
ar
X

iv
:1

20
8.

60
74

v2
 [

m
at

h.
C

O
]

 2
0

O
ct

 2
01

2

A Euclid style algorithm for MacMahon partition

analysis

Guoce Xin
Department of Mathematics

Capital Normal University, Beijing 100048, PR China

guoce.xin@gmail.com

Oct. 20, 2012

Abstract

Solutions to a linear Diophantine system, or lattice points in a rational convex
polytope, are important concepts in algebraic combinatorics and computational
geometry. The enumeration problem is fundamental and has been well studied,
because it has many applications in various fields of mathematics. In algebraic
combinatorics, MacMahon partition analysis has become a general approach for
linear Diophantine system related problems. Many algorithms have been devel-
oped, but “bottle neck” problems always arise when dealing with complex prob-
lems. While in computational geometry, Barvinok’s important result asserts the
existence of a polynomial algorithm when the dimension is fixed. However, the
implementation by the LattE package of Loera et. al. does not perform well
in many situations. By combining excellent ideas in the two fields, we general-
ize Barvinok’s result by giving a polynomial algorithm for MacMahon partition
analysis in a suitable condition. We also present a Euclid style algorithm, which
might not be polynomial but is easy to implement and performs well. As appli-
cations, we contribute the generating series for magic squares of order 6.

Mathematics Subject Classification. Primary 05-04, secondary 05A15, 52B99.

Key words. MacMahon partition analysis, polytopes, lattice points, Ehrhart quasi-polynomials

1 Introduction

Linear Diophantine system is one of the most fundamental concepts in mathematics.
One basic problem is to determine the set of non-negative integer solutions of a system
of linear equations (or inequalities) Ax = b for suitable integral matrix A and vector
b. In the context of geometry, the problem is to determine lattice points in a rational
convex polytope P = {α : Aα = b, α ≥ 0} specified by A and b. That is, we need
to determine the set P ∩ Z

n. If b = 0 then the linear Diophantine system is called

1

http://arxiv.org/abs/1208.6074v2

homogeneous, and the corresponding P is called a rational cone. This basic problem
received much attention for its wide application in many fields of mathematics. Many
theories have been developed but this paper will address on the algorithmic aspect.
There are many algorithms dealing with linear Diophantine system related problems.
Two algorithms in two different fields have great advantages. One is Barvinok’s poly-
nomial algorithm in computational geometry [6] and the other is the author’s partial
fraction algorithm [18] in algebraic combinatorics.

We will use the short hand notation xα = xα1
1 xα2

2 · · ·xαn
n throughout this paper.

To understand the complexity of this problem, let us specify that A is a r × n matrix
of rank r and consider the homogeneous case. The structure of the Z-solutions {α ∈
Z
n : Aα = 0} is simple, since it forms a subgroup of Zn with n − r generators, which

can be obtained through Hermite normal form. The structure of nonnegative integer
solutions E = {α ∈ N

n : Aα = 0} is only a free commutative monoid (semigroup with
identity). There is no simple way to enumerate elements of E, which is equivalent to
the construction of the rational generating series

E(x) = E(x;A, 0) =
∑

α∈E

xα =
P (x)

(1− xe1)(1− xe2) · · · (1− xeN)
,

where ei ranges over all extreme rays of E and P (x) might be a monster polynomial.
See [17, Ch. 4.6] and combinatorial theories developed there. Many practical problems
only need some specializations of E(x), such as E(q, q, . . . , q). It is worth mentioning
that there is a beautiful reciprocity theorem for rational cones due to Stanley, which
gives simple connection between nonnegative solutions and positive solutions.

Our algorithms are under the framework of algebraic combinatorics, but borrow
some beautiful ideas from computational geometry. The heart problem is to compute
the constant term in Λ = (λ1, . . . , λr) of an Elliott-rational function, written as

CT
Λ

L

(1−M1)(1−M2) · · · (1−Mn)
, (1)

where L is a Laurent polynomial and Mi are monomials for all i. Following [18], here
we specify a field of iterated Laurent series, called working field, to clarify the series
expansion of rational functions. It was George Andrews who found that MacMahon’s
partition analysis could be ideally combined with computer algebra for dealing with
linear Diophantine system related problems [3]. Andrews and his coauthors has pub-
lished a series of 12 papers in this topic. The first such algorithm was developed by
Andrews et al. implemented by the Mathematica package Omega [4] and an improve-
ment appears in [5]. A big progress is the author’s partial fraction algorithm [18],
where the field of iterated Laurent series was introduced and several bottle neck prob-
lems were solved. By using iterated Laurent series, factors like (1 − λ1/λ2)

−1 have
series expansions and are allowed to appear in the computation. The main body of
Xin’s algorithm uses partial fraction decomposition and read off their constant terms
separately. The algorithm is simple and implemented by the updated Maple package
Ell2. In computing partial fraction decompositions, bottle necks resist for multiple

2

roots and nonlinear factors in the denominator. We find that these bottle necks can
be solved using ideas from computational geometry.

A simpler model has been extensively studied earlier in computational geometry.
Let P be as above specified by integral matrix A = (aij)r×n and nonzero vector b.
Then it is well-known that the generating polynomial for P ∩ Z

n can be written as a
constant term:

E(x;A, b) =
∑

α∈P∩Zn

xα1
1 · · ·xαn

n = CT
Λ

λ−b1
1 · · ·λ−br

r
∏n

j=1(1− λ
a1,j
1 λ

a2,j
2 · · ·λ

ar,j
r xj)

. (2)

So this is just the special case of (1) when the numerator L is a monomial. Geometers
are more interested with the specialization of xi = 1 for all i, which gives the number
of lattice points in P . The most important result in this field is due to Barvinok, who
developed a polynomial algorithm when the dimension is fixed [6] in 1994. Barvinok’s
algorithm is hard and was implemented by the LattE package by Leora et al. [13] in
2004. An improvement was given in [11]. The readers are referred to [13] for related
references and [7] for related applications. Xin’s algorithm is not polynomial, but the
Ell2 package has better performance than the LattE package in some situations. The
two algorithms are very different in nature. See Section 2. We find that we can do
better if combine beautiful ideas of the two algorithms.

