPS, we first

explicitly time order Eq. (32) by bringing the insertion
Q(η) between the orbitals τn+1 ≥ ητ ≥ τn. For fermions,
this introduces a sign for each electron in the region τ >
ητ . As detailed in Appendix D, this sign can be written
as sπ̂0/

√
q, where π̂0 is conjugate to the bosonic zero-mode

and s = ±1 for bosons and fermions respectively.
We calculate the matrix elements of Q at τ = 0,

Qα,β = 〈α|sπ̂0/
√
qQ(ηx)|β〉, (34)

and then insert Q into the ‘free’ evolution on the bond
between sites n, n+ 1,

U(δτ) → U(τa)QU(τb), τa + τb = δτ, (35)

where τa = τn+1 − ητ . The structure of the resulting
MPS is illustrated in Fig. 2(c). For further details on
calculating Q for the Laughlin and MR states we refer to
Appendix D.

−30 −20 −10 0 10 20 30
τ

0

5

10

15

20

25

x

FIG. 5. The real-space density ρ(τ, x) of a q = 5 Laughlin
state with five quasi-holes on an infinite cylinder of circum-
ference L = 30ℓB . Distances are measured in units of ℓB .
(The top and bottom edges are identified.)

We have implemented the Laughlin quasiholes numer-
ically, with a resulting density profile for a collection of
quasiholes in the q = 5 state shown in Fig. 5. As a sim-
ple test of the result, we can explicitly evaluate the Berry
connection associated with the transport of one quasihole
around another,

θ =

∮

dA =

∮

dη 〈η|(−i∂η)|η〉. (36)

We keep one quasihole fixed at η = 0, while a second
follows a discretized path ηi chosen to wind around the
other, which defines a discretized connection eiAij =
〈ηi|ηj〉. We then integrate the connection after sub-
tracting out a similar phase in the absence of the sec-
ond particle. Calculating the inner product between
two matrix product states can be computed with com-
plexity O(A/ℓ2B χ3), where A is the area of the region
enclosing the quasiholes in question. Working on an
L = 16ℓB cylinder and ensuring the quasiparticles re-
main at least a distance of 8ℓB apart, we find a statisti-
cal angle θq=3 = 2.0992, compared to the prediction of
2π
3 = 2.0944. The computation takes about 1 minute.
While the result is already well established for the

Laughlin states,46 it would be worthwhile to explic-
itly calculate the non-abelian Berry connection for the
Moore-Read quasiparticles. As we have computed
the form of the Q-matrices, we believe this would be
tractable.

V. REAL-SPACE ENTANGLEMENT

SPECTRUM

Finally, we present an algorithm for computing the
real-space entanglement spectrum (RSES) of quantum
Hall states on both finite and infinite cylinders. In con-
trast to the orbital cut,25 which cuts the system into two
sets of LLL orbitals, in the real-space cut we cut the
system into two regions of physical space. Previously
this was accomplished analytically for the free ν = 1
case,47,48, numerically using Monte Carlo49, and large
scale SVD of explicit wave functions.28,29 Our technique
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SVD

L R L R

split

(a)Split operation.

L RLR

SVD

L R

swap

(b)Swap operation.

FIG. 6. The splitting and swapping procedure performed on
an MPS. The two operations allow us to compute the real-
space entanglement cut from an orbital MPS.

is not specific to the model wave functions, and provides
a means for computing the RSES of non-model states
calculated from DMRG. As the scaling form of the en-
tanglement spectrum only appears for the real-space cut,
this may prove an important diagnostic for non-model
states. For simplicity, we assume a wave function in the
LLL, and consider an entanglement cut running around
the cylinder at τ = τc.
The first step of the algorithm is to ‘split’ each orbital

ϕn(z) [Eq. (9)] into components ϕnR/L supported on the
right and left of a cut at τc,

ϕn(z) = θ(τ − τc)ϕn(z) + θ(τc − τ)ϕn(z)

= gnLϕnL(z) + gnRϕnR(z). (37)

We normalize the split orbitals by factors gL/R such that
{ϕnL, ϕnR} remains an orthonormal basis. Expressing
the state in terms of the ‘split’ basis amount to appending
isometries I onto the B-matrices,

