Bessel polynomials, double factorials and context-free grammars*

Shi-Mei Ma ${ }^{\dagger}$
School of Mathematics and Statistics, Northeastern University at Qinhuangdao,
Hebei 066004, China

Abstract

The purpose of this paper is to show that Bessel polynomials, factorials and Catalan triangle can be generated by using context-free grammars.

Keywords: Bessel polynomials; Double factorials; Catalan triangle; Context-free grammars

1 Introduction

The grammatical method was introduced by Chen [2] in the study of exponential structures in combinatorics. Let A be an alphabet whose letters are regarded as independent commutative indeterminates. Following Chen [2], a context-free grammar G over A is defined as a set of substitution rules replacing a letter in A by a formal function over A. The formal derivative D is a linear operator defined with respect to a context-free grammar G. For example, if $G=\{x \rightarrow x y, y \rightarrow y\}$, then

$$
D(x)=x y, D(y)=y, D^{2}(x)=x\left(y+y^{2}\right), D^{3}(x)=x\left(y+3 y^{2}+y^{3}\right)
$$

For any formal functions u and v, we have

$$
D(u+v)=D(u)+D(v), \quad D(u v)=D(u) v+u D(v) \quad \text { and } \quad D(f(u))=\frac{\partial f(u)}{\partial u} D(u)
$$

where $f(x)$ is a analytic function. Using Leibniz's formula, we obtain

$$
\begin{equation*}
D^{n}(u v)=\sum_{k=0}^{n}\binom{n}{k} D^{k}(u) D^{n-k}(v) \tag{1}
\end{equation*}
$$

Let $[n]=\{1,2, \ldots, n\}$. The Stirling number of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is the number of ways to partition $[n]$ into k blocks. Let \mathcal{S}_{n} denote the symmetric group of all permutations of $[n]$.

[^0]The Eulerian number $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ enumerates the number of permutations in \mathcal{S}_{n} with k descents (i.e., $i<n, \pi(i)>\pi(i+1))$. The numbers $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ satisfy the recurrence relation

$$
\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle=(k+1)\left\langle\begin{array}{c}
n-1 \\
k
\end{array}\right\rangle+(n-k)\left\langle\begin{array}{l}
n-1 \\
k-1
\end{array}\right\rangle,
$$

with initial condition $\left\langle\begin{array}{l}0 \\ 0\end{array}\right\rangle=1$ and boundary conditions $\left\langle\begin{array}{l}0 \\ k\end{array}\right\rangle=0$ for $k \geq 1$. There is a close relationship between context-free grammars and combinatorics. The reader is referred to [3, 7] for recent results on this subject. Let us now recall two classical results.
Proposition 1 ([2, Eq. 4.8]). If $G=\{x \rightarrow x y, y \rightarrow y\}$, then

$$
D^{n}(x)=x \sum_{k=1}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} y^{k}
$$

Proposition 2 ([4, Section 2.1]). If $G=\{x \rightarrow x y, y \rightarrow x y\}$, then

$$
D^{n}(x)=x \sum_{k=0}^{n-1}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle x^{k} y^{n-k} .
$$

The purpose of this paper is to show that Bessel polynomials, factorials and Catalan triangle can be generated by using context-free grammars.

2 Bessel polynomials

The well known Bessel polynomials $y_{n}(x)$ were introduced by Krall and Frink [5] as the polynomial solutions of the second-order differential equation

$$
x^{2} \frac{d^{2} y_{n}(x)}{d x^{2}}+(2 x+2) \frac{d y_{n}(x)}{d x}=n(n+1) y_{n}(x) \text {. }
$$

The Bessel polynomials $y_{n}(x)$ are a family of orthogonal polynomials and they have been extensively studied and applied (see [9, A001498]). The polynomials $y_{n}(x)$ can be generated by using the Rodrigues formula

$$
y_{n}(x)=\frac{1}{2^{n}} e^{\frac{2}{x}} \frac{d^{n}}{d x^{n}}\left(x^{2 n} e^{-\frac{2}{x}}\right) .
$$

Explicitly, we have

$$
y_{n}(x)=\sum_{k=0}^{n} \frac{(n+k)!}{(n-k)!k!}\left(\frac{x}{2}\right)^{k} .
$$

These polynomials satisfy the recurrence relation

$$
y_{n+1}(x)=(2 n+1) x y_{n}(x)+y_{n-1}(x) \quad \text { for } \quad n \geq 0
$$

with initial conditions $y_{-1}(x)=y_{0}(x)=1$. The first few of the polynomials $y_{n}(x)$ are

$$
\begin{aligned}
& y_{1}(x)=1+x \\
& y_{2}(x)=1+3 x+3 x^{2} \\
& y_{3}(x)=1+6 x+15 x^{2}+15 x^{3} .
\end{aligned}
$$

We present here a grammatical characterization of the Bessel polynomials $y_{n}(x)$.