The paper is organized as follows. Section 1 is this introduction. Our ultimate goal
is to develop a classic algorithm for this subject in the near future. Section 2 introduces
and compares the ideas of Barvinok’s polynomial algorithm and Xin’s partial fraction
algorithm. Section 3 includes one of the two major contributions in this paper. We
extends Barvinok’s algorithm for the multivariate case, which give rise to a polynomial
algorithm for MacMahon partition analysis. We do not give implementation of this
algorithm since it is not a easy task and there are much room for improvements. Section
4 includes the other major contribution. We develop a Euclid style algorithm with
an easy implementation by the Maple package CTEuclid. This algorithm performs
well and solves several bottle-neck problems in the Ell2 package. In Section 5, we
give an introduction for CTEuclid with concrete examples for the sake of clarity. We
explain the flexibility of our algorithm and our strategy for benchmark problems. As
an application, we give the first solution for the generating function of order 6 magic
squares.

2 Comparison of Barvinok’s polynomial algorithm

and Xin’s partial fraction algorithm

Barvinok’s algorithm is in the view of computational geometry and Xin’s algorithm
is along the line of MacMahon partition analysis in algebraic combinatorics. In this
section we compare the two algorithms and conclude that a better strategy is to combine
the nice ideas of the two algorithms. It is better to give a brief description of the two
algorithms. We follow notations in the introduction.

3

Barvinok’s algorithm computes the generating polynomial E(x;A, b) as a sum of
rational functions and then evaluate at xi = 1 for all i. The main body of the algorithm
can be summarized in the following theorem.

Theorem 1 (Barvinok). There is a polynomial time algorithm to write E(x;A, 0) as

a sum of N simple rational functions, where N is a polynomial in the bytes of A.

The theorem can be shown by three facts. 1) Rational cones are signed-decomposed
into simplicial cones in polynomial time. 2) Barvinok made a key observation that a
simplicial cone can be decomposed in polynomial time to unimodular simplicial cones.
3) The generating function for a unimodular simplicial cone is simple.

Algorithm Barvinok for computing E(x;A, b)
∣

∣

xi=1
:

1. By using Brion’s theorem, we can write

E(x;A, b) =
∑

i

xν(i)E(x;A(i), 0),

where the summands corresponds to vertex cones and the sum ranges over all
vertices ν(i) of P .

2. Apply Theorem 1 for each E(x;A(i), 0).

3. Finally, take limits when xi → 1 for all i, as we shall discuss in Section 3.

The readers are referred to [6] and [13] for detailed explanation.

Xin’s algorithm computes the constant term of an Elliott rational function in (1)
regarded as an iterated Laurent series. The main body of the algorithm is to take
constant term in a single variable.

Algorithm XinPF

1. For each Elliott-rational functions as a summand, successively choose a variable
and take the constant term as in the next step. Note that after specifying a
working field, we are taking constant term in a set of variables.

2. When taking constant term in λ of an Elliott-rational function, computing the
partial fraction decomposition and read off the constant term in λ.

The comparison

From the above descriptions, we see that the two algorithms are very different.

1. The basic elements of Barvinok’s algorithm is rational cones while that of Xin’s
algorithm is Elliott rational functions, which is a larger class of objects.

2. By performing on rational cones, Barvinok’s algorithm avoids the convergence
problem. Xin’s algorithm settling the convergence problem by introducing the
field of iterated Laurent series as a framework.

4

3. Barvinok’s algorithm is polynomial while Xin’s is not.

4. Xin’s algorithm deals with the numerator uniformly while Barvinok’ does not.

5. The application of partial fraction decompositions has much more flexibility than
rational cone decompositions under our framework.

Although Barvinok’s algorithm is polynomial, the application of Brion’s theorem
maybe very costly if the number of vertices is large. Indeed, Xin’s Ell2 package
has better performance than the LattE package in many situations, such as the Sdd5
problem. Because of the freedom of Xin’s algorithm, we conclude that a better strategy
is to embed some of Barvinok’s ideal to Xin’s frame work. This leads to a polynomial
algorithm for MacMahon partition analysis in Section 3, and a Euclid style algorithm
in Section 4, which solves two bottle neck problems in the step of partial fraction
decomposition.

3 A polynomial algorithm for MacMahon partition

analysis in theory

Let us describe the heart problem of this paper more clearly as follows. Given an
Elliott rational function E = E(x1, x2, . . . , xm) in the form

E =
L

(1−M1)(1−M2) · · · (1−Mn)
,

where L is a Laurent polynomial and Mi are monomials. Let {λ1, . . . , λr} be a subset
of {x1, . . . , xm}. We need to compute the constant term of E

CT
λ1,...,λr

E = a simple representation free of the λ’s,

when E is regarded as an iterated Laurent series.

3.1 The big picture

For simplicity we assume E has the natural series expansion in this section. If use
terms in the next section, E is called in its proper form. To clarify the situation, write
Mj = Mj(x)Λ

cj where Λa = λa1
1 λa2

2 · · ·λar
r and Mj(x) is free of Λ. Let A = (c1, . . . , cn)

be the matrix with the jth column cj. Assume the rank of A is r so that the solution
space of Aα = 0 has dimension d = n − r. Polynomial time means that the running
time is polynomial in the bytes O(nr log(maxA)) of A, and the bytes of L, when the
dimension d is fixed. Since the bytes of L is linear in the number of terms of L, we
may assume L is a monomial.

The big picture of the algorithm is as follows. We are indeed extending Barvinok’s
algorithm to the multivariate case.

5

1. Add slack variables z1, . . . , zn so that

E ′ =
L

∏n
j=1(1− zjMj(x)Λcj)

, E ′|zi=1 = E.

This step is easy but necessary in the general situation.

2. Eliminate λi for all i to get a big sum of polynomial size. For instance, assume
L is a monomial and write Zj = zjMj(x). Then CTΛ E

′ corresponds to the
generating function for lattice points in a rational convex polytope. Applying
Brion’s theorem and then applying Theorem 1 will give a sum of N ′ terms where
N ′ is polynomial in the bytes of A.

3. Eliminate all the slack variables zi. This can also be done in polynomial time, as
we shall elaborate next.

Note that the proposed second step is in the spirit of Barvinok’s algorithm. It has
much more room for improvements.