Bmαβ → BmαβI
kl
m , Iklm =

√

(

m

k

)

gkL g
l
R δk+l,m, (38)

where the factors g implicitly depend on the orbital loca-
tion. Because the orbitals ϕn are exponentially localized

about τn =
2πℓ2B
L n, we can work at some fixed accuracy

by splitting only the M ∼ O
(

L
ℓB

)

orbitals nearest to the

cut. In practice, we find M = 1.5L/ℓB is sufficient to
obtain a converged spectrum. As illustrated in Fig. 6(a),
the affected B matrices are then split using a singular
value decomposition (SVD) equivalent to the truncation
step of time evolving block decimation (TEBD).50 As
with TEBD, the splitting step preserves the ‘canonical’
form of the MPS, implying that the bipartition about the
new bond is a Schmidt decomposition.
After the splitting step we have addedM B-matrices to

the chain, with orbitals alternating between the left and
right sides of the cut. Choosing some particular bond to
represent the location of the cut (usually the bond at the

center of the set of sites we have split), we sort the MPS
through a series ofO(M2) swapping procedures, bringing
all indices associated to the left region to the left of the
cut, and likewise for the right. As illustrated in Fig. 6(b),
for each swap we form a two-site wave function, permute
the right and left legs to bring them to the desired order,
and then split the wave function using SVD to obtain
a new pair of B-matrices. Again, the canonical form
of the MPS is preserved during this procedure, so after
performing the required swaps the bond designated as
the cut gives the real-space Schmidt decomposition.

Depending on the initial bond dimension χ, it may be
necessary to truncate the new B-matrices by keeping only
the largest singular values of the SVD. It appears that
the low lying states are not affected by truncation of the
highest lying states, but the convergence with increased
χ should be checked on a case by case basis.

VI. ENTANGLEMENT SPECTRUM: ORBITAL

CUT VS. REAL-SPACE CUT

In this section we study the scaling form of the RSES,
then contrast it to the orbital spectrum. As illustrated
for the q = 3 Laughlin state in Figs. 7, and for the MR
state in Figs. 11, the orbital and real-space cuts agree in
their counting, which is that of the CFT, but differ in the
scaling of the energy levels Ei present in the spectrum.

Kitaev and Preskill2 first noted that the known univer-
sal features of topological entanglement entropy could be
explained if the energies of the entanglement spectrum
coincided with those of the chiral CFT. A physical argu-
ment was later provided in Ref. 6. Recall that the states
of the CFT are grouped into ‘families’ associated with
each primary field φh,

39 in this context one per degen-
erate ground state on a cylinder, and let P̂φh

denote a
projection operator onto the corresponding family. The
basic conclusion of Ref. 6 was that the reduced real-space

density matrix of a topological state with gapless chiral
edge modes takes the form

ρ̂L =
∑

h

phP̂φh
e−vĤ+O(kℓB)P̂φh

. (39)

Here Ĥ is the Hamiltonian of the CFT, which we will
take to have velocity 1, so an ‘entanglement velocity’ is
included as a factor v. Ĥ is perturbed by more irrelevant
boundary operators of order (kℓB)

ν
for ν > 1. The coef-

ficients ph depend on the degenerate ground state being
considered. During the final preparation of this work,
this scaling form was put on firm footing for the model
FQH states.31

While the irrelevant operators generally introduce ‘in-
teraction terms’ to the entanglement Hamiltonian, to il-
lustrate the expected behavior we consider the simplest
type of correction, a dispersive term. For the Laughlin
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FIG. 7. Entanglement spectra (in the neutral charge sector)
of the orbital (left) and real-space (right) cut of the q = 3
Laughlin state at L = 32ℓB . The energies E are plot against
their momentum in units of ∆k = 2π

L
. Both spectra have the

counting 1, 1, 2, 3, 5, 7, 11, etc., consistent with that of a
chiral boson CFT. However, the energy levels E have vastly
different quantitative behaviors in the two cases, which we
investigate in Fig. 8. The dashed line on the right is of the
form vǫ(k) = vk[1 + u2k

