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Abstract

The purpose of this paper is to show that Bessel polynomials, factorials and Catalan

triangle can be generated by using context-free grammars.
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1 Introduction

The grammatical method was introduced by Chen [2] in the study of exponential structures in

combinatorics. Let A be an alphabet whose letters are regarded as independent commutative

indeterminates. Following Chen [2], a context-free grammar G over A is defined as a set of

substitution rules replacing a letter in A by a formal function over A. The formal derivative

D is a linear operator defined with respect to a context-free grammar G. For example, if

G = {x → xy, y → y}, then

D(x) = xy,D(y) = y,D2(x) = x(y + y2),D3(x) = x(y + 3y2 + y3).

For any formal functions u and v, we have

D(u+ v) = D(u) +D(v), D(uv) = D(u)v + uD(v) and D(f(u)) =
∂f(u)

∂u
D(u),

where f(x) is a analytic function. Using Leibniz’s formula, we obtain

Dn(uv) =
n
∑

k=0

(

n

k

)

Dk(u)Dn−k(v). (1)

Let [n] = {1, 2, . . . , n}. The Stirling number of the second kind
{

n
k

}

is the number of ways

to partition [n] into k blocks. Let Sn denote the symmetric group of all permutations of [n].
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The Eulerian number
〈

n
k

〉

enumerates the number of permutations in Sn with k descents (i.e.,

i < n, π(i) > π(i+ 1)). The numbers
〈

n
k

〉

satisfy the recurrence relation
〈

n

k

〉

= (k + 1)

〈

n− 1

k

〉

+ (n − k)

〈

n− 1

k − 1

〉

,

with initial condition
〈

0

0

〉

= 1 and boundary conditions
〈

0

k

〉

= 0 for k ≥ 1. There is a close

relationship between context-free grammars and combinatorics. The reader is referred to [3, 7]

for recent results on this subject. Let us now recall two classical results.

Proposition 1 ([2, Eq. 4.8]). If G = {x → xy, y → y}, then

Dn(x) = x

n
∑

k=1

{

n

k

}

yk.

Proposition 2 ([4, Section 2.1]). If G = {x → xy, y → xy}, then

Dn(x) = x

n−1
∑

k=0

〈

n

k

〉

xkyn−k.

The purpose of this paper is to show that Bessel polynomials, factorials and Catalan triangle

can be generated by using context-free grammars.

2 Bessel polynomials

The well known Bessel polynomials yn(x) were introduced by Krall and Frink [5] as the polyno-

mial solutions of the second-order differential equation

x2
d2yn(x)

dx2
+ (2x+ 2)

dyn(x)

dx
= n(n+ 1)yn(x).

The Bessel polynomials yn(x) are a family of orthogonal polynomials and they have been exten-

sively studied and applied (see [9, A001498]). The polynomials yn(x) can be generated by using

the Rodrigues formula

yn(x) =
1

2n
e

2

x

dn

dxn

(

x2ne−
2

x

)

.

Explicitly, we have

yn(x) =

n
∑

k=0

(n+ k)!

(n− k)!k!

(x

2

)k

.

These polynomials satisfy the recurrence relation

yn+1(x) = (2n + 1)xyn(x) + yn−1(x) for n ≥ 0,

with initial conditions y−1(x) = y0(x) = 1. The first few of the polynomials yn(x) are

y1(x) = 1 + x,

y2(x) = 1 + 3x+ 3x2,

y3(x) = 1 + 6x+ 15x2 + 15x3.

We present here a grammatical characterization of the Bessel polynomials yn(x).
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Theorem 3. If G = {a → ab, b → b2c, c → bc2}, then

Dn(ab) = abn+1yn(c) for n ≥ 0.

Proof. Let

a(n, k) =
(n+ k)!

2k(n− k)!k!
.

Then yn(c) =
∑n

k=0
a(n, k)ck. It is easy to verify that

a(n + 1, k) = a(n, k) + (n+ k)a(n, k − 1). (2)

For n ≥ 0, we define

Dn(ab) = abn+1

n
∑

k=0

E(n, k)ck. (3)

Note that D(ab) = ab2(1+ c). Hence E(1, 0) = a(1, 0), E(1, 1) = a(1, 1). It follows from (3) that

Dn+1(ab) = D(Dn(ab)) = abn+2

n
∑

k=0

E(n, k)ck + abn+2

n
∑

k=0

(n+ k + 1)E(n, k)ck+1.

Therefore,

E(n + 1, k) = E(n, k) + (n+ k)E(n, k − 1).

Comparing with (2), we see that the coefficients E(n, k) satisfy the same recurrence relation and

initial conditions as a(n, k), so they agree.

For the context-free grammar

G = {a → ab, b → b2c, c → bc2},

in the same way as above we find that

Dn(a2b) = 2na2bn+1yn

( c

2

)

for n ≥ 0.