3.2 Eliminating the slack variables

Algorithm for eliminating the slack variables could be think as an independent subject,
so let us clarify the problem. Our input is a rational function Q(x1, . . . , xm; z1, . . . , zn)
written as a (big) sum of simple rational functions:

Q(x1, . . . , xm; z1, . . . , zn) =
∑ simple numerator

simple denominator
.

Our output will be a representation of Q(x1, . . . , xm; 1, . . . , 1), which is known in
priori to be well defined. The z’s are called the slack variables. In particular the output
is a number for m = 0 and a single rational function for m = 1. We do not hope a
single rational function for m ≥ 2.

It is not clear how to eliminate zi even when m = 0: i) combining the terms to
a single rational function will get a monster numerator that can not be handled by
the computer; ii) direct substitutions of zi = 1 for all i does not work for possible
denominator factors like 1− z1z2 in some of the terms.

The algorithm we present here is inspired by the work from computational geometry:
the m = 0 case was given a nice solution as a basic step in Barvinok’s algorithm for
lattice point counting. Though the idea works for general rational functions, we shall
concentrate on Elliott-rational functions, that is

Q =
∑

i

Li(x; z)

(1−Mi1zBi1)(1−Mi2zBi2) · · · (1−MidzBid)
,

where Mij are monomials in x, Li are Laurent polynomials. Such rational functions
arose from MacMahon partition analysis. In particular, the m = 1 case corresponds to
the computation of Ehrhart series.

6

The algorithm consists of two steps: First reduce the number of slack variables to
1, and then use Laurent series expansion to compute separately for each term.

Reduce the number of slack variables to 1. Calculating Q(x; 1, 1, . . . , 1) is equivalent to
evaluating the limit as zi goes to 1 for all i. Our first step is to reduce the number of
slack variables to 1. This is done by finding a suitable integer vector λ and making the
substitution zi → tλi . In order to do so, λ must be picked such that there is no zero
denominator in any term, i.e., for every i and j we can not have both Mij = 1 and the
inner product 〈λ,Bij〉 = 0. Barvinok showed such λ can be picked in polynomial time
by choosing points on the moment curve. Loera et al. [13] suggested to use random
vectors to avoid large integer entries.

Using Laurent series expansion. Now we need Q(x; tλ1 , . . . , tλn)
∣

∣

∣

t=1
, where

Q(x; tλ1 , . . . , tλn) =
∑

i

Li(x; t
λ1 , . . . , tλn)

∏

(1− t〈λ,Bij〉Mij)
.

An obvious way is to make the substitution t = 1 + s. Then we have

Q
∣

∣

∣

t=1
= Q(x; (1 + s)λ1, . . . , (1 + s)λn)

∣

∣

∣

s=0
= CT

s
Q(x; (1 + s)λ1, . . . , (1 + s)λn),

where we are taking constant term of a Laurent series in s. The linearity of the constant
term operator allows us to compute separately:

Q(x; 1, . . . , 1) =
∑

i

CT
s

Li(x; (1 + s)λ1 , . . . , (1 + s)λn)
∏

(1− (1 + s)〈λ,Bij〉Mij)
.

The substitution t = 1 + s seems natural and works fine for the m = 0 case, where
we only need do polynomial division of a single variable. For m ≥ 1, we find it better
to make the exponential substitution t = es, which leads to

Q(x; 1, . . . , 1) =
∑

i

CT
s

Li(x; e
λ1s, . . . , eλns)

∏

(1− es〈λ,Bij〉Mij)
.

Proposition 2. Let L(x; z) be a Laurent polynomial, Mj monomials in x and bj inte-

gers. The constant term

CT
s

L(x; eλ1s, . . . , eλns)
∏d

j=1(1− ebjsMj)

can be efficiently computed as a sum of at most
(

d+1
⌈d/2⌉

)

simple rational functions.

Proof. By rearranging the denominators, we may assume that M1 = M2 = · · · = Mr =
1 and all the other Mj are not 1. It is easy to see that

sr
L(x; eλ1s, . . . , eλns)
∏d

j=1(1− ebjsMj)

7

is a power series in s, so that we are indeed taking coefficient of sr in a power series.
To expand, we only need the following two formulas:

s

1− es
=

∑

n≥0

−
Bn

n!
sn = −1 +

1

2
s−

1

12
s2 +

1

720
s4 −

1

30240
s6 +

1

1209600
s8 + · · · ,

1

1− esM
=

1

(1−M)(1− M
1−M

(es − 1))
=

∑

n≥0

Mn

(1−M)n+1
(es − 1)n =

∑

n≥0

cn(M)sn.

The Bn are the well-known Bernulli numbers. The computation

r
∏

j=1

s

1− ebjs
=

r
∏

j=1

∑

n≥0

−
Bnb

n−1
j

n!
sn =

r
∑

n=0

c′ns
n + higher degree terms

is easy since this only involves univariate polynomial multiplication. Thus we can write

sr
L(x; eλ1s, . . . , eλns)
∏d

j=1(1− ebjsMj)
=

∑

n≥0

ℓn(x)s
n ·

∑

n≥0

c′ns
n

d
∏

j=r+1

cn(Mj)b
nj

j

=
∑

n≥0

sn
∑

n0+n1+nr+1+···+nd=n

ℓn0(x)c
′
n1

d
∏

j=r+1

cnj
(Mj)b

nj

j .

It follows that the desired constant term is a sum of ℓn0(x)c
′
n1

∏d
j=r+1 cnj

(Mj)b
n
j . The

number of terms we obtained is equal to
(

d+1
r

)

, which is the number of nonnegative
integer solutions of n0 + n1 + nr+1 + · · ·+ nd = r.

The proposition follows since
(

d+1
r

)

reaches maximum at r = ⌈d/2⌉.

Using the exponential substitution, we only need two formulas for series expansion
and we can store in advance those coefficients for n ≤ d. This is much better than
using the substitution t = 1+s, especially for m ≥ 1. In the m = 1 case, we can expect
to obtain a single rational functions, since the computer performs well on univariate
rational functions.