2 + u4k
4], with u2, u4 fit from the

highest level of each sector, which we associate to the state
a†
n|0〉. The fits appear to rule out a similar term u1, but larger

sizes and a treatment of the ‘interactions’ would be required
to rule at u3 if it is indeed absent.

state this takes the form

Ẽa ≡ Ea − E0 ∼ v

[

∑

n>0

ǫ(kn)a
†
nan +

2π

L

N̂2

2q

]

, (40)

ǫ(k) = k[1 + u2k
2 + u4k

4 + · · · ], kn =
2π

L
n. (41)

which accounts for the ‘branches’ apparent in the real-
space spectrum (Fig. 7 right), each of which is associated
with the presence of a new mode a†n. The dispersion re-
lation can be fit from the heights of these branches. Note
that only odd powers of k can appear in the dispersion of
a chiral boson. In general, if the irrelevant perturbations
descend from the identity boundary operator, only odd
powers in k should appear.
In order to accurately extract the entanglement veloc-

ity, we consider the scaling of the shifted spectrum ẼL
2π

with increased L. Based on these scaling ideas, a state
with momentum k = 2π

L (nφ+nχ) should have an energy

ẼaL

2π
= vφ(∆φh + nφ) + vχ(∆χh + nχ)

+ t2aL
−2 + t4aL

−4 + · · · (42)

where nφ and nχ are integers corresponding to the mo-
menta of the U(1) and Majorana sectors. The offsets
∆φ/χh are the scaling dimensions of the highest weight
state in the sector, which depends on the bond and num-

ber sector in question (for the Laughlin states, it is N2

2q ).

For the MR case we have included a detailed exposition
of this structure in Appendix C.
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(a)Real-space cut: plot of ẼL/2π vs. −1/L2.
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(b)Orbital cut: log-log plot of ẼL/2π vs. L.

FIG. 8. The relative entanglement energies for the real-space
cut and orbital cut of the Laughlin state at ν = 1/3. (Data
shown for the charge neutral sector, L shown in units of ℓB.)
The states at different momenta are distinguished by their

colored symbols. (a) For the real-space cut, we plot ẼL
2π

; the
relative entanglement energy (relative to E0) times the cylin-
der radius, as a function of −1/L2. The energies are extrapo-
lated to L = ∞ using a quadratic fit t0 + t2L

−2 + t4L
−4, and

land on multiples of the entanglement velocity v ≈ 1.2956.

(b) For the orbital cut, we show ẼL
2π

on a log-log plot, show-
ing that the data has a linear behavior with negative slopes.
The lines shown results from a linear fit to the last few data
points. This demonstrates a nonlinear relation Ẽa ∝ L−ζa

with ζa > 1.

Focusing on the identity sector ∆h = 0 of the real-space
q = 3 Laughlin cut, Fig. 8(a) tracks the scaled relative

entanglement energy levels ẼL
2π as a function of L−2, ex-

trapolating their value as the circumference approaches
infinity. As indicated by the right-most tics of the fig-

ure, ẼL2π approaches nφvφ for large L, where vφ ≈ 1.2956.
The data clearly confirms that the real-space entangle-
ment spectrum approaches a linear dispersion with fixed
velocity, and the success of the fit justifies the absence
of L−1 and L−3 perturbative terms. We have tabulated
the velocities for the q = 1, 3, 5 and 7 in table I. The
relation vq=1/vq=3 ≈

√
3 noted previously28 appears not



10

0

2

4

6

8

20 25 30 L = ∞

Ẽ
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FIG. 9. Extrapolating the entanglement energies ẼL/2π for
the Moore-Read state at ν = 1/2, using a cut associated with
counting 1, 1, 3, 5, 10, etc. for N = 0 charge sector (cf.
App. C). (Left) Here we show that the energies for the first
three momenta extrapolate to integral combinations of vφ and
vχ, the velocities of the chiral boson and Majorana mode re-
spectively. The major tics on the vertical axis labels multiples
of vφ, the minor tics label combinations nφvφ + nχvχ for in-
tegers nφ and nχ (and ℓB set to 1). States with momentum
4 2π

L
extrapolate near, but not exactly, to the theoretical pre-

diction, which we attribute to smallness of the system sizes.
The superimposed lines are quadratic fits over the largest few
circumferences, extrapolating to give vφ ≈ 1.33, vχ ≈ 0.21.
(Right) The theoretical placement of the energy levels for the
state. Here the boson counting (1,1,2,3,5) and the Majorana
counting (1,0,1,1,2) are apparent. See App. C for detailed
explanation of the counting in this plot and data for other
charge sectors.

to continue to higher q.