Theorem 3. If $G=\left\{a \rightarrow a b, b \rightarrow b^{2} c, c \rightarrow b c^{2}\right\}$, then

$$
D^{n}(a b)=a b^{n+1} y_{n}(c) \quad \text { for } \quad n \geq 0
$$

Proof. Let

$$
a(n, k)=\frac{(n+k)!}{2^{k}(n-k)!k!} .
$$

Then $y_{n}(c)=\sum_{k=0}^{n} a(n, k) c^{k}$. It is easy to verify that

$$
\begin{equation*}
a(n+1, k)=a(n, k)+(n+k) a(n, k-1) . \tag{2}
\end{equation*}
$$

For $n \geq 0$, we define

$$
\begin{equation*}
D^{n}(a b)=a b^{n+1} \sum_{k=0}^{n} E(n, k) c^{k} . \tag{3}
\end{equation*}
$$

Note that $D(a b)=a b^{2}(1+c)$. Hence $E(1,0)=a(1,0), E(1,1)=a(1,1)$. It follows from (3) that

$$
D^{n+1}(a b)=D\left(D^{n}(a b)\right)=a b^{n+2} \sum_{k=0}^{n} E(n, k) c^{k}+a b^{n+2} \sum_{k=0}^{n}(n+k+1) E(n, k) c^{k+1} .
$$

Therefore,

$$
E(n+1, k)=E(n, k)+(n+k) E(n, k-1) .
$$

Comparing with (2), we see that the coefficients $E(n, k)$ satisfy the same recurrence relation and initial conditions as $a(n, k)$, so they agree.

For the context-free grammar

$$
G=\left\{a \rightarrow a b, b \rightarrow b^{2} c, c \rightarrow b c^{2}\right\}
$$

in the same way as above we find that

$$
D^{n}\left(a^{2} b\right)=2^{n} a^{2} b^{n+1} y_{n}\left(\frac{c}{2}\right) \quad \text { for } \quad n \geq 0
$$

By Theorem 3, we obtain $D^{k}(a)=a b^{k} y_{k-1}(c)$ for $k \geq 0$. The double factorial of odd numbers are defined by

$$
(2 n-1)!!=1 \cdot 3 \cdot 5 \cdots \cdots(2 n-1)
$$

and for even numbers

$$
(2 n)!!=2 \cdot 4 \cdot 6 \cdots \cdots(2 n)
$$

As usual, set $(-1)!!=0!!=1$. It is clear that

$$
D^{n}(b)=(2 n-1)!!b^{n+1} c^{n} \quad \text { for } \quad n \geq 0
$$

By (II), the following corollary is immediate.
Corollary 4. For $n \geq 0$, we have

$$
y_{n}(x)=\sum_{k=0}^{n}(2 n-2 k-1)!!\binom{n}{k} y_{k-1}(x) x^{n-k} .
$$

3 Polynomials associated with diagonal Padé approximation to the exponential function

The Padé approximations arise naturally in many branches of mathematics and have been extensively investigated (see [6] for instance). The diagonal Padé approximation to the exponential function e^{x} is the unique rational function

$$
R_{n}(x)=\frac{P_{n}(x)}{P_{n}(-x)},
$$

where

$$
P_{n}(x)=\sum_{k=0}^{n} M(n, k) x^{n-k} \quad \text { and } \quad M(n, k)=\frac{(n+k)!}{(n-k)!k!} .
$$

Clearly, $P_{n}(1)=y_{n}(2)$, where $y_{n}(x)$ is the Bessel polynomials. It is easy to verify that the numbers $M(n, k)$ satisfy the recurrence relation

$$
\begin{equation*}
M(n+1, k)=M(n, k)+(2 n+2 k) M(n, k-1) \tag{4}
\end{equation*}
$$

The first few of the polynomials $P_{n}(x)$ are given as follows (see [9, A113025]):

$$
\begin{aligned}
& P_{0}(x)=1, \\
& P_{1}(x)=x+2, \\
& P_{2}(x)=x^{2}+6 x+12, \\
& P_{3}(x)=x^{3}+12 x^{2}+60 x+120 .
\end{aligned}
$$