The only problem for this approach is the large integer problem. It seems unavoid-
able that some of the bij = 〈λ,Bij〉 might be large. This results in huge numbers since
our formula involves bnij for n ≤ d. This problem is avoidable by modular a reasonably
large prime number (> d), provided that we know some information of the final output
in advance. This is indeed the case since our problems are usually combinatorial and
the final output are nice in some sense. The m = 0 case problem usually computes the
number of lattice points in a rational convex polytope. There are methods to estimate
this number. For the m = 1 case we usually compute the Ehrhart series as in the next
subsection. Such generating functions seems always have simple denominator and its
numerator has not too large integer coefficients. Thus we can do the constant term
extraction modular a chosen large prime. If necessary, we can do the computation
several times using different large primes and then use the Chinese remainder theorem
to construct the final output.

8

3.3 Direct computation of the Ehrhart series

Given a rational polytope P = {α : Aα = b, α ≥ 0} ⊂ R
n, the function

iP (k) := #(kP ∩ Z
n) = #{α ∈ Z

n) : Aα = kb, α ≥ 0}

defined for positive integer k was first studied by E. Ehrhart [8]. It is call the Ehrhart
polynomial when the vertices of P are integral and is call the Ehrhart quasi-polynomial
for arbitrary rational polytopes [17, Ch. 4]. For us it is easier to describe using
generating functions. The Ehrhart series of P defined by

IP (q) =
∑

k≥0

iP (k)q
k

is an Elliott-rational function. It has close connection with Hilbert series for some
graded algebra.

An important problem is to compute the Ehrhart quasi-polynomial of given P .
Earlier method is to compute iP (k) for sufficiently many k and then use the Lagrange
interpolation formula to construct iP (k). We can compute the Ehrhart series directly
by the following constant term representation.

IP (q) = CT
Λ

1
∏n

j=1(1− λ
a1,j
1 λ

a2,j
2 · · ·λ

ar,j
r xj)

×
1

1− qλ−b1
1 · · ·λ−br

r

∣

∣

∣

xj=1
.

This corresponds to a rational cone or the homogeneous system (A,−b)β = 0. This
leads to a combined way for Ehrhart series computation: Use LattE to do the rational
cone decomposition and then use our way of eliminating the slack variables. There is
no implementation for this approach yet. We remark that a similar idea was proposed
in [13] to avoid the use of Brion’s theorem. But they only wish to compute iP (k) for
particular k, or equivalently, compute iP (1).

Many benchmark problems are related to the computation of Ehrhart series. The
counting of magic squares and its variations is one of the common topic in both combi-
natorics and computational geometry. The definition of magic squares are different in
different literature. Here an n by n nonnegative integer matrix M = (ai,j)n×n is said to
be a magic squares with magic sum m if its row sum, column sum, and two diagonal
sum are all equal to m. That is, the order n magic square polytope MSn is defined by
the following linear constraints:

ai,1 + ai,2 + · · ·+ ai,n = 1, for 1 ≤ i ≤ n

a1,j + a2,j + · · ·+ an,j = 1, for 1 ≤ j ≤ n

a1,1 + a2,2 + · · ·+ an,n = 1, an,1 + an−1,2 + · · ·+ a1,n = 1.

The determination of IMSn
(q) is known for n = 3, and for n = 4. Many algorithms

meet trouble for the n = 5 case. See e.g., [2]. The first solution for the order 5 magic
squares was reported in [12].

9

Our approach is along the line of MacMahon partition analysis. Let λi index the
i-th row equation, let µj index the j-th column equation, and let ν1 and ν2 index the
two diagonal equations. Then it is not hard to see that

∞
∑

m=0

∑

M

∏

1≤i,j≤n

x
ai,j
i,j qm = CT

λ,µ,ν
Fn(x, q;λ, µ, ν),

where the second sum ranges over all magic squares M with magic sum m, and

Fn(x, q;λ, µ, ν) =
∏

1≤i,j≤n

1

1− xi,jλiµjν
χ(i=j)
1 ν

χ(i+j=n+1)
2

1

1− q(λ1 · · ·λnµ1 · · ·µnν1ν2)−1
.

In particular, setting xi,j = 1 gives the generating function for IMSn
(q).

IMSn
(q) = CT

λ,µ,ν

∏

1≤i,j≤n

1

1− λiµjν
χ(i=j)
1 ν

χ(i+j=n+1)
2

×
1

1− q(λ1 · · ·λnµ1 · · ·µnν1ν2)−1
.

Though we believe that the order 6 magic squares problem should be computed fast by
the proposed approach here, we would like to introduce a more elementary approach
in the next section.

4 A Euclid style algorithm for MacMahon partition

analysis

In the big picture of subsection 3.1, we mentioned that the second step may have
different approaches. The proposed method is not easy to implement and is not ideal.
In this section we provide a Euclid style algorithm. This algorithm is elementary, deal
with the numerator uniformly and perform well in practice.

The Euclid style algorithm is along the line of Xin’s partial fraction algorithm,
so it is time to explain briefly the field of iterated Laurent series. We use the list
vars = [x1, x2, . . . , xn] to define the working field K = Q((xn))((xn−1)) · · · ((x1)). See
[18] for detailed explanation. Here we only need the fact that every monomial M 6= 1
is comparable with 1 in K by the following rule: find the smallest variable xj appear
in M , so degxi

M = 0 for all i < j. If degxj
M > 0 then we say M is small, denoted

M < 1, otherwise we say M is large, denoted M > 1. Thus we can determine which
of the following two series expansion holds in K.

1

1−M
=















∑

m≥0

Mm, if M < 1;

1

−M(1 − 1/M)
=

∑

m≥0

−
1

Mm+1
, if M > 1.

When expanding E as a series in K, we usually rewrite E in its proper form:

E =
L

(1−M1)(1−M2) · · · (1−Mn)
,

10

where L is a Laurent polynomial and Mi < 1 for all i. Note that the proper form of E
is not unique. For instance 1/(1− x) = (1 + x)/(1− x2) are both proper form.

Algorithm CTEuclid for the second step in subsection 3.1.

2-1 For each Elliott-rational functions as a summand, successively choose a variable,
say x = xℓ, and take the constant term in x. Thus we reduce to taking constant
term in a single variable.

2-2 Reduce CTxE as a sum of contributions of single denominator factors.

2-3 The contribution of a single denominator factor can be recursively computed.

Both last two steps contains some new features.

4.1 A reduction to the contribution of a single factor

To take constant term in x, we shall write

E =
L(x)

∏n
i=1(1− uixai)

, (3)

where L(x) is a Laurent polynomial, ui are free of x and ai are positive integers. We
assume the denominator factors 1−uix

ai are coprime to each other. This is guaranteed
by the first step in subsection 3.1.