This same technique can be used for more complicated
wave functions such as the Moore-Read state, as shown
in Fig. 9. We extrapolate the velocities of both the charge
and neutral modes to be vφ ≈ 1.33 and vχ ≈ 0.21 respec-
tively. We note that the extrapolation is only possible for
sufficiently large circumferences L & 20ℓB, which is well
within reach using the MPS representation of the wave
function.

Figure 8(b) shows that in the orbital-cut, Ẽ does not
extrapolate to the CFT linear dispersion. Rather, they
appear to follow power law decays Ẽa ∼ L−ζa with dif-
ferent ζa for each state a. For example, the fit for k = 2π

L
gives ζ ≈ 3.0, while ζ ≈ 2.3, 2.1 for the two set of states
at k = 2 2π

L . (In the real-space case, ζ = 1 for all the
levels.) Unfortunately, the range of data available is in-
sufficient to draw any conclusions.

Finally, we note that one can extract the topological
entanglement entropy in either types of cut. This was
shown in Fig. 3 where we used both the entropy S and
the zero momentum state E0 as a function of L. For each
L we perform a windowed fit; presenting the intercept of

the best line fit through the neighboring points. While
it is possible to extract γ from any of the four computed
quantities, we can see that the real-space cut is less oscil-
latory than the orbital cut. At the same time, using the
orbital cut E0 seems to give a much better convergence
of γ than any of the other methods, i.e., the system size
L required to computed D = eγ via the orbital E0 to
accuracy ±0.5 is the smallest. Table I lists the entangle-
ment velocities and TEE for various Laughlin states and
the q = 2 MR state, as well as the velocities extracted
via the method used in Figs. 8(a) and 9.

VII. CONCLUSION

We have shown how the CFT structure in model FQH
wave functions enable us to represent them as matrix
product states. These MPSs can be evaluated numeri-
cally on an infinite cylinder; the distinct advantages of
this geometry, as well as the efficiency of the MPS, al-
low us to study in detail the scaling properties of the
Moore-Read entanglement spectrum, including a defini-
tive identification of the U(1) and Majorana modes and
their velocities.
There are several future directions. The MPS rep-

resentation is well suited for studying the screening
properties of the states as well as their Berry connec-
tions, so it would be valuable to numerically implement
the MR quasiholes in order to verify various screen-
ing arguments.51 As we have noted, our construction
also generalizes to other topological phases whose model
states can be expressed as a correlation function of a
lower dimensional field theory. The resulting picture is
strikingly similar to the ‘entanglement renormalization’
classification of 1D phases exemplified in the AKLT state.
In particular, it would appear that the fixed points of
the entanglement renormalization scheme may be inter-
preted as some form of fixed point for the auxiliary field
theory when expressed as a tensor network – for topo-
logical phases, a massless fixed point, while for trivial
phases, a massive fixed point. Making this connection
precise would be an intriguing development.
We would like to acknowledge helpful conversations

with Joel E. Moore, Tarun Grover, Frank Pollmann,
and Sid Parameswaran, as well as support from NSF
GRFP Grant DGE 1106400 (MZ) and NSF DMR-
0804413 (RM).
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Appendix A: Evaluation of B-matrices for Laughlin

states

Here we provide more detail on the precise form of the
Laughlin MPS and its numerical implementation. The
mode expansion of the chiral boson is

φ(w) =
∑

n6=0

w−n
√

|n|
an + φ0 +

π0
i
log(w), (A1)

[φ0, π0] = i, [an, am] = δn+m.