We present here a grammatical characterization of the polynomials $P_{n}(x)$.
Theorem 5. If $G=\left\{a \rightarrow a b^{2}, b \rightarrow b^{3} c^{2}, c \rightarrow b^{2} c^{3}\right\}$, then

$$
D^{n}\left(a b^{2}\right)=a b^{2 n+2} c^{2 n} P_{n}\left(\frac{1}{c^{2}}\right)
$$

Proof. For $n \geq 0$, we define

$$
\begin{equation*}
D^{n}\left(a b^{2}\right)=a b^{2 n+2} \sum_{k=0}^{n} N(n, k) c^{2 k} . \tag{5}
\end{equation*}
$$

Note that $D\left(a b^{2}\right)=a b^{4}\left(1+2 c^{2}\right)$. Hence $N(1,0)=M(1,0), N(1,1)=M(1,1)$. It follows from (5) that

$$
D^{n+1}\left(a b^{2}\right)=a b^{2 n+4} \sum_{k=0}^{n} N(n, k) c^{2 k}+a b^{2 n+4} \sum_{k=0}^{n}(2 n+2 k+2) N(n, k) c^{2 k+2} .
$$

Therefore,

$$
N(n+1, k)=N(n, k)+(2 n+2 k) N(n, k-1) .
$$

Comparing with (4), we see that the coefficients $N(n, k)$ satisfy the same recurrence relation and initial conditions as $M(n, k)$, so they agree.

Along the same lines, we immediately deduce the following corollary.
Corollary 6. Let $y_{n}(x)$ be the Bessel polynomials. If $G=\left\{a \rightarrow a b^{2}, b \rightarrow b^{3} c^{2}, c \rightarrow b^{2} c^{3}\right\}$, then

$$
D^{n}\left(a^{2} b^{2}\right)=2^{n} a^{2} b^{2 n+2} y_{n}\left(c^{2}\right) .
$$

4 Double factorials

The following identity was studied systematically by Callan [1, Section 4.8]:

$$
\begin{equation*}
\sum_{k=1}^{n} k!\binom{2 n-k-1}{k-1}(2 n-2 k-1)!!=(2 n-1)!! \tag{6}
\end{equation*}
$$

As pointed out by Callan [1], the identity (6) counts different combinatorial structures, such as increasing ordered trees of n edges by outdegree k of the root and the sum of the weights of all vertices labeled k at depth $n-1$ in the Catalan tree (see 9, A102625]).

Let

$$
R(n, k)=k!\binom{2 n-k-1}{k-1}(2 n-2 k-1)!!
$$

Thus, $\sum_{k=1}^{n} R(n, k)=(2 n-1)!!$. It is easy to verify that

$$
\begin{equation*}
R(n+1, k)=(2 n-k) R(n, k)+k R(n, k-1), \tag{7}
\end{equation*}
$$

with initial conditions $R(0,0)=1$ and $R(0, k)=0$ for $k \geq 1$ or $k<0$. For $n \geq 1$, let $R_{n}(x)=\sum_{k=1}^{n} R(n, k) x^{k}$. The first few of the polynomials $R_{n}(x)$ are

$$
\begin{aligned}
& R_{1}(x)=x \\
& R_{2}(x)=x+2 x^{2} \\
& R_{3}(x)=3 x+6 x^{2}+6 x^{3} \\
& R_{4}(x)=15 x+30 x^{2}+36 x^{3}+24 x^{4}
\end{aligned}
$$

Theorem 7. If $G=\left\{a \rightarrow a^{2} b, b \rightarrow b^{2} c, c \rightarrow b c^{2}\right\}$, then

$$
\begin{equation*}
D^{n}(a)=a b^{n} \sum_{k=1}^{n} R(n, k) a^{k} c^{n-k} \quad \text { for } \quad n \geq 0 \tag{8}
\end{equation*}
$$

Proof. Note that $D(a)=a^{2} b$ and $D^{2}(a)=a b^{2}\left(a c+2 a^{2}\right)$. For $n \geq 1$, we define

$$
\begin{equation*}
D^{n}(a)=a b^{n} \sum_{k=1}^{n} r(n, k) a^{k} c^{n-k} . \tag{9}
\end{equation*}
$$

Hence $r(1,1)=R(1,1), r(2,1)=R(2,1)$ and $r(2,2)=R(2,2)$. It follows from (9) that

$$
D\left(D^{n}(a)\right)=a b^{n+1} \sum_{k=1}^{n}(2 n-k) r(n, k) a^{k} c^{n-k+1}+a b^{n+1} \sum_{k=0}^{n}(k+1) r(n, k) a^{k+1} c^{n-k} .
$$

Therefore,

$$
r(n+1, k)=(2 n-k) r(n, k)+k r(n, k-1) .
$$

Comparing with (17), we see that the coefficients $r(n, k)$ satisfy the same recurrence relation and initial conditions as $R(n, k)$, so they agree.