The partial fraction decomposition of E in x should be

E = P (x) +
p(x)

xk
+

n
∑

i=1

Ai(x)

1− uixai
, (4)

where P (x), p(x), Ai(x) are all polynomials and deg p(x) < k, degAi(x) < ai. If written
in proper form, we shall have

Ai(x)

1− uixai
=















Ai(x)

1− uixai
, if uix

ai < 1;

Ai(x)

−uixai(1− 1
uixai

)
=

x−aiAi(x)

−ui(1−
1

uixai
)
, if uix

ai > 1.

Since x−aiAi(x) contains only negative powers of x, we obtain

CT
x

E = P (0) +
∑

uixai<1

Ai(0), (5)

where the sum ranges over all i such that uix
ai is small. For this reason, the denom-

inator factor 1 − uix
a
i is said to be contributing if uix

ai is small and is said to be not
contributing if uix

ai is large.

11

It will be convenient to use the following notation.

〈E, 1− uix
ai |x = CT

x

1

1− uixai
E(1− uix

ai) = Ai(0).

One can think that when taking constant term in x, only the single underlined denom-
inator factor contributes. In this view it should be clear that 〈E, 1 − uxa|x = 0 if the
denominator of E is coprime to 1− uxa. Thus (5) can be rewritten as

CT
x

E = P (0) +
∑

i

χ(uix
ai < 1)〈E, 1− uix

ai |x, (6)

where χ(S) is 1 if the statement S is true and 0 if S is false.
Next we show that we need not compute P (0). Note that P (x) could be computed

by polynomial division. But the polynomial division algorithm is very expensive in our
situation because the number of the denominator factors and the number of variables
may be large. Our first observation is that P (x) = 0 if E is proper in x, i.e., the degree
in the numerator is less than the degree in the denominator. To see that we can avoids
computing P (0) in general, we need the following lemma.

Lemma 3. Let E be as in (3). If E is a proper rational function, then

CT
x

E =
n

∑

i=1

χ(uix
ai < 1)〈E, 1− uix

ai |x; (7)

If E|x=0 exists, then

CT
x

E = E|x=0 −
n

∑

i=1

χ(uix
ai > 1)〈E, 1− uix

ai |x. (7′)

Proof. The first equality is obvious. For the second equality, since E|x=0 exists, p(x)
must be 0 in (4). Now setting x = 0 gives

E|x=0 = P (0) +
∑

i

Ai(0) = CT
x

E +

n
∑

i=1

χ(uix
ai > 1)〈E, 1− uix

ai |x.

The lemma then follows.

Formula (7′) is a kind of dual of (7). For this reason, we also call the denominator
factor 1− uix

ai with uix
ai > 1 dually contributing. If E is proper and has no pole at

x = 0 then both formulas (7) and (7′) applies and we can choose the simpler one.
Now we are ready to reduce the computation of CTxE to the contribution from a

single denominator factor. Split L(x) as L1(x)+L2(x), where L1 contains only positive
powers in x and L2 contains only nonpositive powers in x. Now E is written as E1+E2

where Ej , j = 1, 2, are similar to E except that L(x) is replaced by Lj(x). Clearly
E1|x=0 = 0 and E2 is proper. It follows from Lemma 3 that

CT
x

E =
∑

i

χ(uix
ai < 1)〈E2, 1− uix

ai |x −
∑

i

χ(uix
ai > 1)〈E1, 1− uix

ai |x. (8)

12

4.2 A recursion for the contribution of a single factor

The contribution of a linear factor is easy:

〈E, 1− ux|x = CT
x

1

1− ux
E(1− ux) = E(1− ux)|x=1/u.

However, effective computation for nonlinear factor was a long standing problem. One
can factor 1− uxa into linear factors using roots of unities, but there is no simple way
to get rid of the roots of unities in the final outcome. We present here a Euclid-style
algorithm dealing with the nonlinear case, by repeated application of the following
recursion.

Proposition 4. Let E be as in (3) and let 1− uxa be a denominator factor. Then we

can find E ′ such that

〈E, 1− uxa|x = −
∑

i

〈E ′, 1− vix
bi |x,

where 0 < bi ≤ a/2 for all i and the number of terms is at most n− 1.

Proof. Without loss of generality, we may assume uxa = u1x
a1 . We need to compute

〈E, 1− uxa|x = CT
x

1

1− uxa

L(x)
∏N

i=2(1− uixai)
= A1(0).

The following characterization of A1(x) is well-known:

A1(x) ≡ E(1− uxa) (mod 〈1− uxa〉).

This is simply obtained by multiplying both sides of (4) by (1 − uxa) and then mod-
ulo the ideal 〈1 − uxa〉 generated by 1 − uxa. The A1(x) is the unique polynomial
representation satisfying degA1(x) < a.

To compute A1(x), we can change the terms by their simpler representations and
finally take remainder when dividing by 1− uxa. The following clearly holds,

xm ≡ u−ℓxr (mod 〈1− uxa〉) if m = ℓa+ r.

Particularly, the remainder rem(xm, 1−uxa, x) and the signed remainder srem(xm, 1−
uxa, x) of xm when dividing by 1− uxa is defined to be

rem(xm, 1− uxa, x) = u−ℓxr, where m = ℓa+ r, 0 ≤ r < a. (9)

srem(xm, 1− uxa, x) = u−ℓxr, where m = ℓa+ r, −a/2 < r ≤ a/2. (10)

These definitions linearly extends for Laurent polynomials.
The new idea is that A1(0) can be cracked out by using a better representative of

A1(x) + 〈1− uxa〉 instead of the explicit formula of A1(x). Clearly we have

A1(x) ≡
L(x)

∏n
i=2(1− ui srem(xai , 1− uxa, x))

(mod 〈1− uxa〉).