The field is composed of the fluctuating part φ′(w) and
the ‘zero mode’,

φ(w) = φ′(w) + φ0 +
π0
i
log(w) . (A2)

The states of the fluctuating sector can be labeled by
occupation numbers, which we denote by a string of pos-
itive integers P . For example, |0〉 denotes the ground

state, |221〉 = 1√
2
a†2a

†
2a

†
1|0〉, etc. We define |P | to be the

total momentum of |P 〉, given by the sum of the inte-
gers. The states of the zero-mode sector are labeled by
the eigenvalues of π0. For convenience, we define ‘charge’
by N̂ =

√
qπ0, chosen such that the electron has charge

q. The states of the zero-mode sector are labeled by |N〉,
so the full CFT is then spanned by |P,N 〉.
Treating first the ‘free’ evolution U , we find

H =
2π

L

[

|P |+ 1

2q
N2

]

, (A3)

U(δτ)P,N ;P ′,N ′ = δP,P ′δN,N ′e
−
(

2πℓB
L

)2

[|P |+ 1
2qN

2]. (A4)

Now we calculate the on-site term T , first by convert-
ing from the coherent state form T [ψ] to the occupation
basis, Tm:

T [ψ] = e
− i

2
√

q
φ0eV̂0ψe

− i
2
√

q
φ0

=
∑

m

Tm(m!)
3/2
ψm. (A5)

Tm ≡ 1√
m!
e
− i

2
√

q
φ0
(

V̂0

)m
e
− i

2
√

q
φ0 . (A6)

We next compute the matrix elements of the vertex op-
erator,

〈P,N |V̂0|P ′, N ′〉
= 〈P,N |ei

√
qφ′(w)+i

√
qφ0+N log(w)]|P ′, N ′〉. (A7)

The zero-mode part depends only on N ,

〈N |ei
√
qφ0+N̂ log(w)|N ′〉 = δN−N ′,q w

N+N ′/2. (A8)

The fluctuating part depends only on the oscillators |P 〉,
so we define

AnP,P ′ = 〈P |
∮

dw

2πi
w−n−1ei

√
qφ′(w)|P ′〉. (A9)

Hence An is simply the nth coefficient of a Taylor ex-
pansion in w. The matrices A are non-zero only for
P − P ′ = −(N + N ′)/2, due to momentum conserva-
tion. Numerically, we impose a cutoff Λ such that we
only keep states |P 〉 with |P | ≤ Λ, which allows us to
evaluate A for only a finite number of states. The time
to compute A is proportional to its number of entries, so
the construction of the MPS is an insignificant part of
the computational cost (i.e., compared to matrix multi-
plication). Combining the zero-mode and fluctuations,

〈P,N |V̂0|P ′, N ′〉 = A
−N+N′

2

PP ′ δN−N ′,q. (A10)

Finally, the sandwiching background charge contributes

e
− i√

q
φ0 = δP,P ′δN−N ′,−1 to each site.

Focusing on the case of fermions where there is at most
one particle per orbital,

T 0
P,N ;P ′,N ′ = δP,P ′δN−N ′,−1 (unoccupied),

(A11a)

T 1
P,N ;P ′,N ′ = A

−N+N′

2

PP ′ δN−N ′,q−1 (occupied).

(A11b)

For case of bosons, the higher occupation states involve
products of the A’s.
The q fold ground state degeneracy of the Laughlin

states can be seen by noting that on a particular bond,
e2πiN/q is a constant, and can be chosen to take q values.
In the small L limit, these q states evolve into the ‘thin
torus’ wave functions41 in which we keep only the |P | = 0
states of the CFT.