By Theorem 3, we obtain Dk(a) = abkyk−1(c) for k ≥ 0. The double factorial of odd numbers

are defined by

(2n− 1)!! = 1 · 3 · 5 · · · · · (2n− 1),

and for even numbers

(2n)!! = 2 · 4 · 6 · · · · · (2n).

As usual, set (−1)!! = 0!! = 1. It is clear that

Dn(b) = (2n− 1)!!bn+1cn for n ≥ 0.

By (1), the following corollary is immediate.

Corollary 4. For n ≥ 0, we have

yn(x) =

n
∑

k=0

(2n − 2k − 1)!!

(

n

k

)

yk−1(x)x
n−k.
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3 Polynomials associated with diagonal Padé approximation to

the exponential function

The Padé approximations arise naturally in many branches of mathematics and have been ex-

tensively investigated (see [6] for instance). The diagonal Padé approximation to the exponential

function ex is the unique rational function

Rn(x) =
Pn(x)

Pn(−x)
,

where

Pn(x) =

n
∑

k=0

M(n, k)xn−k and M(n, k) =
(n+ k)!

(n− k)!k!
.

Clearly, Pn(1) = yn(2), where yn(x) is the Bessel polynomials. It is easy to verify that the

numbers M(n, k) satisfy the recurrence relation

M(n+ 1, k) = M(n, k) + (2n+ 2k)M(n, k − 1). (4)

The first few of the polynomials Pn(x) are given as follows (see [9, A113025]):

P0(x) = 1,

P1(x) = x+ 2,

P2(x) = x2 + 6x+ 12,

P3(x) = x3 + 12x2 + 60x+ 120.

We present here a grammatical characterization of the polynomials Pn(x).

Theorem 5. If G = {a → ab2, b → b3c2, c → b2c3}, then

Dn(ab2) = ab2n+2c2nPn

(

1

c2

)

.

Proof. For n ≥ 0, we define

Dn(ab2) = ab2n+2

n
∑

k=0

N(n, k)c2k . (5)

Note that D(ab2) = ab4(1 + 2c2). Hence N(1, 0) = M(1, 0), N(1, 1) = M(1, 1). It follows

from (5) that

Dn+1(ab2) = ab2n+4

n
∑

k=0

N(n, k)c2k + ab2n+4

n
∑

k=0

(2n + 2k + 2)N(n, k)c2k+2.

Therefore,

N(n+ 1, k) = N(n, k) + (2n + 2k)N(n, k − 1).

Comparing with (4), we see that the coefficients N(n, k) satisfy the same recurrence relation

and initial conditions as M(n, k), so they agree.
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Along the same lines, we immediately deduce the following corollary.

Corollary 6. Let yn(x) be the Bessel polynomials. If G = {a → ab2, b → b3c2, c → b2c3}, then

Dn(a2b2) = 2na2b2n+2yn(c
2).

4 Double factorials

The following identity was studied systematically by Callan [1, Section 4.8]:

n
∑

k=1

k!

(

2n− k − 1

k − 1

)

(2n − 2k − 1)!! = (2n− 1)!!. (6)

As pointed out by Callan [1], the identity (6) counts different combinatorial structures, such as

increasing ordered trees of n edges by outdegree k of the root and the sum of the weights of all

vertices labeled k at depth n− 1 in the Catalan tree (see [9, A102625]).

Let

R(n, k) = k!

(

2n − k − 1

k − 1

)

(2n − 2k − 1)!!.

Thus,
∑n

k=1
R(n, k) = (2n − 1)!!. It is easy to verify that

R(n+ 1, k) = (2n− k)R(n, k) + kR(n, k − 1), (7)

with initial conditions R(0, 0) = 1 and R(0, k) = 0 for k ≥ 1 or k < 0. For n ≥ 1, let

Rn(x) =
∑n

k=1
R(n, k)xk. The first few of the polynomials Rn(x) are

R1(x) = x,

R2(x) = x+ 2x2,

R3(x) = 3x+ 6x2 + 6x3,

R4(x) = 15x+ 30x2 + 36x3 + 24x4.

Theorem 7. If G = {a → a2b, b → b2c, c → bc2}, then

Dn(a) = abn
n
∑

k=1

R(n, k)akcn−k for n ≥ 0. (8)

Proof. Note that D(a) = a2b and D2(a) = ab2(ac+ 2a2). For n ≥ 1, we define

Dn(a) = abn
n
∑

k=1

r(n, k)akcn−k. (9)

Hence r(1, 1) = R(1, 1), r(2, 1) = R(2, 1) and r(2, 2) = R(2, 2). It follows from (9) that

D(Dn(a)) = abn+1

n
∑

k=1

(2n− k)r(n, k)akcn−k+1 + abn+1

n
∑

k=0

(k + 1)r(n, k)ak+1cn−k.
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Therefore,

r(n+ 1, k) = (2n− k)r(n, k) + kr(n, k − 1).

Comparing with (7), we see that the coefficients r(n, k) satisfy the same recurrence relation and

initial conditions as R(n, k), so they agree.

In the following discussion, we also consider the context-free grammar

G = {a → a2b, b → b2c, c → bc2}.