13

This can be rewritten in the following form:

A1(x) ≡
±ML(x)

∏n
i=2(1− vixbi)

(mod 〈1− uxa〉),

where M is a monomial and 0 ≤ bi ≤ a/2 for all i.
Now we have to split into two cases:
i) if all the bi are 0, then we immediately obtain

A1(x) =
1

∏n
i=2(1− vi)

rem(±ML(x), 1 − uxa, x)

and A1(0) can be easily computed.
ii) if at least one of bi is great than 0, then rewrite

A1(x) ≡
xL′(x)

∏n
i=2(1− vixbi)

(mod 〈1− uxa〉),

where
L′(x) = ± rem(x−1ML(x), 1 − uxa)

is a polynomial in x of degree less than a. Now comes the crucial observation:

A1(0) = CT
x

1

1− uxa

xL′(x)
∏n

i=2(1− vixbi)
.

In our notation, this is just

〈E, 1− uxa|x = 〈E ′, 1− uxa|x, (11)

where

E ′ =
1

1− uxa

xL′(x)
∏n

i=2(1− vixbi)

is a proper rational function with E ′|x=0 = 0. It follows by the partial fraction decom-
position of E ′ and then setting x = 0 that

〈E ′, 1− uxa|x = −
n

∑

i=2

〈E ′, 1− vix
bi |x. (12)

Note that the terms for bi = 0 vanish. The proposition then follows.

The Ell package in [18] computes A1(0) by first finding A1(x) and then setting
x = 0. This is not a good strategy when the number of variables or n is large. The
explicit formula of A1(x) may be very huge. To see this, consider the polynomial
representative of 1− vxb for b coprime to a. We have

1

1− vxb
=

x−ab(xabub − 1 + 1− xabva)

(ub − va)(1− vxb)
=

x−ab(1− (vxb)a)

(ub − va)(1− vxb)
−

x−ab(1− (uxa)b)

(ub − va)(1− vxb)
.

14

Now the second term vanishes when modulo 1− uxa, so we are left with

1

1− vxb
≡

x−ab

ub − va

a−1
∑

j=0

(vxb)j (mod 〈1− uxa〉).

The gcd(a, b) > 1 case needs a bit more work. See [18] for detailed information.
Now take a = 3 as an example. If n = 21 and all the other 20 ai satisfying

gcd(a, ai) = 1, then the formula for A1(x) will involve 20 three-term-factors (1 +
uix

ai + u2
ix

2ai). No miracles will happen if there are more than 3 variables, and A1(x)
usually contains at least about 320 terms. While if we use Proposition 4, then bi = 1
for all i and we only obtain 20 simple rational functions.

Repeated application of Proposition 4 will give a sum of simple rational functions.
The number of terms only depends on ai and the process is similar to Euclid’s gcd
algorithm. Denote this number by f(i; a1, a2, . . . , an) where a corresponds to ai. Then
f(i; a1, a2, . . . , an) is recursively determined by the following rules:

1. If aj = 0 for all j 6= i then f(i; a1, a2, . . . , an) = 1;

2. We have f(i; a1, a2, . . . , an) = f(i; b1, b2, . . . , bn), where bi = ai and
bj = min(rem(aj , ai), ai − rem(aj, ai)) for j 6= i.

3. If aj ≤ ai/2 for all j 6= i, then

f(i; a1, a2, . . . , an) =
∑

j 6=i

f(j, a1, a2, . . . , an).

If n = 1 then f(1; a1) = 1. If n = 2 we also have f(i; a1, a2) = 1, because the sum
of the recursion contains a single term. For n = 3, computation evidence suggests that
f(1; a1, a2, a3) is almost O(log a1)

2. For larger n, we raise the following problem:
Let f(i; a1, a2, . . . , an) be defined as above. Prove or disprove that f(i; a1, a2, . . . , an)

is a polynomial in log ai.
If the answer is positive, then we will obtain a simple polynomial algorithm at least

for one variable elimination. But this might not be the right problem, since we have
much freedom to apply the partial fraction technique, and the current approach is too
elementary.

5 The Maple package CTEuclid

The algorithm in Section 4 is implemented by the Maple package CTEuclid, which can
be downloaded from the following link

https://www.dropbox.com/sh/scepodyyn4ff7ro/ffhqmeN7ne/MPA,
where two demo files are provided to explain how to use the package. One file works
on magic squares of order up to 5 and the other file works on the Sdd problem [9] of
order up to 5. Both files contain the essential idea for attacking the order 6 case. Here
we only report the Ehrhart series for magic squares of order 6.

15

CTEuclid is the first package designed for complicated or even benchmark problems.
It also performs well for simple problems. The algorithm has three main steps with the
second step split into 3 small steps, as described in Section 4.1. For the sake of clarity,
we explain by several Knapsack type examples.

5.1 Knapsack type examples

Let a0, a1, . . . , an be positive integers with a = (a1, . . . , an), gcd(a1, . . . , an) = 1 and
ai ≤ a0 for all i, and let

P = {x ∈ R
n : ax = a0, x ≥ 0}.

A basic problem is to determine if P contains an integer vector, or how many integer
vectors does P contain. The former is called integer programming feasibility problem.
See [1] for an introduction on this topic. Here we concentrate on the second problem,
which is also called Knapsack type problems. Clearly we have

#P = [xa0]
1

(1− xa1) · · · (1− xan)
= CT

x

1

xa0(1− xa1) · · · (1− xan)
.

Example 5. Compute the following constant term:

CT
x

1

x41(1− x)(1− x5)(1− x14)
.

Solution. We first add slack variables and get

CT
x

E = CT
x

1

x41(1− xz1)(1− x5z2)(1− x14z3)
= CT

x

1

x41(1− xz1)(1− x5z2)(1− x14z3)
,

where the three underlined factors are contributing. For the last factor we have

CT
x

1

x41(1− xz1)(1− x5z2)(1− x14z3)
= CT

x

xz33
(1− xz1)(1− x5z2)(1− x14z3)

= −CT
x

xz33
(1− xz1)(1− x5z2)(1− x14z3)

,

where in our notation, only the first two factors are contributing. The flexibility of our
algorithm allows us to obtain the following combined form:

CT
x

E = CT
x

1

x41(1− xz1)(1− x5z2)(1− x14z3)
+ CT

x

1

x41(1− xz1)(1− x5z2)(1− x14z3)

= CT
x

x−41

(1− xz1)(1− x5z2)(1− x14z3)
− CT

x

xz33
(1− xz1)(1− x5z2)(1− x14z3)

= CT
x

x−41 − xz33
(1− xz1)(1− x5z2)(1− x14z3)

.