Appendix B: Evaluation of B-matrices for

Moore-Read state

The CFT associated with the Moore-Read state is a
tensor product of a chiral boson φ and a Majorana mode
χ. We first give a brief review of the structure of the
chiral Majorana CFT on a cylinder.52 The states form
four sectors according to their boundary condition (bc),
(periodic ‘P’ or antiperiodic ‘AP’) and number parity
(even ‘+1’ or odd ‘−1’). We denote the lowest energy
states of these four sectors by ‘|11〉’ for AP/1, ‘|χ〉’ for
AP/−1, ‘|σ〉’ for P/1 and ‘|µ〉’ for P/−1. In the peri-
odic sector the Majorana has modes χn : n ∈ Z, while
in the anti-periodic sector it has modes χm : m ∈ Z+ 1

2 .
The states of the P/AP sectors can be obtained by act-
ing with the P/AP modes χ−m on |σ〉/|11〉 respectively.
Within a given sector, the states can then be labeled by
a string of numbers Pχ; they are either integers or half-
integers depending on the bc, and do not repeat because
of the fermionic statistics. Letting |Pχ| denote the total
momentum of the Majorana,

Hχ =
2π

L
[|Pχ|+∆] (B1)
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where ∆ = {0, 1
16} for the AP and P sectors respec-

tively, though ∆ can be ignored as it only changes the
normalization of the state.
For simplicity we consider the case in which the physi-

cal particles are fermions, which we take to have periodic
boundary conditions. The operator ei

√
qφ(z)χ(z) must be

periodic in z at the location of the Landau orbitals τn
(our choice of gauge has a twist boundary condition in
between). This introduces a constraint between the zero

mode of the boson, N̂ =
√
qπ̂0, and the boundary con-

dition of the Majorana: for P, we must have N ∈ Z,
while for AP, we must have N ∈ Z + 1

2 . The boundary
conditions will correspond to different degenerate ground
states, with 4 states of type AP and 2 of type P, for a to-
tal of 6 on the infinite cylinder (for a torus, the P sector
acquires an additional 2 states depending on the parity
of the electron number).53

The total energy of the combined CFT is

H =
2π

L

[

|Pχ|+ |Pφ|+
1

2q
N2

]

(B2)

with |Pφ| and N arising for the boson. As for the Laugh-
lin state, U = e−δτH is diagonal if we work in the oc-
cupation basis. Constructing the T matrices proceeds as
for the Laughlin case, but we must include the Majorana
sector in the computation of V̂0 =

∮

dw
2πiw

−1χ(w)ei
√
qφ(w).

Letting

χmPχ,P ′
χ
= 〈Pχ|χm|P ′

χ〉 (B3)

denote the matrix elements of the Majorana operators,
the required matrix element is

〈Pφ, Pχ, N |V̂0|P ′
φ, P

′
χ, N

′〉

=
∑

m

χ−m
Pχ,P ′

χ
A
m−N+N′

2

Pφ,P
′
φ

δN−N ′,q , (B4)

with A defined as for the Laughlin case.
For fermions, where there is at most one particle per

orbital,

T 0
(Pφ,Pχ,N),(P ′,P ′

χ,N
′) (B5a)

= δPφ,P ′
φ
δPχ,P ′

χ
δN−N ′,−1 (unoccupied),

T 1
(Pφ,Pχ,N),(P ′,P ′

χ,N
′) (B5b)

=
∑

m

χ−m
Pχ,P ′

χ
A
m−N+N′

2

Pφ,P ′
φ

δN−N ′,q−1 (occupied).

For the case of bosons, the higher occupation states in-
volve products of the V0’s.
The 3q fold ground state degeneracy of the MR states

can be seen by first choosing a bc sector, P or AP. In
the AP sector, (−1)F eiπN/q is a constant (where F is the
Majorana number), which takes 2q values, each leading
to a distinct state. It is also constant in the P sector, but
here the 2q values only lead to q distinct states. This is
because inserting the Majorana zero-mode χ0 somewhere

(a)

(b)

FIG. 10. The thin torus orbital wave functions for the (a)
antiperiodic and (b) periodic sectors. Each site corresponds
to an orbital, which is either filled (black) or empty (white).
Each bond has only a single state of the CFT, which we de-
compose into the Majorana part, shown above the bond, and
zero mode of the boson N , shown below the bond.

in the chain changes the CFT labels we assign to the
Schmidt vectors, but does not actually change the phys-
ical state. In the small L limit, these 3q states evolve
into ‘thin torus’ wave functions.42 In this limit, we re-
strict the Majorana CFT to the states {|11〉, |χ〉, |σ〉, |µ〉},
and fix |Pφ| = 0 for the boson – the 8 resulting states
are precisely the ‘highest weight’ states of the CFT, as
illustrated in Fig. 10.