In the following discussion, we also consider the context-free grammar

$$
G=\left\{a \rightarrow a^{2} b, b \rightarrow b^{2} c, c \rightarrow b c^{2}\right\} .
$$

Note that

$$
D(a b)=a^{2} b^{2}+a b^{2} c, D^{2}(a b)=a b^{3}\left(3 c^{2}+3 a c+2 a^{2}\right) .
$$

For $n \geq 0$, we define

$$
\begin{equation*}
D^{n}(a b)=a b^{n+1} \sum_{k=0}^{n} H(n, k) a^{k} c^{n-k} . \tag{10}
\end{equation*}
$$

It follows that

$$
D\left(D^{n}(a b)\right)=a b^{n+2} \sum_{k=0}^{n}(2 n-k+1) H(n, k) a^{k} c^{n-k+1}+a b^{n+2} \sum_{k=0}^{n}(k+1) H(n, k) a^{k+1} c^{n-k} .
$$

Hence, the numbers $H(n, k)$ satisfy the recurrence relation

$$
\begin{equation*}
H(n+1, k)=(2 n-k+1) H(n, k)+k H(n, k-1), \tag{11}
\end{equation*}
$$

with initial conditions $H(1,0)=H(1,1)=1$ and $H(1, k)=0$ for $k \geq 2$ or $k<0$. Using (11), it is easy to verify that

$$
H(n, k)=\frac{(2 n-k)!}{2^{n-k}(n-k)!}
$$

It should be noted that the numbers $H(n, k)$ are entries in a double factorial triangle (see 9, A193229]). In particular, we have $H(n, 0)=(2 n-1)!!, H(n, n)=n!$ and $\sum_{k=0}^{n} H(n, k)=(2 n)!!$. Moreover, combining (11), (8) and (10), we obtain

$$
H(n, k)=\sum_{m=k}^{n}\binom{n}{m}(2 n-2 m-1)!!R(m, k)
$$

for $n \geq 1$ and $0 \leq k \leq n$.
For $n \geq 1$, we define

$$
x(x+2)(x+4) \cdots(x+2 n-2)=\sum_{k=1}^{n} p(n, k) x^{k}
$$

and

$$
(x+1)(x+3) \cdots(x+2 n-1)=\sum_{k=0}^{n} q(n, k) x^{k} .
$$

The the triangular arrays $\{p(n, k)\}_{n \geq 1,1 \leq k \leq n}$ and $\{q(n, k)\}_{n \geq 1,0 \leq k \leq n}$ are both double Pochhammer triangles (see [9, A039683,A028338]). The following theorem is in a sense "dual" to Theorem 7, and we omit the proof for brevity.

Theorem 8. If $G=\left\{a \rightarrow a b^{2}, b \rightarrow b^{2} c, c \rightarrow b c^{2}\right\}$, then we have

$$
D^{n}(a)=a b^{n} \sum_{k=1}^{n} p(n, k) b^{k} c^{n-k}
$$

and

$$
D^{n}(a b)=a b^{n+1} \sum_{k=0}^{n} q(n, k) b^{k} c^{n-k} .
$$

Set $p(0,0)=q(0,0)=1$. By (1), we immediately obtain

$$
q(n, k)=\sum_{m=k}^{n}\binom{n}{m}(2 n-2 m-1)!!p(m, k)
$$

for $n \geq 0$ and $0 \leq k \leq n$.

5 Catalan triangle

The classical Catalan triangle is defined by the recurrence relation

$$
T(n, k)=T(n-1, k)+T(n, k-1),
$$

with initial conditions $T(0,0)=1$ and $T(0, k)=0$ for $k>0$ or $k<0$ (see [9, A009766]). The numbers $T(n, k)$ are often called ballot numbers. Explicitly,

$$
\begin{equation*}
T(n, k)=\binom{n+k}{k} \frac{n-k+1}{n+1} \quad \text { for } \quad 0 \leq k \leq n . \tag{12}
\end{equation*}
$$

Moreover, $\sum_{k=0}^{n} T(n, k)=T(n+1, n+1)=C(n+1)$, where $C(n)$ is the well known Catalan number. Catalan numbers appear in a wide range of problems (see 8 for instance).