16

Now the first contribution is simple:

CT
x

x−41 − xz33
(1− xz1)(1− x5z2)(1− x14z3)

=
z411 − z−1

1 z33
(1− z−5

1 z2)(1− z−14
1 z3)

.

The contribution of the second factor becomes

CT
x

x−41 − xz33
(1− xz1)(1− x5z2)(1− x−1z3z

−3
2)

= CT
x

−
x5z−1

3 z122 − x2z23z
3
2

(1 − xz1)(1− x5z2)(1− xz−1
3 z32)

= CT
x

x5z122 z−1
3 − x2z23z

3
2

(1− xz1)(1− x5z2)(1− xz−1
3 z32)

=
z−5
1 z122 z−1

3 − z−2
1 z23z

3
2

(1− z−5
1 z2)(1− z−1

1 z−1
3 z32)

+
z43z

−3
2 − z43z

−3
2

(1− z3z
−3
2 z1)(1− z53z

−14
2)

Thus we obtain a sum of three terms and come to step 3. We need to make a sub-
stitution so that z−5

1 z2, z−14
1 z3, z−1

1 z−1
3 z32 , z53z

−14
2 are not equal to 1. One choice is

z1 = 1, z2 = t, z3 = t. Then the constant term becomes

1− t3

(1− t)(1− t)
+

t11 − t5

(1− t)(1− t2)
+

t− t

(1− t−2)(1− t−9)
=

1− t3

(1− t)(1− t)
+

t11 − t5

(1− t)(1− t2)
.

Next we let t = 1 + s and take constant term in s separately to get

CT
s

1− (1 + s)3

s2
+ CT

s

(1 + s)11 − (1 + s)5

s2(2 + s)

= [s2](1− (1 + 3s+ 3s2)) + [s2](1 + 11s+ 55s2 − (1 + 5s+ 10s2))
1

2
(1− s/2 + s2/4))

= −3 + [s](6 + 45s)(1/2− s/4) = −3 +
45

2
−

6

4
= 18.

Next we consider a relatively complicated example, which is Example 1 of [1].

Example 6. Show that the polytope P contains no integer lattice points, where

P = {x ∈ R
3 : 12, 223x1 + 12, 224x2 + 36, 671x3 = 149, 389, 505, x ≥ 0}.

Sketch of the Proof. The problem is equivalent to compute the following constant term:

CT
x

1

x149389505 (1− x12223) (1− x12224) (1− x36671)
.

Our CTEuclid package will give a sum of 10 terms, which reduce by cancelation to a
sum of 4 terms. By letting z1 = 1, z2 = t, z3 = t we reach

−
t12223

(t− 1) (t12223 − 1)
+

t24446

(t− 1) (t12223 − 1)
−

t36670

(t− 1) (t24447 − 1)
+

t12223

(t− 1) (t24447 − 1)
.

17

To eliminate the slack variable t = 1, we let t = es and compute the constant term in
s for each term separately. For instance, the first term becomes,

CT
s

−
e12223s

(es − 1) (e12223s − 1)
= [s2]− e12223s ×

s

(es − 1)
×

s

(e12223s − 1)

= [s2]− (1 + 12223s+
1

2
122232s2)(1− s/2 + s2/12)

× (1/12223− s/2 + 12223s2/12) = −
149365061

146676
.

The four constant terms sum to 0. This completes the proof.

Still from article [1], a very hard instance is the 4 dimensional polytope with

a0 = 89643481, (a1, . . . , a5) = (12223, 12224, 36674, 61119, 85569).

Aardal and Lenstra can show that P contains no integer vectors in 0.01 seconds while
the Branch and Bound method takes more than 8139 seconds. When dealing with
this problem, CTEuclid gives 398 terms and returns 0 in about 0.4 seconds. The
advantage of our algorithm is that we can compute the number #P for different a0
in about the same time. For instance, if a0 = 89643481 × 1001, CTEuclid stile gives
398 terms and returns 94267024658624993843 in about 0.4 seconds. It is worth noting
that many of the 398 terms cancels with only 118 terms left. It might be interesting to
understand how these terms cancels with each other. We also tried random examples
with 100000 ≤ ai ≤ 2500000, the performance is not nice when n ≥ 5.

The above examples show that even if the final answer is simple, the middle step
may give complicated results. We make the following observation: Step 1 takes no
time; Step 2 is the most important step, where we hope the number of terms nt we
get is small; Step 3 of eliminating the slack variables is the most time consuming step,
and its running time is almost linear to nt. This leads to the following two technical
treatment when dealing with complicated or even benchmark problems.

1. In step 2, we save some data for later use: the data for every 1000 terms we
obtained are saved in different files, the data for all bad denominator factors are
saved in a file.

2. The running time for step 3 can be estimated according to the size of the data
we saved in step 2.

5.2 Computation for magic squares of order 6

In subsection 3.3 we have convert the Ehrhart series for order n magic squares polytope
to a constant term. Applying the package CTEuclid will give the desired Ehrhart series.
There is no difficulty for the cases n = 3, 4. Indeed the author’s Ell2 package is faster
in these two cases but meet memory problem for the n = 5 case. Our CTEuclid
computes the n = 5 case in about 2700 seconds of cpu time. The n = 6 case is much

18

more complicated, and is not known before. The Ehrhart series for order 6 magic
square has been put at Sloane’s integer sequence website [15, A216039]. It looks like

IMS6(q) =
(1− q)3N

(1− q3)5 (1− q4)5 (1− q5)4 (1− q6)6 (1− q7)3 (1− q8)2 (1− q9) (1− q10)

= 1 + 96q + 14763q2 + 957936q3 + 33177456q4 + 718506720q5 + · · ·

where

N = q138 + 99 q137 + 15057 q136 + · · ·

+ 21382798694422310755770332936q69+ · · ·+ 15057q2 + 99q + 1.

This result is obtained by modulo three large primes. The total cpu time is about 70×3
days. The author would like to thank his officemates for running these computations
on their computers.

For the order 6 magic squares problem, we have to save data for the results obtained
in the second step. We split the data into different files, with each file containing 1000
terms. The most time consuming step is the third step, especially when the dimension
is large. The good news is that we can estimate the running time. In the third step
we need to eliminate the slack variables. When the data files are too large, we must
do the computation modulo a large prime. Here we choose p1 = 636, 286, 597 for our
first computation. Our estimate time for the third step is about 108 days of cpu time
based on the observation that each file takes about 5 minutes.