Appendix C: The counting of the Moore-Read state

As explained in the last section, the chiral Majorana
CFT may be separated into four sectors, by periodicity
of the boundary as well as the particle number parity.
In the periodic sectors σ and µ, the excitations have

momenta which are integral multiples of ∆k = 2π
L , hence

the counting of level n is the number of partitions of n
into an even/odd number of distinct non-negative inte-
gers. The number of states at momenta 0,∆k, 2∆k, ...
are as follows,54

µ, σ : 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, ... (C1a)

(Because the presence of the zero-momentum mode, the
counting of the two P sectors are identical.)
In the antiperiodic sectors the excitations have mo-

menta which are integer-plus-half multiples of ∆k, or in
other words, twice the momentum is always an odd multi-
ple of ∆k. Hence in the 11 sector the counting of level n is
given by the partitions of 2n into positive odd integers.55

11 : 1, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 11, 12, ... (C1b)

The same definition also hold for the χ sector, with count-
ing as follows,56

χ : 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 12, ... (C1c)

Note that since there are an odd number of excitions,
the lowest energy state is |χ〉 = χ1/2|11〉 with momentum
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15
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E
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0 5 10 15
|P |

N = 2

FIG. 11. The entanglement spectra of the q = 2 Moore-
Read state at L = 25ℓB , with the orbital (left) and real-space
(right) cut, in the N = 0 (top) and N = 2 (bottom) charge
sectors. In the orbital case, the cut takes place on the bond
with |11〉 Majorana and N = 0 boson state in the thin torus
limit (cf. Fig. 10). The real-space cut takes place at the τ
centered on that bond. For N = 0, the counting of the states
are 1, 1, 3, 5, 10, 16, etc, while for N = 2, the counting are 1,
2, 4, 7, 13, etc.

1
2∆k. The counting in this sector corresponds to the

number of states at momenta 1
2∆k,

3
2∆k,

5
2∆k, ....

Combined with the chiral boson, the counting of the
Moore-Read edge spectra are5758

11 : 1, 1, 3, 5, 10, 16, 28, 43, 70, ... , (C2a)

χ : 1, 2, 4, 7, 13, 21, 35, 55, 86, ... , (C2b)

µ, σ : 1, 2, 4, 8, 14, 24, 40, 64, 100, ... . (C2c)

(Again, in the χ sector, the momenta are shifted by
1
2∆k.) Figure 11 shows the orbital and real-space cut
of the q = 2 MR state giving the 11 sector.

Notice that in the AP case, the Majorana sector al-
ternates between 11 and χ sectors whenever an orbital is
filled (see Fig. 10). Hence the entanglement spectrum
with different charges would also alternate between the
countings (C2a) and (C2b), shown clearly in Fig. 11. Fig-
ure 12 shows the relative entanglement energies of q = 2
MR state at the N = ±q charge sectors, contrast this to
the N = 0 sector of Fig. 9.

0

2

4

6

8

20 25 30 L = ∞

Ẽ
L

2
π

vφ

2vφ

3vφ

4vφ

2vχ
vχ

vφ

2vφ

3vφ

4vφ

2vχ
vχ

10

20

-8 -4 0 4 8

FIG. 12. Extrapolating the entanglement energies ẼL/2π for
the Moore-Read state at ν = 1/2. The real-space cut is phys-
ically centered on the bond with 11 sector (in the thin torus
limit), but the data is shown in the N = 2 charge sector, and
hence the counting matches that of the χ sector.

(Left) The energy states at momenta π
L
, 3 π

L
, 5 π

L
, 7 π

L
are la-

beled by their shape, with their values extrapolated to L = ∞.
(Right) The theoretical energy levels of the MR state for the
χ sector. (Upper right inset) The least-momentum state in
each charge sector N at L = 25ℓB , with the sector of interest
marked red.