It follows from (12) that

$$
\begin{equation*}
(n+2) T(n+1, k)=(n-k+2) T(n, k)+(2 n+2 k) T(n, k-1) \tag{13}
\end{equation*}
$$

This recurrence relation gives rise to the following result.
Theorem 9. If $G=\left\{a \rightarrow a^{2} b^{2}, b \rightarrow b^{3} c^{2}, c \rightarrow b^{2} c^{3}\right\}$, then we have

$$
D^{n}\left(a^{2} b^{2}\right)=(n+1)!a^{2} b^{2 n+2} \sum_{k=0}^{n} T(n, k) a^{n-k} c^{2 k}
$$

Proof. It is easy to verify that $D\left(a^{2} b^{2}\right)=2 a^{2} b^{4}\left(a+c^{2}\right)$ and $D^{2}\left(a^{2} b^{2}\right)=3!a^{2} b^{6}\left(a^{2}+2 a c^{2}+2 c^{4}\right)$. For $n \geq 0$, we define

$$
D^{n}\left(a^{2} b^{2}\right)=(n+1)!a^{2} b^{2 n+2} \sum_{k=0}^{n} t(n, k) a^{n-k} c^{2 k} .
$$

Note that

$$
\frac{D^{n+1}\left(a^{2} b^{2}\right)}{(n+1)!a^{2} b^{2 n+4}}=\sum_{k=0}^{n}(n-k+2) t(n, k) a^{n-k+1} c^{2 k}+\sum_{k=0}^{n}(2 n+2 k+2) t(n, k) a^{n-k} c^{2 k+2} .
$$

Thus, we get

$$
(n+2) t(n+1, k)=(n-k+2) t(n, k)+(2 n+2 k) t(n, k-1) .
$$

Comparing with (13), we see that the coefficients $t(n, k)$ satisfy the same recurrence relation and initial conditions as $T(n, k)$, so they agree.

In the same way as above we find that if $G=\left\{a \rightarrow a^{2} b^{2}, b \rightarrow b^{3} c^{2}, c \rightarrow b^{2} c^{3}\right\}$, then

$$
D^{n}\left(a b^{2}\right)=n!a b^{2 n+2} \sum_{k=0}^{n}\binom{n+k}{k} a^{n-k} c^{2 k}
$$

and

$$
D^{n}(b)=\prod_{k=0}^{n-1}(4 k+1) b^{2 n+1} c^{2 n}
$$

It should be noted that $\binom{n+k}{k}$ is the number of lattice paths from $(0,0)$ to (n, k) using steps $(1,0)$ and $(0,1)$ (see [9, A046899]) and $\prod_{k=0}^{n-1}(4 k+1)$ is the quartic factorial number (see 9, A007696]).

References

[1] D. Callan, A combinatorial survey of identities for the double factorial, arXiv:0906.1317v1.
[2] W.Y.C. Chen, Context-free grammars, differential operators and formal power series, Theoret. Comput. Sci. 117 (1993) 113-129.
[3] W.Y.C. Chen, R.X.J. Hao and H.R.L. Yang, Context-free Grammars and Multivariate Stable Polynomials over Stirling Permutations, arXiv:1208.1420v2.
[4] D. Dumont, Grammaires de William Chen et dérivations dans les arbres et arborescences, Sém. Lothar. Combin. 37, Art. B37a (1996) 1-21.
[5] H.L. Krall, O. Frink, A new class of orthogonal polynomials, Trans. Amer. Math. Soc. 65 (1945) 100-115.
[6] M. Prévost, Padé approximation and Apostol-Bernoulli and Apostol-Euler polynomials, J. Comput. Appl. Math. 233 (2010) 3005-3017.
[7] S.-M. Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2.
[8] B.E. Sagan, C.D. Savage, Mahonian pairs, J. Combin. Theory Ser. A 119 (2012), 526-545.
[9] N.J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org.

[^0]: *This work is supported by NSFC (11126217) and the Fundamental Research Funds for the Central Universities (N100323013).
 ${ }^{\dagger}$ Email address: shimeima@yahoo.com.cn (S.-M. Ma)