Note that

D(ab) = a2b2 + ab2c,D2(ab) = ab3(3c2 + 3ac+ 2a2).

For n ≥ 0, we define

Dn(ab) = abn+1

n
∑

k=0

H(n, k)akcn−k. (10)

It follows that

D(Dn(ab)) = abn+2

n
∑

k=0

(2n − k + 1)H(n, k)akcn−k+1 + abn+2

n
∑

k=0

(k + 1)H(n, k)ak+1cn−k.

Hence, the numbers H(n, k) satisfy the recurrence relation

H(n+ 1, k) = (2n− k + 1)H(n, k) + kH(n, k − 1), (11)

with initial conditions H(1, 0) = H(1, 1) = 1 and H(1, k) = 0 for k ≥ 2 or k < 0. Using (11), it

is easy to verify that

H(n, k) =
(2n− k)!

2n−k(n − k)!
.

It should be noted that the numbers H(n, k) are entries in a double factorial triangle (see [9,

A193229]). In particular, we have H(n, 0) = (2n−1)!!,H(n, n) = n! and
∑n

k=0
H(n, k) = (2n)!!.

Moreover, combining (1), (8) and (10), we obtain

H(n, k) =

n
∑

m=k

(

n

m

)

(2n− 2m− 1)!!R(m,k)

for n ≥ 1 and 0 ≤ k ≤ n.

For n ≥ 1, we define

x(x+ 2)(x+ 4) · · · (x+ 2n− 2) =

n
∑

k=1

p(n, k)xk

and

(x+ 1)(x + 3) · · · (x+ 2n− 1) =

n
∑

k=0

q(n, k)xk.

The the triangular arrays {p(n, k)}n≥1,1≤k≤n and {q(n, k)}n≥1,0≤k≤n are both double Pochham-

mer triangles (see [9, A039683,A028338]). The following theorem is in a sense “dual” to Theo-

rem 7, and we omit the proof for brevity.
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Theorem 8. If G = {a → ab2, b → b2c, c → bc2}, then we have

Dn(a) = abn
n
∑

k=1

p(n, k)bkcn−k

and

Dn(ab) = abn+1

n
∑

k=0

q(n, k)bkcn−k.

Set p(0, 0) = q(0, 0) = 1. By (1), we immediately obtain

q(n, k) =

n
∑

m=k

(

n

m

)

(2n − 2m− 1)!!p(m,k)

for n ≥ 0 and 0 ≤ k ≤ n.

5 Catalan triangle

The classical Catalan triangle is defined by the recurrence relation

T (n, k) = T (n− 1, k) + T (n, k − 1),

with initial conditions T (0, 0) = 1 and T (0, k) = 0 for k > 0 or k < 0 (see [9, A009766]). The

numbers T (n, k) are often called ballot numbers. Explicitly,

T (n, k) =

(

n+ k

k

)

n− k + 1

n+ 1
for 0 ≤ k ≤ n. (12)

Moreover,
∑n

k=0
T (n, k) = T (n + 1, n + 1) = C(n + 1), where C(n) is the well known Catalan

number. Catalan numbers appear in a wide range of problems (see [8] for instance).

It follows from (12) that

(n+ 2)T (n + 1, k) = (n− k + 2)T (n, k) + (2n + 2k)T (n, k − 1). (13)

This recurrence relation gives rise to the following result.

Theorem 9. If G = {a → a2b2, b → b3c2, c → b2c3}, then we have

Dn(a2b2) = (n+ 1)!a2b2n+2

n
∑

k=0

T (n, k)an−kc2k.

Proof. It is easy to verify that D(a2b2) = 2a2b4(a+ c2) and D2(a2b2) = 3!a2b6(a2 +2ac2 +2c4).

For n ≥ 0, we define

Dn(a2b2) = (n+ 1)!a2b2n+2

n
∑

k=0

t(n, k)an−kc2k.

Note that

Dn+1(a2b2)

(n+ 1)!a2b2n+4
=

n
∑

k=0

(n− k + 2)t(n, k)an−k+1c2k +
n
∑

k=0

(2n + 2k + 2)t(n, k)an−kc2k+2.
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Thus, we get

(n+ 2)t(n + 1, k) = (n− k + 2)t(n, k) + (2n+ 2k)t(n, k − 1).

Comparing with (13), we see that the coefficients t(n, k) satisfy the same recurrence relation

and initial conditions as T (n, k), so they agree.

In the same way as above we find that if G = {a → a2b2, b → b3c2, c → b2c3}, then

Dn(ab2) = n!ab2n+2

n
∑

k=0

(

n+ k

k

)

an−kc2k

and

Dn(b) =

n−1
∏

k=0

(4k + 1)b2n+1c2n.

It should be noted that
(

n+k
k

)

is the number of lattice paths from (0, 0) to (n, k) using steps

(1, 0) and (0, 1) (see [9, A046899]) and
∏n−1

k=0
(4k + 1) is the quartic factorial number (see [9,

A007696]).
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