The lowest states extrapolates to vφ + 1

2
vχ, consistent with

Eq. (42) (using ∆φh = N2

2q
= 1). (States with momenta 7 π

L
do not extrapolate to their theoretical values due to insuffi-
cient system sizes.) Contrast this plot to the N = 0 sector of
Fig. 9.

Appendix D: Evaluation of Q-matrices for Laughlin

and Moore-Read quasiholes

Evaluation of the Q-matrices for the Laughlin state
can be done in a similar manner to the bulk B-matrices,
but omitting the contour integration:

QP,N ;P ′,N ′ = δN−N ′,1 (sw)
N+N ′/2q〈P |eiφ′(w)/

√
q|P ′〉

(D1)

where w = e−
2πi
L
ηx and s = ±1 for bosons or fermions

respectively. Note that the momentum is no longer con-
served.
The Moore-Read case is more complex. In the context

of the Majorana CFT, the Ising order and disorder fields
σ, µ are ‘twist’ fields, interpolating between AP and P

periodic bc’s. We take the point of view that the fields σ
and µ have fixed fermion parity +1 and −1 respectively.
The resulting fusion rules are

[σ][σ] = [µ][µ] = [χ][χ] = [11], (D2)

[µ][σ] = 11, [µ][χ] = [σ], [σ][χ] = [µ]. (D3)
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In this approach, there are two possible quasihole inser-
tions, σ(η)eiφ/

√
q, and µ(η)eiφ/

√
q. As χ0σ ∼ µ, this is a

direct realization of the picture in which each vortex has
a Majorana zero-mode. The non-trivial vector space of
quasihole excitations arises from the freedom of choosing
σ or µ, subject to the constraint that they fuse properly
to the vacuum.
Fortunately the techniques for evaluating matrix ele-

ments of the type

σPχ,P ′
χ
= 〈Pχ|σ(0)|P ′

χ〉 (D4)

have already been developed in the ‘truncated-fermionic-
space-approach’ to the perturbed Ising CFT.59

Consider, for example, the AP to P case. Arbitrary
states can be built by acting with the modes χ−n, so
without loss of generality we consider the matrix element

〈σ|
∏

{mi∈Pχ}
χmi

σ(η)
∏

{ni∈P ′
χ}
χ−ni

|11〉. (D5)

The chief technical result of Ref. 59 Eqs. 2.9-2.13 is that
there exists an easily computed matrix C(η) such that

〈σ| · · ·χmσ(η) · · · |11〉 = 〈σ| · · ·σ(η)Cmn(η)χn · · · |11〉.
(D6)

After commuting all χ across the insertion, the Majo-
ranas are brought to normal ordered form, reducing the
problem to Wick contractions and the matrix elements

〈σ|σ|11〉 = Cσσ1 = 1, (D7)

〈σ|µ|χ〉 = Cσµχ = 1, etc. (D8)

We have not as of yet implement the MR quasiholes nu-
merically, which would be a worthwhile check given the
subtleties of this case.

1 X.-G. Wen, Adv. Phys. 44, 405 (1995).
2 A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404
(2006).

3 M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405
(2006).

4 M. Aguado and G. Vidal, Phys. Rev. Lett. 100, 070404
(2008).

5 H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504
(2008).

6 X.-L. Qi, H. Katsura, and A. W. W. Ludwig, Phys. Rev.
Lett. 108, 196402 (2012).

7 R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
8 G. Moore and N. Read, Nuclear Physics B 360, 362
(1991).

9 M. Fannes, B. Nachtergaele, and R. Werner, Communica-
tions in Mathematical Physics 144, 443 (1992).

10 F. Verstraete and J. Cirac, “Renormalization algorithms
for Quantum-Many Body Systems in two and higher di-
mensions,” (2004), arXiv:cond-mat/0407066.

11 S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
12 S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537

(1995).
13 D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac,

Quantum Info. Comput. 7, 401 (2007).
14 L. Fidkowski and A. Kitaev, Phys. Rev. B 83, 075103

(2011).
15 A. M. Turner, F. Pollmann, and E. Berg, Phys. Rev. B 83,

075102 (2011).
16 X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 83,

035107 (2011).
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