The flexibility of our algorithm allows us to reduce the number of terms obtained
in the second step. The idea is that we can delay the adding of slack variables. That
is, we can directly eliminate several variables as long as all terms in the outcome are
valid, i.e., with no zero in the denominator. This is done by several tries and we
need to control the size of the output. Next we apply our package to each term in
the output. In this way, we reduced the size of the data files by one third and now
the running time for the third step is about 70 days. These data can be reused for
different modulo computations. Indeed we also did the computation modulo p2 =
460, 710, 223, 302, 903, 961 and p3 = 1, 073, 129, 417, 747, 493, 923.

Finally we use the Chinese remainder theorem to reconstruct the generating func-
tion N/D. We conclude that this is the desired solution because the maximum coeffi-
cient in N is about 6.797227759×10−17p1p2p3. Of course, if one needs a rigorous proof,
one needs a bound for N |q=1, which should not be a hard problem.

5.3 Possible improvements

In summary, Step 1 is simple but necessary for general problems, but we shall con-
sider delay this step in practical problems. Step 3 is of independent interest. Give a
faster algorithm is possible but we will not discuss here. Step 2 is the crucial step,
and the number of terms obtained in this step is dominant. We shall concentrate on
improvements to this step.

19

Let us consider the linear Diophantine system Aα = b with augmented matrix
(A, b). Clearly elementary row operation will not change the solution space. So it is
possible to find a simpler matrix (A′, b′) with the same solution space. This step may be
achieved by the well-known Lenstra Lenstra Lovasz’s (LLL) basis reduction algorithm
[10, 14]. The author is considering upgrade the package by using this idea.

There are many ideas to improve the algorithm. An interaction with known theories
will give hints for improvements. For instance, Stanley’s monster reciprocity theory
contains some algorithmic ideas. See [16, 19]. Our ultimate goal is to develop a
classic algorithm in this subject. We believe that such an algorithm should contain the
following features.

1. We shall deal with the inhomogeneous case directly, avoid using Brion’s theorem,
which is too expensive when the number of vertices is large.

2. We shall give a decomposition dealing with Laurent polynomial numerator in a
uniform way. The outcome will be analogous of simplicial cones.

3. We shall apply Barvinok’s decomposition of simplicial cones into unimodular sim-
plicial cones or the like, which we believe to be the genuine essence of Barvinok’s
algorithm.

Acknowledgements: This work was supported by the Natural Science Foundation of China

(11171231).

References

[1] K. Aardal and A. K. Lenstra, Hard equality constrained integer knapsacks, Math.
Operations Research, 29 (2004) 724–738.

[2] M. Ahmed, J. D. Loera, R. Hemmecke, Polyhedral cones of magic cubes and
squares, Discrete and Computational Geometry, 25–41, Algorithms Combin., 25,
Springer, Berlin, 2003.

[3] G. E. Andrews, MacMahon’s partition analysis. I. The lecture hall partition the-
orem, Mathematical essays in honor of Gian-Carlo Rota (Cambridge, MA, 1996),
Progr. Math., vol. 161, Birkhauser Boston, Boston, MA, 1998, pp.1–22.

[4] G. E. Andrews, P. Paule, and A. Riese, MacMahon’s partition analysis III: the
Omega package, Europ. J. Combin. 22 (2001) 887–904.

[5] G. E. Andrews, P. Paule, and A. Riese, MacMahon’s partition analysis VI: A new
reduction algorithm, Ann. Comb., 5 (2001) 251–270.

[6] A. I. Barvinok, Polynomial time algorithm for counting integral points in polyhe-
dra when the dimension is fixed, Math. Operations Research 19 (1994) 769–779.

20

[7] M. Beck, S. Robins, Computing the Continuous Discretely: Integer–Point Enu-
meration in Polyhedra, Undergrad. Texts Math., Springer, New York, 2007.

[8] E. Ehrhart, Polynomes arithmétiques et methode des polyédres en combinatoire,
International Series of Numerical mathematics, vol 35, Birhäuser, Basel 1977.

[9] A. Garsia, G. Musiker, N. Wallach, and G. Xin, Invariants, Kronecker products,
and combinatorics of some remarkable Diophantine systems, Adv. in Appl. Math.,
42 (2009) 392–421.

[10] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithm and Combina-

torial Optimization, second edition. Algorithms and combinatorics, 2, Springer-
Verlag, Berlin, 1993.

[11] M. Köppe, A primal Barvinok algorithm based on irrational decompositions. SIAM
J. Discrete Math. 21 (2007), 220–236 (electronic).

[12] J. A. D. Loera, The many aspects of counting lattice points in polytopes, Mathe-
matische Semesterberichte 52 (2005), 175–195.

[13] J. A. D. Loera, R. Hemmecke, J. Tauzer, and R. Yoshida, Effective Lattice point
counting in Rational Convex polytopes, J. Symbolic Comput., 38 (2004) 1273–
1302.

[14] A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience, 1986.

[15] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published
electroni- cally at http://oeis.org, 2012.

[16] R. P. Stanley, Combinatorial reciprocity theorems, Adv. Math. 14 (1974) 194–253.

[17] R. P. Stanley, Enumerative Combinatorics, Vol 1, Cambridge University Press,
Cambridge, 1997.

[18] G. Xin, A fast algorithm for MacMahon’s partition analysis, Electron. J. Combin.
11 (2004), R58 (electronic).

[19] G. Xin, Generalization of Stanleys monster reciprocity theorem, JCTA 114 (2007)
1526–1544.

21

http://oeis.org

	1 Introduction
	2 Comparison of Barvinok's polynomial algorithm and Xin's partial fraction algorithm
	3 A polynomial algorithm for MacMahon partition analysis in theory
	3.1 The big picture
	3.2 Eliminating the slack variables
	3.3 Direct computation of the Ehrhart series

	4 A Euclid style algorithm for MacMahon partition analysis
	4.1 A reduction to the contribution of a single factor
	4.2 A recursion for the contribution of a single factor

	5 The Maple package CTEuclid
	5.1 Knapsack type examples
	5.2 Computation for magic squares of order 6
	5.3 Possible improvements

